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Abstract: Hipster is a theory exploration tool for the proof assistant Isabelle/HOL.
It automatically discovers lemmas about given recursive functions and datatypes and
proves them by induction. Previously, only equational properties could be discovered.
Conditional lemmas, for example required when reasoning about sorting, has been
beyond the scope of theory exploration. In this paper we describe an extension to
Hipster to also support discovery and proof of conditional lemmas.

We also present a new automated tactic, which uses recursion induction. Recursion
induction follows the recursive structure of a function definition through its termina-
tion order, as opposed to structural induction, which follows that of the datatype. We
find that the addition of recursion induction increases the number of proofs completed
automatically, both for conditional and equational statements.

Keywords: theory exploration, automated induction, interactive theorem proving

1 Introduction

Theory exploration is a technique for automatically discovering new interesting lemmas in a
formal mathematical theory development. These lemmas are intended to help constructing a
richer background theory about the concepts at hand (e.g. functions and datatypes) which can
be useful both to enhance the power of automation as well as being of use in interactive proofs
[MBA07, JDB11, MMDB12]. Theory exploration has proved particularly useful for automation
of inductive proofs [CJRS13]. This work builds on Hipster [JRSC14], an interactive theory
exploration system for the proof assistant Isabelle/HOL [NPW02]. It can be used in two modes,
either exploratory mode to generate a set of basic lemmas about given datatypes and functions,
or in proof mode, where it assists the user by searching for missing lemmas needed to prove
the current subgoal. To generate conjectures, Hipster uses as a backend the HipSpec system,
a theory explorer for Haskell programs [CJRS13]. Proofs are then performed by specialised
tactics in Isabelle/HOL. Hipster has been shown capable of discovering and proving standard
lemmas about recursive functions, thus speeding up theory development in Isabelle. However,
lemma discovery by theory exploration has previously been restricted to equational properties.
In this paper we take the first steps towards lifting this restriction and exploring also conditional
conjectures. Conditional lemmas are necessary if we for example want to prove properties about
sorting algorithms. As an example, consider the proof of correctness for insertion sort:

theorem isortSorts: ”sorted (isort xs)”
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To prove this theorem by induction will in the step-case require a lemma telling us that if a list is
sorted, it remains so after an additional element is inserted:

lemma ”sorted xs =⇒ sorted (insert x xs)”

Discovering this kind of conditional lemmas introduces a big challenge for theory exploration.
First of all, the search space greatly increases: what statements should be picked as potentially
interesting side-conditions to explore? Secondly, as our theory exploration system relies on
generation of random test-cases, we also need to ensure that we perform tests where the condition
evaluates to true, otherwise the system might miss some conditional equations (Example 2, p. 4).

As Hipster is designed as an interactive system, we avoid the first problem by asking the user
to specify under which condition theory exploration should occur. In the example above, this
would require the user to tell Hipster that the predicate sorted is an interesting pre-condition, in
addition to which function symbols should be explored in the bodies of lemmas. The rest of the
process is however automatic. We describe it in more detail in §3

The second contribution of this paper is a new automated tactic for recursion induction (see
e.g. §3.5.4 of [NPW02]). Previously, Hipster only supported structural induction over the
datatypes, but has now been extended with a new tactic that uses recursion induction, following
the termination order of function definitions instead of the datatype. This has shown to be useful
for many proofs that previously failed, but can also provide shorter proofs in some cases. The
new recursion induction tactic is described in §3.2. It is used by Hipster during automated theory
exploration, but can equally well be applied as a powerful regular tactic by a human user working
in Isabelle.

2 Hipster

This section provides a description of how Hipster works and how its subsystem QuickSpec
generates conjectures.

2.1 Theory Exploration in Hipster

Figure 1 gives an overview of the Hipster system. Starting from an Isabelle theory file that defines
a set of datatypes and functions, the user calls Hipster on a list of functions about which she is
interested in finding lemmas. The workings of Hipster can be divided up into three stages:

1) Generation of Haskell code.
2) Theory exploration in Haskell.
3) Proof in Isabelle.

