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ABSTRACT

Despite decades of advancements, modern computing systems which are based on the von Neu-

mann architecture still carry its shortcomings. Moore’s law, which had substantially masked the

effects of the inherent memory-processor bottleneck of the von Neumann architecture, has slowed

down due to transistor dimensions nearing atomic sizes. On the other hand, modern computa-

tional requirements, driven by machine learning, pattern recognition, artificial intelligence, data

mining, and IoT, are growing at the fastest pace ever. By their inherent nature, these applica-

tions are particularly affected by communication-bottlenecks, because processing them requires

a large number of simple operations involving data retrieval and storage. The need to address

the problems associated with conventional computing systems at the fundamental level has given

rise to several unconventional computing paradigms. In this dissertation, we have made advance-

ments for automated syntheses of two types of unconventional computing paradigms: in-memory

computing and stochastic computing. In-memory computing circumvents the problem of limited

communication bandwidth by unifying processing and storage at the same physical locations. The

advent of nanoelectronic devices in the last decade has made in-memory computing an energy-,

area-, and cost-effective alternative to conventional computing. We have used Binary Decision

Diagrams (BDDs) for in-memory computing on memristor crossbars. Specifically, we have used

Free-BDDs, a special class of binary decision diagrams, for synthesizing crossbars for flow-based

in-memory computing. Stochastic computing is a re-emerging discipline with several times smaller

area/power requirements as compared to conventional computing systems. It is especially suited

for fault-tolerant applications like image processing, artificial intelligence, pattern recognition, etc.

We have proposed a decision procedures-based iterative algorithm to synthesize Linear Finite State

Machines (LFSM) for stochastically computing non-linear functions such as polynomials, expo-

nentials, and hyperbolic functions.
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CHAPTER 1: INTRODUCTION

Modern computers are based on the von Neumann architecture. The earliest description of the

von Neumann architecture comes from The First Draft of a Report on EDVAC [8]. The EDVAC

(Electronic Discrete Variable Automatic Computer) was envisioned to have a Central Processing

Unit (CPU) –comprised of an arithmetic logic unit (ALU) and a control unit (CU)– data and pro-

gram memories, and input/output peripherals. Program instructions were stored in a memory unit,

just like other data in memory. Data and address buses were provided to move data between dif-

ferent parts of the computer. Thanks to the exponential decrease in transistor size in the coming

decades, computational capabilities of CPUs kept increasing exponentially. The size of memory

also increased due to the same reason. However, the communication capacity of the shared bus,

connecting CPU with memory units, didn’t increase at the same pace. Consequently, an increase

in the computational capabilities of CPU or the size of memory did not translate into a similar

increase in the throughput of computing systems. The limited speed of the shared communication-

bus adversely affects system performance due to the time wasted in transferring data between CPU

and memory. This phenomenon is known as von Neumann-bottleneck, memory-processing bottle-

neck, or communication bottleneck.

For decades, exponential growth in computing capabilities due to Moore’s law was sufficient to

mask the inherent shortcomings of the von Neumann architecture. However, in recent years, not

only has Moore’s law slowed down due to transistor size reaching atomic scale, but fabrication

technology is also facing problems on other fronts such as, increasing leakage currents due to

quantum tunneling, process variations at such a small scale, and vulnerability of small-scale elec-

tronics to radiation flips even at sea levels.

The breakdown of Dennard scaling in the mid 2000s due to increasing dynamic power meant that
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the trend of increasing clock frequencies cannot continue indefinitely. This ushered the era of

multicore scaling, where multiple CPUs fabricated on the same die work in parallel to improve

system performance. Although multicore scaling has improved the computing throughput of gen-

eral purpose computers, this trend is obstructed by the inability to dissipate all the dynamic power

generated by a fully powered CPU. This phenomenon is known as dark silicon, because all of the

circuitry in a die cannot be powered-on at the same time without violating the thermal constraints.

Recent advances in machine learning (ML), artificial intelligence (AI), and data mining, and their

widespread applications have changed both the nature and size of computing. It has become in-

creasingly clear that general purpose architecture cannot efficiently fulfill the demands of these

specialized compute-intensive applications. For instance, Graphics Processing Units (GPU) have

long eclipsed CPUs not only for multimedia, but also for AI and ML applications. Researchers

are also developing AI and ML specific computing architectures such as Tensor Processing Unit

(TPU), Deep Learning Accelerator (DLA), Vision Processing Unit (VPU), and Neural Network

Processor (NNP). These Application Specific Integrated Circuits (ASIC) are also called AI accel-

erators. It is important to mention that despite its deficiencies, ASICs are not intended to replace

general purpose computer. These new computing architectures such as GPUs, NPUs, and other

ASICs are intended to augment the general purpose computer to increase overall computing effi-

ciency.

Besides advances on architectural fronts, recent advances in material science and nanotechnology

have propelled several new nanoelectronic devices to the forefront. Some recently discovered de-

vices are memristors, magnetic tunnel junctions (MTJ), 3d transistors, spin-torque-transfer (STT)

memories, phase change memories (PCM), etc. These newly discovered devices are collectively

referred to as emerging devices, and the novel architectures employing these devices are referred

to as emerging computing architectures. Small size, low to no standby power, non-volatility, and

high read/write speeds are distinct features of these emerging devices as compared to traditional

2



Complementary Metal Oxide Semiconductor (CMOS) transistors. Circuits built from these emerg-

ing nanodevices devices are not only faster and more power efficient, they are also more compact

than the traditional CMOS-based circuits. On the other hand, the problems associated with these

devices are high variability, low reliability, smaller lifespan (number of read/write cycles) and dif-

fering read and write times. These devices are still in the research phase, and these parameters

are likely to improve further in coming years. Nonetheless, the aforementioned properties of these

devices make them excellent candidates to augment or improve existing computing systems for

better power, area, delay, and computing efficiency.

Emerging ReRAM devices for Novel Architectures

The von Neumann bottleneck arises from the need to move data between CPU and memory through

a shared bus. Programs which require a high number of data transfers are particularly affected by

this bottleneck. In-memory computing eliminates this problem by unifying data storage and data

processing at the same physical location. Resistive or magnetic memories are used as elemen-

tary cells in architectures implementing in-memory computing. Since the cells in these memo-

ries can be directly accessed using address lines, resistive and magnetic memories are also called

resistive random access memories (ReRAM or RRAM) and magnetic random access memories

(MRAM) respectively. In chapter 3, we have used crossbars architecture for in-memory comput-

ing of Boolean functions.

ReRAM devices were successfully realized by the early 2000s [9–11]. Snider had explored cross-

bars for implementing simple Boolean functions [12]. He assumed that each cell in his crossbars

was composed of a hysteretic resistor which could be programmed to a high-resistance-state (1GΩ)

or a low-resistance-state (1MΩ).
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Despite some early works on ReRAM devices, their applications for in-memory computing were

extensively researched only after 2008 when HP Labs claimed that they have realized Chua’s

memristor [2]. The advent of nanoelectronic devices in the upcoming years further brightened

the prospects of bringing memory and computing closer to each other. The small size, higher

fabrication density, low latency, and low standby power particularly favor these nanodevices for

in-memory computing. Most of these devices store information in the form of resistance. Re-

sistive memories don’t need constant power to retain information. Therefore, these memories

are non-volatile and consume less energy. This is in contrast to conventional DRAM or SRAM,

which stores information in the form of electric charge. Since HP’s claim about the realization of

memristors, several other devices with similar behavior have been discovered, such as polymeric

memristor, ferroelectric memristor, layered memristor, carbon nanotube memristor, and spin based

memristor. In the next section, we introduce memristor and its VI-characteristics before going into

the details of the HP memristor.

i Φ

v q

dv = R di

dΦ = L di

dΦ = M dq

q = C dv

q
=

i d
t

dΦ
=

v
dt

Figure 1.1: Symmetry diagram to predict the existence of memristor [1].
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Current flow in this direction decreases R Current flow in this direction increases R

Blac
k bar

indica
tes

doped
sid

e

Figure 1.2: Memristor symbol. The resistance of a memristor decreases when current flows into it,
the resistance increases when current flows out of it.

Memristor

Memristor is a two terminal passive device. It describes the relationship between magnetic flux

and electric charge. Leon Chua used argument of symmetry (Fig. 1.1) to postulate the existence

of memristor in 1971 [1]. Based on his analysis, he argued that the resistance of a memristor

would depend on the charge (integral of how much electric current) that has flowed through it. The

resistance of a memristor is a measure of how much current has passed through it, thus giving it

the name Memristor; short for “memory” and “resistor”. Fig. 1.2 shows the memristor’s symbol.

Memristor remained a theoretical concept until 2008 when it was realized at HP labs [2]. The first

memristor was made up of titanium oxide, which was sandwiched between platinum electrodes.

The channel between the platinum electrodes consisted of doped and undoped layers of titanium

dioxide (TiO2) as shown in Fig. 1.3. The undoped layer consisted of pure TiO2 and the doped layer

had 0.5 percent less oxygen. Holes created due to absence of oxygen make the doped layer (TiO−2 )

a better conductor than the undoped TiO2. The boundary between the doped and the undoped

layers acts as a state variable. When the polarity of the external voltage is such that the current

flows from the doped layer towards the undoped layer, the resistance of the memristor decreases.
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d L− d

Platinum Electrodes

RON ROFF

Dop
ed

TiO 2

Und
op

ed
TiO 2

Figure 1.3: Titanium dioxide memristor and its resistive model [2].

This is because the boundary separating the doped and undoped layers moves toward the right

side in Fig. 1.3, thus increasing the relative length of the conductive doped layer. When the current

flows in the opposite direction, the relative length of the undoped layer increases, thus increases the

overall resistance of the memristor. In terms of channel length, the total resistance of the memristor

is given by equation 1.1,

Rmemristor = RON ×
d

L
+ROFF ×

L− d
L

(1.1)

here d is the length of the doped layer, L is the total length of the memristive channel, RON is the

resistance when the entire length of channel consists of the doped layer, andROFF is the resistance

when the entire channel consists of the undoped layer. Now that we know RON (minimum) and

ROFF (maximum) resistances of a memristor, we define ON and OFF memristors in definitions 1

and 2.
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Definition 1 (ON Memristor). An ON memristor is a memristor with minimum resistance (RON ),

and it is said to be in the low-resistance-state (LRS) or ON state.

Definition 2 (OFF Memristor). An OFF memristor is a memristor with maximum resistance (ROFF ),

and it is said to be in the high-resistance-state (HRS) or OFF state.

In stateful logic, an ON memristor encodes binary 1 or true, while an OFF memristor encodes

binary 0 or false.

V

I

VOPEN VCLEARVCLOSEVCONDVSET

RO
N

ROF
F

R
O
N

to
R
O
F
F

transition

R
O
F
F

to
R
O
N

transition

a

d

b

c

Figure 1.4: Demonstration of hysteresis in a hypothetical memristor model.

Fig. 1.4 shows VI plot of an ideal memristor. The hysteresis formed in this VI plot is character-

istic to memristive devices [13]. In such VI plots, the line with the higher slope (ad in Fig. 1.4) 

roughly corresponds to high-resistance-state (HRS) and the line with the smaller slope (bc in Fig. 

