
Department of Computer Science at Aalborg University

10th Semester, 12 June 2008

Update-Efficient Main-Memory
Indexing of Moving Objects
Donatas Saulys (donis@cs.aau.dk), Jan Maffert Johansen (jmjo01@cs.aau.dk),

Christian Winther Christiansen (cwinther@cs.aau.dk)
Supervisor: Simonas Saltenis

Abstract The number of location-based services for monitoring and querying large numbers of moving
objects is increasing rapidly. The services are facilitated by spatio-temporal databases that continuously
receive updated position data from objects. This has inspired the development of indexing structures that
perform well with dynamic spatio-temporal data, since traditional spatial indexing structures suffer from
large update costs or poor query performance when used in spatio-temporal settings.

In recent years, memory prices have dropped, making main-memory databases a viable option. The
transition from disk-based to memory-based databases means that existing knowledge on database index
performance needs to be revised. Several index structure optimizations for memory implementation have
therefore been proposed. Unfortunately, the results of individual proposals cannot easily be compared, as
each proposal carries its own individual setting. This motivates the need for a performance benchmark of
the most significant spatio-temporal indexing structures in a main-memory setting.

We modify an existing disk-based performance benchmark, enabling us to evaluate and compare main-
memory spatio-temporal indexes. We propose main-memory variants of a Grid and an R-tree, along with
a simple array structure, examine their performance in a variety of settings and compare the results.

We conclude that the Grid is generally the faster of the three indexes. Non-local updates in the R-tree
are slower, because the tree structure has to be maintained. The Array performs the fastest updates and
the slowest queries, although for some workloads, the combined performance is comparable. However, we
believe that LBS end-users value fast queries, which is why the Array is not suitable for query efficient
LBSs. Though the results show query times that favour the Grid, considering the higher versatility of the
R-tree, we find that both indexes are highly suited for indexing the positions of dynamic spatio-temporal
moving objects.

1 Introduction
Applications that monitor moving objects and pro-
vide Location Based Services (LBS) are becoming
increasingly popular. The technology for such ap-
plications is based on the integration of mobile de-
vices and global positioning units. The price and
size of these devices has dropped dramatically in re-
cent years, increasing availability and making the
technology more widespread.

The architecture behind these applications com-
prises a server offering LBSs to users, and monitored
objects which regularly send their updated positions
to the server, in order to keep the location informa-
tion up-to-date.

The monitored objects are typically cars, users of
wireless devices, etc. which share the common char-
acteristic that their geographical positions change
over time. The LBSs query the server with spatio-
temporal queries like: ”which objects are currently
located within a specified area?”.

In order to maintain precise object location data
and to prevent outdated answers to spatio-temporal

queries, it is necessary to update this information
very frequently. If the monitored area is a big city
with hundreds of thousands of monitored objects,
examining the location of every object for each query
is not a feasible solution. Therefore, it is highly
desirable to index the location of the objects, which
speeds up the queries.

The challenge when using spatial indexing in this
setting is the continuous change of object positions
which necessitates continuous updating of the in-
dex. Using location update policies [16], [3], the
number of updates required to maintain a certain
accuracy can be reduced significantly. This way the
load on the index structure is decreased. Advanced
update policies can significantly reduce the number
of updates by making predictions about future ob-
ject movement. However, this reduction does not in-
crease efficiency of the update processing within the
indexes. We therefore use a simple update policy,
and instead focus on examining how best to index
moving objects.

Existing index structures were developed and
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optimized for disk-based environments. However,
dropping prices of main-memory are making main-
memory databases a viable alternative, facilitating
indexes that meet the update and query perfor-
mance requirements. In recent years, a number of
main-memory indexing techniques have been pro-
posed (e.g. the CR-tree [8], and the cache sensitive
B+-tree, CSB+-tree [12]). Unfortunately, the em-
pirical data provided as basis for conclusions about
the performance of the proposed indexes is rarely
exhaustive.

There are two main approaches for indexing mov-
ing objects. Space partitioning indexes and data
partitioning indexes. The basic space partitioning
index is a grid-based structure, where the monitored
area is partitioned into cells that each contain ob-
jects, whose coordinates are within the range of that
cell. The other option is to partition the data in
some tree structure, e.g. the R-tree [5], which is
easier, since no information about the underlying
space is required. On the other hand, updates are
more cumbersome, since the tree structure needs to
be maintained.

Authors of spatio-temporal indexes typically of-
fer empirical experiments, where the proposed index
is compared to one or a few other competitive in-
dexes. However, the experiments tend to be based
on a setting which favours the proposed index, and
focus on the most promising properties of that index,
making the results ill-suited for broader conclusions.

As a result, it remains unclear whether the data
or space partitioning approach is superior for in-
dexing moving points in a main-memory setting.
We therefore propose update-efficient main-memory
versions of a Grid structure (representing the space
partitioning approach) and an R-tree (represent-
ing the data partitioning approach), along with an
implementation of a simple array structure, which
serves as a base case for comparison.

We examine these indexing structures using a
main-memory variant of the COST benchmark [7],
in order to provide a performance comparison of
the Grid and the R-tree. The COST benchmark
offers a unified procedure covering a variety of
spatio-temporal settings for moving objects track-
ing, and evaluates update and query CPU perfor-
mance, which enables us to provide an independent
evaluation of the proposed indexing structures.

The rest of the paper is organized as follows. Sec-
tion 2 presents our problem setting. Section 3 re-
views the related work. Section 4 offers an overview
of the techniques and index structure types that we
consider part of the solution space. Section 5 dis-
cusses design issues of our proposed indexing struc-
tures. Section 6 offers an overview of our implemen-
tation work. Sections 7 and 8 present the conducted
experiments and their results. Section 9 concludes
on the design and experiments.

2 Problem Setting
In this section, we define the representations of mov-
ing objects and the updates they generate. Since it
is desirable to process as few updates as possible,
update policies that reduce the amount of updates,
while providing accuracy guarantees are discussed.

In order for an LBS to offer versatile services to
users, it must support a variery of spatio-temporal
queries, which are also defined in this section. Fi-
nally, the challenges of implementing indexes in
main-memory instead of disk are discussed.

2.1 Moving Objects

We model moving objects in 2-dimensional space.
The position coordinates of individual objects are
aquired using GPS or some other positioning sys-
tem. These systems typically provide an accuracy
of approx. 5-10 meters. Since a more fine-grained
positioning is rarely needed in this type of applica-
tions, we assume the received position information
to be accurate.

The monitored area is mapped to a two-
dimensional coordinate system with dimensions x
and y, where object positions are represented as
points with (x,y)-coordinates.