Hipster uses Isabelle’s code generator [HN10], to translate the theory to a Haskell program. Hipster
then employs the theory exploration system HipSpec as a backend for generating conjectures.
While HipSpec can be used also as a fully fledged theorem prover, Hipster only uses its conjecture
generation subsystem QuickSpec [CSH10], and performs proofs inside Isabelle. Isabelle is an
LCF-style prover, which means that it is based on a small core of trusted axioms, upon which
subsequent proofs must be built. Therefore, any proofs found outside Isabelle, e.g. by HipSpec,
would have to be reconstructed inside Isabelle anyway. Hence it is easier for Hipster to simply
use Isabelle for proofs in the first place.
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Figure 1: Overview of Hipster

Not all conjectures returned from QuickSpec are interesting. Hipster is parametrised by two
tactics, which can be set by the user: one for routine reasoning and one for difficult reasoning.
Conjectures solved by routine reasoning are deemed trivial and discarded, while those requiring
more difficult reasoning are displayed to the user and included in the Isabelle theory so they
can be used in subsequent proofs if necessary. In the context of this paper, routine reasoning is
first-order equational reasoning and simplification, whilst difficult reasoning involves some kind
of induction. If a conjecture is not immediately provable, Hipster will place it at the end of the list
of open conjectures and will try it again if it has found some additional lemmas. Occasionally,
Hipster might discover some conjecture which it does not manage to prove automatically, because
not even its tactic for difficult reasoning is strong enough. Such an open conjecture would also be
displayed to the user, who can then choose to perform an interactive proof in Isabelle, perhaps
employing other tactics or lemmas than those currently available to Hipster.

2.2 Conjecture Generation in QuickSpec

QuickSpec takes as input a set of functions and variables (by default three per type), and generates
all type-correct terms up to a given limit (by default depth three). The number of variables and
term-depth limit can be adjusted by the user. QuickSpec then proceeds to divide the generated
terms into equivalence classes, so that each equivalence class eventually represents a set of
equations. Initially, all terms of the same type are in the same equivalence class. QuickSpec
then uses QuickCheck [CH00], to generate random ground values for the variables in the terms,
and evaluates the result. If two terms in an equivalence class turn out to evaluate differently, the
equivalence class is split accordingly. The process is then repeated until the equivalence classes
stabilise (after several hundred different random tests), which means that we usually have quite a
high confidence in that the conjectures produced are probably true, even though they are not yet
proved.
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Example 1. As a small example, consider a theory exploration attempt where we have asked
Hipster for lemmas about a function isort implementing insertion sort. Among the terms generated
by QuickSpec are those in the table below. Initially, all terms are placed in the same equivalence
class. Suppose QuickSpec generates the random value xs→ [3,1].

Term Ground Instance Value
1 isort xs isort [3,1] [1,3]
2 isort (isort xs) isort (isort [3,1]) [1,3]
3 xs [3,1] [3,1]

As not all terms evaluate to the same value, they should no longer be in the same equivalence
class. We thus split the terms into two new equivalence classes: terms 1 and 2 evaluate to the
same value and remain together, while term 3 is separated. After this, no subsequent tests further
split these equivalence classes, and we can read off the equation: isort(isort xs) = isort xs.

3 Conditional Lemmas and Recursion Induction

We now demonstrate how to employ Hipster interactively for theory exploration of conditional
lemmas in the development of a theory.We first explain how conditional conjectures are generated
in QuickSpec. We then explain our new automated induction tactic for recursion induction, and
finally show how Hipster combines these in a case study proving the correctness of insertion sort.