1.4) roughly corresponds to the low-resistance-state (LRS). On the V-axis, VCLOSE and VOPEN 

are the voltage values at which a memristor transitions from the high-to-low and low-to-high resis-
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tance states respectively. VCOND is the voltage necessary for performing IMPLY operations using

memristive circuits 2.4a. VCLEAR and VSET are the voltage values for a successful transition to

the high-resistance and low-resistance states in a memristive circuit for computing IMPLY logic.

Please notice that |VCLEAR| > |VOPEN |, |VSET | > |VCLOSE|, and |VCOND| < |VCLOSE|.

In recent years, there is a considerable debate over the use of the term “memristor” for ReRAM

devices [14]. Whether ReRAM devices can also be referred to as memristors is irrelevant to our

work. Our work is applicable to all ReRAM devices as long as there is considerable difference

between the the maximum and the minimum values of resistance of the device. For the rest of the

document, we will use the terms memristor and ReRAM interchangeably.

In-Memory Computing

In-memory computing is also referred to as in-memory processing, computing-in-memory, logic-

in-memory, or processing-in-memory. As the name suggests, in-memory computing intertwines

storage and computing such that the stored information can be processed without retrieving it.

Flow-based computing is a special type of in-memory computing which employs flow/sneak paths

between crossbar nanowires for computing Boolean functions. Next, we describe memristor cross-

bars, sneak paths, and in-memory computing using sneak paths.

Memristor Crossbars

Nanoscale memristors are naturally assembled in the form of uniform two-dimensional arrays or

crossbars. Memristive crossbars may be the architecture of choice for in-memory computing as

nanoscale memristors can be packed together in a crossbar with high density. An n × m crossbar

consists of n horizontal nanowires and m vertical nanowires. Each horizontal nanowire is con-
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nected with all vertical nanowires throughm distinct memristors. Similarly, each vertical nanowire

is connected with all of the n horizontal nanowires through n different memristors. If a memristor

is ON, the horizontal and the vertical nanowires connected to its terminal will be shorted; for an

OFF memristor, the corresponding nanowires will not be connected. Fig. 1.5 shows a 4× 4 cross-

bar. Crossbar nanowires are conductive metals and can be considered as nodes, while memristors

are passive elements which can be programmed to desired resistance values. As a result, such

crossbar circuit has (n + m) nodes and nm two terminal memristors. As we increase the size of

a crossbar, the number of nodes increases linearly, while the number of memristive connections

between nanowires increases quadratically. At moderate and large scales, the number of memris-

tive connections far outnumbers the number of nodes, thus giving rise to the phenomenon of sneak

paths. Although, these sneak paths are problematic for storage applications, flow based in-memory

computing employs these naturally abundant sneak paths for computing Boolean functions.

Sneak Paths in Crossbars

Thanks to passivity of memristor and homogeneity of crossbar structure, sneak paths occur natu-

rally in memristor crossbars. Sneak paths are trails of low-resistance-paths between two nanowires

which are not directly connected with each other through an ON memristor. Fig. 1.5 shows an

example of a crossbar containing two sneak paths. In this crossbar, ON memristors are colored

blue while OFF memristors are colored black. The memristor labeled as W is in OFF state, while

memristors labeled as X , Y, and Z are in ON state. Please notice that an attempt to read the state

of W via r3 and c2 will interpret it to be in the ON state. This erroneous read is caused by the

low-resistance-path which appears parallel to W . The red line in Fig. 1.5 highlights this low-

resistance-path, which passes through the ON memristors (X , Y , and Z). Such a low resistance

path is called a sneak path. Similarly, the black line in Fig. 1.5 shows another sneak path between

the bottom and the topmost nanowires, which are not directly connected with each other.
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A

X

Y

W Z

B

c1 c2 c3 c4

r1

r2

r3

r4

Figure 1.5: Depiction of two sneak paths in a 4 × 4 crossbar. Black and blue memristors are in
the OFF and ON states respectively. Red line shows a sneak path between third row and second
column. Although W is OFF, this sneak path, which passes through the memristors X ,Y ,and Z
will make it appear to be ON. Black line shows a sneak path between bottom and the topmost
nanowires.

Although sneak paths are bane for memory applications of memristor crossbars [15], they are boon

when crossbars are used for in-memory computing [16] [17]. If managed properly, sneak paths can

be used for in-memory computing on crossbars. We have formally defined sneak path-based in-

memory computing in the Chapter 3.

Flow-based In-Memory Computing

Memristors serve a dual purpose in flow/sneak path-based in-memory computing: storage (bi-

nary inputs are stored by configuring memristors to low-resistance (ON) or high-resistance (OFF)

states) and computing (the resistance of memristors assists flow-based computing by controlling
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the amount current flowing through the nanowires connected to their terminals). In flow-based

computing of a Boolean formula on a crossbar, the crossbar memristors are configured such that

there is a flow of current from an input nanowire to an output nanowire through the sneak paths in

the crossbar if and only if the Boolean formula evaluates to true, and there is no such sneak path

when the Boolean formula is false.

Figure 1.6a illustrates the concept of flow/sneak path-based in-memory computing for a simple

example of 4-input AND gate on a 3 × 2 crossbar. Individual memristors are labeled as input

literals (A,B,C,D), unlabeled memristors are always in non-conductive or high-resistance-state

0’ and memristors labeled as ‘1’ are always in conductive or low-resistance-state. If the first input

A is true, the memristor labeled as A will be in conductive state allowing the current to flow

from the bottom row to the first column, if the second input B is also true, the current will sneak

into second row, similarly if C and D are also true, the current will eventually reach the topmost

nanowire through the sneak path represented by the red line in figure 1.6a. Similarly, Fig. 1.6(b)

shows a crossbar and its two sneak paths that implement a 2-input XOR gate.

A

B C

D

Vs

Rs

(a) Crossbar for 4-bit AND

A ¬A

¬B B

Vs

Rs

(b) Crossbar for 2-bit XOR

Figure 1.6: (a) Crossbar design for flow-based in-memory computing of a 4-input AND gate on
a 3 × 2 crossbar. The sneak path is highlighting the flow of current from the bottom nanowire to
topmost nanowire. (b) Design for in-memory computing of a 2-input XOR gate on a 2×2 crossbar.
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After configuring the crossbar, a voltage source is applied at the bottom nanowire and current is

sensed in the topmost nanowire. The flow of current in the topmost nanowire symbolizes that

function is true, no flow means function is false.

Stochastic Computing

Transistor size, which has been decreasing exponentially over the last few decades, has reached

atomic range. Now the transistor has already become so small that any further miniaturization

comes with its own side effects such reduced noise margins, quantum tunneling, process variation,

and radiation-induced single-event upsets (SEU) even at sea level. Such uncertain behavior has

made fault-tolerant computing paradigms more relevant than ever. Stochastic computing is one

such paradigm that is inherently error-tolerant due to its probabilistic nature.

Stochastic computing leverages laws of probability to perform computations. It performs compu-

tations on input Bernoulli stream/s and generates output Bernoulli stream/s. A Bernoulli stream is

a binary stream where each bit is independently and identically distributed (iid) according to some

distribution. The relationship between the probability of ‘1’ in the input and output streams char-

acterizes the computation performed. The circuit performing stochastic operations is also called a

Stochastic Circuit (SC) or a Stochastic Computational Element (SCE).

Stochastic circuits have simpler and more compact realizations than their deterministic counter-

parts. Elementary operations such as multiplication and addition can be implemented stochasti-

cally using a few logic gates [18]. For example, scaled addition can be implemented using an OR

gate and multiplication, which is one of the most important operations using a modern computer,

can be performed using a single AND gate. Due to their simplicity and small size, stochastic

circuits implementing such operations are energy-efficient and massively parallelizable [19].
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By their probabilistic nature, stochastic circuits have some degree of uncertainty associated with

them. Therefore, stochastic computing is more suitable for error-tolerant applications such as mul-

timedia, machine learning and pattern recognition, data mining, etc. These applications happen to

be among the most computation-hungry tasks for conventional computing machines. Fortunately,

these applications require a large number of simple arithmetic operations, which have compact

and parallelizable realizations in stochastic computing. The precision of stochastic circuits can be

increased by increasing the length of stochastic streams. Conversely, shorter stochastic streams

decrease both the accuracy and the computational delay. This allows us to reduce power consump-

tion and computational delay by sacrificing some accuracy without the need to change underlying

hardware.

Stochastic computing is more robust than conventional computing due to high error tolerance [20].

Error tolerance of stochastic circuits comes from the fact that each bit in a stochastic stream has

the same significance irrespective of its position in the stream. Thus, the effects of single bit errors

in stochastic circuits are not as serious as in deterministic circuits, where an error in the most

significant bit may alter the output significantly. Moreover, the error tolerance of stochastic circuits

can be increased by employing longer streams. For example, doubling the length of a stochastic

stream decreases the significance of individual bits by the same factor. Stochastic circuits also

lend themselves to much higher clocks than conventional circuits due to small circuit delay [19].

Recently, stochastic computing has been used for image scaling and thresholding [21] [22].

0,1,1,0,1,1,0,0,1,0

0,1,0,1,0,1,0,1,0,1
0,1,0,0,0,1,0,0,0,0

Figure 1.7: Two-input AND gate can act as a stochastic multiplier. Probability of ‘1’ in the output
stochastic stream is approximately equal to the product of probabilities of ‘1’ in input stochastic
streams. I.e pout(1) ≈ p1(1)× p2(1).
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Input and Outputs for Stochastic Circuits

Inputs and outputs of a stochastic circuit are comprised of stochastic streams of binary numbers

( 0 or 1 ). Given a stochastic stream Sx, it represents a stochastic number which is equal to the

probability of ‘1’ in it. For example, if the stochastic stream Sx contains N1 1’s and N0 0’s, then

Sx represents the number x = N1

N0+N1
, which is same as probability of 1 in Sx. Since stochastic

numbers are also a probabilistic representation, they fall in the [0, 1] range. Thus, real-world inputs

must be scaled to non-negative numbers less than 1 before they can be converted into stochastic

streams.

When real-world input is converted into a stochastic stream, the transformation is such that there is

a linear mapping between input value and probability/relative frequency of ‘1’ in the corresponding

Bernoulli stream. Brown and Card have discussed the generation of such sequences using linear

feedback shift registers (LFSR) or cellular automata (CA) [19]. Output of an SCE is a Bernoulli

stream of logical ones and zeros. An integrator used at the output of an SCE will convert out-

put Bernoulli stream into corresponding probability value. A counter can also achieve the same

purpose with the additional advantage that the stream is converted into the equivalent binary rep-

resentation.

The order of 1’s and 0’s in a stochastic stream has no significance. For example, 00011100 and

01010100 represent the same number, i-e 3
8
. As described earlier, uniform significance of individ-

ual bits in stochastic streams makes stochastic computing error tolerant. However, this increased

robustness comes at the cost of decreased representational power. For example, a stochastic stream

of length N can encode only N+1 stochastic numbers. Thus, to increase the precision of stochastic

circuits, input length needs to be increased linearly, while for conventional circuits, input length

needs to be increased only logarithmically.
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Simple elementary arithmetic computations (such as multiplication, scaled addition) can be per-

formed stochastically using very small combinational circuits comprised of logic gates or multi-

plexers [20]. More complex computations such as ‘function approximation’ can also be performed

easily using simple sequential circuits modeled by Finite State Machine (FSM). In Chapter 4, we

have used decision procedures to synthesize FSMs for stochastic computation for more complex

functions such as polynomials, exponentials and tanh.
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CHAPTER 2: LITERATURE REVIEW

The inability of the conventional computer to efficiently process modern computing requirements

driven by machine learning, artificial intelligence, data mining, and multimedia has renewed in-

terest in unconventional computing systems in recent years. In-memory computing and stochastic

computing are two such paradigms of interest. By their nature, these applications require a large

number of data-retrieval and data-storage operations. Therefore, they are particularly adversely

affected by the Memory Wall, which is caused by limited bus speed of the von Neumann archi-

tecture. In-memory computing employs recent nanoelectronic ReRAM devices to bring storage

and processing to physically same location, thus eliminating the problem of the Memory Wall.

