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Abstract: In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-
point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended
for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static
memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented
with memristors. Following the standard memristive approach, the QMM comprises two coupled
equations, one for the electron transport based on the double-diode equation with a single series
resistance and a second equation for the internal memory state of the device based on the so-called
logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of
different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and
two well-known image datasets involving hand-written digits and human faces are employed to
assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by
the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault
type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a
Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in
the SLP inference phase are thoroughly investigated.

Keywords: stuck-at fault; RRAM; pattern recognition; memristor; QMM; neural network;

neuromorphics

1. Introduction

Artificial neural networks (ANNSs) have demonstrated outstanding results in the field
of pattern recognition [1]. In this particular domain, the matrix-vector multiplication
(MVM) method plays a key role, being the most computationally expensive operation
during the classification phase. When implemented in CMOS-based platforms, MVM
becomes costly in terms of power consumption and latency. As no drastic performance
improvements can be expected from further technology scaling [2], alternative approaches
involving novel technologies are being extensively researched worldwide. Among them,
Resistive random access memory (RRAM) or memristor-based cross-point Arrays [3—6]
(CPA, see Figure 1a) have demonstrated enormous potential in boosting the speed and
energy efficiency of next-generation computing systems [7]. Moreover, the CPA structure
can be scaled down to 4F2, F being the feature size of the technology node [8], which
enables the large-scale integration of memory units.
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Figure 1. (a) Sketch of the CPA structure. Red and blue arrows exemplify the electron flow through the memdiodes

connecting the top (word lines (WL)) and bottom lines (bit lines (BL)). Different resistance states are schematically represented

(high resistance state (HRS) to low resistance state (LRS)). The dashed blue line depicts the so-called sneakpath problem.

The parasitic wire resistance is indicated for WL; and BL;. (b) Schematic representation of the MIM structure where the

RS mechanism takes place, before the forming step and during the LRS-to-HRS alternate transition. Blue and red balls

represent the metal ions and oxygen vacancies (VOs), respectively.

The resistive switching (RS) mechanism is the physical phenomenon behind RRAM
devices. It involves the creation (electroforming event) and the alternate rupture (RESET
event) and completion (SET event) of a conductive filament (CF) spanning across the
insulating layer in a metal-insulator-metal (MIM) structure. In the case of conductive
bridge RAMs (CBRAM) and oxide RAMs (OxRAM), RS relies on the displacement of
metal ions/oxygen vacancies within the dielectric film originating from the application
of an external electrical stimulus [9,10]. For a fully formed CF, the device is in a low
resistance state (LRS, often exhibiting a linear I-V relationship), whereas rupture of the
CF leads to a high resistance state (HRS, usually showing a linear-exponential I-V depen-
dence [9,10]). Voltage-controlled redox reactions occurring inside the insulator modulate
the CF conducting properties in between these two limits, thus rendering intermediate
states. This behaviour is schematically represented in Figure 1b. From the modelling
viewpoint, the compact model originally proposed by Miranda [11] and later extended
by Patterson et al. [12] is able to describe not only the LRS and HRS I-V loops but also
the intermediate states, as well as the gradual transitions occurring in bipolar resistive
switches. This is accomplished by considering a nonlinear transport equation based on
two identical opposite-biased diodes in series with a resistor, as shown in the left inset of
Figure 2a. Given that the resulting I-V relationship resembles a diode with memory, this
device was named the quasi-static memdiode model (QMM).

Memristor-based CPAs for pattern classification have been studied in previous works
using computer simulations relying on different memristor models and array architec-
tures [3,13,14]. Hu et al. [3] reported a simulation-based case study of a CPA for character
recognition using two CPAs of 256 x 26 (i.e., 256 rows by 26 columns, totalling ~13k devices)
to represent both the positive and negative synaptic weights using a Verilog-A nonlinear
memristor model [15]. Aiming to reduce both the area and power consumption arising from
having two CPAs, an alternative architecture was considered by Truong et al. [13] (64 x 26,
~1.6k devices) using the same memristive device model. This model was also successfully
used for voice recognition using a set of CPAs, using up to ~2.5k memristors [14].