Moving objects change their position over time.
The object movement is defined as a vector in (x,y)-
space, which represents the object velocity. This
velocity vector is required for performing predictive
queries (described in Section 2.3).

2.1.1 Updates

In order for the LBS to stay up-to-date on current
object locations, it is necessary to send updates to
the server. Updates are of the following form:

oid: Unique object ID.

coord: New (x,y)-coordinates of the object.

v: New (vx,vy)-velocity vectors of the object.

Upon receiving an update, the server updates the
existing object position information.

2.2 Update Policies

There are several strategies for updating the server,
which we will examine below.

2.2.1 Time-based update policy

One update policy is that each object sends an up-
date every x time units, e.g. 5 seconds. It is assumed
that no objects will move enough to make the data
on the server outdated or unacceptably inaccurate
within that period.

This policy has some undesirable side-effects:

Server costs If we monitor 100,000 objects at 5
second intervals, they generate 20,000 updates
per second. Current DBMSs are not designed
to handle such large volumes of updates - par-
ticularly not if objects are spatially indexed.
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Figure 1: Point-based update policy. When the object is
more than some ∆ from its last stored location it triggers an
update.

Client costs Communication on wireless networks
induces a significant computation overhead on
mobile devices. Since devices are typically
battery-powered, this causes shorter operation
time.

Network costs The large volume of updates may
challenge the performance of wireless net-
works. Furthermore, transmitting data via
mobile operator networks remains rather ex-
pensive, although cheap flatrate 3G subscip-
tion solutions are emerging.

The number of updates can be reduced signifi-
cantly. For example, when cars move, their position
needs to be updated, but most of the time they re-
main stationary, and it is not necessary to send any
updates during these periods.

Another issue is that time is not the most suit-
able measure in this setting. Essentially, if the x
time units between updates is too low, too many
updates are generated, leading to the mentioned
side-effects. If x is too high, accuracy is insuffi-
cient. Besides, even the smallest time interval be-
tween updates does not provide any guarantee as to
how far the object has moved since the last update.
The deviation can be approximated if a global maxi-
mum speed is included in the calculation since it de-
fines the maximum possible movement from the last
stored location, but this requires knowledge about
the maximum speeds of the monitored objects.

Time-based update policies do not allow for re-
ductions in updates without loss of accuracy, be-
cause they are triggered by changes in time, which
is constant.

If instead updates are triggered by change in
space, then the number of updates can be reduced
while still maintainging some accuracy guarantee.

2.2.2 Point-based update policy

The point-based policy, introduced by Civilis et
al. [3], uses the fact that objects are location-
aware, so that updates are only sent when the ob-
ject moves beyond a given position threshold. In

the point-based update policy, an objects position
is represented as the most recently stored location
(xstored, ystored) and the distance from this location
is calculated based on (xupd, yupd). An update is
triggered if the object moves more than some dis-
tance threshold:

∆ =
√

(xupd − xstored)2 + (yupd − ystored)2

from its last stored position, as illustrated in Figure
1.

This way, the number of updates can be signifi-
cantly reduced. Updates are not sent when the ob-
ject is stationary, and there is a guarantee that the
object is located within a specific distance from its
last stored position. The time of the last update is
not stored, since at any given time, the object posi-
tion will not have changed beyond the ∆ threshold.

Other update policies like vector-based and
segment-based were proposed by Civilis et al. [3].
They can further reduce the number of updates
required to maintain a given ∆ threshold guaran-
tee, but since they introduce added complexity, and
since update policies are not our main focus, we use
only the point-based update policy in this paper.

2.3 Queries

There are various query types which an LBS can
support. We support object queries, current-
time and predictive range queries, along with kNN
queries. In this section we define these queries and
their semantics.

2.3.1 Object Query Semantics

Object queries take an object ID as a parameter to
locate and return the position and velocity data of
the corresponding object. The object ID is typically
a unique identification number.

The object query is the first step of the update
operation, where it is necessary to query the object
in order to delete the old location information, be-
fore the updated information can be inserted. Since
an architecture that scales to handle a large num-
ber of updates is required, performing fast object
queries is essential.

Although the object queries are important, their
semantics are simple, so they are not discussed fur-
ther in this section.

2.3.2 Range Query Semantics

In spatio-temporal range queries we answer ques-
tions like: ”Which objects are located within a spec-
ified area at a given time?”. We have a a query area
q, the simplest 2D shape being a rectangle which is
defined by two points qmin and qmax and a query
time tq, where tcurr ≤ tq.

If the shape is a rectangle, cube or n-dimensional
hypercube, it is defined by a minimum and maxi-
mum value in every dimension. This means that we
can define a general formula for evaluating a query
for a given dimension d.
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All objects send updates and when a query is
made, the object position dq at the query time tq is
calculated as shown in Figure 2. The calculations
use tcurrent and the position and velocity of the ob-
ject at the time of the query dstored and vdstored

. The
query interval is defined as [dqmin , dqmax ].

There are current-time and predictive range
queries. Considering the current-time case, with the
time-based update policy, the last stored position
could be used, but would be inaccurate. Project-
ing the last stored position into current-time using
the velocity vectors would require a timestamp pa-
rameter to be added to each update, and would also
require computing the projection, generating server
overhead.

However, when using the point-based update pol-
icy, updates occur only when an object moves be-
yond the distance threshold ∆ of its last update
position. The update policy provides the guaran-
tee that until an object updates, it remains located
within the threshold of the position stored from the
last update, that is (in the d’th dimension):

dq ≈∆ dstored

Hence, the last stored object position is also used
to indicate the current object position, since that is
assumed to be within the threshold.

For predictive range queries, it is necessary to
project the current position into the future. The
temporal offset used to calculate the projected po-
sition, toffset, is the difference between the current
time, tcurrent, and the query time, tq, i.e. :

toffset = tq − tcurrent

Therefore, the formula for calculating the predicted
position of an object is:

dq = dstored + vdstored
× toffset

and the query that must be satisfied is:

dqmin
≤ dq ≤ dqmax

An object in n-dimensional space qualifies a query
q iff it satisfies the query in all n dimensions.

2.3.3 Range Query Precision

The precision of a range query depends on the pre-
cision of the queried data. As described in sec-
tion 2.2.2, the point-based update policy provides
a guarantee that objects are located within a ∆ dis-
tance from the position which is stored on the server.
This inaccuracy has to be taken into account when
processing queries, as it affects the correctness of
the results, e.g., the stored coordinates of an object
might be outside the query area, while the objects
actual position is inside the query area, or vice-versa.
This makes it necessary to create an expansion cor-
responding to the ∆ threshold which ensures that
every object which could be inside the query area

Figure 2: An illustration of how the position at query time
is calculated using the current time.

is included into the result. Some objects in the re-
sult may not actually be within the queried area, but
since the inaccuracy is guaranteed to stay within the
limits of the ∆ threshold, this is acceptable.