3.1 Generating Conditional Conjectures

The support in QuickSpec for generating conditional conjectures (implications) is still rather basic.
In this case, QuickSpec will in addition to the other input require the user to specify a predicate to
use as the premise of an implication. Term generation proceeds as described above, but testing
takes the given predicate into account. Here, we are only interested in tests with values that make
the premise true, otherwise we may split the equivalence classes when they should not be split.
QuickCheck uses special functions called generators to produce random values of a given type.
If using QuickSpec directly in Haskell, the user can program special purpose generators that
could be made to only produce values satisfying a given predicate. In Hipster, however, these
generator functions are simpler as they have to be automatically derived together with the Haskell
code. Tests not satisfying the premise are simply discarded during conditional exploration, which
means that we typically must generate more tests than for equational conjectures. Also, the risk
of some non-theorem slipping through is slightly higher, but as Hipster then attempts to prove all
conjectures, such a statement would be caught in the proving phase. Automatically generating
customised generator functions is further work.

Example 2. In Example 1, we showed how QuickSpec generated equational conjectures about
the insertion sort function isort. We are furthermore interested in the case with the condition
that the predicate sorted holds (for one variable). In this case, QuickSpec first performs one
pass looking for plain equations, as in Example 1, then a second where it considers the condition
sorted xs. In this second phase, QuickSpec performs a new exploration, this time requiring the
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predicate sorted xs to hold for all test values. Suppose we test with the sorted list: xs → [1,2]
(other non-sorted values for xs would be discarded).

Term Ground Instance Value
1 isort xs isort([1,2]) [1,2]
2 isort (isort xs) isort (isort [1,2]) [1,2]
3 xs [1,2] [1,2]

This time, all terms evaluate to the same value on all tests where the list is sorted, so all three
terms remain in the same equivalence class. QuickSpec realises that there is no point producing
the conjecture sorted xs =⇒ isort (isort xs) = xs, as this is subsumed by the non-conditional
equation discovered in the first phase. It will however produce the additional conjecture
sorted xs =⇒ isort xs = xs, which clearly only holds if the list is already sorted.

3.2 Automating Recursion Induction

A recursion induction scheme is derived from a function’s recursive definition. Unlike structural
induction, the recursion induction scheme corresponds to the originating definition, and hence,
the cases considered in its simplification rules.

When defining a recursive function over an inductive datatype one might traverse arguments
following a different pattern to the strictly structural one (the one arising from a datatype’s
definition). This pattern could be more specific, or even less so, than following the datatype.

For instance, take the functions on lists sorted and last:

fun sorted :: ”Nat List ⇒ Bool” where
”sorted [] = True”
| ”sorted ([x]) = True”
| ”sorted (x1 # (x2 # xs)) = (x1 ≤ x2 & sorted (x2 # xs))”

fun last :: ”’a List ⇒ ’a” where
”last ([x]) = x”
| ”last (x # xs) = last xs”

From these definitions’ structures one can derive a new induction principle. Structural induction
on lists considers the base-case [] (the empty list) and step-case x # xs (a list with an element
inserted at the front). In the case of sorted, cases are broken down into more detailed ones by
including an additional base-case [x] (the singleton list) and restricting the step-case to lists with
at least two elements x1 # x2 # xs. Meanwhile last is not defined for the case [] and hence
partially defined, meaning the induction scheme it gives rise to is to be completed with such a
case. This, in fact, results in the same recursion induction scheme derived from sorted:

SORTEDIND
P ([]) ∀x P ([x]) ∀x, y, xs (P (x # xs) =⇒ P (y # (x # xs)))

∀x P (x)
LASTIND
∀x P ([x]) ∀x, y, xs (P (x # xs) =⇒ P (y # (x # xs))) P ([])

∀x P (x)
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Induction determined by these schemata is called recursion induction or computation induction.
They can isolate sub-units not represented in a datatype’s structure as being atomic, such as lists
with at least two elements in the scheme for sorted. Recursion induction hence provides an
immediate and more specific structure for reasoning about other recursion patterns where a simple
structural induction might fail to set appropriate base and step-cases for the induction to succeed.

Within Isabelle/HOL these schemata are automatically derived and proved as theorems from
recursive functions’ termination order, and hence guaranteed to be sound [KST+11].