However, although providing excellent results, these approaches fail to provide a
consistent framework for introducing some of the main challenges currently faced in the de-
velopment of RRAM-based CPAs—fundamentally, those linked to the high manufacturing
variability and the relatively low yield. Different faults can occur in memristor-based CPAs
and they can be roughly split into two groups: hard faults and soft faults. Although the
effects of soft faults, e.g., read-one-disturb and read-zero-disturb, can be easily minimized
as the memristor’s resistance is still tuneable [16,17], hard faults such as stuck-at faults
(SAFs) pose a serious limitation to CPA-based architectures. An SAF denotes a memristor
with its conductance state fixed to a high (stuck-at-ON, SA1) or low (stuck-at-OFF, SAQ)
conductance value. SAFs can have their origin in the fabrication process, as well as in the
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intense utilisation of the device, and despite the inherent robustness of the neural networks
to variations [18], they may largely degrade their expected inference accuracy. Since the
conducting properties of a metal-oxide layer in an RRAM device are relatively sensitive to
the oxide thickness and the electroforming method [19], it is hard to prevent the occurrence
of SAFs [20]. For example, a 4-Mb HfO,-based RRAM test chip may contain around 10% of
RRAM faulty devices [21], so this is far from being a minor issue.

The methods proposed to tolerate SAFs in CPAs include redundancy schemes [22]
or analog error correction codes (ECC) [23], retraining of the neural network [18,24], and
alternative mappings of the synaptic weights into the memristor-based CPA [22], each of
them having pros and cons. For example, the first option brings inevitable hardware cost
and power consumption, as it involves large routing overhead to control the individual
access transistors. This severely limits its applicability to large networks. Concerning the
second method, re-training of the neural network may be inefficient as the training of large
networks is computationally expensive, not to mention that in hardware approaches, the
limited write endurance of RRAM cells [25] can lead to an increasing number of RRAM cells
with an SAF during the re-training procedure. Lastly, fault-tolerant mapping algorithms are
an interesting approach as, in contrast to the previously mentioned options, they involve
little or no hardware overhead nor the computational effort of retraining the whole network.
Examples of these are the row-flip, row-permutation and value range transformations
proposed in [18,26]. However, it is worth pointing out that such methods are normally
studied in idealized scenarios and from a logical viewpoint. In a realistic environment,
CPAs have practical limitations such as the line resistances between adjacent cells (Ry),
the resistance window of the devices (Roy and Rorr), the device-to-device variability
(D2D), as well as the inherent conducting features of CPAs such as the so-called sneakpath
problem (see Figure 1a). Although the former refers to the increase in R; as the fabrication
technology scales down [27,28], the latter relates to the non-negligible current flowing
through unselected devices [28,29].

Accordingly, SPICE simulation (or any other specific simulator) appears to be the most
suitable approach to realistically investigating the complete system (CPA with parasitics
and control electronics) [3,13,14,25,30-32]. However, this approach is also constrained to
the limitations of the memristor model and works well for small-sized memristor-based
CPAs, given again the high computational requirements [33]. Thereby, great attention
has been paid in the last years to achieving a simulation tool that is capable of mod-
elling the wide spectrum of existing memristive devices [34]. This has resulted in a
variety of models, including simple behavioural models [15,35], device-specific physical-
phenomenological models [36], and general phenomenological models (Yakopcic [37],
TEAM [38], VTEAM [39], and Eshraghian [40]). Nevertheless, these models usually rely
on various internal equations or the introduction of artificial window functions in the
memory equation (ME), which pose serious mathematical drawbacks and are the root of
convergence problems [41]. In this regard, the closed-form expression for the I-V curve
(continuous and differentiable) and the iterative nature of the state variable computation
of the QMM makes it suitable for dealing with arbitrary input signals (continuous and
discontinuous, differentiable and non-differentiable). Such is the case of its application
to the realistic circuital modelling of CPA-based single and multi-layer perceptrons (SLPs
and MLPs) involving thousands of devices intended for the classification of large pattern
datasets, as recently demonstrated [28,42]. Although a much simpler approach than the
more complex RRAM-based ANNSs explored in the literature (MLPs, [43-45], convolutional
neural networks [46] (CNNs), spike neural networks [47] (SNNSs), etc.), SLPs still allow us
to study and clarify the limitations of ANNSs caused by parasitic effects and non-idealities
occurring in the synaptic layers implemented with CPAs. However, to the best of the
authors’ knowledge, the impact of SAFs in realistic simulations is still to be evaluated to
fully address the applicability of CPAs for the implementation of SLPs.

