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Abstract
We present the PML2 language, which provides a uniform environment for programming, and
for proving properties of programs in an ML-like setting. The language is Curry-style and
call-by-value, it provides a control operator (interpreted in terms of classical logic), it supports
general recursion and a very general form of (implicit, non-coercive) subtyping. In the system,
equational properties of programs are expressed using two new type formers, and they are proved
by constructing terminating programs. Although proofs rely heavily on equational reasoning,
equalities are exclusively managed by the type-checker. This means that the user only has to
choose which equality to use, and not where to use it, as is usually done in mathematical proofs.
In the system, writing proofs mostly amounts to applying lemmas (possibly recursive function
calls), and to perform case analyses (pattern matchings).
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1 Introduction: joining programming and proving

In the last thirty years, significant progress has been made in the application of type theory
to computer languages. The Curry-Howard correspondence, which links the type systems of
functional programming languages to mathematical logic, has been explored in two main
directions. On the one hand, proof assistants such as Agda [24] or Coq [23] are based on
very expressive logics [22, 7]. To establish their consistency, the underlying programming
languages need to be restricted to provably terminating programs. As a result, they forbid the
most general forms of recursion. On the other hand, functional programming languages such
as Haskell, SML or OCaml are well-suited for programming, as they impose no restriction on
recursion. However, their type systems are inconsistent when considered as logics, which
means that they cannot be used for proving mathematical formulas.1

The aim of PML2 is to provide a uniform environment in which programs can be designed,
specified and proved. The idea is to combine a full-fledged ML-like programming language,
with an enriched type system allowing the specification of computational behaviours.2 The
obtained system can thus be used as ML for type-safe general programming, and as a proof
assistant for proving properties of ML programs. The uniformity of the framework implies
that programs can be incrementally refined to obtain more and more guarantees. In particular,
there is no syntactic distinction between programs and proofs. The only difference is that the

1 This particular point will be explained in more detail in Section 5.
2 On might argue that PML2 is not a full-fledged ML-like language as it does not have mutable references.

It is nonetheless effectful as it provides a control operator similar to Scheme’s call/cc.
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latter must be typed-checked against the consistent core of the system, which only accepts
programs that can be proved terminating. In the current implementation, programs must
also be proved terminating to be directly accepted by the type-checker. It would however
be possible to accept programs that do not pass the termination check, and we would then
need to make sure that such programs are not used to write proofs.3 Note however that the
system can already be used to reason about arbitrary programs, including untyped ones and
those whose termination cannot be established (an example will be given in Section 5.3).

1.1 Program verification principles
In PML2, program properties may be specified with types containing equations of the form
t ≡ u, where t and u are terms of the language itself. By quantifying over the free variables
of these terms, we can express properties such as the following.

// "add" is commutative .
∀n∈nat , ∀m∈nat , add n m ≡ add m n

// " reverse " is involutive .
∀a, ∀l∈list 〈 a 〉 , reverse ( reverse l) ≡ l

// "sort" produces sorted lists.
∀l∈list 〈 nat 〉 , sorted (sort l) ≡ true

// All natural numbers are equal to "Zero ".
∀n∈nat , n ≡ Zero.

// Sorted lists are not affected by "sort ".
∀l∈list 〈 nat 〉 , ( sorted l ≡ true) ⇒ (sort l ≡ l)

Of course, such a specification may be inaccurate, in which case it will not be provable. Note
that it is possible to observe complex behaviours using predicates such as sorted, which
correspond to boolean-valued functions.

The PML2 language relies on two main ingredients for proving that programs meet their
specifications. First, the type system of the language can be considered as a (classical) logic
through the Curry-Howard correspondence, although it is only consistent for terminating
programs. This (usual) part of the type system provides basic reasoning principles, which
are used to structure the proofs. The second ingredient is an automatic decision procedure
for the equational theory of the language. It is used to manage a context of equational
assumptions, and eventually prove equations in this context. The decision procedure is driven
by the type-checker, without any direct interaction with the user. As a consequence, the
user only has to care about the structure of the proof, and not about the details of where
equations should be applied. In fact, equality types of the form t ≡ u are computationally
irrelevant in the system. More precisely, t ≡ u is equivalent to the unit type when the
denoted equality holds (and can be proved), and it is empty otherwise. As a consequence,
a proof will generally consist of a (possibly recursive) program that calls other programs
and performs pattern matching but eventually just returns a completely uninteresting result.
Nonetheless, writing proofs in this way is a very similar experience to writing functional
programs. We can hence hope that our approach to program verification will feel particularly
intuitive to functional programmers.

3 For example, we could have two different function types: one used for functions whose termination
has been established, and another one that that may be used for any function (and that would be a
supertype of the former).
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1.2 Previous work on the language

PML2 is based on many ideas introduced by Christophe Raffalli in the PML language [27].
Although this first version of the system was very encouraging on the practical side, it
did not stand on solid theoretical grounds. On the contrary, PML2 is based on a call-by-
value, classical realizability model designed by the author [16]. This framework provides a
satisfactory way of combining call-by-value evaluation and effects with dependent function
types.4 The proposed solution relies on a relaxed form of value restriction (called semantical
value restriction), which takes advantage of our notion of program equivalence and its decision
procedure.5 In particular, it allows the application of a dependent function to a term which
is not a value, under the condition that it can be proved equivalent to some value. This
is especially important because dependent functions are an essential component of PML2.
Indeed, they enable a form of typed quantification without which many program properties
could not be expressed (see Section 3).

Another important specificity of PML2’s type system is that it relies on the notion of local
subtyping, which was introduced in joint work with Christophe Raffalli [19]. This framework
can be used to give a syntax-directed formulation of the typing and subtyping rules of the
system6, despite its Curry-style nature. In particular, it provides a very general notion of
infinite (circular) proof, that is used for handling inductive and coinductive types in subtyping
derivations, and recursion and termination checking in typing derivations. Of course, infinite
proofs are only valid if they are well-founded (this is ensured using the size-change principle
[15]). The combination of local subtyping [19] and the realizability model of the system has
been addressed in the author’s PhD thesis [17, Chapter 6].

Last but not least, the implementation of PML2 [18] was initiated as part of the author’s
thesis [17], and continues with the collaboration of Christophe Raffalli. The implemented
system is intended to remain very close to the theoretical type system, and every part of the
implementation is justified by the formal semantics of PML2 [17]. Note that all the examples
given in this paper are accepted by the version 2.0.2_types2017 of PML2, which can be
downloaded at the following URL.

https://github.com/rlepigre/pml/archive/pml_2.0.2_types2017.tar.gz

1.3 Disclaimer: the aim of this paper

This document is intended to be an introductory paper for the PML2 system. Its aim is
not to give the details of the realizability semantics, nor to prove new theoretical results,
but rather to list the principles and ideas on which PML2 is based. In particular, Section 6
contains an extensive description of several ideas that we would like to investigate in the near
future, and that will be necessary for achieving the goals of PML2 completely. For technical
details, the reader should refer to the author’s thesis [17], and related papers [16, 19].

4 Due to the soundness issues explained in previous work [16], the application of dependent functions is
usually restricted to value arguments. This is commonly called value restriction in the context of ML.

5 Intuitively, two terms are (observationally) equivalent if they have the same computational behaviour
(i.e., they both converge or they both diverge) in every possible evaluation context [16, 17].

