10,133 research outputs found

    Continuous Nearest Neighbor Queries over Sliding Windows

    Get PDF
    Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps (time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set. We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly larger space overhead. Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding windows.

    Yellow Tree: A Distributed Main-memory Spatial Index Structure for Moving Objects

    Get PDF
    Mobile devices equipped with wireless technologies to communicate and positioning systems to locate objects of interest are common place today, providing the impetus to develop location-aware applications. At the heart of location-aware applications are moving objects or objects that continuously change location over time, such as cars in transportation networks or pedestrians or postal packages. Location-aware applications tend to support the tracking of very large numbers of such moving objects as well as many users that are interested in finding out about the locations of other moving objects. Such location-aware applications rely on support from database management systems to model, store, and query moving object data. The management of moving object data exposes the limitations of traditional (spatial) database management systems as well as their index structures designed to keep track of objects\u27 locations. Spatial index structures that have been designed for geographic objects in the past primarily assume data are foremost of static nature (e.g., land parcels, road networks, or airport locations), thus requiring a limited amount of index structure updates and reorganization over a period of time. While handling moving objects however, there is an incumbent need for continuous reorganization of spatial index structures to remain up to date with constantly and rapidly changing object locations. This research addresses some of the key issues surrounding the efficient database management of moving objects whose location update rate to the database system varies from 1 to 30 minutes. Furthermore, we address the design of a highly scaleable and efficient spatial index structure to support location tracking and querying of large amounts of moving objects. We explore the possible architectural and the data structure level changes that are required to handle large numbers of moving objects. We focus specifically on the index structures that are needed to process spatial range queries and object-based queries on constantly changing moving object data. We argue for the case of main memory spatial index structures that dynamically adapt to continuously changing moving object data and concurrently answer spatial range queries efficiently. A proof-of concept implementation called the yellow tree, which is a distributed main-memory index structure, and a simulated environment to generate moving objects is demonstrated. Using experiments conducted on simulated moving object data, we conclude that a distributed main-memory based spatial index structure is required to handle dynamic location updates and efficiently answer spatial range queries on moving objects. Future work on enhancing the query processing performance of yellow tree is also discussed

    DISPATCH: A Numerical Simulation Framework for the Exa-scale Era. I. Fundamentals

    Full text link
    We introduce a high-performance simulation framework that permits the semi-independent, task-based solution of sets of partial differential equations, typically manifesting as updates to a collection of `patches' in space-time. A hybrid MPI/OpenMP execution model is adopted, where work tasks are controlled by a rank-local `dispatcher' which selects, from a set of tasks generally much larger than the number of physical cores (or hardware threads), tasks that are ready for updating. The definition of a task can vary, for example, with some solving the equations of ideal magnetohydrodynamics (MHD), others non-ideal MHD, radiative transfer, or particle motion, and yet others applying particle-in-cell (PIC) methods. Tasks do not have to be grid-based, while tasks that are, may use either Cartesian or orthogonal curvilinear meshes. Patches may be stationary or moving. Mesh refinement can be static or dynamic. A feature of decisive importance for the overall performance of the framework is that time steps are determined and applied locally; this allows potentially large reductions in the total number of updates required in cases when the signal speed varies greatly across the computational domain, and therefore a corresponding reduction in computing time. Another feature is a load balancing algorithm that operates `locally' and aims to simultaneously minimise load and communication imbalance. The framework generally relies on already existing solvers, whose performance is augmented when run under the framework, due to more efficient cache usage, vectorisation, local time-stepping, plus near-linear and, in principle, unlimited OpenMP and MPI scaling.Comment: 17 pages, 8 figures. Accepted by MNRA

    Update-Efficient Main-Memory Indexing of Moving Objects

    Get PDF

    Effectively Learning Spatial Indices

    Get PDF

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1−α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects

    Get PDF
    Location Dependent Queries (LDQs) benefit from the rapid advances in communication and Global Positioning System (GPS) technologies to track moving objects\u27 locations, and improve the quality-of-life by providing location relevant services and information to end users. The enormity of the underlying data maintained by LDQ applications - a large quantity of mobile objects and their frequent mobility - is, however, a major obstacle in providing effective and efficient services. Motivated by this obstacle, this thesis sets out in the quest to find improved methods to efficiently index, access, retrieve, and update volatile LDQ related mobile object data and information. Challenges and research issues are discussed in detail, and solutions are presented and examined. --Abstract, page iii
    • …
    corecore