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ABSTRACT
Diffusion-based molecular communication (DMC) with interacting
carrier molecules allow to explore a variety of new communication
paradigms. However, simulating these interactions on a network
scale is hard from an analytic point of view, and a computationally
challenging task which may easily become a bottleneck. This paper
studies different techniques that allow to detect which particles are
interacting. Recursive and hierarchical grid based approaches are
proposed and a multithreaded CPU and GPU implementation re-
spectively are evaluated and compared to a state-of-the-art collision
detection library and nanosimulator.

CCS CONCEPTS
• Networks → Network simulations; • Theory of computa-
tion → Massively parallel algorithms; Computational geome-
try; • Applied computing→ Biological networks;
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1 INTRODUCTION
Recent biology and medicine advances have sparked a growing
interest in intra-body micro- and nanoscale communications [12].
In diffusive communication, transmitters encode information by
releasing chemical signals. Various signals are transferred by mod-
ulating the concentration, timing or types of released molecules
[21].

Many studies focus on transmission models in which the carriers
are inert (i.e. not interacting in any way that affects the communica-
tion), but recently, transmission schemes in which different, inter-
acting carriermolecules are released have been proposed [10, 11, 17].
This paradigm allows to explore a variety of new ideas: new waves
of carriers signals may be created through in-channel reactions,
and transmitted signals may interact with each other. This last
idea is explored in [10, 17], where information is modulated by
releasing bursts of acids and bases, which results in changing pH
levels at a receiver. This method has been shown, both theoretically
[10, 17] and experimentally [11] to significantly reduce intersymbol
interference. Additionally, it has the benefit of reducing the con-
tamination of the environment, which occurs when inert carriers
are released.

There are other scenarios in which the impact of interactions
between emitted particles cannot be ignored. For example, when
the density of the transmitted molecules is high, or when the dif-
fused particles attract or repel each other, the collective diffusion
behaviour may be affected [22].

The main challenge in the evaluation of transmission schemes
with interacting particles is caused by the non-linear communica-
tion channel. The underlying reason for this is that the diffusion
equations that describe the system are coupled and non-linear. Cal-
culating solutions for them is computationally expensive, even in
1D scenarios with a single transmitter [10]. On the other hand,
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nanonetwork scenarios may feature thousands of communicating
nanomachines [4]. This combination of factors complicates the
calculation of the received signals.

Particle-based nanosimulators, such as BiNS2 [13, 14] and N3Sim
[23], take the effect of these interactions into account by tracking
the positions of all particles that may interact. Both the transceivers
and released particles are enclosed by a bounding volume, and inter-
actions between pairs of objects cay occur only if the corresponding
bounding volumes are overlapping. At each simulated timestep, the
simulator checks which particles are interacting/enclosing spheres
are colliding, and resolves these interactions. This search for col-
liding bounding volumes is called broad-phase collision detection,
and can easily become a bottleneck for the simulator.

Starting from a definition of a typical nanonetwork setting and
an overview of related work, this paper proposes several algorithms
for finding collisions between these bounding volumes. Proposed
nanonetworking applications feature a large number of transceivers,
possibly resulting in millions of nano-objects (i.e. both transceivers
and released particles) [4]. With this in mind, we pay attention
to parallelism and aim to significantly improve upon the collision
detection times of existing nanosimulators. The performance of the
resulting algorithms is measured and compared to that of Bullet,
a widely used real-time collision detection library [1], and to the
collision detection algorithm that is implemented in the BiNS2
simulator.