6 This means that exactly one typing rule applies for every term constructor, and only one subtyping rule
applies for every pair of type constructors (up to commutation and circular proof construction).
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2 Functional programming in PML2

Our first goal in designing PML2 was to obtain a practical, functional programming language.
Out of the many possible technical choices, we decided to consider a call-by-value language
similar to OCaml or SML, as they have proved to be highly practical and efficient. Our
language provides polymorphic variants [8] and SML-style records, which are convenient for
encoding data types. As an example, the type of lists can be defined as follows,7 together
with the corresponding iter and append functions.

type rec list 〈 a 〉 = [Nil ; Cns of {hd : a ; tl : list }]

val rec iter : ∀a, (a ⇒ {}) ⇒ list 〈 a 〉 ⇒ {} =
fun f l {

case l {
Nil → {}
Cns[c] → f c.hd; iter f c.tl

}
}

val rec append : ∀a, list 〈 a 〉 ⇒ list 〈 a 〉 ⇒ list 〈 a 〉 =
fun l1 l2 {

case l1 {
Nil → l2
Cns[c] → Cns [{hd = c.hd ; tl = append c.tl l2}]

}
}

Note that the iter and append functions are polymorphic, which means, for instance, that
they can be applied to lists with elements of an arbitrary type. In our syntax, this is explicitly
materialised using universally quantified type variables. Note also that the iter function
relies on the type {}, which contains records with no fields. It plays the same role as OCaml’s
unit type, and its unique inhabitant is denoted {} as well.

I Remark. As in System F [9, 28], polymorphism can be used anywhere in types, and it is
not limited to let-polymorphism (or prenex polymorphism) as in most ML-like languages.

2.1 Control operator and classical logic

The programming languages of the ML family generally include effectful operations such as
references (i.e., mutable variables). Our system is no exception since it provides a control
operator similar to call/cc.8 On the programming side, it may be used to encode a form of
exception mechanism. For instance, we can define the following exists function, which tests
whether there is an element satisfying a given predicate in a given list, and stops as soon as
possible if such an element is found.

7 Note that list is used without its type parameter in the type of the Cns constructor. This is due to the
fact that the “type rec” syntax is desugared to an inductive type (or least fixed point), and list〈a〉 is
actually defined as “µ list, [Nil; Cns of {hd : a; tl : list}]”. In particular, the current version
of PML2 does not support polymorphically recursive types.

8 This instruction can be used to capture the current continuation (or evaluation context), so that it can
be restored later. It was first introduced in the Scheme language.
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val exists : ∀a, (a ⇒ bool) ⇒ list 〈 a 〉 ⇒ bool =
fun pred l {

save k {
iter (fun e { if pred e { restore k true } }) l;
false

}
}

Here, the continuation is saved in a variable k before calling the iter function, and it is
restored with the value true if an element satisfying the predicate is found. In this case,
the evaluation of iter is simply aborted. To obtain a similar behaviour without using a
continuation would require the user to write an independent recursive function (i.e., one that
does not rely on iter). A more interesting example that cannot be written without a control
operator will be given in Section 4.

As is now well-known, control operators such as ours can be used to give a computational
content to classical theorems, thus extending the Curry-Howard correspondence to classical
logic [10]. It is hence possible to define programs with a type corresponding to Peirce’s law,
or to the law of the excluded middle.

val peirce : ∀a b, ((a ⇒ b) ⇒ a) ⇒ a =
fun x {

save k {
x (fun y { restore k y })

}
}

// Disjoint sum ( logical disjunction ) and ( logical ) negation
type either 〈a,b 〉 = [InL of a ; InR of b]
type neg 〈 a 〉 = a ⇒ ∀x,x

val excl_mid : ∀a, {} ⇒ either 〈a, neg 〈 a 〉 〉 =
fun _ {

save k {
InR[fun x { restore k InL[x] }]

}
}

Note that the definition of excl_mid requires a dummy function constructor due to the
call-by-value evaluation strategy. Indeed, excl_mid would not be a value if it did not start
with an abstraction, and it would thus save its continuation right away, unlike peirce
which must first be given an argument to trigger the computation. This is related to value
restriction [35, 34], which is required in presence of control operators [11].9

From a computational point of view, manipulating continuations using control operators
can be understood as “cheating”. For example excl_mid (or rather, excl_mid {}) saves the
continuation and immediately returns a (possibly false) proof of neg〈a〉. Now, if this proof is
ever applied to a proof of a (which would result in absurdity), the program backtracks and
returns the given proof of a. This interpretation has been well-known for a long time, and
an account is given in the work of Wadler [33, Section 4], for example.

9 Value restriction is a sufficient (but not necessary) condition for correctness.

TYPES 2017
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2.2 Non-coercive subtyping
In PML2, subtyping plays a very important role as it allows us to give a mostly syntax-directed
presentation of the system [19, 17]. Although it is less widespread than polymorphism in
mainstream languages, subtyping can be exploited to improve code modularity. Note that
we here consider a non-coercive form of subtyping, which means that if a is a subtype of b,
then any value of type a is also a value of type b (i.e., no coercion is required).

In the system, there are many forms of subtyping that may interact. In particular,
subtyping is used to handle all the connectives that do not have algorithmic contents (i.e., no
counterpart in the syntax of terms). Such connectives include quantifiers as well as inductive
types, but also the equality types of PML2. Subtyping also plays an important role with
variants and records. For instance, it implies that a record can always have more fields than
required. Moreover, subtyping enables many commutations of connectives.

As a first example, we can show that the type corresponding to the (classical) double
negation elimination principle can in fact be seen as an instance of Peirce’s law. Indeed, it
can be defined as follows in PML2.

val dneg_elim : ∀a, neg 〈 neg 〈 a 〉 〉 ⇒ a =
peirce

It is relatively easy to see that the type of peirce is indeed a subtype of that of dneg_elim.
The corresponding subtyping derivation is sketched below.10

a0 ⇒ ∀x,x ⊆ a0 ⇒ ∀x,x
a0 ⊆ a0
∀x,x ⊆ a0

(a0 ⇒ ∀x,x) ⇒ ∀x,x ⊆ (a0 ⇒ ∀x,x) ⇒ a0 a0 ⊆ a0
((a0 ⇒ ∀x,x) ⇒ a0) ⇒ a0 ⊆ ((a0 ⇒ ∀x,x) ⇒ ∀x,x) ⇒ a0
∀b, ((a0 ⇒ b) ⇒ a0) ⇒ a0 ⊆ ((a0 ⇒ ∀x,x) ⇒ ∀x,x) ⇒ a0
∀a, ∀b, ((a ⇒ b) ⇒ a) ⇒ a ⊆ ((a0 ⇒ ∀x,x) ⇒ ∀x,x) ⇒ a0
∀a, ∀b, ((a ⇒ b) ⇒ a) ⇒ a ⊆ ∀a, ((a ⇒ ∀x,x) ⇒ ∀x,x) ⇒ a

Intuitively, universal quantification on the right of the inclusion can be eliminated by
introducing a fresh constant. On the left, variables that are quantified over can be replaced
by anything. As usual, the subtyping rule for handling the arrow type reverses the inclusion
between the domains due to the contra-variance of the arrow type.