In this paper, the impact of SAFs in ex situ-trained CPA-based ANNs intended for
large dataset pattern recognition tasks is addressed within the framework of realistic SPICE
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simulations involving the QMM. By considering an SLP (as well as the case of an MLP) as
a case study, and the classification of grayscale images of hand-written digits and human
faces from two different datasets (MINIST [48] and Yale Face Dataset B [49], respectively)
for benchmarking, we explore the SLP and MLP sensitivity to SAFs as a function of the
CPA’s parameters (R;, CPA size, and mapping). Based on the obtained results, three
different re-mapping algorithms for mitigating the impact of the SAFs on the inference
accuracy are tested in an integral and realistic simulation environment. The rest of this
paper is organized as follows: in Section 2 the available literature regarding the study of
SAFs” impact on RRAM-based ANNs and their possible mitigation is briefly reviewed.
Section 3 describes the methods, essentially the QMM. Section 4 performs an exploratory
investigation of the impact of SAFs on RRAM-based ANNs from the viewpoint of realistic
electrical simulations, providing useful design considerations and trade-offs. Section 5
discusses the algorithms used for SAF mitigation and evaluates the obtained results. Finally,
the conclusions of this paper are presented in Section 6.

2. Previous Related Works

The impact of SAFs in RRAM-based ANNs has been addressed several times in the
literature. Nevertheless, the vast majority of these research works (if not all of them) fail
at some point to provide a realistic scenario for its study (that is, a SPICE simulation-
based workflow using a realistic memristor model, capable of accounting for the CPA
non-idealities) or they simply do not propose/test any mitigation technique. For instance,
in Supplementary Table S1, we summarize 14 different works reported in the literature
that do not meet these requirements, some of which are very detailed, comprehensive,
and original research articles. In the following sub-sections we analyze in detail the work
already done on this topic.

2.1. CPA Modelling

Very often, parasitic line resistances of the interconnecting lines in the CPA are com-
pletely ignored. In small CPA structures, and when considering thick, wide metal lines
this approach may hold valid, as the resistance per unit length of such wordlines and
bitlines are negligible (<1 () per square) when compared to the LRS resistance of the
most potentiated RRAM device (around 1 k(). In such cases, the IR drop along the
top and bottom lines of the CPA can be disregarded and it is correct to consider that
the voltages applied to the wordline inputs are effectively delivered to all the RRAM
cells. However, this is not valid for large CPAs or highly scaled metallic lines [27] (due
to the size-dependent resistivity of Cu [50-52]), as the effects of the IR drops become
notorious for the cells located away from the input terminals, resulting in a significant
reduction of the voltage delivered to the cells located away from the input/output termi-
nals. To the best of our knowledge, this is a limitation in the works of Mehonic et al. [53]
(from 2019), Dias et al. [54] (2015), Zhang et al. [55,56] (2019), Xia et al. [22,26] (2017
and 2018), Woo et al. [57] (2020), Huang et al. [58] (2021), Yeo et al. [59] (2019), and
Van Pham et al. [60] (2019).