One way to handle this inaccuracy in the range
queries is to expand the query area in every direction
by the maximum error margin of the position data.
This way, all objects that are located within the orig-
inal query area will be included in the result, even
if their current position deviates from their stored
position.

Another approach is to expand object coordi-
nates, i.e., instead of representing objects as a points
in the coordinate system, they should be represented
as circles with point coordinates as the center and
a radius of ∆. This way, the range queries do
not need to be expanded. However, object expan-
sions introduce another issue, which is the index-
ing of non-point objects. For example, R-Trees can
be extended to index circles, but calculating over-
laps between query rectangles and object circles re-
quires more computation than calculating overlaps
between points and rectangles. This approach is ill-
suited for grid index structures, because it is imprac-
tical to index non-point objects in grids. Since query
precision is not the focus of this paper, only one ap-
proach, where queries are expanded, is explored.

In the case of predictive queries, the guarantees
provided for the results are tentative. When process-
ing these queries, it is assumed that objects main-
tain their last reported velocities until the prediction
time. The projection of object velocities into the fu-
ture means that update policy guarantees only apply
to the extent that this assumption holds.

2.3.4 kNN Query Semantics

A standard kNN query is defined like this: find
k nearest neighbours (objects) for a point q. The
parameter k defines how many nearest neighbours
to find, whereas the parameter q defines the query
point. The semantics of kNN queries are as fol-
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Figure 3: Overview of hardware memory hierarchy archi-
tecture.

lows. Given a query point q on a set of moving
objects O, it must be ensured that the query result
set O′, which is a subset of O, satisfies the conditions

a)|O′| = k
b)∀o ∈ (O−O′), dst(q, o) ≥Max{dst(q, o′)|o′ ∈ O′}

Condition (a) ensures that the query result set
contains k objects, whereas condition (b) ensures
that these k objects are the k nearest ones to q.
In condition (b), dst(q, o) is the distance betweeen
the query point q and the location of object o, and
dst(q, o′) is the distance between query point q and
object o′.

2.4 main-memory

Traditional database applications require a high
level of persistence. Hard-disk drives are persis-
tent and have therefore been the preferred medium,
and thus DBMSs are optimized for storing data on
disks. Users of applications for monitoring moving
objects, however, tend to value speed over persis-
tence, e.g. historical information about the 10 clos-
est emergency vehicles two weeks ago, is not impor-
tant. Instead, users want fast and accurate results
of queries on the current and predicted positions of
moving objects.

main-memory sizes have increased in recent
years, and since the cost of accessing disk is orders
of magnitude slower than accessing main-memory,
implementing the database in main-memory is now
an option that can boost the speed of applications.

Running the database in main-memory does not
eliminate performance bottlenecks related to the
hardware. The problems rather move up one level in
the memory hierarchy [8]. In disk-based databases,
indexing structures are optimized for loading disk-
blocks consecutively into main-memory, in order to
avoid random accesses which are slow compared to
the main-memory and become a bottleneck since the
CPU must idle while fetching additional data from
disk.

When the database runs in main-memory, data
access is much faster. However, main-memory
speeds are significantly slower than CPU, and the

performance gap between CPU and main-memory
is steadily increasing [2]. The current development
suggests that the ratio of CPU instructions to ran-
dom main-memory access will soon be up to 1:1000.
That is, CPUs perform 1000 cycles between random
accesses to main-memory [4].

To narrow this gap, the size of the Level 1 and
Level 2 CPU caches (see Figure 3) have been in-
creased by hardware manufacturers, in order to min-
imize CPU idle time. These memory caches operate
at speeds that are closer to the CPU. However, the
cache memory is very expensive, so the size is still
limited.

Unlike disk drives and main-memory, the OS and
programmers have no control over the CPU caches,
as that would incur a heavy resource administra-
tion overhead, which would eliminate the gains of
having the caches [4]. The caches are therefore ad-
ministered by the CPU. The CPU will attempt to
optimize cache utilization, such that the number of
random main-memory accesses (or cache misses) is
minimized, using concepts like spatial and temporal
locality.

This means that main-memory applications can
be designed to be cache conscious. Even though
we do not have direct control over CPU caches, we
can still implement applications that take the mem-
ory hierarchy structure into account, and e.g., use
arrays instead of linked lists to preserve spatial lo-
cality, such that data can be prefetched from lower
levels in the memory hierarchy, making the applica-
tion perform faster.

Disk-based applications are typically optimized
for disk blocks. Similarly, main-memory applica-
tions can be optimized for the cache lines. Since
the cache line size is typically no more than 64 or
128 Bytes, corresponding to a mere 3-5 objects of
size 20-40 Bytes, the optimal size of data elements
is usually some multiple of cache lines.

Our proposed designs follow the above men-
tioned guidelines, e.g. data locality is preserved.
Having described the setting, we proceed to discuss
the related work in Section 3. In Section 4, we
consider various approaches that provide solutions
to the mentioned issues of updating and querying
main-memory indexes.

3 Related Work
The research in spatial database indexes has tra-
ditionally focused on Geographic Information Sys-
tems (GIS) that store few, complex and relatively
static spatial objects like polylines or polygons with
large numbers of vertices and which perform few,
advanced queries with expensive spatial joins [14].
This is evident from the design of traditional spa-
tial indexes like the R-tree proposed by Guttman
[5], which is optimized to handle queries efficiently.
This comes at the cost of update efficiency.
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Many new applications monitor large numbers
of simple, dynamic spatial objects, e.g. points that
are frequently updated and perform frequent albeit
relatively simple queries, e.g., range queries. Thus,
there is a need for indexing structures which effi-
ciently handle vast amounts of updates, in addition
to frequent queries.

In Section 2.2 we introduced update policies,
which are used to reduce the amount of updates.
Wolfson et al. [16] proposed dead-reckoning policies,
which use a deviation threshold to determine when
to update the position of an object. This is also
the concept of shared-prediction updates proposed
by Civilis et al. [3]. Dead-reckoning policy requires
objects to store road network information and pos-
sible predefined routes, whereas in point-based and
vector-based shared-prediction update policies, this
is not neccesary. We use the point-based update
policy, because it requires the least amount of addi-
tional calculations in the indexes.

Several indexes for dynamic moving object track-
ing have been proposed, e.g. tree structures like the
TPR-tree [15], Bx-tree [6], Bdual-tree [19], and grid-
based structures like the LUGrid [18] which are all
disk-based.