2 RELATEDWORK
Whilst there is a large body of literature on collision detection [9],
molecular communication is characterized by several properties
that are distinct from typical collision detection scenarios:

• the majority of the objects are moving: datastructures must
either allow fast updates, or efficient construction (in that
case they can be rebuilt for each timestep);

• the volume in which objects interact with each other allows
for a tight fit of a bounding sphere: chemical interactions
occur when objects are within a certain binding radius of
each other [5], furthermore the elongation of nano-objects
and biological cells is usually limited and bounding spheres
allow for a reasonably tight fit;

• object types can be of widely varying sizes: for example,
transceivers can exceed the size of the emitted particles by
several orders of magnitude;

• the number of objects greatly outnumbers the number of
different object types and size variation within a single ob-
ject type is limited: a simulation may contain several types
of nanomachines/cells, but machines of the same type are
similar in size;

• no assumptions can be made on the distribution of objects:
they may be spread out evenly throughout the environment,
but they might also be concentrated in certain areas

We also take a look at the existing work on nanoscale diffusion
simulators, and how they handle interparticle collision detection:

• BiNS2 - Biological and Nano-Scale Communication Simula-
tor v.2 is a multi-threaded simulator of MolCom systems de-
veloped at the University of Perugia [13]. Its design includes
a set of customization tools for creating objects and allows to

model the behaviour and interactions of biological entities.
The simulator employs a sort-and-sweep collision detec-
tion algorithm and octrees [15] to detect both interparticle
collisions and collisions between particles and transceivers.
Additionally, it allows to simulate diffusion-based and flow-
based propagation models, into both constrained and open
space environments. A more detailed description of the oc-
tree algorithm of this Java-based simulator is provided in
subsection 4.3.

• N3Sim is a Java-based simulator of diffusion-based molecu-
lar communications. It allows analyzing molecular networks
with several transmitters and receivers [23]. Elastic collisions
between carriers can be simulated, and are detected using a
sort-and-sweep method (Baraff’s algorithm).

• Smoldyn is a program that allows to simulate cell scale bio-
chemical simulations [2]. Although Smoldyn was not devel-
oped with the specific purpose of molecular communications
in mind, bimolecular reactions may occur when molecules
are within each other’s binding radius and molecules can
be added and removed on-the-fly, thus allowing to simu-
late interacting networks. Smoldyn employs uniform grids
to partition the simulated environment and detect which
objects may interact. This approach has been successfully
accelerated using GPUs [8].

• Simulators based on NS-2 and NS-3: NS-2 and NS-3 are
discrete-event network simulators, whichwere not originally
designed for modelling MolCom systems. These simulators
are organized in different software libraries that can work
together. Their flexible structure has allowed implementing
some basic MolCom elements. User programs can be written
in either C++ or Python programming languages. Among
others, NanoNS [16] is an NS-2 based simulator for diffu-
sive molecular communication in aqueous media. Rather
than detecting interactions between individual particles,
it implements the multi-particle lattice gas automata algo-
rithm, which divides the propagation medium into lattice
sides/voxels. NanoNS does not support interactions between
carrier objects. NS-3 based simulators such as nanoNS3 [18]
rely on channel models, rather than particle based simulation.
However, as discussed in section 1, modelling interactions
between carriers results in a non-linear channel, which com-
plicates the calculation of channel responses.

• NCSim - Bacteria Nanonetworks is a comprehensive sim-
ulation framework for molecular communications utilizing
flagellated bacteria as carriers for information delivery [6].
These bacteria are able to interact and pass information
through the process of conjugation. A (uniform) grid is em-
ployed to detect whether conjugation is possible. The compu-
tationally expensive simulation modules are implemented in
C++, but generation of scenarios is possible through Python.

• HLA Simulator. In [3], the authors introduce the principles
of design of a MolCom simulator that focuses on scalability,
by adopting the high level architecture (HLA) model. This
model is used to design a distributed simulation tool for Mol-
Com, so that different scalability options can be used to add
processing power and reduce the execution time. Collision
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handling is managed by ‘medium federates’, which are re-
sponsible for collision detection and handling within a slice
of the medium, which is divided according to a uniform grid.