2.2. Simulation Platform

Different approaches have been considered to investigate the performance of CPA-
based neural networks but they are not suitable for every simulation scenario/analysis
scope. For instance, some works address the problem from a logical/ functional perspective,
modelling the forward pass in each of the synaptic layers of the DNN simply as a mathemat-
ical matrix product between a vector of voltages and a matrix of conductances, which results
in a vector of currents. This is the case for the works reported by Zhang et al. [55,56] (2019),
simulated in C++ and MATLAB. Although such a CPA modelling and simulation platform
allows one to deal with large fully connected (FC) and convolutional neural networks
(CNNs) (and even more complex ANN architectures, such as the modified VGG-11 com-
prising 7.66 x 10° synapses considered in the work of Xia et al. [26] (2017)), this approach
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is incapable of accounting for the electrical equivalent of the memristor-based CPA. Similar
approaches have also been reported, considering a different simulation platform such as
Python (Mehonic et al. [53] (2019) and Huang et al. [58] (2021)), but with similar limita-
tions. Last but not least, neither C++, MATLAB, nor Python are circuit simulators, and
therefore in a best-case scenario they are still limited to simulating only the CPA struc-
ture, and cannot deal with the CMOS blocks included in a typical RRAM neuromorphic
circuit. In this context, the most suitable software for the electrical simulation of CPAs
is SPICE (or any alternative language of this type), as it provides the versatility to add
or remove parasitics by simply adding the required passive element to the CPA circuit
netlist, while simultaneously supporting the simulation of the CMOS circuitry. Regarding
the use of hardware approaches, although representing the most realistic scenario, they
are costly and unpractical for the exploration of the wide parametric space of the CPA
parasitics or RRAM characteristics. This is the case for the works by Chen et al. [21] (2015),
Chen et al. [61] (2017), and Liu et al. [24] (2015).

2.3. RRAM Models

Regardless of the simulation platform considered and the realistic or idealized CPA
modelling, a quite common weakness of many reported works is the over-simplified repre-
sentation of the RRAM device. In the most unrealistic scenario, RRAM devices are modeled
as a resistor of fixed value, which imposes a variety of limitations, perhaps the most impor-
tant being: (i) such modelling is not capable of capturing the non-linearity of the RRAM
devices (especially in the HRS regime), which may result in the under/overestimation
of the device current [28]; (ii) it does not account for the SET/RESET transitions. This
is the case for the works by Zhang et al. [55,56] (2019), Xia et al. [22,26] (2017 and 2018),
Woo et al. [57] (2020), and Yeo et al. [59] (2019). As previously mentioned, given these
boundary conditions, the most suitable simulation platform is SPICE. Nonetheless, there
are different approaches in this regard, these being the use of behavioural and compact
SPICE/ Verilog-A models. The former are quite extensive and allow a very realistic formu-
lation of the pinched I-V characteristics of memristive devices (see the works from Van
Pham et al. [60] (2019), Cristiano et al. [62] (2018), and Romero et al. [63] (2019)), but this
comes at the cost of increased computational requirements. Therefore, the latter are the
most promising candidates for the simulation of large memristor-based ANNs. This was
the type of model chosen in the work by Dias et al. [54] (2015).

2.4. Alternative RRAM Integration Structures

CPAs formed by memristors have drawn great attention due to the scaling properties
of such structures (4F2). Nevertheless, they suffer from the so-called sneakpath effect, by
which local current loops appear inside the CPA structure, producing errors in the total
output current of each CPA bitline. Alternatives to this structure are the CPAs containing
one transistor-one resistor (1T1R) structures. However, they have larger area requirements,
which threatens the integration density achievable with simpler structures. 1T1R structures
were investigated for the case of pattern recognition by Van Pham et al. [60] (2019) and
Chen et al. [21] (2015) but considering a hardware approach. Another example is works
by Cristiano et al. [62] (2019) and Romero et al. [63] (2019), in which the authors consid-
ered a 2T2R+3T1C structure and two pairs of conductances per synaptic weight, further
compromising the maximum achievable integration density.
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Figure 2. (a) Hysteron model with logistic ridge functions I'" (Equation (3)) and I'~ (Equation (4)). Q) is the space of feasible
states S. The black thick faded line superimposed on the hysteron model indicates the trajectory of the state variable A inside
Q) from an initial S; to a final S, state. Note that four transport mechanisms are considered for the pre-forming conduction,
with the forming event taking place at the same voltage. The inset in the left shows the equivalent circuit model for the
current equation (Equation 1) including the series resistance. The diodes are driven by the memory state of the device
and one diode is activated at a time. Typical I-V characteristics for a memdiode [11] obtained via the simulation of the
proposed model are superimposed. Current evolution is indicated by the blue arrows. The inset on the right side shows the
exponential (HRS) to lineal (LRS) transition by varying the value of A. The red shaded region indicates the possible voltages
applied to the device. Igrs and I gs currents are pinpointed at a fitting voltage with the grey and white circle markers,
respectively. The overestimation of Igyrs may occur when considering a linear model [29] for the HRS regime, and lower
applied voltages as indicated by the cyan, blue and black ball markers. (b) Experimental I-V loops of different materials
reported in the literature, fitted with the QMM model: HfO, [64] and LMCO [65].

