4,980 research outputs found

    Motion Control of Multiple Autonomous Mobile Robots Handling a Large Object in Coordination

    Get PDF
    Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan May 199

    Leader-Follower type Motion Control Algorithm of Multiple Mobile Robots with Dual Manipulators for Handling a Single Object in Coordination

    Get PDF
    Proceedings of the 2004 lntemational Conference on Intelligent Mechatronics and Automation, Chengdu, China, August 200

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 8, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory. Edited by Thomas Lindsay

    Research and development of an intelligent AGV-based material handling system for industrial applications

    Get PDF
    The use of autonomous robots in industrial applications is growing in popularity and possesses the following advantages: cost effectiveness, job efficiency and safety aspects. Despite the advantages, the major drawback to using autonomous robots is the cost involved to acquire such robots. It is the aim of GMSA to develop a low cost AGV capable of performing material handling in an industrial environment. Collective autonomous robots are often used to perform tasks, that is, more than one working together to achieve a common goal. The intelligent controller, responsible for establishing coordination between the individual robots, plays a key role in managing the tasks of each robot to achieve the common goal. This dissertation addresses the development of an AGV capable of such functionality. Key research areas include: the development of an autonomous coupling system, integration of key safety devices and the development of an intelligent control strategy that can be used to govern the operation of multiple AGVs in an area

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    corecore