We will now consider the extension of the type of lists with an additional constructor
allowing constant time concatenation. In PML2, the corresponding type of “append lists”
can be defined in such a way that it admits the type of regular lists as a subtype.

type rec alist 〈 a 〉 =
[Nil ; Cns of {hd : a; tl : alist} ; App of alist × alist]

// Constant time " append " function .
val alist_append : ∀a, alist 〈 a 〉 ⇒ alist 〈 a 〉 ⇒ alist 〈 a 〉 =

fun l1 l2 { App [(l1 ,l2)] }

Although regular lists are a special case of “append lists”, the converse is not true. To
transform an “append list” into a list, it is necessary to define the following recursive,
flattening function.

10The proof does not contain all the necessary information to ensure its validity. The reader should refer
to the author’s thesis [17, Figure 6.5] to fill in the missing details.
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val rec alist_to_list : ∀a, alist 〈 a 〉 ⇒ list 〈 a 〉 =
fun l {

case l {
Nil → Nil
Cns[c] → Cns [{hd = c.hd ; tl = alist_to_list c.tl}]
App[c] → append ( alist_to_list c.1) ( alist_to_list c.2)

}
}

Another example of extension for a pre-existing type can be obtained by defining the
type of red-black trees as a subtype of binary trees. More precisely, a red-black tree can
be represented as a tree whose nodes have an extra color field. Of course, the presence of
additional information in the form of a new record field does not prevent the use of tree
functions such as binary search.

2.3 Toward the encoding of a module system
Despite its many different features, PML2 remains a fairly small system, which can be
implemented rather concisely. Its design is based on the principle that every feature should
be orthogonal. For instance, there is only one notion of product type in PML2: records.
This is not the case in OCaml, for instance, which provides tuples, records, objects, modules,
which all have common product type characteristics.

In PML2, modules can be easily encoded using a combination of records for storing the
values, functions for building functors, and existentials for type abstraction. However, the
implementation does not yet provide a specific syntax for modules. For instance, there is still
no way of “opening” a module so that its values are accessible in the scope. It is nonetheless
possible to work with the target of the encoding directly. For example, we can define a
type corresponding to the signature (or interface) of a simple module providing an abstract
representation for the stack data structure with the corresponding operations.11

type stack_sig = ∃stack: o → o,
{ empty : ∀a, stack 〈 a 〉 ;

push : ∀a, a ⇒ stack 〈 a 〉 ⇒ stack 〈 a 〉 ;
pop : ∀a, stack 〈 a 〉 ⇒ [None ; Some of a × stack 〈 a 〉 ] }

An implementation of this interface can then be defined by giving a corresponding record
value. For example, we can implement stacks with lists as follows.

val stack_impl : stack_sig =
{ empty = (Nil : ∀a, list 〈 a 〉 );

push = fun e s { Cns [{hd = e; tl = s}] };
pop = fun s {

case s {
Nil → None
Cns[c] → Some [(c.hd , c.tl)]

}
} }

11Here, o→ o corresponds to the sort of types with one type parameter. In particular, o is the sort of
types (or propositions), and we will later encounter the sort of program values ι.

TYPES 2017
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Note that we need to give at least some type annotation for the system to know what to
instantiate the existential with. This could be done in a more systematic way with a syntax
requiring the user to give the intended definition for the stack type.
I Remark. It is possible to define a dot-projection operation in order to access abstract types,
so that it is possible to write stack_impl.stack to refer to the type of stacks. More details
are given in previous work [19], and in the corresponding implementation.

3 Verification of ML programs

PML2 is not only a programming language, but also a proof assistant focusing on program
verification. Its proof mechanism relies on equality types of the form t ≡ u, where t and
u are arbitrary (possibly untyped) terms of the language itself. Such an equality type is
inhabited by the term {}12 if the denoted equivalence is true, and it is empty otherwise.
Equivalences are managed using a partial decision procedure that is driven by the construction
of programs. An equational context is maintained by the type checker to keep track of the
equational assumptions during the construction of proofs. This context is extended when new
equations are learnt (e.g., when a lemma is applied), and an equation is proved by deriving a
contradiction (e.g., two different variants that are equated) from its negation.

Terms not only appear in (equality) types, but also play the role of objects in the
underlying logic. In particular, they can be quantified over in types, and thus form one
particular domain of discourse. In fact, our system is based on a higher-order logic with
several atomic sorts (including types and terms), which means that many different kinds
of objects can be quantified over (universally and existentially) in our types. We can for
example quantify over types with one type parameter (of sort o→ o), as in the signature
used for the stack module given in the previous section.

3.1 (Un)typed quantification and unary natural numbers
To illustrate the proof mechanism, we will consider very simple examples of proofs on unary
natural numbers. Their type is given below, together with the corresponding addition
function defined using recursion on its first argument.

type rec nat = [Zero ; S of nat]

val rec add : nat ⇒ nat ⇒ nat =
fun n m {

case n {
Zero → m
S[k] → S[add k m]

}
}

As a first example, we will show that for all n we have add Zero n ≡ n. This property is
expressed using the type ∀n:ι, add Zero n ≡ n, and it is proved as follows.13

val add_Zero_n : ∀n: ι , add Zero n ≡ n =
{} // immediate

12Recall that it denotes a record with no fields, or the unique inhabitant of a one-element type.
13Here, the domain of the quantification is the set of values of the language, whose sort is ι. It is not

limited to natural numbers, and also encompasses booleans and functions for example.
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The proof is immediate (i.e., only {}) as we have add Zero n ≡ n by definition of add.
Note that this equivalence holds for every value n, whether it corresponds to an element of
the type nat or not. For instance, it can be used to show add Zero true ≡ true since the
term add Zero true evaluates to true.
I Remark. Here, it is crucial that n ranges only over values of the language, as otherwise
the definition of add could not be unfolded. Indeed, since we are in call-by-value, it is only
possible to effectively apply a function when its arguments are all values.

Let us now show that for every n we have add n Zero ≡ n. Although this property
looks similar to add_Zero_n, the following proof is invalid.
// val add_n_Zero : ∀n: ι , add n Zero ≡ n =
// {} // invalid

Indeed, the equivalence add n Zero ≡ n does not hold when n is not a unary natural number.
In this case, the computation of add n Zero produces a runtime error while that of n does
not. As a consequence, we need to rely on a form of quantification that only ranges over unary
natural numbers. This can be achieved with the type ∀n∈nat, add n Zero ≡ n, which
corresponds to a (dependent) function taking as input a natural number n and returning a
proof of add n Zero ≡ n. This property can then be proved using induction (i.e., using a
recursive function) and case analysis (i.e., pattern matching) with the following program.
val rec add_n_Zero : ∀n∈nat , add n Zero ≡ n =

fun n {
case n {

Zero → {}
S[k] → add_n_Zero k

}
}

If n is Zero, then we need to show add Zero Zero ≡ Zero, which is immediate by definition
of add. In the case where n is S[k] we need to show add S[k] Zero ≡ S[k]. By definition
of add, this reduces to S[add k Zero] ≡ S[k]. We can then use the induction hypothesis
add_n_Zero k to learn add k Zero ≡ k and conclude the proof.
I Remark. The dependent product type (or typed quantification) constructor is not primitive
in PML2. It is encoded using a membership type of the form t∈a which contains all the
elements of type a that are equivalent to the term t (it can be seen as a form of singleton
type). The dependent function type ∀x∈a, b is then encoded as ∀x:ι, x∈a ⇒ b, which
corresponds to the relativised quantification scheme (see previous work [16, 17]).