Stochastic computing performs computations by leveraging the laws of probability. Stochastic

computing offers two major advantages over conventional computing. First, stochastic circuits are

naturally more error-resilient than their conventional counterparts. This is especially significant

due to decreasing noise margins in ever shrinking integrated circuits. Secondly, stochastic circuits

are simpler and more compact than their exact implementations, resulting in better area and power

efficiency. The simplicity of stochastic circuits also makes them easier to parallelize.

In this chapter, we briefly discuss the following seminal works on unconventional computing.

• In-Memory Computing

– Matrix Multiplication

– Memristor Ratioed Logic (MRL)

– Memristor-Aided Logic (MAGIC)

– IMPLY Family

∗ IMPLY-based NAND
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∗ IMPLY-based 2-to-1 MUX

– Majority-Inverter Graph (MIG)

∗ MIG-IMPLY

∗ MIG-MAJ

– Flow/Sneak Path based Computing

• Stochastic Computing

Matrix Multiplication

K.T. Hung introduced systolic architectures in 1979 to implement concurrent computations for

application specific VLSI algorithms [23]. Systolic arrays have been used to speed up matrix

multiplication. A memristor crossbar can be classified as a 2D systolic architecture, where each

memristor can possibly serve as a simple processing unit. Fig. 2.1 shows a schematic diagram of a

1T1M crossbar for vector-matrix multiplication [24]. In this crossbar, a transistor and a memristor

is placed on each intersection of horizontal and vertical nanowires as shown in Fig. 2.1.

Let’s assume that we want to multiply an n× 1 vector v with an n× n matrix M using an n× n

crossbar as shown in Fig. 2.1. Let mij represent the entry in the ith row and the jth column of

the matrix M. Similarly, let rij represent the resistance of the memristor connected between the

ith row and the jth column of the crossbar. First, the matrix M is loaded onto the crossbar, such

that for entry mij ∈ M the conductance of the corresponding memristor (between the ith row

and the jth column) is gij = 1
rij

= mij . After the crossbar is configured according to the matrix

M, the input vector v is applied to the horizontal nanowires such that the voltage applied to the

ith row is equal to the ith entry of v as shown in Fig. 2.1. To read outputs, each column of the

crossbar is connected with a separate op-amp based analog adder as shown in Fig. 2.1. This adder
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accumulates vigij for all the memristors connected with the jth column, which is same as the dot

product of the vector v and the conductance vector gj for jth column. Formally, the output of jth

adder, yj , can be represented by the following equation,

yj = −ro
n∑
i=1

vi
rij

= −ro
n∑
i=1

vigij = −rovTgj, (2.1)

where vi is the voltage of the ith row, rij and gij are the resistance and conductance values of the

memristor between the ith row and jth column, and ro is the feedback resistance of the op-amps

in the adder circuits.

Once the matrix M is loaded onto the crossbar and the input vector v is applied to the horizontal

nanowires, each entry of the output vector y = [y1, y2, . . . , yn] is computed simultaneously as

shown in Fig. 2.1. The output y is given by

yT = −rovTG = −rovTM, (2.2)

here, v is the vector representing voltages applied at the horizontal/input nanowires. G is the

matrix representing conductances of the memristors in the crossbar. The negative sign in equation

2.2 appears because the adders in Fig.2.1 use amplifiers in inverting configuration.

On a single processor, the complexity of vector-matrix multiplication is O(n2), due to n2 multi-

plications and n2 − n additions. When a crossbar is used to compute vector-matrix product, these

multiplications and additions are performed simultaneously on analog circuits, thus reducing the

overall computational complexity of vector-matrix multiplication from O(n2) to O(1). Matrix-

matrix multiplication requires n cycles of the vector-matrix multiplication, thus the complexity of

matrix-matrix multiplication is O(n).
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Figure 2.1: Schematic diagram of vector-matrix multiplication on a crossbar.

Matrix multiplication has widespread applicability in machine learning, multimedia, pattern recog-

nition, etc. Velasquez et al. have used crossbars with rectifying memristors (1 diode, 1 memristor)

for multiplication of Boolean matrices [25]. Hu et al. have proposed a conversion algorithm to map

the matrix values as conductance on real memristors in a crossbar [24]. Shafiee et al. have used

crossbar based matrix multiplication for designing neural network accelerator [26]. Zhang et al.

have transformed matrices to minimize the effects of stuck-at faults in memristor crossbars [27].
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Memristor Ratioed Logic (MRL)

Kvatinsky et al. proposed Memristor Ratioed Logic (MRL) to compute logic using memristive

circuits [28]. MRL circuits are hybrid of memristive and CMOS components. MRL employs

polarity of memristive devices for computing elementary logic functions (AND, OR). A CMOS-

inverter is connected at the output of AND and OR, making them NAND and NOR gates, which

can be used to implement any Boolean functions.

The resistance of a memristor decreases when the current flows in one direction (into the device),

while it increases when the current flows in the opposite direction (out of the device). Fig. 2.2a and

2.2b show arrangements of memristors for computing two-input AND and OR gates respectively.

As shown in Fig. 2.2, the common terminal of the memristors serves as output node, while the

other terminals serve as input nodes.

in2

in1 out

(a) Realization of 2-input OR using MRL.

in2

in1 out

(b) Realization of 2-input AND using MRL.

Figure 2.2: MRL realizations of AND and OR gates.

Let’s first consider the OR-gate shown in Fig. 2.2a. Let VHigh and VGnd denote the input voltages

corresponding to logic 1 (true) and 0 (false) respectively. In Fig. 2.2a, when both inputs are

either true or false, the output will be the same as inputs, because Vin1 = Vin2 = Vout. When

Vin1 = VHigh and Vin2 = VGnd, the current will flow into the upper memristor and decrease its

resistance. At the same time, the resistance of the lower memristor will increase because the

same amount of current will flow out of the lower memristor and reach the ground connected

at Vin2 . If the input voltages are applied for a sufficient duration, the resistance of the upper
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memristor will saturate at RON , while the resistance of the lower memristor will saturate at ROFF .

If ROFF >> RON , the voltage at the output terminal will be Vout = ROFF

ROFF+RON
VHigh ≈ VHigh.

If the inputs are reversed (Vin1 = VGnd and Vin2 = VHigh), the same reasoning will again result in

Vout ≈ VHigh.

For AND gate, the polarity of the memristors is reversed as shown in Fig. 2.2b. Here too,

when both inputs are equal, the same voltage will appear at the output terminal because Vout =

Vin1 = Vin2 . However, when Vin1 6= Vin2 , the flow of current will be such that the memristor con-

nected with VHigh saturates to ROFF and the memristor connected with VGnd saturates to RON . If

RON << ROFF , the output voltage will be Vout = RON

ROFF+RON
VHigh ≈ 0, which is in accordance

with AND gate.

Memristor-Aided Logic (MAGIC)

Kvatinsky et al. proposed Memristor-Aided Logic (MAGIC) to compute logic using memristors

[3]. MAGIC uses resistance to represent logical state, therefore inputs, outputs, and intermediate

results are in the form of resistance as opposed to voltage. Logic 0 (Low) is represented by an OFF

memristor with ROFF resistance and logic 1 (High) is represented by an ON memristor with RON

resistance.

MAGIC computation is a two step process. During the initialization step, input memristors are

configured to the ON or OFF states depending upon the inputs, while the out-memristor is initial-

ized to a default state. During the computation step, the voltage Vs is applied as shown in Fig. 2.3.

At the end of computation, the state of the out-memristor is configured to reflect the outcome of

computation. For example, Fig. 2.3a shows a circuit for MAGIC implementation of a 2-input NOR

function. When both inputs in1 and in2 are 0, the corresponding memristors (in1 and in2) will be
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OFF, and there won’t be sufficient current to switch the out-memristor to the OFF-state. When at

least one of the input memristors is ON due to true input, sufficient current will flow out of the

out-memristor to switch its state from ON to OFF, which is in accordance with the functionality of

the NOR gate. For MAGIC NAND shown in Fig. 2.3b, sufficient current will be available to switch

the state of the out-memristor only when both of input memristors are in the ON state. MAGIC

achieves inversion by reversing the polarity of the out-memristor. Fig. 2.3d and 2.3e show MAGIC

circuits for OR and AND gates respectively. It’s important to mention that the out-memristor is

initialized to logic 1 (ON) for NAND and NOR gates, while the initial state is logic 0 (OFF) for

MAGIC AND and OR gate.

in1

in2

out

Vs

(a) MAGIC NOR gate.

in1 in2 out

Vs

(b) MAGIC NAND gate.

in out

Vs

(c) MAGIC NOT gate.

in1

in2

out

Vs

(d) MAGIC OR gate.

in1 in2 out

Vs

(e) MAGIC AND gate.

Figure 2.3: MAGIC gates from Kvatinsky et al. [3].

IMPLY Family

Material implication (IMPLY) is a natural logical operation for purely memristive circuits [29].

Fig. 2.4a shows a circuit for computing material implication using two memristors. This circuit

computes the function fIMPLY (p, q) = p→ q = ¬p+ q. The truth table for this function is given
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in Fig. 2.4b. Such computational setup is also known as stateful logic, because the memristors

not only act as computational units, they also store inputs, intermediate results, and outputs as

resistance.

−
+ VSET

−
+ VCOND

qp

RG

(a) IMPLY circuit using memristors [30].

p q p→ q

0 0 1
0 1 1
1 0 0
1 1 1

(b) Truth table for p→ q.

Figure 2.4: IMPLY gate.

Figure 2.4a shows a circuit for computing p → q. This circuit consists of two memristors (p-

memristor and q-memristor) and one resistor (RG). VCOND is applied to the p-memristors and

VSET is applied to the q-memristor. The resistor RG controls the eventual voltage across the p-

memristor and q-memristor as we explain later. Let Ip, Iq and Ig represent the amounts of current

flowing through the p-memristor, q-memristor, and RG respectively. In the initialization phase, the

states of the p and q memristors are configured to reflect the corresponding inputs (p and q). After

the computation phase is complete, the state of the q-memristor is configured according to p→ q.

Sometimes the p-memristor is referred to as the input memristor and the q-memristor is referred

to as the work memristor. In complex memristive circuits, individual IMPLY operations are also

referred to as micro-operations.

When p = 0, the p-memristor will be in the high-resistance-state, thus making Ip smaller. Con-

sequently, the voltage across RG, VG = IgRG = (Ip + Iq)RG, will also be smaller. By design,

the value of RG is chosen such that the voltage across the q-memristor Vq = VSET − VG is larger
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than VCLOSE whenever the p-memristor is OFF. Therefore, irrespective of the initial state of the

q-memristor, its final state will be ON whenever the p-memristor is OFF. This corresponds to the

first two entries of the truth table in Fig. 2.4b. When p = 1, the p-memristor will be in the low-

resistance-state, resulting in higher Ip. Therefore, the voltage across RG, VG = (Ip + Iq)RG, will

also be larger. Since Vq = VSET − VG, the larger value of VG will result in smaller voltage across

the q-memristor such that Vq < VCLOSE . Thus, the q-memristor will retain its state whenever

p = 1. This corresponds to the last two entries of the truth table in Fig. 2.4b.

