4 research outputs found

    MemTorch: An Open-source Simulation Framework for Memristive Deep Learning Systems

    Full text link
    Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using memristive devices can be used to efficiently implement various in-memory computing operations, such as Multiply-Accumulate (MAC) and unrolled-convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). Currently, there is a lack of a modernized, open source and general high-level simulation platform that can fully integrate any behavioral or experimental memristive device model and its putative non-idealities into crossbar architectures within DL systems. This paper presents such a framework, entitled MemTorch, which adopts a modernized software engineering methodology and integrates directly with the well-known PyTorch Machine Learning (ML) library. We fully detail the public release of MemTorch and its release management, and use it to perform novel simulations of memristive DL systems, which are trained and benchmarked using the CIFAR-10 dataset. Moreover, we present a case study, in which MemTorch is used to simulate a near-sensor in-memory computing system for seizure detection using Pt/Hf/Ti Resistive Random Access Memory (ReRAM) devices. Our open source MemTorch framework can be used and expanded upon by circuit and system designers to conveniently perform customized large-scale memristive DL simulations taking into account various unavoidable device non-idealities, as a preliminary step before circuit-level realization.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. Update: Fixed accent \'e characte

    Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults

    Get PDF
    In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive crosspoint array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor?s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pazos, Sebastián Matías. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Palumbo, Félix Roberto Mario. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morell, Antoni. Universitat Autònoma de Barcelona; EspañaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; Españ

    Automated Synthesis of Unconventional Computing Systems

    Get PDF
    Despite decades of advancements, modern computing systems which are based on the von Neumann architecture still carry its shortcomings. Moore\u27s law, which had substantially masked the effects of the inherent memory-processor bottleneck of the von Neumann architecture, has slowed down due to transistor dimensions nearing atomic sizes. On the other hand, modern computational requirements, driven by machine learning, pattern recognition, artificial intelligence, data mining, and IoT, are growing at the fastest pace ever. By their inherent nature, these applications are particularly affected by communication-bottlenecks, because processing them requires a large number of simple operations involving data retrieval and storage. The need to address the problems associated with conventional computing systems at the fundamental level has given rise to several unconventional computing paradigms. In this dissertation, we have made advancements for automated syntheses of two types of unconventional computing paradigms: in-memory computing and stochastic computing. In-memory computing circumvents the problem of limited communication bandwidth by unifying processing and storage at the same physical locations. The advent of nanoelectronic devices in the last decade has made in-memory computing an energy-, area-, and cost-effective alternative to conventional computing. We have used Binary Decision Diagrams (BDDs) for in-memory computing on memristor crossbars. Specifically, we have used Free-BDDs, a special class of binary decision diagrams, for synthesizing crossbars for flow-based in-memory computing. Stochastic computing is a re-emerging discipline with several times smaller area/power requirements as compared to conventional computing systems. It is especially suited for fault-tolerant applications like image processing, artificial intelligence, pattern recognition, etc. We have proposed a decision procedures-based iterative algorithm to synthesize Linear Finite State Machines (LFSM) for stochastically computing non-linear functions such as polynomials, exponentials, and hyperbolic functions
    corecore