Some LBSs require information about past posi-
tions, whereas other applications only index current
and near-future positions of objects. Persistence is
required in the first category of applications, and is
well supported in disk-based implementations, but
it is typically less important in the second category
of applications. Increasing main-memory sizes make
it feasible to implement databases in main-memory,
and since main-memory access is much faster than
disk access, this significantly reduces the update and
query response time of an application.

Indexes like the cache sensitive B+-tree, or
CSB+-tree, proposed by Rao et al. [12] and the
cache conscious R-tree, or CR-tree, proposed by Kim
et al. [8], optimize the design of their disk-based
counterparts for better cache utilization. main-
memory implementations are typically optimized for
cache line size, which is much smaller than the size of
a disk block. The CSB+-tree therefore uses pointer-
elimination, where nodes on each level of the tree
are stored contiguously, such that more node data
can fit in each cache line. In the CR-tree, this tech-
nique has less impact due to the higher space con-
sumption of each node, and therefore the CR-tree
also applies techiques like quantization and key com-
pression, storing MBR coordinates relative to parent
MBRs. In both approaches the aim is to compress
the data stored in the indexes, which adds addid-
ional cost to updates and queries. To some extent,
data compression can be added to any index. There-
fore for the relative comparission of indexes it does
not have a significant influence and we do not ex-
plore it further.

Authors of spatio-temporal indexes typically

compare their index to one or a few other competi-
tive indexes, e.g. [12] and [8]. However, these com-
parisons tend to focus on the promising properties
of the proposed index. Jensen et al. [7] propose the
COST benchmark for evaluating disk-based indexes
for the current and near-future positions of mov-
ing objects, measuring CPU and I/O performance
of queries and updates. Myllymaki et al. propose
the DynaMark benchmark [11] for evaluating main-
memory indexes, but they do not consider future
predicted positions of objects.

4 Solution Overview
First, we give an overview of well-known data struc-
tures that can be used for indexing moving objects.
Second, the advantage of adding a secondary index
is discussed.

4.1 Data- And Space- Partitioning
Indexes

As discussed earlier, LBSs are becoming increasingly
popular, so the number of users is expected to rise.
Hence, the data structure used to implement appli-
cations must be scalable.

Linked lists provide quick insert operations, and
allow the number of users to grow without increasing
costs of insertion. However, the update performance
scalability of a linked list is inadequate since, in the
average case, half of the list has to be traversed to
locate an object. Alternatively, an array or a hash
table structure where each object has a unique ID,
which is used for indexing, provides fast updates,
but both structures need to be reallocated as the
number of objects increases.

In addition, a key requirement is that the mon-
itoring applications must support fast queries (e.g.
current-time and predictive range queries, as well
as k-NearestNeighbour queries). However, in each
of the mentioned data structures, a full traversal
is needed in order to determine the result of each
query. If the number of monitored objects is large,
e.g., 100,000, and the size of the queries correspond
only to a small fraction of the monitored area, then
queries need to be performed more efficiently.

The R-tree structure [5] performs fast queries on
static, multi-dimensional data. However, R-trees are
slow at performing updates due to the cost of main-
taining the tree structure.

This scenario has inspired the research of index-
ing structures that support fast updates as well as
fast queries. The widely used B+-tree index struc-
ture generally supports these requirements, but does
not support multi-dimensional data.

Structures like the Bx tree [6] uses linerization,
space-filling curves and multiple B+-trees to repre-
sent multi-dimensional data. Despite the lineriza-
tion techniques, handling multiple dimensions using
B-trees remains fairly complex and incurs a signifi-
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cant computational overhead. Though space-filling
curves provide efficient range query processing, the
support for kNN queries is poor.

In the previous paragraphs we only discussed
structures which index the data. An alternative ap-
proach is to index the monitored space. This is typ-
ically done using a multi-dimensional array, or grid,
where each element, or cell, represents some spatial
range of the monitored area. One example of such a
structure is the LUGrid [18], which performs delete
and insert operations lazily to optimize update per-
formance. The direct mapping from coordinates to
the address of a grid cell allows fast updating. How-
ever, grid performance degrades when most objects
are concentrated in one or a few grid cells (position
skew), since all objects in a cell need to be traversed
during updating and querying. Moreover, memory
has to be allocated for all cells, even if many of them
contain no objects.

Some Quad-trees also index the monitored space,
but unlike the grid, a quadtree partitions the space
dynamically. In quad-trees the nodes are always
partitioned into four children when their capacity
is exceeded; one for each quadrant in the 2 dimen-
sions, divided on the North-South and East-West
axes. The quad-tree therefore tends to partition the
space where objects are concentrated, making it bet-
ter suited for skewed data, and does not suffer from
the drawbacks of the grid. However, the quadtree is
not a balanced structure, making worst-case query
performance worse than that of a linear scan of the
dataset, which is inadequate.

4.2 Secondary index

In order to support fast range and kNN queries, the
Grid and the R-Tree index the data on its spatial in-
formation, i.e. object coordinates make up the index
key. This means that during updates, the outdated
object data must be located using spatial informa-
tion.

Figure 4: Abstract example of a secondary index.

This procedure is cumbersome, and if all objects
have a unique object ID oid, there is a more efficient

approach. The idea is to create a secondary index,
which uses oid as the index key and points to the
location in the primary index associated with that
key. In addition, the data of the secondary index
can include extra primary index information for an
object, e.g. an index number in an array. The con-
cept is illustrated as an abstract example in Figure 4.
The secondary index uses oid as its key, and its data
is the primary index information (PI info). Part of
that information is a pointer to the primary index,
where the data of an object is located. This way,
near constant O(1) updating time can be achieved,
whereas when using spatial data for updating, con-
stant O(1) time is hardly achievable.

A hash table is a suitable structure for secondary
indexes, as it supports efficient insertions, deletions
and searches. Although the time spent in searching
depends on the hash function and the load on the
hash table, both insertions and searches approach
O(1) time, especially when keys are unique, which
is the case with oids.

The efficiency of an indexing structure is often
a tradeoff between update and query performance.
We propose indexing structures that consist of two
indexes, a primary index ensuring efficient queries,
and a secondary hash table index which provides fast
updates. The processing costs of maintaining the
secondary index are compensated by faster object
look-ups.

Instead of examining advanced indexing struc-
tures, we focus on examining the performance of
basic space and data partitioning indexes, that is,
a Grid and an R-tree implementation, which we ex-
tend by using secondary indexes and optimize for
running in main-memory.

5 Structures
In the following two subsections, we discuss the de-
sign and optimizations of updating and querying in
our proposed main-memory variants of Grid and R-
tree index structures and their secondary indexes.
In the third subsection, we present a simple array
design, which is the näıve solution to indexing, and
discuss the pros and cons of that solution.