Example 3: Recursion Induction in a Proof. To exemplify the potential difference between
recursion and structural induction, let us take the already introduced conditional lemma
sorted xs =⇒ sorted (insert x xs). Applying structural induction on the list xs would produce
the subgoals:

1. sorted [] =⇒ sorted (insert x [])
2. ∧ y ys. (sorted ys =⇒ sorted (insert x ys)) =⇒ sorted (y # ys) =⇒

sorted (insert x (y # ys))

Whilst sorted’s recursion induction scheme would yield:

1. sorted [] =⇒ sorted (insert x [])
2. ∧ y. sorted [y] =⇒ sorted (insert x [y])
3. ∧ y1 y2 ys. (sorted (y2 # ys) =⇒ sorted (insert x (y2 # ys))) =⇒

sorted (y1 # y2 # ys) =⇒ sorted (insert x (y1 # y2 # ys))

The latter set of subgoals leads to an immediate proof of the main lemma thanks to its steps
mirroring the actual predicate definition, hence having a correspondence with its simplification
rules. In contrast, the former, even though it intuitively looks immediate to prove, is not sufficiently
generalised nor does it specify any intermediate result on inserting an element on a concrete
non-empty list (in our case, the singleton list) which would enable to prove the second subgoal for
any arbitrary list. Structural induction is in some way a weaker scheme and additional case-splits
or lemmas would be required to close the proof employing it in our example.

A New Induction Tactic for Hipster

We have implemented a new automated tactic, called hipster induct schemes, for induction in
Isabelle. This tactic searches not only for proofs by structural induction, but may also employ
recursion induction when appropriate. It is designed for Hipster to use as its ”difficult reasoning”
component, but human users may of course also employ this tactic in interactive proofs.

The tactic first tries structural induction using the induction scheme associated with the
datatype(s) of variables in the problem. If this fails, the tactic then tries recursion induction, using
the induction schemes associated with the functions occurring in the problem. When instantiating
recursion induction schemes with variables of the problem, more complete instantiations are
considered first. This leaves less specific partial instantiations to be tried later. For each attempted
induction, the tactic will apply Isabelle’s simplifier followed by (if necessary) first-order reasoning
using Isabelle’s built in first-order prover Metis. Figure 2 shows an overview of the tactic.

The user can configure the tactic to specify how to select facts to be passed to the simplifier and
to Metis. The default is the simplification rules from the relevant function definitions, the datatype
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TRY
Structural induction schemes(s)

THEN simplification + F.O. reasoning
OTHERWISE TRY

Recursion induction sceheme(s)
THEN simplification + F.O. reasoning

Figure 2: Overview of Hipsters new tactic.

case distinction rules which are automatically derived by Isabelle, and the lemmas discovered
by theory exploration so far. However, if we pass too many facts to Metis, it becomes slower.
Therefore, the user can configure Hipster to include fewer of the discovered lemmas if needed.
Hipster also impose a timeout on simplification and first-order reasoning, which can be set by
the user. The default timeout is 1 second for each proof attempt. As further work, we plan to
experiment with using Sledgehammer instead [PB10], which calls powerful external first-order
provers and reports back exactly which facts were needed in the proof. Metis can then reconstruct
the proof quickly inside Isabelle’s trusted kernel.

Example 4: Simultaneous Induction. A notable gain of the new tactic with recursion induction
is that of having the capability of performing simultaneous induction, whereas previously only
structural inductions on a single variable were performed by Hipster. Simultaneous induction
schemata are those inducting over more than one variable at a time, whether those variables are
of the same type or not. Such is the case for the list function zip’s recursion induction scheme,
which corresponds to parallel induction on two lists:

fun zip :: ”’a list ⇒ ’b list ⇒ (’a × ’b) list” where
”zip [] y = []”
| ”zip (x # xs) [] = []”
| ”zip (x # xs) (y # ys) = (x, y) # (zip xs ys)”

ZIPIND
∀ys P ([], ys) ∀x, xs P (x # xs, []) ∀x, y, xs, ys (P (xs, ys) =⇒ P (x # xs, y # ys))

∀xs, ys P (xs, ys)