−
+ Vp

−
+ Vq

−
+ Vs

p q s

RG

(a) IMPLY-based NAND gate.

Initialization:
p = p, q = q, s = 0

Computation:
Op1 : p→ s
Op2: q → s

(b) Micro-operations for a NAND gate.

Figure 2.5: IMPLY-based NAND gate.

Memristive NAND

Memristive IMPLY and false constitute a functionally complete set; they can compute any Boolean

function. Two imply operations are sufficient to compute a two-input NAND function, NAND(p,q)

= q → (p → 0) = ¬p + ¬q. Fig. 2.5 shows a memristive circuit for a NAND gate, which is also

a universal gate. This circuit has three memristors p, q, and s and one resistor RG. It computes the

NAND function by performing two micro-operations: p → 0 = ¬p and q → ¬p = ¬p + ¬q. For

the first micro-operation, p → s, the p and s memristors are initialized to p and 0 respectively. At

the end of computation, the s-memristor contains the value s = ¬p. This value of s is used in the
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second micro-operation q → s. At the end of the second micro-operation, the state of s reflects the

result of ¬p+ ¬q, which is NAND of p and q.

IMPLY-based 2-to-1 Multiplexer

Multiplexer (MUX) is widely used in logic synthesis. Because of its universality and application

in large scale synthesis, its memristive realizations have been explored in several works [31], [32].

Chakraborti et al. have compared its three memristive implementations differing in number of

memristors and micro-operations. Fig. 2.6a shows their implementation of a 2-to-1 MUX, which

requires 5 memristors and 6 micro-operations (including initialization). In this figure, the mem-

ristors A and B represent the input lines of the MUX, S is the memristor for the select line, and

X and Y are the work memristors. Fig.2.6b shows the sequence of six micro-operations for com-

puting the functionality of the 2-to-1 MUX. At the end of computation, the result is stored in the

Y-memristor.

−
+ VS

−
+ VA

−
+ VB

−
+ VX

−
+ VY

S A B X Y

RG

(a) IMPLY-based 2-to-1 MUX.

Op1: S= s, A = a, B = b,
X= 0, Y = 0
Op2 : s→ x
Op3: b→ x
Op4: x→ y
Op5 : a→ s
Op6 : s→ y

(b) Micro-operations for the 2-to-1 MUX in (a).

Figure 2.6: IMPLY-based 2-to-1 MUX from Chakraborti et al. [4].
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Majority-Inverter Graph (MIG)

Majority-Inverter-Graph (MIG) is a graphical data structure for optimizing circuits of Boolean

functions [33]. Each MIG node has three inputs and it implements Boolean majority. The func-

tionality of an MIG node can be described as M(x, y, z) = xy + yz + zx, where x, y, and z are

three inputs. By fixing one of the inputs of an MIG-node to 1 or 0, its functionality can be reduced

to a 2-input OR or AND gate respectively. For example, M(x, y, 0) = xy and M(x, y, 1) = x+ y.

Because of greater representational power of an MIG node, MIGs can be more compact than the

And-Inverter Graphs (AIG) and OR-Inverter Graphs (OIG). MIGs based optimizations are espe-

cially useful for optimizing the depth/delay. Next, we described two approaches proposed by

Shirinzadeh for in-memory computing on MIGs [5].

IMPLY-based Majority-Inverter Graph (MIG-IMP)

Shirinzadeh et al. have proposed an IMPLY-based realization of the majority function [5]. Fig.

2.7 shows their memristive realization for an MIG node. This circuit needs 6 memristors and one

resistor RG. The memristors labeled as X, Y, and Z are the input memristors, while A, B, and

C represent the work memristors which are used for storing or reusing the intermediate results of

micro-operations. Fig. 2.7b shows the sequence of 10 mirco-operations for computing the majority

function. They have replaced each node of the MIG with its memristive realization. Additionally,

an extra memristor performing p → 0 can account for the complemented output of a majority

node.
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−
+ VX

−
+ VY

−
+ VZ

−
+ VA

−
+ VB

−
+ VC

X Y Z A B C

RG

(a) Circuit for one MIG-IMP node in [5].

Op1: X = x, Y = y, Op6: y→ c
Z = z, A=B=C = 0 Op7: z→ c
Op2: x→ a Op8: a = 0
Op3: y→ b Op9: b→ a
Op4: a→ y Op10: c→ a
Op5: x→ b

(b) Micro-ops. for an MIG-IMP node.

Figure 2.7: IMPLY-based implementation of the majority node in [5].

MIG-MAJ

Shirinzadeh et al. have shown how a memristor can be used to compute the majority operation [5].

Let R represent the current state of the memristor R, such that low-resistance-state is represented

by 1 and high-resistance-state is represented by 0. Let P and Q represent logical inputs applied to

the P and Q terminals of the memristor, such that P = 1, Q = 0 corresponds to VSET , P = 0, Q =

1 corresponds to VCLEAR, and P = Q corresponds to VCOND. Let RNext represent the state after

the application of P and Q across its terminals, then the resulting state diagram and state transition

tables are shown in Fig. 2.8. The relationship between the current state R and next state RNext of

the memristor can be represented as follows:

RNext = (P¬Q)¬R + (P + ¬Q)R = MAJ(P,¬Q,R). (2.3)

Thus the state transition of a memristor happens according to the majority operation of P , ¬Q, and

R.
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R = 0 R = 1

PQ = 00, 01, 11

PQ = 00, 10, 11

PQ = 10

PQ = 01

R

P

Q

(a) State diagram for realizing MAJ operation with one memristor.

P Q R RNext P Q R RNext

0 0 0 0 0 0 1 1
0 1 0 0 0 1 1 0
1 0 0 1 1 0 1 1
1 1 0 0 1 1 1 1

(b) State transition table for MAJ operation.

Figure 2.8: Memristive MAJ node and its state transition table [5].

IMPLY-based Binary Decision Diagram

Chakraborti et al. have used Binary Decision Diagrams (BDD) to design purely memristive circuits

for Boolean functions [4]. A BDD is a graphical representation of Boolean functions, consisting of

one root node, several intermediate nodes, and two terminal nodes. A BDD node can be realized

by a 2-to-1 multiplexer (MUX). Fig. 2.6 shows their implementation of a 2-to-1 MUX, which

requires 5 memristors and 6 micro-operations shown in Fig. 2.6b. They synthesize an reduced

ordered BDD (ROBDD) for the target function and replace each node of the ROBDD with their

memristive MUX. For example, an ROBDD for the 4-bit function f = x1¬x2 + x3x4 has 4 nodes.
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This function is computed in 24 micro-operations and requires 20 memristors [4].

Flow-based In-Memory Computing on Memristor Crossbars

Sneak paths are naturally pervasive in memristor crossbars. A sneak path is a trail of memristors

in low-resistance-state between two crossbar nanowires that are not directly connected through

an ON memristor. Flow-based computing relies on these sneak paths for in-memory computing.

During computation, the individual memristors of a crossbar are configured such that a sneak path

exists between the bottom and the topmost nanowires only when the target function is true, and no

sneak path exists between them when the target function is false. The existence of a sneak path

is verified by applying a small voltage at the bottom nanowire and measuring how much current is

flowing out of the top nanowire. The flow of significant amount of current in the topmost nanowire

symbolizes that the function is true, no flow means the function is false. Figs. 1.6a and 1.6b

illustrate this concept for a 4-input AND gate and 2-input XOR gate respectively.

Our work is on flow-based in-memory computing on memristive crossbar. Next, we explain previ-

ous works on the synthesis of crossbars for flow based in-memory computing.

Mapping Negation Normal Form on Crossbars

Any Boolean formula can be represented in negation normal form (NNF). An NNF representa-

tion of a Boolean formula contains only three operators: conjunction, disjunction, and negation.

Additionally, the negation operator can be applied only to atomic variables; it cannot be applied

to compound expression. Velasquez et al. have proposed two simple rules for structural imple-

mentation of conjunction and disjunction operations on crossbars [16], while the negated variables

are directly mapped onto crossbars memristors. They have shown that the repetitive use of these
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two simple rules can synthesize a crossbar circuit for any Boolean formula. Although it is com-

putationally inexpensive to map an NNF on a crossbar, the downside of their approach is that the

synthesized crossbars can become exponentially large. This is because the NNF of a function can

itself have an exponentially large representation.

Formal Methods for Flow-based In-Memory Computing

Velasquez et al. have used formal methods to synthesize crossbars for in-memory computing

Boolean formulae [17]. The use of decision procedures has resulted in compact crossbars for

1-bit adder. But the problem with this approach is its computational requirements. Despite the

compactness of synthesized crossbars, it is not scalable for large or moderately sized functions

because of its exponential computational complexity in terms of the number of memristors in a

crossbar.

Binary Decision Diagrams for Flow-based In-Memory Computing

A Binary Decision Diagram (BDD) can be used for graphical representation of a Boolean function

f . A BDD is a directed acyclic graph (DAG) with one root node, two terminal nodes (0,1), and

possibly several non-terminal/intermediate nodes. Whenever the function f is true for some input,

a path will connect the root node of its BDD with the terminal-1. This is similar to flow-paths in

flow-based computing on crossbars. In flow-based computing, a sneak path exists between the bot-

tom and the topmost nanowires of a crossbar whenever the function f is true. This similitude of

computing paths in crossbars and BDD makes the latter ideal for flow-based synthesis of the for-

mer. Hassen and Dwaipayan et al. have used reduced ordered BDDs (ROBDDs) for synthesizing

crossbars for flow-based in-memory computing [6] [34].
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Stochastic Computing

Stochastic computing has been around since the 1950s. Von Neumann introduced stochastic com-

puting in his pioneering paper “Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components” [35]. Shannon et al. described how to build high reliability circuits

from arbitrarily unreliable relays [36]. They studied different redundancy schemes for improving

the overall reliability of the circuits built from unreliable components. In 1967, Gaines defined

stochastic computational element (SCE) as a simple circuit which performs computations on input

Bernoulli stream(s) and generates an output Bernoulli stream [18]. He has discussed single-line

unipolar, single-line bipolar, and two-line bipolar representations of signals for stochastic streams.

He described SCEs for multiplication, scaled addition, squaring, square root, inversion, integrator,

and divider [18]. Poppelbauem et al. have also explored essentially the same ideas for computing

systems based on random pulse sequences (RPS). They have discussed schemes for generating RPS

by thresholding noise diodes. A clock signal and D-flip flops suffice to convert an asynchronous

RPS into a synchronous RPS [37].

After initial investigations of stochastic computing in the 1950s and 1960s, the interest in stochas-

tic computing waned due to success of the digital computer built using integrated circuits. In the

recent years, stochastic computing is gaining attention again due to efficient hardware implementa-

tions of artificial spiking neural networks and stochastic decoder for error control codes, [38, 39].

