1,669 research outputs found

    Total Haskell is Reasonable Coq

    Full text link
    We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, "Hutton's razor", and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.Comment: 13 pages plus references. Published at CPP'18, In Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP'18). ACM, New York, NY, USA, 201

    Extensions to the Estimation Calculus

    Get PDF
    Waltherā€™s estimation calculus was designed to prove the termination of functional programs, and can also be used to solve the similar problem of proving the well-foundedness of induction rules. However, there are certain features of the goal formulae which are more common to the problem of induction rule well-foundedness than the problem of termination, and which the calculus cannot handle. We present a sound extension of the calculus that is capable of dealing with these features. The extension develops Waltherā€™s concept of an argument bounded function in two ways: firstly, so that the function may be bounded below by its argument, and secondly, so that a bound may exist between two arguments of a predicate. Our calculus enables automatic proofs of the well-foundedness of a large class of induction rules not captured by the original calculus

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    PML2: Integrated Program Verification in ML

    Get PDF
    We present the PML_2 language, which provides a uniform environment for programming, and for proving properties of programs in an ML-like setting. The language is Curry-style and call-by-value, it provides a control operator (interpreted in terms of classical logic), it supports general recursion and a very general form of (implicit, non-coercive) subtyping. In the system, equational properties of programs are expressed using two new type formers, and they are proved by constructing terminating programs. Although proofs rely heavily on equational reasoning, equalities are exclusively managed by the type-checker. This means that the user only has to choose which equality to use, and not where to use it, as is usually done in mathematical proofs. In the system, writing proofs mostly amounts to applying lemmas (possibly recursive function calls), and to perform case analyses (pattern matchings)

    Extending and Relating Semantic Models of Compensating CSP

    No full text
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach

    Conditional Lemma Discovery and Recursion Induction in Hipster

    Get PDF
    Hipster is a theory exploration tool for the proof assistant Isabelle/HOL. It automatically discovers lemmas about given recursive functions and datatypes and proves them by induction. Previously, only equational properties could be discovered. Conditional lemmas, for example required when reasoning about sorting, has been beyond the scope of theory exploration. In this paper we describe an extension to Hipster to also support discovery and proof of conditional lemmas. We also present a new automated tactic, which uses recursion induction. Recursion induction follows the recursive structure of a function definition through its termina- tion order, as opposed to structural induction, which follows that of the datatype. We find that the addition of recursion induction increases the number of proofs completed automatically, both for conditional and equational statements.

    Mechanising syntax with binders in Coq

    Get PDF
    Mechanising binders in general-purpose proof assistants such as Coq is cumbersome and difficult. Yet binders, substitutions, and instantiation of terms with substitutions are a critical ingredient of many programming languages. Any practicable mechanisation of the meta-theory of the latter hence requires a lean formalisation of the former. We investigate the topic from three angles: First, we realise formal systems with binders based on both pure and scoped de Bruijn algebras together with basic syntactic rewriting lemmas and automation. We automate this process in a compiler called Autosubst; our final tool supports many-sorted, variadic, and modular syntax. Second, we justify our choice of realisation and mechanise a proof of convergence of the sigma calculus, a calculus of explicit substitutions that is complete for equality of the de Bruijn algebra corresponding to the lambda calculus. Third, to demonstrate the practical usefulness of our approach, we provide concise, transparent, and accessible mechanised proofs for a variety of case studies refined to de Bruijn substitutions.Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeitsaufwƤndig und schwierig. Binder, Substitutionen und die Instantiierung von Substitutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine elegante Formalisierung von Bindern voraus. Wir nƤhern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusammen mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir automatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler Kompilierer unterstĆ¼tzt Sortenlogik, variadische Syntax und modulare Syntax. Zweitens rechtfertigen wir unsere ReprƤsentation und mechanisieren einen Beweis der Konvergenz des SP-KalkĆ¼ls, einem KalkĆ¼l expliziter Substitutionen der bezĆ¼glich der Gleichheit der puren de Bruijn Algebra des -KalkĆ¼ls vollstƤndig ist. Drittens entwickeln wir kurze, transparente und leicht zugƤngliche mechanisierte Beweise fĆ¼r diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir weisen so die praktische Anwendbarkeit unseres Ansatzes nach
    • ā€¦
    corecore