It is important to note that, in our system, a program that is considered as a proof needs
to go through a termination checker. Indeed, a looping program could be used to prove
anything otherwise.14 For example, the following proof is rejected.
// val rec add_n_Zero_loop : ∀n∈nat , add n Zero ≡ n =
// fun n {
// add_n_Zero_loop n
// }

It is however easy to see that add_Zero_n and add_n_Zero are terminating, and hence valid.
In the following, we will only consider programs that can be automatically proved terminating
by the system.

14More details will be given in Section 5.

TYPES 2017
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3.2 Building up an equational context
There are two main ways of learning new equations in the system. On the one hand, when
a term t is matched in a case analysis, a given branch can only be reached when the
corresponding pattern C[x] matches. In this case we can extend the equational context with
t ≡ C[x]. On the other hand, it is possible to invoke a lemma by calling the corresponding
function. In particular, this must be done to use the induction hypothesis in proofs by
induction like in add_Zero_n or the following lemma.

val rec add_n_S_m : ∀n m∈nat , add n S[m] ≡ S[add n m] =
fun n m {

case n {
Zero → {}
S[k] → add_n_S_m k m

}
}

In this case, the equation corresponding to the conclusion of the used lemma is directly
added to the context. Of course, more complex results can be obtained by combining more
lemmas. For example, the following proves the commutativity of addition using a proof by
induction with add_n_Zero and add_n_S_m.

val rec add_comm : ∀n m∈nat , add n m ≡ add m n =
fun n m {

case n {
Zero → add_n_Zero m
S[k] → add_comm k m; add_n_S_m m k

}
}

I Remark. Note that terms can be put in sequence with a semicolon. In the above proof,
the recursive call add_comm k m is performed first, before calling add_n_S_m m k. They are
also type-checked in that order, and the corresponding equations are added to the context
one after the other as a side-effect to type-checking. Here, the order in which equations are
added is not significant (the resulting equational context is the same either way), but that is
not always the case (lemmas may require some equations to hold to be applied).

3.3 Detailed proofs using type annotations
Although the above proof of commutativity is perfectly valid, it might not be easy enough to
read by a human. This problem arises in most proof assistants. For instance, it is almost
impossible to understand a Coq [23] proof without replaying it step by step in a compatible
editor. In PML2, it is possible to annotate proofs to highlight the corresponding thought
process. For example, we can reformulate add_comm as follows.

val rec add_comm : ∀n m∈nat , add n m ≡ add m n =
fun n m {

case n {
Zero → show add Zero m ≡ add m Zero using add_n_Zero m; qed
S[k] → show add k m ≡ add m k using add_comm k m;

deduce add S[k] m ≡ S[add m k];
show add S[k] m ≡ add m S[k] using add_n_S_m m k; qed

}
}
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Note that no addition to the system is required for such annotations to be supported, it is
only syntactic sugar. For instance, qed is a synonym of {}, and show u1 ≡ u2 using p is
translated to p : u1 ≡ u2, which amounts to a type coercion.
I Remark. Many examples of proofs and programs are provided with the implementation
of the system. Each of the examples given here has been automatically checked upon the
generation of the document, they are hence correct with respect to the implementation.

3.4 Mixing proofs and programs
We will now see that the programming and the proving features of PML2 can be mixed when
constructing proofs or programs. In fact, there is no obvious distinction between the world of
the usual programs, and the world of proofs (remember that proofs are programs in PML2).
For instance, it is possible to combine proofs with programs for them to transport properties
(e.g., addition carrying its own commutativity). This can be achieved using restriction types,
which are in fact used to encode equality types. In PML2, the type a | t ≡ u is equivalent
to a if t ≡ u is true, and to the empty type otherwise. The type t ≡ u is thus encoded
as {} | t ≡ u, where {} is the unit type. Intuitively, the restriction type can be seen as a
form of conjunction with no algorithmic contents.

When combined with existential quantification and the membership type, restriction
can be used to encode a set type syntax similar to that of NuPrl [6]. Indeed, we can define
{x ∈ a | t ≡ u}, which contains all the elements of type a such that t ≡ u holds, as
∃x:ι, x∈(a | t ≡ u). This provides a very useful scheme for defining the set of terms of
a that satisfy some property. For example, we can encode the type of vectors (i.e., lists of a
given length) by taking every list l that has size s. The type of vectors will hence have two
parameters: the type of the contained elements and a term giving the size of vectors.

val rec length : ∀a:o, list 〈 a 〉 ⇒ nat =
fun l {

case l {
Nil → Zero
Cns[c] → S[ length c.tl]

}
}

type vec 〈 a:o, s:τ 〉 = {l ∈ list 〈 a 〉 | length l ≡ s}

I Remark. In the definition of vec, the second parameter must have sort τ (the sort of terms)
and not ι (the sort of values). Indeed, it is often required to work with vectors whose sizes
are of the form add n m (see the definition of the app function below).
I Remark. There is no constraint on the type of s in the definition of vec. This means that
it is possible to consider the type of vectors of size true for example, but it will be empty
since the length function only returns natural numbers. One of the main advantages of this
approach is that it is compatible with subtyping.

Let us stress that vectors can always be used as lists, independently of their size. The
type of vectors is a subtype of the type of lists, as shown by the following function.

val vec_to_list : ∀a:o, ∀s:τ , vec 〈a,s 〉 ⇒ list 〈 a 〉 =
fun x { x }

Note that we will never need to use the function vec_to_list to turn a vector into a list. A
vector can be seen as a list directly, without relying on any form of coercion.
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We will now define a concatenation function app on vectors. It produces a vector whose
length is the sum of the lengths of its two arguments. Note that we are first required to
define the length_total function for a technical reason that will be explained in Section 5.15

val rec length_total : ∀a:o, ∀l∈list 〈 a 〉 , ∃v: ι , v ≡ length l =
fun l {

case l {
Nil → {}
Cns[c] → length_total c.tl

}
}

val rec app : ∀a:o, ∀m n: ι , vec 〈a, m 〉 ⇒ vec 〈a, n 〉 ⇒ vec 〈a, add m n 〉 =
fun l1 l2 {

case l1 {
Nil → l2
Cns[c] → length_total c.tl; Cns [{hd = c.hd; tl = app c.tl l2}]

}
}

Thanks to the Curry-style nature of our system, the sizes of the argument vectors do not
need to be provided as arguments. This may be surprising for readers that are used to
manipulating equivalent types in Agda or Coq, for example.
I Remark. In PML2, the proof mechanism can also be used to eliminate unreachable code.
Indeed, if an equational contradiction is triggered only by learning equations along the way,
then the code in that branch cannot be accessed during evaluation. In this case, a special
value Q (to be pronounced “scissors”) can be used. Note that reachability information would
be particularly useful to efficiently compile PML2 programs down to assembly code.

4 Programs extracted from classical proofs

We will now consider an example of a program that can only be written in a classical
setting (i.e., with control operators). We are going to define a function on streams of natural
numbers called extract, that extracts a substream of odd numbers or a substream of even
numbers from its input. This will prove that such a substream exists for all steams of natural
numbers.16 First, we need to define odd and even numbers using our set type syntax.

val rec is_odd : nat ⇒ bool =
fun n {

case n {
Zero → false
S[m] →

case m {
Zero → true
S[p] → is_odd p

}
}

}

15We have good hopes of simplifying this particular point in future work, for example by automatically
obtaining length_total from the definition of length as they have a similar structure.