5.1 Grid

The grid is a space partitioning index, where a pre-
defined monitored area is divided into equal and
fixed size rectangles, referred to as cells. Objects,
whose coordinates fall within the boundaries of a
grid cell belong to that particular grid cell. Each
grid cell holds a list of objects that are within the
boundaries of that cell.

The main parameters defining the grid are the
total monitored area and the grid cell sizes, xgcs and
ygcs, respectively for the x and y dimensions. xgcs

and ygcs define the lengths of a cell in the respective
dimensions.
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Formally, objects are within the same grid cell if
their x coordinate is within the range [xcell, xcell +
xgcs) and their y coordinate is within the range
[ycell, ycell + ygcs), where xcell = b x

xgcs
c · xgcs and

ycell = b y
ygcs
c · ygcs.

5.1.1 Design

The overall design of the grid structure is illustrated
in Figure 5. The structure consists of a grid index
and a secondary index.

Figure 5: An example of the overall design of the grid struc-
ture

Since array structures are well-suited for organiz-
ing data efficiently in main-memory [1], the grid in-
dex is stored as a two-dimensional array of pointers.
Each grid cell within the array contains a pointer to
the linked list of buckets. In the example in Figure
5, b0 and b1 are the first two buckets of a grid cell.
Objects within a grid cell are grouped into those
buckets, which are of a fixed and predefined size.
The grouping has no spatial or any other type of
ordering. Objects are stored in buckets, because the
data to be processed during updating or querying
is loaded in blocks (cache lines) to the CPU cache
from main-memory as mentioned in Section 2.4. A
consecutive block of memory is allocated for each
bucket. The size of a bucket is called a bucket size
and is defined in bytes. Each bucket has data and
meta data fields. The meta data field contains a
pointer next, which points to the next bucket in the
list of a grid cell and k, which is the current num-
ber of objects in the data field of the bucket. The
data field contains the object data (o3, o6, o7, o8, o9
in Figure 5). As defined in Section 2.1 object data
consists of an oid, x, y, vx and vy.

Every object in the primary index has exactly
one entry in the secondary index. The entry consists
of four fields p1, p2, oid and k. The pointer p1
points to the bucket of a grid cell that contains the
object, whereas the pointer p2 points to the grid cell
that contains the bucket, where the object data is
located. The oid is used as a unique hash table key
for fast look-ups. The last parameter k is an index

number which is used to determine where exactly
the data of an object is stored in the bucket.

As an example of the composition of a bucket,
in a 64-bit system the size of an object data is
8(oid) + 4(x) + 4(y) + 4(vx) + 4(vy) = 24 bytes.
The meta data field of a bucket takes up 16 bytes
of memory, 8 bytes for the next pointer, 4 bytes for
the k and 4 bytes of padding, which should not be
discarded, since the pointers and oids have to be
aligned on 8 byte boundary in main-memory as dis-
cussed later in Section 6.2. The data field takes up
(bucket size− 16) bytes. So the maximum number
of objects kmax that fits into a bucket is calculated
using this formula: kmax = b bucket size−16

24 c.

5.1.2 Updating

As objects change position, the index needs to be
updated accordingly. An object might move from
one grid cell to another, triggering a non-local up-
date, or stay within the boundaries of the current
cell, triggering a local update. If an update is local,
then only the values of coordinates x and y and ve-
locity vectors vx and vy are updated. If an update
is non-local, the object must be deleted from the old
cell, and inserted into the new one.

The design is optimized for local updates, where
only the object data, i.e. x, y, vx, and vy is updated
(overwritten). The optimization is achieved by us-
ing the primary index information in the hash table,
namely the bucket pointer p1 and the object posi-
tion k within a bucket. In a local update, p1 and k
are used to compute the address of the data to be
updated in memory, hence no scanning is required,
which is particularly desirable in grids with large
grid cell sizes. After finding the memory address, the
data is overwritten. In the delete operation, a linear
scan of buckets and a linear scan within a bucket, to
locate the object, are also avoided by calculating the
memory address of the object to be deleted using p1
and k. Although maintaining p1 and k adds addi-
tional computational cost during non-local updates,
it is compensated by the gain of making look-ups in-
stead of linear scans during local updates and delete
operations.

The pointer p2 from the hash table entry is used
to efficiently determine whether an object has moved
outside the boundaries of its current grid cell. It is
also used during delete operations, when moving the
last object from the first bucket of a grid cell into
the bucket space of the deleted object. This ensures
that all except one bucket per grid cell are full, which
enhances query performance.

The algorithm in Table 1 shows how updating
the grid structure is accomplished. The algorithm
checks if the object being updated already exists in
the hash table and creates it if it does not (Lines
3-7). The pointer hte is a hash table entry of an ob-
ject. If the coordinates of the update are within the
grid boundaries (Line 8), the new cell is determined
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1 void update(Update upd){
2 pointer hte, new_cell, obj;
3 hte = ht_find(upd.id);
4 if (hte = NULL){
5 hte = allocate_memory();
6 ht_add(upd.oid, hte);
7 }
8 if (upd is within grid boundaries){
9 new_cell = getcell(upd.x, upd.y);

10 if (new_cell != hte−>p2){
11 if (hte−>p1 != NULL)
12 delete(hte);
13 insert(new_cell, hte, upd);
14 } else {
15 offset = hte−>k * size(objectdata)
16 obj = hte−>p1 + size(meta) + offset;
17 obj−>[x,y,vx,vy] = upd.[x,y,vx,vy];
18 }
19 } else
20 if (hte−>p1 != NULL)
21 delete(hte);
22 }

Table 1: The update operation of the Grid.

and checked against the old cell of the object (Lines
9-10). The getcell(x, y) operation (Line 9), returns
the pointer to the grid cell corresponding to the co-
ordinates x and y. If the object moved from its old
grid cell, it is deleted from that cell and inserted into
the new one (Lines 11-13), otherwise the data of the
object is located within the grid index and only the
values are updated (14-18). If the coordinates of the
update fall outside of the predefined grid area, the
object is deleted (Lines 19-22). The deletion (Line
12) and insertion (Line 13) algorithms are shortly
described in the following two paragraphs.

The delete operation, which is shown in Table 2,
is a simple and efficient operation done in near con-
stant (O(1)) time. The operation is supplied with
a hash table entry pointer, hte, of the object to be
deleted. Local operation variables are created and
assigned (Lines 2-8). First it is checked whether
the bucket is the first in the linked list of the grid
cell (Line 9) and if the object to be deleted is not
the last element in the bucket (Line 10). If both
conditions are true, the last element of the bucket
is moved into the place of the object to be deleted
(Lines 11-13). If the bucket is not the first in the
linked list, then the last element is taken from the
first bucket and inserted into the place of the ob-
ject to be deleted (Lines 15-21). Finally the element
count of the bucket is decreased by 1 (Line 22). If
the bucket becomes empty, it is removed from the
grid cell (Lines 23-26), and the hash table entry of
the deleted object is updated (Lines 27-28).