3 ALGORITHMS
3.1 Uniform grids
Based on the requirements concerning update/build costs and the
object shapes, partitioning the environment with uniform grids is
a straightforward approach. The simulated space is overlaid with
a grid and each object is mapped to all grid cells in which the
object is partially present. Colliding object pairs can be found by
iterating over all grid cells and verifying whether there is a collision
between objects that are mapped to the same cell. Grids have very
low construction times and combine well with spherical object
shapes [9].

Since the objects may be spread out over a large environment,
we cannot use a dense array to store the grid cells, as such an ap-
proach might may waste large amounts of memory to store empty
cells. Therefore, the 3D rastercell coordinates are hashed, and in-
formation is maintained only for grid cells that do contain some
objects. We implement two datastructures that achieve this goal. In
our ‘HashGrid’ approach (Fig. 1a), a hashtable with separate linked
list chaining [7] stores objects that are mapped to the same cell,
or whose hash is mapped to the same entry of the table. Another
approach fills an array with (cellId,objectId)-pairs, corresponding
to the grid cells that overlap with each object (ArrayGrid). By sort-
ing this array on the cellId , the objects with the same cellId are
stored after each other, and any cellId can quickly be retrieved
by employing a binary search. Figure 1b illustrates this approach.
This technique is well-known in the context of grids for ray trac-
ing on GPUs [19, 20], but we are unaware of any multi-core CPU
implementations.

(a) Hashtable

(b) Sorted array

Figure 1: Datastructures for storing object cell information

Both algorithms can easily be parallelized: the size of the hashtable
can be precalculated and objects that are mapped to the same slot

can be efficiently chained by employing lock-free linked lists. The
array representation can be efficiently sorted using a multi-core
radix sort [24].

3.2 Multi-level grids
The thus far discussed uniform grids have a single rastersize, which
makes them inefficient for objects of widely varying sizes. A raster-
size which is large compared to an object size may result in many
small objects being mapped to the same rastercell, resulting in many
collision checks. On the other hand, a grid size that is too small
will cause each object to be mapped to a large number of cells,
increasing the raster construction time.

Recursive grids solve this problem by mapping all objects to a
grid with a size that corresponds to the largest object size. This
grid is used for finding collisions that involve at least one large
object. If the number of smaller objects that are mapped to the same
rastercell exceeds a threshold τ , the cell is recursively split into
a finer-grained grid. If the number of objects that are mapped to
the same cell is smaller than, or equal to this threshold, collision
checks are performed between all pairs. An example recursive grid
is shown in Fig. 2a.

In a recursive grid, the depth of the recursive splitting, and the
amount of work performed per cell may differ, depending on the
object distribution and the specific number of objects per cell. In a
multithreaded approach, where each thread processes one rastercell
this will cause the execution paths of each thread to diverge. This is
not a problem for CPU multithreading, but it is highly undesirable
for GPU performance.

Therefore, our GPU approach uses a hierachical grid approach:
rather than creating a smaller grained grid for each rastercell sepa-
rately, all the smaller sized objects are bundled when constructing
the smaller grid (EagerGrid). We also implemented an opportunis-
tic/lazy version of this algorithm (LazyGrid). In this variant, smaller
sized objects that are mapped to the same rastercell are not passed
to the smaller level grid, if their number is smaller than or equal to a
threshold τ . In that case, a brute force approach is used to detect the
collisions between the smaller sized objects. If small sized objects
are equally distributed, this technique may avoid the construction
of smaller grained grid levels altogether. Both hierarchical grid
approaches are illustrated in Fig. 2.

Complexity In these grid methods, the rastersize is chosen
proportionally to the diameter of the largest object. This ensures
that each bounding sphere is mapped to a limited number of grid
cells. Thus, by applying any of the linear grid construction methods
proposed before, we can construct a single grid level in linear time.

Additionally, assuming limited overlap, and assuming that the
bounding spheres tightly fit their enclosed objects, the number
of objects of the largest size are mapped to the same rastercell is
limited by some constant c . Thus, for each rastercell that any object
is mapped to, it must be compared with at most c objects of the
largest size.