Furthermore, the reliability issues associated with the miniaturization of integrated circuits and the

shortcomings of the von Neumann architecture in the post 2000 years have increased the signif-

icance stochastic computing. Brown et al. gave a comprehensive overview of several SCEs for

their potential application in pulsed neural networks [19]. They have also discussed the conversion

of digital inputs into stochastic streams and vice versa. An integrator used at the output of an SCE

can convert the output Bernoulli stream into corresponding probability value. They have also pre-

31



sented implementations of Gaines’ functions, addition, multiplication, division, squaring, etc, for

stochastic streams with unipolar and bipolar symbols [18].

Qian et al. have employed the Bernstein polynomials for computing polynomial functions stochas-

tically [40]. Their approach can synthesize stochastic circuits for polynomials that have Bernstein

coefficients in the unit range. Alaghi et al. have used spectral transformation of Boolean functions

for designing stochastic circuits [41]. They represent a Boolean function in the form of a multi-

linear polynomial before taking its inverse Fourier transform. Their approach works for arbitrary

polynomials as well, provided the coefficients of the inverse Fourier transform of the polynomial

are in the range [-1, 1].

State machines are used for designing stochastic circuits for more complex tasks. Gaines et al.

used sequential circuits for stochastic computing [18]. They proposed ADaptive DIgital Element

(ADDIE), which is a saturating counter. It cannot be incremented beyond a maximum value or

decremented below a minimum value. Brown et al. proposed finite state machines (FSM) for syn-

thesizing stochastic circuits for tanh, linear-gain, and exponential functions. Li et al. synthesized

finite state machines by optimizing the square loss function for tanh, polynomial, and exponentia-

tion functions [7]. We have synthesized these functions using decision procedures. Our approach

reduced the worst-case error by up to 65 percent.
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CHAPTER 3: FBDD-BASED SYNTHESIS OF CROSSBARS FOR FLOW

BASED COMPUTING 1

Introduction

John von Neumann’s “First Draft” defining a computer architecture for the EDVAC system [8] has

survived for seven decades due to an exponential decrease in feature sizes over this period. The

slowdown of Moore’s law, the end of Dennard scaling and the rise of big data have led to a renewed

interest in More-than-Moore devices [42] and novel computer architectures [43], including in-

memory computing systems [44]. The ability to compute without moving data across the von

Neumann barrier between the processor and the memory reduces both the energy and the time

needed to perform the computations.

A two-dimensional crossbar of nanoscale memristors forms a desirable fabric for in-memory com-

puting as memristors can serve as non-volatile storage devices and the values stored in the memris-

tors can control the flow of current through sneak paths in the nanoscale crossbar. We can perform

arbitrary Boolean computations on a nanoscale crossbar using the flow of current through sneak

paths in the crossbar [17, 34, 45, 46]. The critical step in this design process is the mapping of

memristors in a crossbar to the variables in the Boolean formula being computed.

Reduced Ordered Binary Decision Diagrams (ROBDDs) have been successfully used to design

nanoscale memristor crossbars capable of implementing Boolean formulae using flow-based com-

puting [6, 34]. However, there exist Boolean formulae such that the size of their most succinct

ROBDD representations with the best variable ordering is exponential in the number of variables.

1Related Publication: A. Ul Hassen, D. Chakraborty and S. K. Jha, “Free Binary Decision Diagram-Based Syn-
thesis of Compact Crossbars for In-Memory Computing”, in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 5, pp. 622-626, May 2018.
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In this chapter, we cover the following:

1. How a bipartite variant of a Free Binary Decision Diagram (FBDD) can be used to synthesize

a nanoscale crossbar that implements flow-based computing for a given Boolean formula.

2. The efficacy of FBDDs by synthesizing a nanoscale memristor crossbar for the middle bit of

a 4-bit multiplier that takes 69.9% less area than a crossbar designed using ROBDDs [6].

A 4-bit multiplier designed using FBDD-based approach needs 8.4% less area than the ROBDD-

based approach [6], while a multiplier designed using the best of both approaches needs 42.8%

less area than the approach based only on ROBDDs.

Flow-based Computing using Sneak Paths

A nanoscale memristor crossbar of n rows and m columns has nm memristors. The plurality

of memristive connections among the horizontal and vertical nanowires of a crossbar gives rise

to the phenomenon of sneak paths [47]. Sneak paths are trails of low resistance paths between

two nanowires which are not directly connected with each other through an ON memristor. The

probability of sneak-path-based disturbance increases exponentially with the length of the sneak

path [15].

Flow-based in-memory computing leverages the abundance of sneak paths in nanoscale memristive

crossbars for implementing Boolean functions. A memristive crossbar design creates a one-to-

one correspondence between the value of the Boolean function and the existence of a sneak path

between the bottom and the topmost nanowires of the crossbar.

Definition 3 (Crossbar Designs for Boolean Formula). Let f : {0, 1}k → {0, 1} be a k-bit Boolean

function over variables v1, v2 . . . vk and D : R → {v1, v2, . . . vk} be the design of the crossbar
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mapping memristors R = {r11, r12 . . . r1n, r21, . . . , rmn} to the values of the variables V . A cross-

bar designD is said to implement the Boolean formula f if and only if the following two conditions

hold:

• There exists a flow of current or a sneak path from the bottom nanowire to the topmost

nanowire of the crossbar design D for a valuation of variables V if the Boolean formula f

evaluates to true for the given valuation of the variables V .

• There is no sneak path connecting the bottom nanowire to the topmost nanowire of the cross-

bar design D for a valuation of variables V if the Boolean formula f evaluates to false for

this valuation.

The presence of a sneak path between the bottom and the topmost nanowire may be verified by

applying a small voltage at the bottom nanowire and detecting the flow of current through the

topmost nanowire. The flow of current in the topmost nanowire symbolizes that function is true

while the absence of a significant flow of current implies that the function is false.

Binary Decision Diagrams

Binary decision diagrams (BDDs) are a natural choice for designing nanoscale memristive cross-

bars that implement flow-based computing using sneak paths. BDDs are compact structural repre-

sentations of Boolean functions. Lee was the first to use them for representing switching circuits

in 1959 [48]. Akers did a comprehensive study of binary decision diagrams in 1978 [49].

Let f(x) be a k-bit function on the variable set V = {v1, v2, v3....vk}. The BDD representation

for the function is a directed acyclic graph with one root node, two terminal nodes and possibly

multiple intermediate nodes. All nodes except the terminal nodes have two outgoing edges. All
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non-terminal nodes of BDDs are labeled by a variable vi ∈ V , terminal nodes are labeled as 0

or 1. Each non-terminal node is connected to either of its children depending on the value of

the variable vi. Each node of a BDD represents a Boolean function, the root node represents the

original function f(x), the terminal node 1 represents true, the terminal node 0 represents false,

while non-terminal nodes represent functions which are co-factors of the function represented by

their predecessor. If the original function f(x) is true for some x ∈ {0, 1}k, there exists a path

from the root node to the terminal node labeled as 1; if f(x) is false, the path reaches the terminal

node marked as 0.

Recently, reduced ordered binary decision diagrams (ROBDDs) were employed for flow-based

computing approach using sneak paths to implement Boolean functions on nanoscale memristive

crossbars [6]. ROBDDs are a subclass of BDDs where variable ordering has to be maintained on

each path from the root node to the terminal nodes. For example, if π = {v1, v2, . . . vk} represents

the variable ordering, v1 should always appear before v2 on each path from the root node to the

terminal node. ROBDDs with a given variable ordering are canonical representations of Boolean

functions [50]. Efficient inductive implementations of basic Boolean operations using BDDs have

been implemented in popular software packages [51–54].

FBDD-based Synthesis of Crossbars

ROBDD-based synthesis for flow-based computing circuits can lead to large memristor crossbars

for functions whose ROBDDs are exponential in the number of variables. There are several in-

teresting Boolean functions with exponential-size ROBDDs but only polynomial-size Free Binary

Decision Diagrams (FBDDs) [55]. FBDD-based synthesis seeks to exploit this fact to synthesize

compact crossbar circuits for flow-based computing.
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The requirement of a strict variable ordering along all paths of a ROBDD is relaxed in Free Binary

Decision Diagrams (FBDDs); hence, different paths from the root to the terminal nodes of a FBDD

may represent different orderings of the variables in the FBDD [55]. Like ROBDDs, FBDDs also

do not allow repeated occurrences of variables along any path from the root node to the terminal

nodes. In general, FBDDs are more compact than ROBDDs because FBDDs do not enforce the

same strict variable ordering along all paths from the root node to the terminal node of the decision

diagram.

Simplify
DNF of f(x)

Synthesize
FBDD for f(x) Prune FBDD

Convert Pruned
FBDD into

Bipartite Graph

Map Bipartite
Graph onto

Crossbar

Verify
Crossbar

Functionality

Figure 3.1: Flow diagram of our FBDD-based synthesis approach.

Figure 3.1 shows the flow diagram illustrating the steps of the synthesis process based on FBDDs.

The first step transforms the given Boolean formula f into a simplified Disjunctive Normal Form

(DNF). In the next step, a Free Binary Decision Diagram representation of the Boolean function

f is synthesized. By definition of a FBDD, the functions represented by a node and its children

are related by the Shannon expansion: f(x) = af(x|a=1) + ¬af(x|a=0). Here, f is the function

implemented by the parent node, f(x|a=1) and f(x|a=0) are the functions implemented by the

children nodes and a is the binary variable around which f(x) is decomposed. In this approach to

the synthesis of FBDDs, the variable a is obtained using a greedy heuristic. A Boolean variable a

is chosen such that it appears most often in the DNF representation of the function f . The intuition

behind choosing a using this greedy heuristic is that the DNF of the resulting co-factors f(x|a=0)
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and f(x|a=1) would be small for such a choice of a. Here, the size of a formula is computed as the

total number of conjunctions and disjunctions in its DNF representation.
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(b) Pruned Bipartite FBDD

Figure 3.2: (a) Free Binary Decision Diagram (FBDD) for second-output-bit of a 4-bit multiplier.
A:D represent the first operand and E:H represent the second operand. (b) Bipartite graph of the
pruned FBDD for the second-output-bit of a four bit multiplier synthesized using our approach.
Dark nodes are dummy nodes used for converting the pruned FBDD into a bipartite graph.

Figure 3.2(a) shows the free BDD synthesized for the second-output-bit of a 4-bit multiplier using

this heuristic. Incidentally, the resulting graph is same as a ROBDD for this particular function.

As is clear from definition 3, we are interested in only those paths that end on the terminal node 1;

therefore, the FBDD is pruned to get rid of the edges that are connected to the terminal node 0.

However, the pruned FBDD is not yet ready for mapping onto crossbars. All memristors in cross-

bars establish connections between horizontal nanowires and vertical nanowires. There are no di-
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rect connections between two horizontal nanowires or two vertical nanowires in a crossbar. Hence,

the underlying graph corresponding to a nanoscale memristor crossbar is bipartite. In the next step,

the pruned FBDD is transformed into a bipartite graph by inserting dummy nodes to eliminate odd-

length cycles. It is well known that a graph without odd-length cycles is bipartite. Figure 3.2(b)

shows a bipartite graph obtained after pruning and the introduction of dummy nodes into the FBDD

of Fig. 3.2(a).

In the final step of synthesis process, the pruned bipartite graph obtained from the FBDD is mapped

onto a nanoscale memristor crossbar. First, the distance of each node from the root is measured.