The insert operation, which is shown in Table
3, is also performed in near constant (O(1)) time.
Local variables are created and assigned in (Lines 2-
4). First it is checked whether there are no buckets
in the cell or the first bucket is full (Line 5). If so,
a new bucket is created and inserted (Lines 6-8), if
not, the insert at is set (Line 10). Finally the hash
table is updated (Lines 12-14) and the object data

1 void delete(pointer hte){
2 pointer first_bucket, bucket;
3 pointer first_data, data, hte_last;
4 int last_k;
5 first_bucket = hte−>p2−>next;
6 bucket = hte−>p1;
7 data = bucket + size(meta);
8 last_k = first_bucket−>k − 1;
9 if (bucket == first_bucket){

10 if (hte−>k != last_k){
11 hte_last = ht_find(data[last_k].oid);
12 data[hte−>k] = data[last_k];
13 hte_last−>k = hte−>k;
14 }
15 } else {
16 first_data = first_bucket + size(meta);
17 hte_last =

ht_find(first_data[last_k].oid);
18 data[hte−>k] = first_data[last_k];
19 hte_last−>k = hte−>k;
20 hte_last−>p1 = hte−>p1;
21 }
22 first_bucket−>k−−;
23 if (first_bucket−>k == 0){
24 hte_last−>p2−>next =

first_bucket−>next;
25 free(first_bucket);
26 }
27 hte−>p1 = NULL; hte−>p2 = NULL;
28 hte−>k = −1;
29 }

Table 2: The delete operation of the Grid.

1 void insert(new_cell, hte, upd);{
2 pointer bucket = new_cell−>next;
3 pointer data;
4 int insert_at = 0;
5 if (bucket == NULL || bucket−>k ==

k_max){
6 bucket = allocate_memory();
7 bucket−>next = new_cell−>next
8 new_cell−>next = bucket;
9 } else

10 insert_at = bucket−>k;
11 data = bucket + size(meta);
12 hte−>p1 = bucket;
13 hte−>p2 = new_cell;
14 hte−>k = insert_at;
15 data[insert_at] = upd;
16 bucket−>k++;
17 }

Table 3: The insert operation of the Grid.

is inserted (Lines 15-16).
The insertion and deletion algorithms ensure

that only the first bucket of a grid cell can be not
full, whereas all the other following buckets are full.
By having a large amount of fully filled buckets, the
number of buckets needed to hold all the objects
is decreased, which results in better query perfor-
mance.

5.1.3 Parameters

The performance of the Grid is adjusted by tun-
ing the defining grid cell size gcs = xgcs = ygcs

and bucket size parameters. If the gcs is very low,
e.g. a small fraction of the extent in a given di-
mension, then objects change grid cells more often
and the average cost of an update becomes higher.
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Figure 6: kNN query cell groups.

Range queries are also affected by this parameter,
depending on their coverage area, e.g., if a range
query coverage is very low, then the Grid with a low
gcs performs better than the Grid with a high gcs.
Increasing the bucket size also increases the query
performance due to a better storage locality of ob-
jects within the cell. Updates are not affected sig-
nificantly by the different values of the bucket size,
because the exact memory location of an object is
determined by using the secondary index, i.e. the
hash table. The last parameter of the Grid is the to-
tal monitored area, which is a rectangle that defines
the scope of the Grid using two boundary points.

5.1.4 Range queries

A current-time range query is defined by two
points in the coordinate system (xqmin , yqmin) and
(xqmax , yqmax). The algorithm is as follows. First,
the cells covered by the range query are split into two
groups - fully covered and partially covered. The ob-
jects from fully covered cells are put into the result
list by scanning the linked lists of buckets. Objects
from partially covered cells are checked individually
to determine whether they are within the range of
the query and only then are they put into the result
list.

A predictive range query is defined by two
points in the coordinate system (xqmin , yqmin),
(xqmax , yqmax) and a prediction time offset toffset.
The algorithm is similiar to the current-time range
query. It is done by expanding the original range
query by exp = vmax × toffset in every direction in
every dimension. Afterwards all the linked lists of
the cells that are partially and fully covered by the
expanded range query are scanned through and all
objects are checked to determine whether they will
be within the original range of the query after the
toffset. Formally an object whose coordinates are
x and y, velocity vectors are vx and vy satisfies the
query if:

xqmin
≤ x + exp ≤ xqmax

and
yqmin

≤ y + exp ≤ yqmax

5.1.5 kNN queries

A kNN query is defined by a query point q and the
number of nearest neighbors required k. The algo-
rithm used for performing kNN queries in Grids is
fully described in a recent paper by Wu and Tan
[17]. The main part of the algorithm is called VOB
(Visit Order Builder). The cells in the grid index are
divided into different groups, such that cells within
each group have similiar minimum distances to the
query point. The division is illustrated in Figure 6.
The point q is the kNN query point and cell(q) is
the grid cell where the query is. First the grid cells
around cell(q) are divided into different levels. The
cells around cell(q) form the first level. The cells
around level l form the (l + 1) level. In Figure 6(a)
cells connected by a dotted line belong to the same
level. cell(q) is defined as level 0, and level l + 1
is defined as the cells around level l. Next the cells
in each level l are divided into l + 1 groups based
on their relative positions to cell(q) as illustrated in
Figure 6(b). Each group has 4 or 8 cells depending
on the position of the group. Cells within a group
have similiar minimum distances to the query point.
LlGg is used to refer to the Group g of Level l. The
formed groups have the following properties:

� Each cell belongs to one and only one group.

� The cells in the same group have similar min-
imum distances to q. (This property does not
hold for small values of l.)

� The minimum distance between LlGg and q is
smaller than the minimum distance between
Ll+1Gg and q.

� The minimum distance between LlGg and q is
smaller than the minimum distance between
LlGg+1 and q.