16 Intuitively, we will have shown that every stream of natural numbers contains either infinitely many
odd numbers or infinitely many even numbers (and possibly both).
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type odd = {v∈nat | is_odd v ≡ true }
type even = {v∈nat | is_odd v ≡ false}

As for the length function of the previous section, we will need to show that the is_odd
function is total for a technical reason (see Section 5 for more details). Intuitively, this will
allow us to reason by cases on the oddness (or evenness) of a given number of the input
stream. Indeed, the totality of is_odd implies that this function always produces a result
value, and hence that we can pattern match on its result.

val rec odd_total : ∀n∈nat , ∃v: ι , is_odd n ≡ v =
fun n {

case n {
Zero → {}
S[m] →

case m {
Zero → {}
S[p] → odd_total p

}
}

}

We also need to define the type of streams, together with a related type corresponding
to streams with an explicit size annotation (or ordinal) s. Intuitively, this size annotation
indicates the number of elements that are available in the stream (see Section 5 for more
details on sized-types).

type corec stream 〈 a 〉 = {} ⇒ {hd : a; tl : stream }
type sized_stream 〈s,a 〉 = ν _s stream , {} ⇒ {hd : a; tl : stream }

We can now define the extract_aux function, that will be used to define extract
on the next page. Note that it relies on abort, which logically amounts to the ex falso
quodlibet principle. Size annotations are also required on the type of extract_aux, for our
type-checking algorithm to prove its termination.

val abort : ∀y, (∀x,x) ⇒ y = fun x { x }

val rec extract_aux : ∀a b,
neg 〈 sized_stream 〈a,even 〉 〉 ⇒
neg 〈 sized_stream 〈b,odd 〉 〉 ⇒ neg 〈 stream 〈 nat 〉 〉 =

fun fe fo s {
let {hd ; tl} = s {};
use odd_total hd;
if is_odd hd {

fo (fun _ {
{hd = hd; tl = save oc {

abort ( extract_aux fe (fun x { restore oc x }) tl )}}
})

} else {
fe (fun _ {

{hd = hd; tl = save ec {
abort ( extract_aux (fun x { restore ec x }) fo tl )}}

})
}

}
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Intuitively, the extract_aux function looks at the head of its third argument (a stream of
natural numbers), and depending on whether this number is odd or even, the function calls
one of its first two arguments. They can be understood as partially constructed stream of
even or odd numbers, in the form of continuations.17 The read number is then added to this
stream, and a recursive call is made to continue the construction.

I Remark. It may seem surprising that our prototype implementation is able to establish
the termination of extract_aux as an element is added to one of two streams at each call.
Moreover, this example does not satisfy the usually required semi-continuity condition [1].
It is here accepted because our termination test depends more finely on the structure of
programs than previous approaches [19].

The extract function can then be defined as follows, to complete the construction. The
function starts by saving two continuations, corresponding to the constructors InL and InR
of the return type, and then calls extract_aux on the input stream.

val extract : stream 〈 nat 〉 ⇒ either 〈 stream 〈 even 〉 , stream 〈 odd 〉 〉 =
fun s {

save a {
InL[save ec { restore a InR[save oc {

abort ( extract_aux (fun x { restore ec x})
(fun x { restore oc x }) s)

} ] } ]
}

}

The very fact that we can write extract proves that it is possible to extract a stream of odd
numbers or a stream of even numbers from any stream of natural numbers.

Of course, it is only possible to observe a finite prefix of a stream using a terminating
program. As a consequence, we may want to consider a finite version of extract, whose
result is a vector of a given size n instead of a stream.

val rec prefix : ∀a, ∀n∈nat , stream 〈 a 〉 ⇒ vec 〈a,n 〉 =
fun n s {

case n {
Zero → Nil
S[k] → let {hd ; tl} = s {};

Cns [{hd ; tl = prefix k tl}]
}

}

val finite_extract : ∀n∈nat ,
stream 〈 nat 〉 ⇒ either 〈 vec 〈 even ,n 〉 , vec 〈 odd ,n 〉 〉 =

fun n s {
case extract s {

InL[s] → InL[ prefix n s]
InR[s] → InR[ prefix n s]

}
}

17Logical negation is intuitively used to type continuations represented in the form of a function. A
continuation of type neg〈a〉 can thus be called with a value of type a in any context since it yields a
logical contradiction (or an element of type ∀x,x).
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I Remark. It is possible to give an equivalent definition of finite_extract in an intuitionistic
setting (i.e., without using a control operator). Indeed, at most 2 × n elements of the input
stream need to be considered to construct the result.
I Remark. Of course, the type of extract or finite_extract does not directly imply that
the result of these functions is a substream of their input. It is nonetheless easy to convince
oneself that this is indeed the case, and we could certainly prove it in PML2 with some effort.

To conclude this section, we will consider the result returned by extract (or rather
finite_extract) on two particular streams. The former will be the stream of all natural
numbers, which can be defined as follows, and is called naturals.

val rec naturals_from : nat ⇒ stream 〈 nat 〉 =
fun n _ {

{hd = n; tl = naturals_from S[n]}
}

val naturals : stream 〈 nat 〉 = naturals_from Zero

The latter will be a stream of ones, prefixed by three zeroes. It can be defined as follows,
and is called three_zeroes_then_ones.

val rec ones : stream 〈 nat 〉 =
fun _ { {hd = S[Zero ]; tl = ones} }

val three_zeroes_then_ones : stream 〈 nat 〉 =
fun _ { {hd = Zero; tl =

fun _ { {hd = Zero; tl =
fun _ { {hd = Zero; tl = ones} }} }} }

The results of finite_extract on naturals and three_zeroes_then_ones may be dis-
played using the following printing functions.

val rec print_nat : nat ⇒ {} =
fun n {

case n {
Zero → print "0"
S[k] → print "S"; print_nat k

}
}

val rec print_list : ∀a, (a ⇒ {}) ⇒ list 〈 a 〉 ⇒ {} =
fun pelt l {

case l {
Nil → print "\n"
Cns [{hd;tl}] → pelt hd; print " "; print_list pelt tl

}
}

val print_res : either 〈 list 〈 nat 〉 , list 〈 nat 〉 〉 ⇒ {} =
fun e {

case e {
InL[l] → print " InL "; print_list print_nat l
InR[l] → print " InR "; print_list print_nat l

}
}
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I Remark. Although the above is boiler-plate code, it is provided so that the examples in this
document are completely self-contained, and can be type-checked and evaluated by PML2
without any modification.
We have now all the components that are required to run some tests, and to display prefixes
of the streams produced by the extract function. We will display, for each example, prefixes
of increasing size. We will thus rely on the following test function, taking as input a stream
of natural numbers, and showing the result of applying the finite_extract function on this
stream with various prefix lengths (from zero to four).

val test : stream 〈 nat 〉 ⇒ {} =
fun s {

print_res ( finite_extract Zero s);
print_res ( finite_extract S[Zero] s);
print_res ( finite_extract S[S[Zero ]] s);
print_res ( finite_extract S[S[S[Zero ]]] s);
print_res ( finite_extract S[S[S[S[Zero ]]]] s)

}

Let us first consider the output that is produced by applying the above test function to
three_zeroes_then_ones, which contains three zeroes followed by infinitely many ones.

InL
InL 0
InL 0 0
InR S0 S0 S0
InR S0 S0 S0 S0

As one should expect, the computation of the smallest prefixes yields a list of even numbers.
However, if more elements of the input stream are read, the extract function eventually
backtracks and produces a list of odd numbers instead. Indeed, the input stream only
contains three even numbers.