This scheme, along with some initial theory exploration, allows theorems like the following to be
proven automatically:

zip (xs @ ys) zs = (zip xs (take (len xs) zs)) @ (zip ys (drop (len xs) zs))

Or even the alternative related conditional lemma to be proven without prior exploration:

len xs = len ys =⇒ (zip xs ys) @ (zip zs ws) = zip (xs @ zs) (ys @ ws)

Neither of these lemmas were provable before, even having done exploration for all the occurring
functions in them. Hipster’s prior structural induction approach could not capture in a scheme the
relation between two variables. In these two cases, zip traverses its arguments taking steps on
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both at the same time, a pattern we can only capture with some form of simultaneous induction.
Instead of synthesising a series of possible simultaneous structural induction schemata, recursion
induction gives us an immediate choice which is also closer to the problem at hand.

3.3 Interactive Case Study: Insertion Sort

We here showcase Hipster’s handling of conditional lemmas via the proof of correctness for the
theorem sorted (isort ts). For it, we assume the less-or-equal operator ≤ for naturals (and no
prior, additional lemmas), and the function definitions:

fun sorted :: ”Nat List ⇒ Bool” where
”sorted [] = True”
| ”sorted ([x]) = True”
| ”sorted (x1 # (x2 # xs)) = (x1 ≤ x2 & sorted (x2 # xs))”

fun insert :: ”Nat ⇒ Nat List ⇒ Nat List” where
”insert x [] = [x]”
| ”insert x1 (x2 # xs) = (if (x1 ≤ x2) then x1 # (x2 # xs)

else x2 # (insert x1 xs))”

fun isort :: ”Nat List ⇒ Nat List” where
”isort [] = []”
| ”isort (x # xs) = insert x (isort xs)”

Running exploration from the simpler components is the first step, considering both equational
and conditional lemmas, since we have two predicates involved in the definiens of functions in
the final theorem. The following command invokes conditional exploration for ≤:

hipster cond ≤

which, along with conditional exploration for its negation, results in 10 discovered and proven
lemmas, 6 of which are conditionals (we present the vital lemmas towards the final proof) and all
require recursion induction:

lemma lemma ac [thy expl]: ”x ≤ y =⇒ x ≤ (S y) = True”
by (hipster induct schemes ≤.simps Nat.exhaust)

lemma lemma ad [thy expl]: ”y ≤ x =⇒ (S x) ≤ y = False”
by (hipster induct schemes ≤.simps Nat.exhaust)
(...)
lemma lemma ai [thy expl]: ”(¬ (x ≤ y)) =⇒ x ≤ Z = False”
by (hipster induct schemes ≤.simps Nat.exhaust)
(...)

Hipster automatically generates this output. For each case, the lemma command makes the
statement to be proven and is followed by a tactic application via the by command, here using
Hipster’s recursion induction tactic hipster induct schemes, which employs recursion induc-
tion where necessary. To enable the completion of the proof, exploration provides it with the
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automatically generated Isabelle rules for simplification of function definitions, such as ≤.simps,
and datatype case distinction rules, such as Nat.exhaust.

With a new exploration considering the functions about sorting itself and (potentially) taking
sorted as a side-condition for which to discover lemmas, Hipster discovers and proves both the
conditional auxiliary lemma required and the goal theorem. Note that the exploration command
takes as its first argument the predicate with which to construct side-conditions:

hispter cond sorted isort insert
(...)
lemma isortInvariant [thy expl]: ”sorted ys =⇒ sorted (insert x ys) = True”
by (hipster induct schemes sorted.simps isort.simps insert.simps)
(...)
theorem isortSorts [thy expl]: ”sorted (isort x) = True”
by (hipster induct schemes sorted.simps isort.simps insert.simps)

During this last exploration, other interesting lemmas are discovered, all of which can be now
proven automatically by using the sub-lemma about insert’s invariant isortInvariant:

lemma isortFixes [thy expl]: ”sorted x =⇒ isort x = x”
by (hipster induct schemes sorted.simps isort.simps insert.simps)

lemma insertComm [thy expl]: ”insert x (insert y z) = insert y (insert x z)”
by (hipster induct schemes insert.simps)

Invoking the recursion induction tactic hipster induct schemes once proves all of the state-
ments above, simplifying the interaction with the proof assistant. Particularly, the crucial lemma
isortInvariant is proven applying sorted’s associated recursion induction scheme, highlighting
once again the need for support of conditional lemmas in automated inductive proving and the
possibilities recursion induction brings towards proof automation.