2.5. Costs Associated with the Mitigation of SAF Effects

Last but not least, it is worth mentioning that in five out of the 14 reviewed ar-
ticles, no mitigation technique is discussed, showing that this is not the standard ap-
proach (Mehonic et al. [53] (2019), Dias et al. [54] (2015), Cristiano et al. [62] (2018),
Chen et al. [21] (2015), and Huang et al. [58] (2021)). Another three articles consider
re-training approaches to overcome the non-functional RRAM cells (Xia et al. [22] (2017),
Yeo et al. [59] (2019), and Van Pham et al. [60]). This is an expensive approach in terms of
computational complexity. However, most importantly, the repeated write cycles of the
RRAM devices during the training loops also generate a new threat to the device endurance.
Four additional works (Zhang et al. [55,56] (2019) and Xia et al. [22,26] (2017) and (2018)) dis-
cuss SAF mitigation techniques, but provide oversimplified CPA and memristor modelling
approaches. Finally, another two works (Liu et al. [24] (2015) and Chen et al. [61] (2017))
tested mitigation techniques over a hardware CPA as a test vehicle. Although this is indeed
the ideal study scenario, it is not capable of an exploratory analysis (CPA parameters are
fixed). In summary, to the best of the authors” knowledge, there are not many papers (if
any) where the impact of SAFs on the performance of CPA-based SLPs is addressed in a
full framework, comprising a standard circuit simulator with a realistic memristor SPICE
compact model and considering different CPA non-idealities, and it is even less frequent to
find cost-efficient SAF mitigation techniques evaluated within such frameworks.
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3. Materials and Methods
3.1. Quasi-Static Memdiode Model

Physically, the memristor is associated with a potential barrier that controls the electron
flow in the CF. The conduction properties of this non-linear device change according to
the variation of this barrier. Given the uncertainty in the area of the CF, the diode current
amplitude is used as the reference variable instead of the potential barrier height. Following
Chua’s memristive approach, the memdiode model comprises two equations, one for the
electron transport and a second equation for the memory state of the device (ME), which is
based on a hysteresis operator. The equation for the I-V characteristic of a memdiode is
given by the expression:

W((XRIO(}\)ecx(abs(v)-&-RIO(?\)))

I =sgn(V) R

—Io(N) 1)

where Ip(A) = Ly (1 — A) + LiaxA is the diode current amplitude, « is a fitting constant, and
R is a series resistance. Equation (1) is the solution of a diode with series resistance and
W is the Lambert function. I,,;;;, and I, are the minimum and maximum values of the
current amplitude, respectively. abs(V) is the absolute value of the applied bias and sgn()
is the sign function. As Ij increases in Equation (1), the I-V curve changes its shape from
exponential to linear through a continuum of states as experimentally observed for this
kind of device. A is a control parameter that runs between a lower limit A,,;,—0 (setting
the device in HRS), the exact value of which will be discussed below, and Ay, —1 (LRS)
and is given by the recursive operator (Equation (2)):

A(V) = min{F(V),max [)\ <§),F+(V)} } @)

where min() and max() are the minimum and maximum functions, respectively, and V is
the voltage a timestep before V. The positive and negative ridge functions in Equation (2),
I'*(V) and I'(V), represent the transitions from HRS to LRS (SET) and vice versa (RESET)
and can be physically linked to the completion and destruction of the CF [9,10], respectively.
They are defined by Equations (3) and (4):

rHv) = {14 v-r) ®)

r(v)={14em VL @)

where 17" and 5~ are the transition rates and V * and V ~ the threshold voltages for SET
and RESET, respectively. A(V) defines the so-called logistic hysteron or memory map of
the device and keeps track of the history of the device as a function of the applied voltage
(see the A-V curve in Figure 2a). A, calculated from Equation (2), yields the transition from
HRS to LRS and vice versa through a change in the properties of the diodes depicted in the
left inset of Figure 2a. The combination of Equations (1) and (2) results in an I-V loop such
as that superimposed to the logistic hysteron in Figure 2a, which starts in HRS (A = A,;,,)
and evolves as indicated by the blue arrows printed on top.