Note that one could expect the fourth line of the output to show a list of even numbers
with three zeroes. The produced result is due to the definition of extract, which looks
ahead one element further than strictly necessary in the input stream. It would be possible
to avoid doing so, but the function would be even more complex than it already is. Note
that this also has consequences on the result obtained by running test on naturals.

InL
InL 0
InL 0 SS0
InL 0 SS0 SSSS0
InL 0 SS0 SSSS0 SSSSSS0

Here, one would expect the prefixes to alternate between lists of even numbers, and lists
of odd numbers. Indeed, the stream of all the natural numbers both contain an infinite
sub-stream of even numbers, and an infinite sub-stream of odd numbers.

5 Termination and internal totality proofs

We will now look more deeply into the relation between proofs and termination checking
in PML2. Technically, the termination of PML2 programs (and thus of PML2 proofs) is
established using circular proof techniques introduced in joint work with Christophe Raffalli
[19] and adapted in the author’s thesis [17]. The idea is to type recursive programs, or more
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precisely the fixed-point combinator used by PML2, using a simple unfolding rule. In other
words, instances of the fixed-point construction of the language are typed assuming that
they can be typed, thus leading to a circular structure. Of course, proofs constructed in this
way may be invalid (i.e., not well-founded). To rule out such invalid proofs, a test based
on the size-change principle [15] is used. When it is able to show that the structure of a
proof is indeed well-founded, termination then follows from a standard semantic proof by
realizability.18

5.1 Termination and consistency
As mentioned in the introduction, practical functional programming languages like OCaml
or Haskell cannot be used to prove mathematical formulas, since their type system is not
consistent when seen as a logic. More precisely, the “empty type” is inhabited by a simple
looping program in these systems. Any formula can thus be proved through the ex falso
quodlibet principle, as demonstrated by the following piece of Haskell code.19

type Empty = forall a. a

bad :: Empty
bad = bad

ex_falso :: Empty → a
ex_falso e = e

A similar example can also be given in OCaml, but a slightly more complex definition is
required for bad.20 This is due to the call-by-value evaluation strategy of the language, which
restricts the use of the let rec construct to the definition of functions.

type empty = { any : ’a.’a }

let bad : empty =
let rec bad_aux : unit → empty = fun () → bad_aux () in
bad_aux ()

let ex_falso : type a. empty → a =
fun e → e.any

Of course, a similar example can be written in PML2. This is why the current implementation
requires every program (not only proofs) to pass the termination check.

As PML2 can be used to prove program equivalences, the inconsistency that would be
introduced by possible non-termination would allow proving any program equivalence by
inhabiting the corresponding type. Moreover, a non-terminating program would allow invalid
program equivalences to be added to the equational context. The following invalid program
(first given in Section 3) gives an example of such a scenario.

// val rec add_n_Zero_loop : ∀n∈nat , add n Zero ≡ n =
// fun n {
// add_n_Zero_loop n
// }

18 In this case, adequacy can still be proved by well-founded induction on the structure of the typing proof.
19Note that the Rank2Types (or RankNTypes) extension is required for the definition of Empty.
20Note that empty is encoded using a polymorphic record field.
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Here, the recursive call add_n_Zero_loop n brings into the equational context the equivalence
add n Zero ≡ n, which exactly corresponds to the goal of the proof.

I Remark. The example add_n_Zero_loop must be rejected because the underlying program
(and hence proof structure) is non terminating (and hence not well-founded). The management
of equivalences being correct by construction, incorrect equations can only be proved in a
contradictory equational context. In the example, a faulty equation is learned when the
non-well-founded recursive call is made.

5.2 Sized types
The termination checking technology used by PML2 is based on a notion of size that is
attached to typing judgments. In fact, inductive and coinductive types are annotated using
an ordinal size indicating the number of times their definition can be unfolded (this is usual
in the context of sized types [1, 13, 30, 19]). Inductive or coinductive types, such as lists or
streams, can then be seen as sized types annotated by a large enough (limit) ordinal.21

In practice, the implementation of PML2 introduces sizes automatically when typing
recursive functions. This means that it replaces (some) inductive and coinductive types,
which carry a limit ordinal, with universal quantification over all possible ordinals. Note that
it is only possible to do so when the obtained type is more general that the one that was
given by the user. To enforce this invariant, we only introduce quantification on inductive
types in negative position, and on coinductive types in positive position. In practice, this
heuristic works well on simple functions, but the user is sometimes required to annotate the
functions with explicit quantifications for termination to be established. Moreover, manual
annotation may lead to more precise types, leading to more examples passing the termination
check. For example, the following map function is accepted by the implementation.

val rec map : ∀a b, (a ⇒ b) ⇒ list 〈 a 〉 ⇒ list 〈 b 〉 =
fun fn l {

case l {
Nil → Nil
Cns[c] → Cns [{hd = fn c.hd; tl = map fn c.tl}]

}
}

However, if the user writes a complex recursive function containing a recursive call through
the map function, it will not be possible to establish its termination (despite the fact that
map does not change the size of the list it is applied to). To solve this problem, the user may
rather use a more precise sized type, which is a subtype of the former type.

type slist 〈 s:κ, a:o 〉 = µ_s slist , [Nil ; Cns of {hd : a; tl : slist }]

val rec map : ∀s, ∀a b, (a ⇒ b) ⇒ slist 〈s,a 〉 ⇒ slist 〈s,b 〉 =
fun fn l {

case l {
Nil → Nil
Cns[c] → Cns [{hd = fn c.hd; tl = map fn c.tl}]

}
}

21 In practice, ω is sufficient for most of the usual data types, but this is not true in general. Nonetheless,
there exists an ordinal that is large enough for all the inductive and coinductive types to converge [19].
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I Remark. The type slist〈s,a〉 should not be confused with the type of vectors vec〈a,s〉
defined in Section 3.4. Although they are both subtypes of regular lists, the former carries an
ordinal s (of sort κ) that can be used by the termination checker to establish size relations,
while the latter contains a term (of sort τ) corresponding to the size of the list (as computed
by the length function) which cannot be used by the termination checker. Note however
that these two types could be easily combined.

I Remark. The above type of map only enforces that the output list is at most as long as
the input list. For instance, we could give the same type to a function taking the same two
arguments and always returning an empty list.

A similar scheme can be applied to insertion sort for example, but not for quick sort, as
discussed in previous work [19]. Indeed, a richer language of ordinals would be required to
express the fact that the partition function preserves the number of elements of its input.22

5.3 Proof by equivalence to a terminating function

Although the current implementation of PML2 checks the termination of all programs (not
only proofs), it is possible to use the specific features of the system to write termination
proofs. Indeed, the equivalence relation on which the system relies can be used to substitute
one term with another, provided that they are equivalent. This means that if we want to
establish the termination of a program that does not pass the termination check directly,
then we can instead establish the termination of any equivalent program. We will here
consider the example of the well-known McCarthy 91 function, whose termination cannot be
established by most of the existing termination criteria (if not all).

include lib.nat
include lib. nat_proofs

def mccarthy91_hard =
fix fun mccarthy91 n {

if gt n u100 {
minus n u10

} else {
mccarthy91 ( mccarthy91 (add n u11 ))

}
}

// val mccarthy91 : nat ⇒ nat =
// mccarthy91_hard

Note that here, the value mccarthy91_hard is not defined as a usual, type checked and
termination checked value, but as a value object (using the def keyword). This means that
this function can be manipulated as an object of the logic, but not evaluated directly. Note
also that we rely on some functions (and constants) defined in the standard library of PML2.
The minus function computes the difference, and the gt function tests whether its first
argument is strictly greater than its second argument.