4 Evaluation

In this section we present an evaluation of Hipster’s automated tactics, an analysis which had not
been performed for Hipster to the same extent priorly.

Keeping in mind evaluation of automated tools for interactive theorem proving necessarily has
to consider some degree of interaction, two forms of evaluation have been carried out1:

• case studies on algebraic data types and operations on them; in particular focusing on
inductive theories for natural numbers and lists

• evaluation on problems from TIP (Tons of Inductive Problems) [CJRS15], a set of bench-
marks and challenge problems for inductive theorem provers.

From TIP, we evaluate Hipster over two sets of problems employed in previous works on
inductive theorem proving: Johansson, Dixon and Bundy’s work on case-analysis for rippling
1 Source code for Hipster, examples presented and benchmarks are available online: https://github.com/moajohansson/
IsaHipster
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[JDB10] (we denote it case-analysis 2), and prior work by Ireland and Bundy on employing proof
failure to guide lemma discovery and patch inductive proofs [IB96] (we denote it prod-failure 3).
We now present these results and compare them with other tools’ reported results.

4.1 Method

To evaluate performance on TIP, each problem is analysed individually, in isolation from others, to
assess how far Hipster can go from bare definitions. Theory explorations were only run whenever
the problem was not provable by the induction tactic directly, i.e. when the problem was missing
helping lemmas. Explorations were first performed on the individual functions appearing in the
problem definition, jointly with their auxiliary functions. These were followed by explorations on
groups of said functions if required, leaving conditional exploration as the last exploration to be
run before defining the problem as non-provable by Hipster.

As already specified, conditional lemma discovery is limited to explore a single predicate at a
time to define side-conditions. For the present evaluation this has sufficed.

Additionally, to test Hipster’s capacity when working on strictly newly defined theories, no
assumptions nor properties from theories in Isabelle/HOL were considered during proof search.
As an example, natural numbers are not Isabelle/HOL’s, but redefined. Hence, predefined notions
of orderings and other properties do not play a part in proofs obscuring the results of Hipster’s
actual work. In this way, we only consider as the base starting point a set of definitional statements,
aligning with the purpose of proving based on structure and construction of programs.

4.2 Results

The following set of tables summarises statistics on the two sets of the benchmarks, with respect
to the number of problems solved. Columns EQ and COND do so for problems defined by an
equational and a conditional theorem respectively.

Case-analysis Prod-failure Total
EQ COND EQ COND

Total number of benchmarks 71 14 38 12 135
Number of problems solved 71 13 35 12 131

Table 1: Total number of problems solved.

Automation Table 2 shows the number of problems with automated solutions out of those
which were solved. Full automation is understood as solving a problem only with discovered
lemmas about the function symbols involved in the target theorem and Hipster’s automated
recursion induction. Partially automated problems are those for which additional related functions
of a datatype’s theory were provided to exploration for completion.

2 Case-analysis problems: https://github.com/tip-org/benchmarks/tree/master/benchmarks/isaplanner
3 Prod-failure problems: https://github.com/tip-org/benchmarks/tree/master/benchmarks/prod
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Case-analysis Prod-failure Total
EQ COND EQ COND

Fully automated 67 13 29 12 121
Partially automated 4 0 6 0 10

Table 2: Automation of problems solved.

Case-analysis Prod-failure
EQ COND EQ COND

No additional lemmas 38 10 1 8
Only equational lemmas 27 2 32 1
Equational and conditional lemmas 6 1 2 3

Table 3: Number of problems requiring discovery of auxiliary lemmas.