The root node is mapped onto the topmost nanowire, nodes with even numbered distance from the

root node are mapped onto horizontal nanowires, and nodes with odd numbered distance from the

root node are mapped onto the vertical nanowires. Since the graph is bipartite, no node can be at

both even and odd distance from the root node. Figure 3.3 shows the synthesized crossbar for the

second-output-bit of a 4-bit multiplier.
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Figure 3.3: Crossbar for the second-output-bit of a 4-bit multiplier withA:D andE:H as operands.
Memristors are labeled with the values stored in them and unlabeled memristors are always turned
off. The highlighted lines show four sneak paths emanating from the bottom nanowire and reaching
the top nanowire. These sneak paths are responsible for computation of second-output-bit of the
multiplier.
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Table 3.1: Comparison of ROBDD-based approach [6] with FBDD-based approach for output bits of a 4-bit multiplier

ROBDD-based Synthesis FBDD-based Synthesis Best of Both Approaches

Bit Index Crossbar Area Configured Crossbar Area Configured Crossbar Area Configured
Size Memristors Size Memristors Size Memristors

1 (LSB) 2 by 2 4 3 2 by 2 4 3 2 by 2 4 3
2 4 by 5 20 11 4 by 5 20 11 4 by 5 20 11
3 19 by 19 361 51 8 by 7 56 21 8 by 7 56 21
4 66 by 60 3960 186 35 by 34 1190 103 35 by 34 1190 103
5 42 by 40 1680 124 47 by 49 2303 136 42 by 40 1680 124
6 27 by 28 756 82 47 by 45 2115 129 27 by 28 756 82
7 17 by 20 340 55 28 by 28 784 80 17 by 20 340 55
8 (MSB) 7 by 9 63 22 10 by 11 110 30 7 by 9 63 22

Total 7184 534 6582 513 4109 421
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Experimental Results

We have synthesized a 4-bit multiplier using our approach. It has two input operands: the first

operand is comprised of bits A:D and the second operand is comprised of bits E:H . Since the

output of a 4-bit multiplier is an eight bit number, we have synthesized eight crossbars. Table 3.1

presents the sizes of the synthesized crossbars and configured memristors for each output bit. The

correctness of the synthesized crossbars is verified exhaustively by applying all input combinations

on the synthesized crossbar designs. The sneak paths between the bottom and topmost nanowires

existed only when the corresponding output was true; there was no path whenever the function

output was false.

In order to verify the correctness of our designs, we perform quantitative SPICE resistive network

simulations for all possible 256 input configurations of a 4-bit multiplier. We focus on the middle

fourth-bit of the multiplier and used the values of RON = 50Ω, Rs = 100Ω, Vs = 1V and ROFF =

500kΩ for our simulations. Memristors with HRS (high resistance state) to LRS (low resistance

state) ratio of 107 have been reported in literature [56]. Figure 3.4 summarizes the experimental

observations. Flows corresponding to true formulae (shown in blue) are clearly distinguished from

flows corresponding to the false formulae (shown in red). The minimum output voltage for a true

formula was 0.177V while the maximum output voltage for a false formula was 0.053V; hence,

the two truth values are clearly distinguishable in all cases.

We have investigated the impact of memristor variability on the correctness of our designs by

changing the resistance values by 5%. We vary the resistance of each memristor in the crossbar

corresponding to the middle fourth-bit of the 4-bit multiplier by increasing (decreasing) its value

by 5%. The lowest voltage corresponding to true falls from 0.177V to 0.170V while the highest

value corresponding to false rises from 0.053V to 0.056V; both the true and the false values are

clearly distinct from each other in all cases.
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Figure 3.4: Output for the fourth-output-bit of the multiplier. The X-axis represents the index
of truth table entries, and the Y-axis is the voltage across Rs. Blue lines correspond to input
combinations with true outputs, red lines represent false outputs for the Boolean function. Output
voltage is at least 0.177 V when the Boolean formula is true. Voltage is no more than 0.053 V
when the Boolean formula is false.

Table 3.1 compares the performance of the FBDD based heuristic approach with the previous

ROBDD-based approach [6]. For the first four output bits, the heuristic based variable ordering

has produced either similar sized or smaller crossbars. But for the last four bits, ROBDD-based

variable ordering has resulted in smaller crossbars. A 4-bit multiplier generated using our approach

needs 8.4 percent less area than the ROBDD-based approach, while a multiplier designed using the

best of both approaches needs 42.8 percent less area than an approach based only on ROBDDs.
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Comparisons

This section presents a qualitative comparison of our approach with Memristor Ratioed Logic

(MRL) [28], IMPLY-based syntheses [31, 57, 58], Memristor-Aided Logic (MAGIC) [3], and

other flow-based syntheses such as mapping of Negation Normal Form of Boolean formulae on

crossbars [16], formal methods-based crossbar synthesis [17], and model counting-based crossbar

synthesis [59].

MRL uses both memristors and CMOS transistors (for inversion) for computing logic [28]. Besides

inversion, the usage of transistors also facilitates signal restoration in MRL. But the larger size of

CMOS nodes decreases the density of MRL-based circuits. Therefore, MRL-based circuits are not

as compact as purely memristive circuits.

IMPLY gate can be implemented using two memristors. IMPLY and false are sufficient to com-

pute any Boolean function on memristive circuits [58]. A Boolean function is computed by exe-

cuting a sequence of steps (called micro-operations) on an IMPLY-based memristive circuit. The

number and order of micro-operations depends on the nature and complexity of the function being

computed. Chakraborty et al. have replaced each node of a Binary Decision Diagram (BDD) with

an IMPLY-based 2-to-1 multiplexer (MUX) [31]. Their MUX is realized with 5 memristors and

needs 6 micro-operations. Thus, each node of their BDD needs 5 memristors and needs 6 micro-

operations in their implementation of a BDD. In comparison, our unmapped designs configure at

most two memristors for each node of a BDD. Additionally, our BDD-based designs are not only

directly implemented on memristor crossbars, they are also free from micro-operations.

It is not yet clear how memristive circuits comprised of IMPLY gates can be implementedModern

computers are based on the von Neumann architecture. The earliest description of the von Neu-

mann architecture comes from The First Draft of a Report on EDVAC [8]. The EDVAC (Electronic
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Discrete Variable Automatic Computer) was envisioned to have a Central Processing Unit (CPU)

–comprised of an arithmetic logic unit (ALU) and a control unit (CU)– data and pro-gram mem-

ories, and input/ output peripherals. Program instructions were stored in a memory unit, just like

other data in memory. Data and address buses were provided to move data between dif-ferent parts

of the computer. Thanks to the exponential decrease in transistor size in the coming decades, com-

putational capabilities of CPUs kept increasing exponentially. The size of memory also increased

due to the same reason. However, the communication capacity of the shared bus, connecting CPU

with memory units, didn’t increase at the same pace. Consequently, an increase in the computa-

tional capabilities of CPU or the size of memory did not translate into a similar increase in the

throughput of computing systems. The limited speed of the shared communication-bus adversely

affects system performance due to the time wasted in transferring data between CPU and mem-

ory. This phenomenon is known as von Neumann-bottleneck, memory-processing bottle-neck ,

or communication bottleneck. For decades, exponential growth in computing capabilities due to

Moore’s law was sufcient to mask the inherent shortcomings of the von Neumann architecture.

However, in recent years, not only has Moore’s law slowed down due to transistor size reaching

atomic scale, but fabrication technology is also facing problems on other fronts such as, increasing

leakage currents due to quantum tunneling, process variations at such a small scale, and vulnera-

bility of small-scale elec-tronics to radiation ips even at sea levels. The breakdown of Dennard’s

scaling in the mid 2000s due to increasing dynamic power meant 1 that the trend of increasing

clock frequencies cannot continue indenitely. This ushered the era of multicore scaling, where

multiple CPUs fabricated on the same die work in parallel to improve system performance. Al-

though multicore scaling has improved the computing throughput of gen-eral purpose computers,

this trend is obstructed by the inability to dissipate all the dynamic power generated by a fully pow-

ered CPU. This phenomenon is known as dark silicon, because all of the circuitry in a die cannot

be powered-on at the same time without violating the thermal constraints. Recent advances in ma-

chine learning (ML), articial intelligence (AI), and data mining, and their widespread applications
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have changed both the nature and size of computing. It has become in-creasingly clear that gen-

eral purpose architecture cannot efciently fulll the demands of these specialized compute-intensive

applications. For instance, Graphics Processing Units (GPU) have long eclipsed CPUs not only

for multimedia, but also for AI and ML applications. Researchers are also developing AI and ML

specic computing architectures such as Tensor Processing Unit (TPU), Deep Learning Accelerator

(DLA), Vision Processing Unit (VPU), and Neural Network Processor (NNP). These Applica-

tion Specic Integrated Circuits (ASIC) are also called AI accel-erators. It is important to mention

that despite its deciencies, ASICs are not intended to replace general purpose computer. These

new computing architectures such as GPUs, NPUs, and other ASICs are intended to augment the

general purpose computer to increase overall computing ef-ciency. Besides advances on architec-

tural fronts, recent advances in material science and nanotechnology haves propelled several new

nanoelectronic devices to the forefront. Some recently discovered de-vices are memristors, mag-

netic tunnel junctions (MTJ), 3d transistors, spin-torque-transfer (STT) memories, phase change

memories (PCM), etc. These newly discovered devices are collectively referred to as emerging

devices, and the novel architectures employing these devices are referred to as emerging comput-

ing architectures. Small size, low to no standby power, non-volatility, and high read/ write speeds

are distinct features of these emerging devices as compared to traditional 2 Complementary Metal

Oxide Semiconductor (CMOS) transistors. Circuits built from these emerg-ing nanodevices de-

vices are not only faster and more power efcient, they are also more compact than the traditional

CMOS-based circuits. On the other hand, the problems associated with these devices are high vari-

ability, low reliability, smaller lifespan (number of read/ write cycles) and dif-fering read and write

times. These devices are still in the research phase, and these parameters are likely to improve

further in coming years. Nonetheless, the aforementioned properties of these devices make them

excellent candidates to augment or improve existing computing systems for better power, area,

delay, and computing efciency. Emerging ReRAM devices for Novel Architectures on a crossbar

structure [3]. Other IMPLY-based circuits such as IMPLY-based NAND, IMPLY-based Majority
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gate (MIG-IMP), and majority (MAJ) [5,57] are not designed for direct computation on crossbars

either. On the other hand, our flow-based computing using decision diagrams is directly mappable

on a crossbar without the need of any modifications in the crossbar structure.

MAGIC employs purely memristive circuits for in-memory computing [3,60], and it can be com-

puted on either custom memristive circuits or memristor crossbars. When crossbars are used for

computing MAGIC, the problem of sneak paths arises, which needs to be dealt with [15, 47, 61].

Flow-based computing is not affected by such sneak paths in crossbars. On the contrary, flow-

based computing employs these sneak paths as flow paths between the bottom and the topmost

nanowires. We have used FBDDs to map these sneak paths between the bottom and the topmost

nanowires [62].

Velasquez et al. have proposed two approaches for designing crossbars for flow-based computing.

Their first approach maps the NNF of a Boolean function on a crossbar [16]. NNF-based synthesis

produces prohibitively large crossbar circuits. For example, their NNF-based design for a 1-bit

adder requires a 16 × 16 crossbar. In their second approach, Velasquez et al. have used formal

methods for synthesizing crossbars circuits [17]. By using formal methods, they have implemented

the 1-bit adder on a 4 × 4 crossbar. However, this approach is also not scalable due to high

computational complexity of the synthesis process. In comparison, the BDD-based synthesis for

flow-based computing is more scalable due to lower computational requirements than the formal

methods-based synthesis and smaller size of the synthesized crossbars than the NNF-based designs.