The HRS (exponential) to LRS (linear) transition is detailed in the right inset of
Figure 2a (solid blue lines), superimposed for comparison with a linear model [29], alto-
gether with some intermediate states (dashed blue lines). It is clear that the memdiode
model can accurately describe both HRS and LRS curves: as A is swept from A, (e.g.,
~107%) to 1, Iy in Equation (1) varies between I;;;;, and I,;;x, gradually transitioning from
linear-exponential to a linear regime as a consequence of a potential drop in series resistance.
Additionally, this model can account for the transport mechanism in the pre-forming state,
as well as the electroforming event. This is achieved by including two separate transport
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equations (namely, TE¢,;meq and TEgeqn) and a second ridge function F}’orm (V), defined as

per Equation (3) but in terms of nﬁrm and V; . The proposed model can be described

orm’
by a simple HSPICE sub-circuit as shown in éupplementary Table S2. Fowler-Nordheim,
Poole-Frenkel, or space-limited charge can be considered for the conduction mechanism
through the pristine dielectric, but in this paper an ohmic I-V relationship was assumed for
simplicity (see Figure 2a). The accuracy of the model is illustrated in Figure 2b by fitting
experimental data corresponding to HfO, [64] and LCMO [65] structures measured at room
temperature (details of these samples can be found in Section 1.1 of the Supplementary

Materials).

3.2. Procedure for SPICE CPA Creation, Training, and Simulation

The procedure originally proposed in [28] for creating and simulating the SLP or
MLP used as case study is considered herein. The workflow is summarised in the chart
depicted in Supplementary Figure Sla. The tasks can be split into two parts: on one hand
the SLP creation, training, and circuit-representation SPICE code generation (MATLAB),
and on the other the simulation (HSPICE). The structure of the resulting neuromorphic
circuit is detailed in Section 1.2 in the Supplementary Materials, and a simplified circuit
schematic is presented in Supplementary Figure S1b. For the study reported in this paper,
two different databases are considered, the MNIST (see Supplementary Figure Slc) and
Yale Face Database, the details of which are presented in Section 1.3 in the Supplementary
Materials.

4. Results and Discussion
4.1. Impact of the CPA Parasitics on the Recognition Accuracy

Before analysing the impact of SAFs on CPA-based SLPs or MLPs, it is worth reporting
the main effects of the CPAs’ non-idealities on the inference accuracy of the fault-free
SLP. These are the resistance window amplitude (Ron/Rorr), the device-to-device (D2D)
variability, signal-to-noise Ratio (SNR) degradation, the presence of a non-negligible line
resistance Ry, and the influence of the image size, among others. For further details
regarding these aspects, the reader is referred to the previous works by our group [28,42].
These were studied within the framework of CPA-based SLP creation, training, and SPICE
simulation presented in Supplementary Figure S2, together with a simplified schematic
representation of the generated SLP circuit. To account for the first issue (Ron/Rorr ratio),
12 different model plays for the QMM with a variety of Ron/Rorr ratios considered in the
literature [43-45,66,67] were defined by (i) equally scaling the HRS and LRS curves by a
factor of 10: A1 (Rorpr~1 MQ) and Rpn~100 kQ), A2 (~100 kQ) and ~10 kQ)), A3 (~10 kQ)
and ~1 kQ)), and A4 (~1 kQ) and ~100 Q)); (ii) scaling the HRS curve by a factor 10 while
keeping the LRS fixed: B1 (~1 MQ) and ~100 ), B2 (~100 k) and ~100 ), B3 (~10 kQ)
and ~100 1), and B4 (~1 kQ) and ~100 Q); and (iii) scaling the LRS curve by a factor of 10
while keeping the HRS curve fixed: C1 (~1 MQ) and 100 ~kQ2), C2 (~1 MQ) and ~10 kQ3), C3
(~1 MQ and ~1 kQ), and C4 (~1 MQ) and ~100 Q). The corresponding I-V loops are shown
in Supplementary Figure S2a—c. The Ron/Rorr ratio’s influence on the inference accuracy
was addressed by simulating a 784 x 10 SLP (using the original 28 x 28 px. MNIST images
shown in Supplementary Figure S2d). V,.,; was set to 300 mV and R} was fixed to 2 ().
For this case, the SAF ratio was kept equal to 0. The simulation results are presented in
Supplementary Figure S2e f, indicating an accuracy loss corresponding to the upward shift
in the resistance window for model plays A1-A4 (constant Ron/Rorr ratio) or the LRS
curve for model plays C1-C4 (constant Rorr, increasing Ron/Rorr ratio). On the contrary,
model plays BI1-B4 (constant Rpy, decreasing Ron/Rorr ratio) show a highly degraded
accuracy that is almost independent of the model play considered. Therefore, the LRS
characteristic (Roy) has a major impact on the inference accuracy. Significant differences
arise between A1-A4 and C1-C4 model plays when their sensitivity to D2D variations is
introduced, as shown in Supplementary Figure S2g. In this scenario, the larger Ron/Rorr
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ratio of the latter (particularly for C2-C4) allows one to minimise the susceptibility of the
SLP-to-D2D variability.