Overall, the rate of fully automated provability on the benchmark set is 90% ; considering
partially automated problems as well, the overall rate is 97%.

A number of theorems (problems 52, 53, 72, 74 from case-analysis; and 2, 4, 5, 20, 22, 23
from prod-failure) required one of the following two similar lemmas:

len (x @ y) = len (y @ x)
count z (x @ y) = count z (y @ x)

These two lemmas are not automatically proven in a first instance (neither by structural nor
recursion induction). Each of them in turn needs an auxiliary lemma which is not discovered.

Nonetheless, their proof can be partially automated. In both cases, one can observe that the
outermost function applied, len and count respectively, acts as a relator function between two
datatypes. Furthermore, these will in fact act as relator functions between list concatenation @
and addition for natural numbers plus. Since plus does not occur in the problems to be proven, it
is not added to the exploration directly. Adding plus interactively, Hipster discovers and proves
automatically the lemmas:

len (x @ y) = plus (len x) (len y)
count z (x @ y) = plus (count z x) (count z y)

Along with the commutative law for plus, also discovered and proven automatically, they enable
the automation of the two pending proofs without further intervention. And so, the corresponding
TIP problems are solved as well.

These two cases seem to indicate that recursion induction may not suffice when a non-
commutative operation nested within another has commuting arguments on both sides of an
equality. At least not in the absence of smaller related lemmas corresponding to subgoals. This
seems reasonable: the structure of the terms at each side of the equality will differ upon induction.

Theory exploration Just over half of the problems required prior lemma discovery, showcasing
the benefit of theory exploration. In Table 3 we show the number of solved problems which
required prior theory exploration and specify how many required further conditional lemmas.
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A smaller subset of problems were provable with the aid of conditional exploration, namely
those involving functions defined in terms of some predicate.

Recursion induction Whereas recursion induction was not necessary as often as theory ex-
ploration (whether for the main theorem or auxiliary lemmas), its impact is still notable. Some
problems would not be provable employing only Hipster’s prior structural induction approach.
In Table 4, problems solved by structural induction are those for which both the main theorem
and any required auxiliary lemma only needed structural induction. Those solved by recursion
induction required it for the main theorem’s proof or any of its helping lemmas.

Case-analysis Prod-failure
EQ COND EQ COND

Structural induction 38 7 30 11
Recursion induction 33 6 5 1

Table 4: Number of problems solved with both kinds of induction.

Overall, there seems to be a trade-off between using weaker induction schemes (structural
induction) and reducing the number and complexity of needed auxiliary lemmas. Structural
induction was always attempted first by the tactic, meaning theorems solved via recursion
induction (around a third of the benchmarks) would have not been solved otherwise, at least not
with the degree of exploration carried out.

The results suggest recursion induction can save on exploration time. It provides appropriate
induction patterns that avoid the need for sub-lemmas about specific constructor combinations.

4.3 Comparison

Other inductive provers have also been evaluated on these test suites, serving as a good point
of comparison. The following table collects the number of problems solved by some of them
in comparison with Hipster; note that we compare on problems for which other provers have
available data. Plain figures correspond to fully automated solutions and those in parentheses (x)
indicate number of successful proofs after some adaptation of settings. In total, case-analysis has
85 problems whilst prod-failure has 50.

Hipster HipSpec Zeno IsaPlanner CVC4 Pirate
Case-analysis 80 (84) 80 82 47 80 85
Prod-failure 41 (47) 44 (47) 21 - 40 (47)

The already mentioned HipSpec uses theory exploration, structural induction and external first-
order provers to prove properties about functional programs [CJRS13]. Zeno is a tool for proving
equational inductive properties of Haskell programs [SDE12]. CVC4’s approach to inductive
proving is built on SMT solving whilst Pirate is built on first-order prover SPASS, both with a
top-down approach in conjecture generation [RK15, WW]. IsaPlanner is a proof planning tool for
Isabelle based on rippling [DJ07, JDB10].
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In comparison to other (automated) inductive provers, the new Hipster is the only one (to the
best of our knowledge) to employ recursion induction. As results show, its performance is on par
to other state-of-the-art tools’. Additionally, unlike these tools, Hipster produces formal, certified
proofs.