Conclusions

In this chapter, we have presented a new FBDD-based computer-aided design approach for synthe-

sizing compact crossbars that implement Boolean formulae using flow-based computing [17, 45,

47



59]. Free Binary Decision Diagrams are often more succinct than ROBDDs as they do not enforce

the requirement of a strict variable ordering along all paths from the root to the terminal nodes of

a decision diagram. We have taken advantage of this increased representational power of FBDDs

for designing compact nanoscale memristor crossbars. In our experimental investigations, FBDDs

designed using a simple greedy heuristic have resulted in identical or more compact crossbars for

the first four output bits of a 4-bit multiplier. We have also used other heuristics for designing com-

pact FBDD-based crossbars [63, 64]. The FBDD-based in-memory crossbar computing approach

is not specific to memristor crossbars. The methodology can also be employed to design circuits

using other Re-RAM devices [65, 66].
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CHAPTER 4: AUTOMATED SYNTHESIS OF STOCHASTIC

COMPUTATIONAL ELEMENTS 1

Introduction

John von Neuman’s work on “Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components” was the first comprehensive study of stochastic computing [67]. During

the 1950s and 1960s, further advances were made in stochastic computing techniques [18, 36,

37]. However, the progress in stochastic computing slowed down in the late 1960s because of the

availability of reliable and cost-effective integrated circuits for digital computing. Over the last

couple of decades, the interest in stochastic computing has picked up again due to slowdown in

Moore’s law. Transistor dimensions in commercially available integrated circuits are projected to

reach 5 nm range in 2020. At such a small scale, their reliability decreases due to reduced noise

margin, radiation-induced errors and manufacturing variations. Such uncertain behavior has driven

the exploration of fault-tolerant computing paradigms. Stochastic circuits can inherently tolerate

a large number of errors due to its probabilistic nature. Their intrinsic robustness along with their

area and power efficiency have made them competitor to the deterministic implementations for

energy-hungry fault-tolerant applications such as multimedia and pattern recognition.

Stochastic circuits are also called stochastic computational elements (SCE) [18]. In this chapter,

we discuss the synthesis of finite state machines (FSMs) for approximating non-linear functions

stochastically. In 2001, Brown and Card used finite state machines to approximate tanh and expo-

nentiation functions using a stochastic bit stream [19]. Li et al. devised a scheme for the synthesis

1Related Publication: A. U. Hassen, B. Chandrasekar and S. K. Jha, “Automated Synthesis of Stochastic Computa-
tional Elements using Decision Procedures”, 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, 2016, pp. 1678-1681.
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of SCEs and demonstrated its effectiveness by synthesizing polynomial, tanh, and exponentiation

functions [7]. The synthesized circuits were more compact and robust to errors as compared to

their deterministic implementations. Their implementation also had better area efficiency as com-

pared to the circuits yielded by Bernstein polynomials [7]. Li et al. synthesize stochastic circuits

by minimizing the square of error between the target function and its estimate [7] over the input

range. This approach does not guarantee any upper bound on the maximum error between the

target function and its estimate.

To optimize the worst-case error, we propose a new algorithm which guarantees an upper bound

on the absolute error between the target function and its estimate. We use decision procedures to

iteratively search the space of linear finite state machines till our error constraints are satisfied, thus

limiting the maximum error between the target function and its estimate over the entire input range.

To compare our results with previous state-of-the-art approach, we use the same number of states

as in Li et al. [7] for synthesizing the finite state machines for polynomial, tanh, and piecewise

exponential function. As shown in Table 4.1, the circuits synthesized using decision procedures

have 1.17 to 1.65 times smaller worst-case error than the previous state-of-the-art approach [7].

All of this improvement is achieved without any additional hardware or delay.

In the remaining chapter, we discuss Moore’s machine, its excitation with a stochastic bit stream,

and its steady-state properties. Then, we present a decision procedures-based algorithm for syn-

thesizing linear finite state machines (LFSM). The experimental section compares the worst-case

errors of decision procedures-based algorithm with the approach in Li et al. [7] for polynomial,

tanh, and piecewise exponential functions.
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Linear Finite State Machines

Compact combinational circuits composed of a few logic gates or multiplexers are sufficient for

computing elementary arithmetic operations, such as addition and multiplication, using stochas-

tic bit streams. More complex computations such as non-linear function approximation can also

be performed stochastically using simple sequential circuits modeled by Finite State Machines

(FSM). Single-input single-output linear Moore machines with probabilistic outputs can be used

for stochastic estimation of non-linear functions.

Definition 4. A Moore machine with probabilistic outputs is defined as a 6-tuple (S, si, X, Y, T,G)

where

(i) S is a finite set of states {s0, s1, s2, ...sn},

(ii) si is the initial state,

(iii) X is a set of input alphabets, e.g. {0, 1},

(iv) Y is a set of output alphabets, e.g. {0, 1},

(v) T ⊆ S ×X → S is a transition function from current state si ∈ S and the input x ∈ X to

the next state s′i ∈ S, and

(vi) G ⊆ S → P (Y ) is a probabilistic output function that assigns a probability P (Y |si) of

producing the output y ∈ Y at state si ∈ S.

Definition 5. A Moore machine with probabilistic outputs (S, si, X, Y, T,G) is a linear Moore

machine for binary input x provided,

(i) if the input x = 1, the state si makes a transition to si+1 if i < n; otherwise, the state si does

not change.
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(ii) if input x = 0, the state si makes a transition to si−1 if i > 0; otherwise, the state si does not

change.

Figure 4.1: The structure of a linear finite state machine.

A linear Moore machine is shown in Fig. 4.1 . Input to this state machine is a Bernoulli sequence

with probability of ‘1’ given by P (x = 1). To keep the notation compact, let us denote P (x = 1)

as P (x). For a long enough Bernoulli sequence with fixed P (x), the linear finite state machine

will reach the equilibrium or steady state. The probability of being in a particular state (si) under

equilibrium depends only on P (x), let us denote it by P (si|P (x)).

When linear finite state machine is in equilibrium, the probability of leaving a state will be identical

to the probability of entering that state. Formally,

P (x)P (si|P (x)) = (1− P (x))P (si+1|P (x)).

In general

⇒ P (si|P (x)) =

(
P (x)

1− P (x))

)i
P (s0|P (x)). (4.1)
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Using total probability theorem

P (s0|P (x)) + P (s1|P (x)) + P (s2|P (x)) + · · ·+ P (sn|P (x)) = 1.

By substituting P (si|P (x)) from equation 4.1 in the above equation, we get

P (s0|P (x)) =
1

n∑
i=0

(
P (x)

1−P (x)

)i .
When LFSM is in state k, it outputs a Bernoulli stream in which probability of ‘1’ is given by

P (Y = 1|sk). Let us denote this output probability by πk. Using total probability theorem, the

overall probability of ‘1’ in the output stream is given by

P (Y = 1|P (x)) =
n∑
i=0

πiP (si|P (x)). (4.2)

Synthesis of Stochastic Computational Elements (SCEs) using Decision Procedures

Let f(t) be our target function such that f(t)∈[0, 1] where t∈[0, 1]. Since both t∈[0, 1] and P (x) ∈

[0, 1], therefore we can replace t by P (x). Our objective is to find the output probabilities of linear

finite state machine {π0, π1, π2, ....πn} such that its steady state output P (Y = 1|P (x)) closely

follows target function f(P (x)) for 0 < P (x) < 1

P (Y = 1|P (x)) ≈ f(P (x)).
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Equation 4.2 is central to the synthesis of stochastic computational elements as described in algo-

rithm 1. Let us define ε > 0 as the maximum permitted error between P (Y = 1|P (x)) and the

target function f(P (x)). Then, from equation 4.2,

f(P (x))− ε ≤
n∑
i=0

πiP (si|P (x)) ≤ f(P (x)) + ε. (4.3)

Algorithm 1 Decision Procedure-based Synthesis of Stochastic Computational Elements

(i) Choose a small value of ε > 0.

(ii) Initialize a set of constraints, C = φ.

(iii) Choose N samples {P (x1),P (x2), P (x3),· · · P (xN)} of P (x) by sampling it uniformly
between 0 and 1.

(iv) For each P (xk)

• Compute P (si|P (xk)) for all si ∈ S using Eq. 4.1.

• Compute f(P (xk)).

• Substitute P (si|P (xk)) and f(P (xk)) in Eq. 4.3 and create a constraint ck in terms of
{π0, π1, π2, ....πn}.
• Add ck to the set of constraints C.

(v) Find the feasible region by solving the set of constraints C using decision procedures.

(vi) if (feasible region is found) then return {π0, π1, π2, ....πn}, else Set ε := ε
0.99

and repeat
all the steps from Step (ii).

First step is the specification of error tolerance ε at sampled points. Next step is the creation of N

samples of P (x) ∈ [0, 1]. Substitution of each value of P (xk) in equation 4.2 gives a constraint in

terms of output probabilities {π0, π1, π2, ....πn}. After creating N such constraints, we can solve

them using decision procedures. The solution {π0, π1, π2, ....πn} satisfying all the constraints is

the set of output probabilities of linear finite state machine approximating the target function f(t).

If no such solution is found, we can relax our constraints by setting ε to a slightly larger value. We
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again solve these new constraints using decision procedures. This process is repeated iteratively till

the solution is found. In next section, we show that the output probabilities obtained from decision

procedures result in bounded error at unsampled values of P (x).

Theorem 1. (Boundedness of Error) The error between a target function and its estimate between

sampled points can be made arbitrarily close to ε by increasing the sampling rate N .

Proof. Error between the target function and its estimate is always less than ε at sampled points.

If target function and its estimate are Lipschitz continuous, then the error between sampled points

decreases as we increase the sampling rate.

Let x be any of the N sampled points, let ∆x be a small interval such that ∆x < 1
N

, For com-

pactness of notation, let us denote P (Y = 1|x) by g(x), then we can re-arrange inequality 4.3

as,

−ε < f(x)− g(x) < ε.

Since ∆x < 1
N

, x + ∆x will be between sampled points. Let Lf be the absolute value of the

Lipschitz constant of f(x), then

f(x)− Lf∆x < f(x+ ∆x) < f(x) + Lf∆x, (4.4)

Let Lp be the absolute value of Lipschitz constant of P (Y = 1|x) = g(x), then

g(x)− Lp∆x < g(x+ ∆x) < g(x) + Lp∆x, (4.5)
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Subtracting inequality 4.5 from inequality 4.4,

f(x)− g(x)− (Lp + Lf )∆x < (f(x+ ∆x)− g(x+ ∆x))

< (f(x)− g(x)) + (Lp + Lf )∆x,

By using inequality 4.3,

−ε− (Lp + Lf )∆x < f(x+ ∆x)− g(x+ ∆x) < ε+ (Lp + Lf )∆x,

Substituting ∆x < 1
N

in the above inequality, we get

−ε− (Lp + Lf )

N
< f(x+ ∆x)− g(x+ ∆x) < ε+

(Lp + Lf )

N
. (4.6)

It is clear from 4.6 that for a given ε, we can make the error arbitrarily small by increasing the

sampling rate and making ∆x arbitrarily small.