We conclude that both constructing a single grid level, and check-
ing for collisions with large sized objects can be achieved in time
O(n), where n is the number of objects involved in the simulation.
By ensuring that the gridsize at least halves for each finer grained
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(a) Recursive grid
(τ = 2)

(b) Eager
hierarchical grid

(c) Lazy hierarchical
grid (τ = 2)

Figure 2: Multi-level grid collision detection

grid level, we find a running time of:

O

((
log

(
largest object size
smallest object size

)
+ 1

)
n

)
4 RESULTS
4.1 Comparison of proposed algorithms
To evaluate the performance of the proposed algorithms for varying
numbers of same-sized objects, we randomly generate scenarios
with the required number of spherical objects, uniformly distributed
in a spherical environment. The radius of the sphere is selected to
maintain a constant density of 5% (i.e. a fraction of 5% of the volume
is filled with nano-objects). Each datapoint visualises the average
collision detection time of 200 runs. The resulting measurements,
for an Intel Xeon E5645 processor, connected to an Nvidia Geforce
GTX 580 are reported in Fig. 3a. The collision times for perform-
ing naive all-pairs collision detection are provided for comparison
purposes.

The full lines in Fig. 3b visualise the same results and illustrate
a linearly increasing detection time for the proposed algorithms.
Furthermore, the arraygrid algorithm clearly outperforms the hash-
grid algorithm. This is due to the memory access pattern of the
hashgrid method: for a large number of objects, the hashtable can-
not fit in cache memory and mapping objects to grid cells requires
random accesses to RAM memory. For equisized objects, both GPU
algorithms construct a single grid level, and thus achieve the same
performance.

We also measured the collision detection time for scenarios with
5, equally frequent, object types of radius 1/20, 1/21, ..., 1/24. Figure
3b compares the average computing time for 5 object types to the

(a) Equisized objects

(b) Equisized objects (full line) vs. 5 object sizes (dashed line)

Figure 3: Average collision detection time for varying
numbers of objects

measurements with one object type. We notice that the collision
detection time decreases for the recursive grid algorithms and the
GPU lazy grid algorithm. This is because smaller sized objects are
mapped to fewer raster cells, speeding up the raster building process.
Additionally, these algorithms are able to avoid the construction of
small grained grids. This is in contrast to the eager grid algorithm,
which always needs to build as many grid levels as there are object
sizes.

4.2 Comparison with Bullet Physics
For benchmarking purposes, we compare the performance of our
collision detection algorithms to the Bullet Physics SDK [1], a well-
maintained open-source C++ library for collision detection. Bul-
let’s broad-phase collision detection algorithm uses a dynamic axis
aligned bounding box (DAABB) tree. This collision detection datas-
tructure is more complicated to create than the proposed multi-level
grids, but it allows to exploit the spatiotemporal coherence of ob-
jects, resulting in very fast update times [9].

Bullet’s DAABB tree is optimized for single thread collision
detection. For a fair comparison, we compare the collision detection
times with the performance of our own algorithm when executed
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by a single thread. In each of the scenarios, spherical objects are
uniformly distributed according to the procedure described in the
previous subsection. For each test run, we generate a series of 100
updates in which the objects move by 10% of their radius in a
random direction. These limited movements allow the DAABB tree
to exploit spatiotemporal coherence. The resulting average collision
detection times, for varying number of objects, are visualised in
Fig. 4.

Figure 4: Average collision detection time for varying
numbers of objects (single threaded)

Even in these test circumstances that allow the DABB tree to
exploit spatio-temporal coherence, it is still outperformed by the
recursive grids. In our test scenario, as in typical molecular com-
munication scenarios, (almost) all objects are moving at all times,
which makes updating the DABB tree more expensive than recon-
structing a multi-level grid from scratch.