To be noted is that the failing problems for Hipster in the benchmark set prod-failure (problems
33-35) differ from those HipSpec and Pirate fail at (with the exception of 33 in Pirate’s case).
These three problems involve definitions for multiplication, factorial and exponentiation operations
for Peano numerals with accumulator arguments. Particularly, HipSpec employed adjusted settings
for lemma discovery in these three cases: the generators for random values of datatypes are
manually defined. As already pointed out in §3.1, Hipster derives generators automatically, which
means the simplicity of these could lead to inefficiencies when it comes to generating values of
larger sizes. Hipster has not been evaluated with adjusted settings at the HipSpec/QuickSpec level
and hence the exploration phase was not feasible to perform for these problems due to memory
usage during testing in QuickSpec. With similar settings to HipSpec’s, problems 33-35 are likely
to be solvable in Hipster too.

5 Related Work

The work on lemma discovery for inductive proofs has mainly focused on equational lemmas, for
instance in the theory exploration systems IsaScheme and IsaCoSy [MMDB12, JDB11], which
also work on Isabelle/HOL theories. IsaScheme requires the user to provide term schemas, which
are then automatically filled in with available symbols. IsaCoSy only generates irreducible terms,
and uses an internal constraint language to avoid generating anything that could be reduced by
a known equation. These systems focused more on automation, while Hipster is designed to be
useable in an interactive theory development. Hipster is faster, and now also supports conditional
theory exploration where the user specifies an interesting condition. Conditional lemma discovery
has also been missing from the IsaPlanner system, which uses proof critics to deduce lemmas
from failed proof attempts [DJ07, JDB10].

Theory exploration systems rely on having an automated prover at hand to prove generated
conjectures. In the context of inductive theories, most other automated provers supporting
induction such as IsaPlanner, Zeno, HipSpec, Dafny and CVC4 [DJ07, SDE12, CJRS13, Lei12,
RK15] only support structural induction. Hipster now also provides an automated tactic for
recursion induction by exploiting Isabelle’s automated derivation of such induction schemata. It
can both be used in theory exploration and as a stand-alone automated tactic.

The use of recursion induction and the fact that Hipster produces LCF-style re-checkable
proofs is also the main difference between Hipster and its sister system HipSpec [CJRS13], with
which Hipster shares its conjecture generation component. HipSpec does instead rely on external
first-order provers to solve the proof obligations arising in the step- and base-cases for inductive
proofs, and does not produce checkable proofs.
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6 Conclusion and Further Work

Generation of conditional lemmas in theory exploration is a challenging problem, not least as
it is difficult for a tool to automatically assess which side conditions are interesting. Hipster is
an interactive theory exploration system, and gets around this obstacle by relying on the user to
decide which predicates are deemed interesting as conditions. In this paper we have also presented
a new automated tactic for recursion induction, which improves the level of proof automation of
discovered conjectures in Hipster. It can also be used as a powerful stand-alone induction tactic in
Isabelle. Further work on the proving side includes experimenting with different heuristics for
choosing which function’s recursion induction scheme is most likely to produce a proof, as well
as extending Hipster with tactics that can handle mutual- and co-induction automatically.

Hipster has various configuration options for adjusting which of the discovered lemmas are
passed to its tactics in subsequent proofs. For example, in larger theories, with many explorations,
we may not want to pass all discovered lemmas to Isabelle’s Metis tactic, as too many lemmas
might slow down the proof process. We plan to experiment with combining Hipster’s tactics with
the relevance filtering ideas used in Sledgehammer [KBKU13]. Another item of further work is to
extend Hipster to produce structured proofs in Isabelle’s Isar language, instead of just a one-line
application of Hipster’s custom tactics. This will be easier to read for a human user, and can be
more streamlined, not needing to repeat the search done in the automatic proof found by Hipster’s
powerful tactics.
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