A priority queue, where the elements are ordered
by their minimum distance to q, is formed. The pri-
ority queue is implemented using a heap data struc-
ture. Heap data structure is a good choice for imple-
menting a priority queue, because, given a priority
queue of n elements, insert and delete operations
are done in O(log2(n)) time, whereas finding the el-
ement with the lowest minimum distance is done in
O(1) time. The element pushed into the priority
queue is either a cell or a group. Initially, the cell
cell(q) and group L1G1 are pushed into the priority
queue. A function NextCell(q) de-queues an ele-
ment from the priority queue. If a cell is de-queued,
it is just returned. If a group LlGg is de-queued:

� The cells within the group (computed on-the-
fly) are pushed into the priority queue;

� Group Ll+1Gg is pushed into the priority
queue;

� If g = l, then LlGg+1 is pushed to the priority
queue.
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1 void kNN_query(Point q, int k){
2 int k_found = 0, min_dist = 0;
3 int cd = MAX_INT_VALUE;
4 pointer cell = NULL;
5 OrderedList rl;
6 PriorityQueue pq;
7 pq−>enqueue(cell(q));
8 pq−>enqueue(L1G1);
9 while(cd > min_dist){

10 while (cell == NULL)
11 cell = NextCell(q);
12 min_dist = cell−>min_dist(q);
13 for (Every object in the grid cell)
14 if (k_found < k){
15 rl−>enqueue(object);
16 k_found++;
17 } else
18 if (object−>min_dist(q) <

rl−>max_dist(q)){
19 rl−>ReplaceFirstElementWith(object);
20 cd = object−>min_dist(q);
21 }
22 }
23 return rl;
24 }

Table 4: The kNN operation of the Grid.

� Recursion to NextCell(q) is used until a cell
is returned.

In the original description of the kNN algorithm,
when a group is de-queued, recursion is used until
a cell is de-queued and returned. Depending on the
data, the grid cell size and the kNN query parame-
ters the algorithm can end up doing an excessively
deep recursion, which can overflow the call stack and
result in the crash of the application as explained
in Appendix B. In our design, the recursive calls
are substituted with a cycle in the kNN query algo-
rithm, therefore the last item in the above list is not
performed.

A high level description of the kNN query oper-
ation is shown in Table 4. The operation is supplied
with a query point q and the number k. The critical
distance parameter cd is assigned a maxmimum in-
teger value (Line 3). In Lines 2-4 initial parameters
are created and set. The priority queue pq is ordered
ascendingly by the minimum distance to the query
point q. The result list rl stores the k nearest ob-
jects to point q, and is ordered descendingly by the
minimum distance to the query point q. It is ordered
descendingly, because when there are k items in the
list, only the first item needs to be checked and re-
placed if neccessary. Initially, cell(q) and L1G1 are
enqueued into the priority list (Lines 6-7).

The while cycle (Line 8) is continued until the cd
is higher than the min dist of the last visited cell.
First the next nearest cell to q is acquired (Lines 9-
10). Then all the objects within that cell are checked
(Lines 12-20), and if k objects are already found,
they are checked against the first object (the one
with the highest min dist to q) of the result list rl
and replaced if neccesary (Lines 17-20). If less than
k objects are found, the object is inserted into the
result list rl (Lines 13-15).

5.2 R-Tree

The R-tree is a balanced, tree based, data partition-
ing index structure for indexing multi-dimensional
objects. It is based on the concept of minimum
bounding rectangles (MBRs). An MBR is the small-
est rectangle that encloses a group of point objects,
and in the R-tree a node is defined by an MBR which
encloses all of the descendants of the subtree. The
R-tree is a data partitioning index because it di-
vides children in a node based on their relative lo-
cations without considering the underlying space in
which the tree is defined. Depending on the design
of the tree, MBRs within one level of the tree can
be allowed to overlap, making the insertions and up-
dates less computationally heavy than if the nodes
had strictly non-overlapping MBRs. This is a trade-
off between update performance and query perfor-
mance, since overlapping MBRs might necessitate
investigating several branches of the tree that cover
the same area. The details of this issue is discussed
later in Section 5.2.2.

The R-tree has two parameters that affect the
growth and balancing of the tree structure; the
fanout and the minchildren. The fanout defines the
maximum number of children that a node can con-
tain. The node size is the size of allocated memory
for each node. This consists of the node meta data
and the fanout multiplied by the size of a child. If
a node exceeds the fanout, a split occurs and the
children are divided between the overfull node and
a new node which is added to the parent node. If a
split occurs in the root node, the height of the tree
is increased by one level, creating a new root node
and inserting the old root and its new sibling. This
is also the reason why the tree is balanced, since the
tree grows upwards and all objects are inserted at
the lowest level of the tree. The lower the fanout is
the higher the tree becomes because more leaf nodes
are required to contain the objects and more inter-
nal nodes are required to contain those leaf nodes.
However, if the fanout is high the nodes themselves
become larger, taking up more space and costing
more to process individually. The higher number of
children in a node also means that each node covers
a larger area and thus searches become more inef-
ficient because it is more likely that a child of the
node that is being processed is not within the query
area. This means that there is a trade-off between
the costs of traversing the tree and the costs of pro-
cessing large nodes.

When the R-tree is used to index static data, it
grows as new data is inserted, but when used to in-
dex dynamic data, the tree can also shrink when a
child is deleted from a node, or make a branch of the
tree shrink if a child is moved from one node to an-
other. This makes it necessary to have another pa-
rameter, minchildren, defining the minimum num-
ber of children a node may contain before it should
be merged with other nodes. Minchildren can be
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any integer value between 1 and fanout/2. The rea-
son why minchildren can not be higher, is that a
split cannot divide the children of a node if more
than half are required to be in each of the result-
ing nodes, since the split would then immediately
trigger a merge due to the required minchildren.

5.2.1 Design

We propose a main-memory R-tree which is com-
posed of nodes that each contain meta data and
information about their children. Each node is as-
signed to a continuous part of memory in order to
maintain data locality for faster access. As illus-
trated in Figure 7, there are two types of nodes in
the index; internal nodes, which are nodes contain-
ing other nodes and leaf nodes, which are nodes at
the lowest level of the tree and contain the objects
stored in the R-tree, i.e. the leaves of the tree struc-
ture.

Figure 7: R-tree overall structure.

As illustrated in Figure 8, an internal node is
composed of a number of child entries followed by
node meta data describing aspects of the node itself.
Each child entry describes the location of the child
and the MBR that encloses the objects within that
child. In this way, it is possible to get the infor-
mation about all children of a given internal node
without having to access each of them individually,
which would produce an overhead in terms of time
consuming node accesses.

Figure 8: R-tree internal node composition.

The node meta data information can be divided
into four parts, detailing the location of the node

parent, the MBR of the node, the number of chil-
dren in the node, and a variable indicating whether
the node is a leaf node or an internal node. The loca-
tion of the parent node and the MBR are both used
when traversing up the tree. This will be discussed
in detail in the following section. The ’number of
children’-value is stored to support efficient delete
and insert operations within a node. During inserts,
the value is used to calculate the offset to the first
available element, such that objects can be inserted
in constant time, without having to scan the array.
The last variable is used to indicate whether the
node is a leaf node. Although the size of internal
nodes and leaf nodes is the same, leaf nodes do not
store the same information in the child entries. The
root node shown in Figure 7 is the same as an inter-
nal node, the only difference being that its parent
node variable is empty.