4.3 Comparison with BiNS2
In order to ensure that the proposed grids perform well in typi-
cal nanocommunication scenarios, the performance of the GPU
accelerated LazyGrid detection algorithm is compared to the paral-
lel octree algorithm that is implemented in BiNS2 [15]. Similarly
to the DAABB tree, octrees aim to exploit spatiotemporal coher-
ence by maintaining and updating object positions in a tree-based
datastructure.

More specifically, the simulated environment is recursively parti-
tioned in subdomains in order to model a hierarchical environment
where some main domains can embed other subdomains. Each sub-
domain, and the objects therein, are handled separately from other
subdomains. Within each of the ‘leaf’ subdomains, a parallelized
sort-and-sweep algorithm is used. A collision detection time of
O(n log(n)) has been reported for this algorithm [15].

For comparison purposes, we consider a basic nanonetworking
scenario: a single transmitter releases a single burst of interacting
molecules in an unbounded environment. During the first seconds
of simulated time, objects are close to each other and collisions are
frequent. As time progresses, the number of carrier interactions
quickly decreases.

In a first simulation, the average collision detection time for both
the octree and the LazyGrid algorithm is measured, for a single

burst of 5 105 carrier molecules of 10 different sizes. The results are
visualised in Fig. 5a. For both algorithms, the collision detection
time quickly decreases. In the case of the LazyGrid algorithm, this
is due to the fact that all carriers are released at the same loca-
tion. This violates the complexity requirement of limited overlap
between carriers molecules. This issue is however quickly resolved
by the inter-particle collisions. On the other hand, the octree algo-
rithm requires a fine space partitioning when objects are clustered,
resulting in frequent movements of objects from one part of the tree
to another, and high update costs. As the simulation progresses, the
density of objects decreases, allowing for a more coarse partitioning
and less frequent updates.

(a) Average collision detection time vs. simulated time
for a single burst of 500k objects of 10 different sizes

(b) Speedup of GPU ArrayGrid + GPU Naive vs. BiNS2 for a single burst
of a varying number of objects (10 sizes) at varying moments in the
simulation

Figure 5: Performance comparison with BiNS2

Figure 5b shows the speedup, i.e. the mean collision detection
time of the octrees divided by the mean collision detection time of
the proposed GPU LazyGrid approach, for a single burst of objects
at varying times during the simulation.When fewer than 104 carrier
molecules are released, the GPU naive algorithm is employed, since



NANOCOM ’18, September 5–7, 2018, Reykjavik, Iceland P. Stroobant et al.

it outperforms the GPU Lazygrid apploach in these cases (as shown
in Fig. 3a).

The octrees are very efficient when the amount of interparticle
interactions is small, i.e. as time progresses, and for simulations
with a small number of objects. In these cases the octrees can be
faster than the grid based approaches. However, when simulating
large communication networks, or scenarios in which there are
many interparticle interactions, the GPU LazyGrid outperforms the
octree, sometimes by more than a factor of 100.

5 CONCLUSION
We proposed, implemented and evaluated several varieties of multi-
level grid collision detection algorithms for nanocommmunication
simulations, both on CPU and on GPU. In large networking sce-
narios, or in situations with many interparticle interactions, this
approach outperforms other solutions by a significant margin, and
has potential to accelerate the nanosimulators, allowing for more
complex simulations and faster results.

6 FUTUREWORK
The hierarchical grids that are proposed in our work are in essence
iterative constructions of increasingly finer grained uniform grids
(with a decreasing number of objects). The construction of these
uniform grids can effectively be parallelized using the ArrayGrid ap-
proach that is introduced in subsection 3.1. This work has explored
the possibility of using a GPU, but other parallelization approaches,
such as map-reduce, may also be interesting to explore.

We have focused on accelerating the collision detection process
with a single GPU. For simulations with a large number of particles,
expanding our approach tomulti-GPU architectures or GPU clusters
may cause significant performance improvements. Fully exploiting
such systems without making any assumptions on the particle
distribution is a challenging task.
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