Lipschitzness of Estimated Function

The synthesized function P (Y = 1|P (x)) given by equation 4.2 is Lipschitz continuous if steady

state probabilities P (si|P (x)) of all states si∈ S are also Lipschitz continuous. Steady state prob-

ability of state si is given by,

P (si|P (x)) =

(
P (x)

1−P (x))

)i
n∑
k=0

(
P (x)

1−P (x))

)k ,
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i.e,

P (si|P (x)) =
ri

n∑
k=0

rk
,

where r = P (x)
1−P (x))

and it changes from 0 to∞ when x changes from 0 to 1. Using chain rule, the

derivative of P (si|P (x)) with respect to P (x) is given by,

P ′(si|P (x)) =

ri−1(r + 1)2
n∑
k=0

(i− k)rk

(
n∑
k=0

rk)2
. (4.7)

P ′(si|P (x)) is bounded for 0 < r < ∞, which means P (si|P (x)) is Lipschitz continuous for all

i. Therefore the synthesized function P (Y = 1|P (x)), which is the weighted sum of P (si|P (x)),

is also Lipschitz continuous.

Experimental Results

We evaluate our approach by synthesizing linear finite state machines for approximating polyno-

mial, tanh, and piecewise exponential functions given by equations 4.8, 4.9, and 4.10 respectively.

Li et al. also used these functions as benchmarks [7]. For each of these functions, we synthesize

a linear finite state machines by solved 103 constraints obtained from equation 4.2. These con-

straints are created by randomly sampling P (x) in the range [0,1]. Next, we present the finite state

machines and their output for each of these functions. We also compare our worst-case error with

Li et al. [7] for each of these functions.
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Figure 4.2: A linear finite state machine approximating the polynomial function using 4 states.
Our design has 1.65 times smaller worst-case error than the state-of-the-art approach.

Synthesis of Polynomial Function

We have synthesized the following third degree polynomial given in equation 4.8.

P (Y = 1|P (x)) =
1

4
+

9

8
P (x)− 15

8
P 2(x) +

5

4
P 3(x). (4.8)

Fig. 4.2 shows the synthesized 4-state finite state machine along with the output probabilities for

the polynomial function. Fig. 4.3 compares the output of the synthesized machine with the exact

output of equation 4.8 over [0,1] range. The output of our linear finite state machine deviates from

the target polynomial function by 0.0145 in the worst case. While the worst-case error for the

machine in Li et al. is 0.024, which is 1.65 times larger than our approach.
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Figure 4.3: Comparison of the stochastic approximation of polynomial function and the exact
function in equation 4.8. Our design has 1.65 times smaller worst-case error than the state-of-the-
art approach.

Synthesis of Tan-hyperbolic Function

Stochastic tan-hyperbolic function can be approximated by the following equation,

f(x) ≈ e
N
2
x − e−N

2
x

e
N
2
x + e−

N
2
x
,

where ‘N ’ is the number of states of the linear finite state machine used for synthesizing this func-

tion. Here f(x) and ‘x’ are represented using the bipolar coding format [18]. Before synthesizing

this function, we have converted it into unipolar coding format resulting in following equation,

f(x) =
e8(2P (x)−1)

e8(2P (x)−1) + 1
(4.9)
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Fig. 4.4 shows an 8-state linear finite state machine synthesized using decision procedures for

approximating this function. Fig. 4.5 compares the the stochastic output of this machine with

the exact function given in equation 4.9. For this function, Peng Li’s approach [7] resulted in the

worst-case error of 0.065, while the worst-case error of our approach is 0.04, resulting in 1.625

times improvement.

Figure 4.4: A linear finite state machine approximating the tanh function using 8 states. Our design
provides 1.625 times smaller worst-case error than the state-of-the-art approach.

Figure 4.5: Comparison of the stochastic approximation of tanh and the target tanh function. Our
design provides 1.625 times smaller worst-case error than the state-of-the-art approach.
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Synthesis of Piecewise Exponential Function

We have synthesized the piecewise exponential function given by equation 4.10 using the 16-state

linear finite state shown in Fig. 4.6. Fig. 4.7 compares the output of this machine is with the exact

function. For this function, the maximum error between the target function and its approximation

using our approach is 0.1119. While Peng Li’s [7] finite state machine has the worst-case error of

0.125. Again, our approach produced smaller 1.17 times worst-case error as compared to Li et

al. [7].

P (Y = 1|P (x)) =


1, 0 ≤ P (x) ≤ 0.5

e−4(2P (x)−1), 0.5 ≤ P (x) ≤ 1

(4.10)

Figure 4.6: A linear finite state machine approximating the exponentiation of equation 4.10 us-
ing 16 states. Our design provides 1.17 times smaller worst-case error than the state-of-the-art
approach.
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Figure 4.7: Comparison of the our stochastic approximation of exponential function and the target
exponential given in equation 4.10. Our design provides 1.17 times smaller worst-case error than
the state-of-the-art approach.

Summary of Results

Table 4.1 summarizes the results of our finite state machines synthesized using decision procedure

with those synthesized using the approach described in Li et al. [7]. All three functions were

synthesized on finite state machines having the same number of states as used by Li et al. [7].

Despite using the same amount of resources, our decision procedures-based synthesis has reduced

the worst-case error by up to 65 percent.
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Table 4.1: Comparison of worst-case errors of our synthesized linear finite state machines with
those synthesized using Li et al. [7]

Function Li et al. Error [7] Our Error Improvement

Polynomial 0.024 0.0145 1.65 times
tanh 0.065 0.04 1.625 times
exp 0.125 0.1119 1.17 times

Conclusions

We have proposed a decision procedures-based algorithm for the synthesis of stochastic compu-

tational elements. First, we uniformly sample the input range [0,1], then we convert each sample

into an error constraint. Then we use decision procedures to search the space of linear finite

state machines with probabilistic outputs such that absolute error between the actual function and

its approximation does not exceed predefined threshold. Lipschitzness of the estimated function

guarantees that the error between the target function and its estimate remains bounded. We have

tested it on polynomial, piecewise exponential and hyperbolic functions. Using this approach [68],

we have synthesized approximations for polynomial, exponentiation and tanh functions using lin-

ear finite state machines. Our approach resulted in 1.17 to 1.65 times smaller worst-case errors for

these functions as compared to the previous state-of-the-art approach [7].
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CHAPTER 5: CONCLUSION AND FUTURE WORKS

The decline of Moore’s law, the increasing demand of computing capabilities, and the shortcom-

ings of the von Neumann architecture are some of the factors behind increasing interest in uncon-

ventional ways of computing. We have explored two unconventional computing systems, stochas-

tic computing and in-memory computing, that do not suffer from the traditional processor-memory

bottleneck of the von Neumann architecture.

Besides being resilient, stochastic computing increases the computing efficiency for error-tolerant

applications by creating simple but effective approximations. For example, multiplication, a com-

putationally expensive operation on traditional circuits, can be stochastically realized by feeding

stochastic streams to a digital AND gate. Error-tolerant multimedia applications, which require

large number of such basic arithmetic operations, can be efficiently processed on stochastic cir-

cuits. Finite State Machines (FSM) can be used for synthesizing circuits for more complex tasks.

We have presented a decision procedures-based iterative algorithm for synthesizing stochastic ap-

proximations of non-linear continuous functions, such as polynomial, tanh, and exponentiation, on

linear finite state machines. Previously, Li et al. synthesizing stochastic implementation of these

functions by optimizing a square-loss function [7]. Our approach has reduced the worst-case error

by up to 1.65 times as compared to the state-of-the-art approach [7].

In-memory computing unifies data storage and data processing at the physically same location,

thus eliminating the infamous memory-processor bottleneck. We synthesize crossbars circuits for

flow/sneak path-based in-memory computing of Boolean functions. Sneak paths, which pervade

memristor crossbars, play a central role in flow-based in-memory computing on crossbars. We

have used a variant of Binary Decision Diagrams (also referred to as Free-BDDs or FBDDs) to

layout sneak paths in crossbars in a controlled way. Computational resources associated with
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the synthesis of FBDDs make them less popular than their reduced-ordered counterpart called

ROBDDs. On the upside, the freedom of variable ordering lends far more representational power

to FBDDs as compared to ROBDDs. Freedom of variable ordering means input variables can

appear in different orders along different paths between the root node and the terminal nodes of

an FBDD. We have used a simple greedy heuristic to choose different variable-orderings along

different paths of an FBDD. Our FBDD-based multiplier was 8% more compact than ROBDD-

based designs, while a multiplier using the best of both approaches (ROBDD and FBDD) was 42%

more compact than the designs based on ROBDDs only and 37% more compact than the designs

based on FBDDs only. Once a crossbar is synthesized, the synthesis process becomes immaterial

for its subsequent applications. An important advantage of flow-based in-memory computing is

that this technique is designed for generic crossbars, eliminating the need for custom fabrication of

memristive crossbars. The use of generic crossbars can also make the process more cost-efficient

due to economy-of-scale.

Although algorithmic-depth of BDDs has resulted in more compact crossbars than some previous

approaches [16,17], a large number of memristors in the crossbar still remain idle. The problem of

idle memristors in the synthesized crossbar is natural for BDD-based synthesis. When a bipartite

BDD is mapped onto a crossbar, the BDD nodes are mapped onto crossbar nanowires while the

edges between the nodes are mapped onto memristors between the perpendicular nanowires of

the crossbar. Thus, the number of nanowires in the synthesized crossbar is proportional to the

number of nodes in the BDD, while the number of available memristors in the crossbar is roughly

proportional to the square of the number of BDD nodes. Since all non-terminal nodes of a BDD

have two outgoing edges, the number of utilized memristor in such crossbars is also linear in terms

of the number of nodes, while the number of unused memristors is roughly quadratic in terms of

nodes. Consequently, as the size of a BDD increases, the ratio of utilized to unutilized memristors

in the synthesized crossbar approaches zero at a quadratic rate.
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The number of configured memristors in the crossbars designed using the best of the ROBDD

and FBDD approaches varies according to the complexity of the Boolean function being synthe-

sized. The configured memristors occupy 75%, 55%, 37.5%, 8.66%, 7.38%, 10.85%, 16.18% and

34.92% of the crossbar space for the first through eighth output bits. Thus, the decision-diagram

based approach produces sparse crossbar designs. Our current FBDD-based approach relies on

the availability of memristors with high HRS-LRS ratios. An approach that uses smaller and more

dense crossbars is likely to reduce the need for memristors with high HRS-LRS ratios. In order

to better utilize the densely packed memristors in a crossbar structure, a fundamentally different

approach employing a different data structure may be explored. Approximate in-memory comput-

ing can synthesize compact crossbar with reduced-computational complexity by sacrificing some

accuracy [69,70]. Recently, Chakraborty et al. have used model counting and simulated annealing

to synthesize highly compact adders for flow-based computing [46], where more than 90% of the

crossbar has been configured during the design process. An interesting direction of future work

would be to design compact multipliers that configure and employ a large fraction of the available

memristors on a crossbar. As the size of a crossbar increases, so does the requirement of mem-

ristors with higher HRS-LRS ratios, thus a smaller crossbar will not only require smaller area and

power, it will also reduce the requirement of memristors with higher HRS-LRS ratios. A deeper

theoretical investigation into the computational capability of flow-based computing on crossbars

and the size of Boolean formula that can be computed on a memristor crossbar is merited.
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