Although PML2 is not able to prove the termination of the commented version of
mccarthy91, we can give the following alternative (but equivalent) definition.

22 It is nonetheless possible to show that quick sort is size-preserving using a PML2 proof.
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val mccarthy91_easy : nat ⇒ nat =
fun n {

if gt n u100 {
minus n u10

} else {
u91

}
}

This second definition passes our termination check (it is not even recursive), but it does
not really correspond to the traditional definition of the McCarthy 91 function, which is a
shame. We can nonetheless write a PML2 proof showing that these definitions are (pointwise)
equivalent, which will then allow us to replace one with the other. To do so, we first need to
show that mccarthy91_hard n has value u91 for all numbers that are not greater than u100.

val hard_aux : ∀n∈nat , gt n u100 ≡ false ⇒ mccarthy91_hard n ≡ u91 =
fun n eq {

{- ... -} // Can be done by enumerating the domain .
}

We do not give the full proof for lack of space, but it can be easily completed since the domain
of quantification is finite. One simply needs to explore the domain by pattern matching on
n, obtaining a trivial proof for all numbers less or equal to u100. In the case of numbers
greater that u100, the presence of an additional successor produces a contradiction with the
hypothesis gt n u100 ≡ false which allows the enumeration to remain finite.
I Remark. This brute-force approach, although it could be easily automated, yields a proof
that it rather inefficient. A better solution would be to write a proof by “induction”, which
is what one would do on paper.

Using the hard_aux lemma, we can then show that the two implementations of the
McCarthy 91 function produce the same result on every natural number as follows.

val hard_is_easy : ∀n∈nat , mccarthy91_easy n ≡ mccarthy91_hard n =
fun n {

use gt_total n u100;
if gt n u100 {

deduce mccarthy91_easy n ≡ minus n u10;
deduce mccarthy91_hard n ≡ minus n u10;
qed

} else {
deduce mccarthy91_easy n ≡ u91;
show mccarthy91_hard n ≡ u91 using hard_aux n {};
qed

}
}

The proof is straightforward23 since the two implementations have the same structure, and
they share the same “then” branch. In the case of the “else” branch, hard_aux can be used
to conclude. We can then type check and prove the termination of the original version of the
McCarthy 91 function as follows.

23None of the deduce annotations are necessary, they are only provided for clarity. The gt_total lemma
is defined in the standard library, more detail about its purpose will be given in the next section.
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val mccarthy91 : nat ⇒ nat =
fun n {

check mccarthy91_easy n // Term used for type - checking .
for mccarthy91_hard n // Actual term used in the definition .
because hard_is_easy n // Proof that they are equal.

// The above really is " mccarthy91_hard n" (up to erasure ).
}

The annotation used in the definition of mccarthy91 instructs the type-checker to sub-
stitute mccarthy_hard n with mccarthy_easy n in the construction of the typing proof.
This is only possible because these two terms are equivalent (when n has type nat), as
witnessed by hard_is_easy n. However, the term used for the computation will indeed be
mccarthy_hard n after the annotations are erased.

I Remark. As all the types of PML2 are closed under equivalence, it is always possible to
replace a term by another equivalent term. This technique can not only be used for proving
termination of functions such as mccarthy91, but also for typing terms that would not be
typable otherwise (but that are, for example, more efficient).

I Remark. Note that we did not prove mccarthy_hard ≡ mccarthy_easy, which may not
even be true. Indeed, equivalence considers these two terms as untyped, and it is very well
possible that they can be distinguished by a certain evaluation context.24 A simpler example
arises when comparing different implementations of the identity function on natural num-
bers: we have (fun n { case n { Zero ⇒ n | S[_] ⇒ n } }) k ≡ (fun n { n }) k
for all k in nat, but fun n { case n { Zero ⇒ n | S[_] ⇒ n } } ≡ fun n { n } is
false. These two functions can be distinguished using the argument false, which yields a
pattern matching failure on the former, while the latter successfully returns false.

5.4 Internal totality proofs
In this last section, we will give more explanations about the so-called “totality proofs” that
are currently required in PML2. A function is said to be total if it computes some value,
when applied to any value of its domain. In PML2, the totality of functions can be expressed
inside the system using an existential quantification. We can thus write internal totality
proofs such as the following.

val rec add_total : ∀n m∈nat , ∃v: ι , add n m ≡ v =
fun n m {

case n {
Zero → qed
S[k] → use add_total k m; qed

}
}

I Remark. Note that the value that is obtained by applying the function is not relevant here,
nor is its type. We could however modify the definition of add_total to make sure that an
element of type nat is returned. In this case, we could even use add_total as add.

24 In PML2, the equivalence t ≡ u being provable implies that t and u are observationally equivalent,
which means that they have the same “observable behaviour” in every possible evaluation context. Note
that we only observe termination, versus divergence or runtime error [17, 16].
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The reason why totality proofs are required in the system is strongly related to the
call-by-value evaluation strategy of the language. Indeed, in call-by-value, a function can
only be applied when all of its arguments are values. More precisely, it only makes sense to
reduce a β-redex if the term in argument position is a syntactic value. To understand where
the notion of totality is really required, let us consider the following proof example showing
the associativity of addition.

val rec add_assoc : ∀m n p∈nat , add m (add n p) ≡ add (add m n) p =
fun m n p {

use add_total n p;
case m {

Zero → qed
S[k] → use add_assoc k n p; use add_total k n; qed

}
}

Ignoring the first call to add_total, the proof starts by a case analysis on variable m. Let
us consider the Zero case, which already illustrates very well the necessity for the totality
proof. In this branch, the automatic decision procedure learns the equation m ≡ Zero. As
a consequence, the goal simplifies to add Zero (add n p) ≡ add (add Zero n) p, and
even as add Zero (add n p) ≡ add n p since both Zero and n are values (the function
can thus be applied). However, the left-hand side of the equation cannot reduce further
because add n p is not a value. We can then only proceed using the totality proof produced
by add_total n p, which gives us a value v such that add n p ≡ v. As a consequence, this
allows us to obtain add Zero (add n p) ≡ add n p as follows.

add Zero (add n p) ≡ add Zero v ≡ v ≡ add n p

I Remark. It is clear that the totality proof corresponding to a given function has a similar
structure as the definition of the function itself. We may thus hope that totality proofs can
be generated and called automatically, at least in most cases.

6 Future work

The current implementation of PML2 already allows for several convincing examples, some
of which cannot be expressed in other systems. They include, for example, the extract
function of Section 4 or the mccarthy91 function of Section 5.3. However, theoretical work
and implementation work remain to be done for the language to become fully practical, both
as a programming language and as a proof assistant.

6.1 Mixing termination and non-termination
As mentioned earlier, termination checking is only necessary for PML2 programs that are
considered as proofs. In the theory, proving that a program terminates amounts to showing
that its typing derivation has a well-founded circular structure. In this case, a standard
semantic proof can be used to prove normalisation [19], the essential point being that the
adequacy of the type system can be established by induction on the circular structure of
proofs25, provided that they are well-founded.