The performance of the CPA-based SLP also depends on Ry. As each memristor is
in series connection with a number of R;, resistors, the fraction of the voltage effectively
delivered to the memdiode decreases as the ratio Ry /Ron tends towards unity, as shown in
Supplementary Figure S2h, showing a common trend across the different C1-C4 model
plays. Interestingly, when a smaller SLP is tested (64 x 10, using the MNIST images
down-sampled to 8 x 8 px.) the same trend arises, but right-shifted. As the total resistance
associated with the CPA wires is proportional to the CPA size, it is expected that downsizing
the input patterns would boost the recognition accuracy. Nevertheless, when the resolution
of the MNIST images is reduced below 12 x 12 px. the digit becomes practically illegible
for the human eye (see Supplementary Figure S2d), indicating a trade-off between legibility
and the voltage drop that defines the optimum size of the SLP for a given set of Ron, Rorr,
and R; values (see Supplementary Figure S2i). Supplementary Figure S2i also shows a
reduced Ry dependency for smaller SLPs (i.e., CPAs with fewer devices) than in their larger
counterparts. The realisation of larger CPAs by considering smaller partitions is shown
to efficiently improve the inference accuracy [27,28,68]. Note that for this latter analysis,
only model play C2 was considered. This is because this model play provides the best
trade-off between SNR, inference accuracy, and tolerance to D2D variations. Model play
C1, for instance, has a poor SNR as the high values of Roy and Rorr produce extremely
low operating currents (see Supplementary Figure S2j).

4.2. Impact of the Fault Ratio on the Inference Accuracy

Stuck-at faults cause the unwanted potentiation (SA1, device stuck at LRS) or depres-
sion (SA0, device stuck at HRS, or even not electroformed) of synaptic connections in the
CPA [22,56]. In this paper, the inference accuracy is studied for both cases, also accounting
for possible non-electroformed devices (SA0_nE). The memristor model considered here is
particularly suitable for injecting such faults as it can be achieved by varying one single
parameter: A (A =1 corresponding to SA1 faults, A = A,,;;;, to SAQO faults, and A = 0 to
SAQ_nE faults). Given the stochastic nature of the spatial distribution of SAFs across the
CPA [21,69], Monte Carlo (MC) simulations of the CPA were performed, assuming different
ratios of faulty devices (FD ratio). In each MC run, faulty devices are randomly injected
following a uniform distribution [22,69] into the CPA and, subsequently, the defective CPA
is used to classify the images from the MNIST dataset. Faults are directly injected into the
conductance matrices G}, and G, (see the flowchart in Supplementary Figure Sla). The
obtained inference accuracy is then averaged among all MC runs for a given FD ratio and
presented in Figure 3. The inference accuracy for the three SAF cases are presented as a
function of the FD ratio for two image sizes (8 x 8 px. and 16 x 16 px.), different values of
Ry (10,10 Q2 and 100 ), and considering model play C2 (See Supplementary Figure S3c).
To minimise the impact of series resistance, for both the SLPs used to classify the 16 x 16 px.
images and the MLPs studied, we have considered the use of small partitions (8 blocks in
the SLP—4 for the positive synaptic weights and 4 for the negatives—and 30 in the MLP).
For the SLP considered for the 8 x 8 px. no pa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>