25Circularity is introduced by the typing rule for the fixed-point combinator.
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Alternatively, it is possible to type programs with standard (non-circular) typing proofs,26
to the expense of losing normalisation since our termination criterion works by analysing
the circular structure of proofs. Note that lack of termination checking implies the loss of
soundness, but type-safety is nonetheless preserved. As it is hard to automatically prove the
termination of programs, it is clear that a user will not want to be restricted to programs that
can be proved terminating. For this purpose, it is important to allow arbitrary (type-safe)
programs to be written, if only to prove them terminating later (examples of such programs
can be found in previous work [27]).

As programs that can be proven terminating can be typed in both ways, it is natural
to consider a way of mixing the two approaches in the theory. This has actually already
been implemented in a particular branch of our implementation (called totality) [18]. The
corresponding extension of the theory has also been checked informally.

6.2 Other forms of effects, mutation

One of the distinguishing features of PML2 is the possibility for programs to manipulate
their own continuation (or evaluation context). This is achieved using a construct similar
to Scheme’s call/cc, or rather Michel Parigot’s µ-abstraction [25], which triggers a form of
effect. As shown in Section 2.1, it can be used to realize theorems which only hold classically,
by extracting a program from their proofs [26].

Although PML2 is the first proof system based on a programming language with effects
and a classical realizability model [17], one may argue that control structures only have a
limited interest for writing practical ML programs.27 Other forms of effects however, for
example input/output directives or mutable cells, are essential to ML programmers. Although
it should be relatively easy to extend the system with the former, the latter poses a real
technical challenge. Indeed, it is not yet known how to account for mutation in a classical
realizability model.

6.3 Subject reduction and strong safety

The theory of PML2 is based on a realizability model, which has the major advantage of
being flexible. More precisely, the adequacy lemma, which is the keystone of the development,
only needs to be modified locally to encompass a new typing or subtyping rule. However, we
have not yet proved any subject reduction result for the system, and thus we only have a
weak form of type safety.

6.4 Extensible variants and records (better inference)

The current type-system of PML2 requires a relatively small amount of type annotations
(at least for programs). Nonetheless, the system relies on unification in several places, and
it may happen that the system guesses the wrong types. This situation arises most often
with variant and record types, for which some fields or constructors might be left out. This
problem can be solved using extensible variant types and record types, but we will need to
make sure that this does not pose any problem in the theory.

26This feature is not available in the current implementation, which only accepts terminating programs.
27They can however be used to encode a form of exception mechanism.
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6.5 Support for mutually recursive function
In the current implementation, PML2 lacks the possibility of defining mutually recursive
functions. Although it is always possible to encode mutual recursion using additional
parameters, this method does not perform very well when combined with our termination
checking technology. We thus need to consider a different fixed-point instruction for our
abstract machine, which does not seem to pose any theoretical problem. The idea is to replace
the current fixed-point instruction with a term constructor ϕa.v, binding the term variable a
into the value v, and with the reduction rule ϕa.v → v[a := ϕa.v].28 Mutual recursion can
then be encoded using a value v that is a record containing several λ-abstractions, which can
still be typed using a simple unfolding rule (as in previous work [19, 17]).

6.6 Certificates using proof traces for equivalences
For now, it is not possible to formally check the proofs produced by PML2 in another system.
Although the system already records the proof trees that are produced during type-checking,
the decision procedure for program equivalence yet lacks the ability of producing a proof
trace. However, there is no theoretical evidence that it would not be possible for the decision
procedure to record enough information for an external prover (for example Coq [23] or
Dedukti [31]) to check the proofs produced by PML2.

7 Similar systems

To conclude this paper, we will compare PML2 to other proof systems and languages that
can be used to formalise and prove program properties, or that rely on similar principles.

7.1 Dependent types in ML
To our knowledge, the combination of call-by-value evaluation, side-effects and dependent
products has never been achieved before. At least not for a dependent product fully compatible
with effects and call-by-value. For example, the Aura language [14] forbids dependency on
terms that are not values in dependent applications. Similarly, the F ? language [32] relies on
(partial) let-normal forms to enforce values in argument position. Daniel Licata and Robert
Harper have defined a notion of positively dependent types [20] which only allow dependency
over strictly positive types. Finally, in languages like ATS and DML [36, 37], dependencies
are limited to a specific index language.

7.2 Tools based on intuitionistic type theory
The most actively developed proof assistants following the Curry-Howard correspondence
are Agda and Coq [24, 23]. The former is based on Martin-Löf’s dependent type theory and
the latter on Coquand and Huet’s calculus of constructions [7, 22]. These two constructive
theories provide dependent types, which allow the definition of very expressive specifications.
Contrary to PML2, Coq and Agda do not directly give a computational interpretation to
classical logic. Classical reasoning can only be done through a negative translation or with
the definition of axioms such as the law of the excluded middle. In particular, these two

28Term variables should not be confused with value variables (or λ-variables). In particular, the former
can be substituted with any term, while the latter can only be substituted with values.
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languages are not effectful. However, they are logically consistent, which means that they
only accept terminating programs. As termination checking is a difficult (and undecidable)
problem, many terminating programs are rejected. Although this is not a problem for
formalizing mathematics, this makes programming tedious. In PML2, only proofs really need
to be shown terminating, and it is in any case possible to reason about non-terminating and
even untyped programs as they can be manipulated as objects in types.

7.3 NuPrl and refinement types
The NuPrl system [6] has many similarities with PML2 on the theoretical side, although it is
inconsistent with classical logic. NuPrl accommodates an observational equivalence relation
similar to ours (Howe’s squiggle relation [12]), which is partially reflected in the syntax of
the system. Being based on a Kleene-style realizability model, NuPrl can also be used to
reason about untyped terms. Another major difference between PML2 and NuPrl is that the
latter is based on refinement types, which means that it does not have an automatic way of
building typing derivations for programs. Indeed, typing derivations are built interactively
using a specific interface, and the user must say what typing rule should be applied first.

7.4 Partially consistent languages
The TRELLYS project [3] aims at providing a language in which a consistent core interacts
with type-safe dependently typed programming with general recursion. Although the language
is call-by-value and effectful, it suffers from value restriction like Aura [14]. The value
restriction does not appear explicitly but is encoded into a well-formedness judgement
appearing as the premise of the typing rule for application. Apart from value restriction,
the main difference between the language of the TRELLYS project and ours resides in the
calculus itself. Their calculus is Church-style (or explicitly typed) while ours is Curry-style
(or implicitly typed). In particular, their terms and types are defined simultaneously, while
our type system is constructed on top of an untyped calculus.

7.5 Systems aimed at program verification in ML
Several systems have been proposed for verifying ML programs. ProPre [21] relies on a
notion of algorithms, corresponding to equational specifications of programs. It is used in
conjunction with a type system based on intuitionistic logic. Although it is possible to use
classical logic to prove that a program meets its specification, the underlying programming
language is not effectful. Similarly, the PAF! system [2] implements a logic supporting proofs
of programs, but it is restricted to a purely functional subset of ML. Another approach for
reasoning about purely functional ML programs is given in the work of Yann Regis-Gianas
[29], where Hoare logic is used to specify program properties. Finally, it is also possible to
reason about ML programs (including effectful ones) by compiling them down to higher-order
formulas [4, 5], which can then be manipulated using an external prover such as Coq [23]. In
this case, the user is required to master at least two languages, contrary to our system in
which programming and proving take place in a uniform framework.
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