The child entries are stored before the node meta
data because of the way accessing entries is done us-
ing offsets. Since child entries are the same size as
the first two parts of the node meta data, it is possi-
ble to offset into the node in increments of that size
and get to the next child. The node MBR and par-
ent pointer can also be accessed easily by offsetting
into the node by the fanout value.

Figure 9: R-tree leaf node composition.

Leaf nodes contain the objects stored in the tree.
As illustrated in Figure 9, the information stored in
the leaf nodes differs from their internal node coun-
terparts, in that the children are point objects with
a velocity vector. Another difference is that the ob-
jects are stored in the node, so pointing to the child
location is unnecessary. Instead, the R-tree stores
the ID of the object.

Figure 10: An example of the secondary index in the R-Tree
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The secondary index entries consist of pointers
to leaf nodes, in which the objects are stored. They
also contain the array index numbers of objects in
the leaf nodes. This way, it is possible to find a spe-
cific object location without searching the primary
index. As illustrated in Figure 10 the object entry
in the secondary index has a pointer to the leaf node
where the object is stored and a k value that defines
the offset in that node.

5.2.2 Updating

An R-tree is updated by locating and deleting/rein-
serting the updated object. In the original R-tree
[5], this process is expensive in terms of process-
ing and accessing data, but if the data is mostly
static1 and advanced queries with many spatial joins
have to be performed efficiently, the high update
costs represent an acceptable trade-off. Since we ex-
pect a high number of updates for dynamic, spatio-
temporal objects, it is necessary to process updates
faster.

When performing a split in the R-tree, three al-
gorithms are proposed by Guttman [5]:

The Exhaustive algorithm creates the best possi-
ble split based on area and overlap of the re-
sulting nodes. However, this algorithm runs in
exponential time and it is therefore unsuited
for our implementation where fast update pro-
cessing is essential.

Quadratic-Cost algorithm attempts to find a
small-area split but is not guaranteed to find
the smallest one. It runs in polynomial time.
Since the goal is to handle large amounts of
updates this is also too processor heavy.

Linear-Cost algorithm identifies the two child
nodes that are furthest apart relative to the
node MBR of the splitting node. After the
seeds for the split have been chosen, the rest
of the children are divided between the nodes
according to the area of enlargement necessary
to add the child to a given node.

We use the Linear-Cost algorithm. Despite its
ability to provide fast node splits, it is not the most
efficient algorithm for queries, since the MBRs of
siblings are allowed to overlap each other, whereas
the other algorithms are designed to minimize or
avoid overlapping MBRs. The reason for choosing
this algorithm is that it works in linear time which
suits our goal of providing an index that perform
fast updates.

When the data is dynamic, accessing and pro-
cessing costs must be kept at a minimum. Using
the idea from Lee et al. [10], the goal is to perform
updates from the bottom up, making it possible to

1e.g. land register data, where it can be expected that the
data is only rarely changed.

avoid traverses down the tree. As explained above,
the update process can be divided into two opera-
tions:

Locating: Instead of using the old coordinates of
an object to find its position in the tree we
use the secondary index. This way the object
is located from the bottom without having to
traverse the tree.

Deleting/Reinserting: Instead of always per-
forming a deletion and insertion when updat-
ing an object, we check if the new location of
the object is still within the MBR of the old
node. Otherwise we traverse up the tree until
we find a node which the object is still inside
and then insert from there. This update strat-
egy has a worst case scenario where the tree
is traversed from leaf to root before a suitable
subtree is found, but in the average case, ob-
jects will not change their position radically
from one update to another, and thus the ob-
jects will tend to change location locally within
the subtree.

5.2.3 Range Queries

In the R-tree, range queries are performed by check-
ing from the root of the tree to the branches if a
query area overlaps the MBRs of the children. It
is a recursive function that is called on the chil-
dren of a node. The principle is shown in Figure 11
where the query area is overlapping the node MBR.
Then the children of the node (sub-nodes A-C) are
checked to determine whether their MBR overlaps
the query area. The MBRs of sub-nodes B and C
overlap so they are, in turn, checked to determine
whether their children overlap the query area. The
search of the tree is performed depth-first, such that
the child of a qualifying node will be checked be-
fore the siblings. When the search reaches a leaf
node all children in that node are checked and the
ones that are located in the query area are added
to the results. As explained in section 2.3, the only
difference between a current time range query and
a predictive range query is that the query area is
first expanded by the offset time and the objects
that qualify in the expanded query area are checked
to determine whether their predicted positions are
within the original query area.

5.2.4 kNN Queries

The kNN queries are performed using a heap struc-
ture and a linked list which is referred to as the Ac-
tive Branch List (ABL), and the result list, respec-
tively. These are used for intermediate node results
and object results, respectively. The way a kNN
query is processed is shown in Figure 12 and it is
based on the design by Kuan et al. [9]. That article
uses the techniques developed by Roussopoulos et
al. [13], but concludes that with clustered data the
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Figure 11: R-tree overlapping range query

kNN query can be performed much faster without
calculating the MinMax distance. Kuan et al. also
conclude that even without clustered data, the kNN
query is marginally faster when measuring only the
minimum distance to a node MBR and it requires
less computation to acquire the result. This suits
the design criteria of minimal processing and fast
performance that we require when implementing the
kNN query in the main-memory R-tree.

The ABL is a distance prioritized heap of nodes
awaiting processing. Elements of the heap consist
of the location of a node and the minimum distance
from that node to the query point q. If q is inside
a node MBR the distance is 0, since a negative dis-
tance is not possible.

When an element of the ABL is processed, the
distance to the children of the corresponding node
are inserted in the ABL and the processed element
is discarded. Thus the ABL works as a priority
queue where the closest element is processed and
discarded.

If the element is a leaf node, the children of the
node are objects, which are therefore inserted in the
result list instead of the ABL. Elements of the re-
sult list contain object data instead of the locations
of nodes, but otherwise they are identical to ele-
ments of the ABL. The ordering of the result list
is descending, as the objects that are inserted into
the list originate from nodes that are processed in
ascending order. This means that the objects are on
average going to be further away from q, the further
up the ABL they are situated. Ordering the result
list in descending order means that it is not neces-
sary to traverse to the end of the linked list for every
new result. The number of objects in the result list
is counted and when k results have been found, addi-
tional results are compared with the highest stored
result and the highest of the two results is discarded.

The kNN query continues until the highest
recorded result is lower than the lowest remaining
ABL element, since any objects within that element

Figure 12: R-tree kNN query processing.

will have the same or higher distance to q.

5.3 Array

The Array is an index which does not partition the
contained elements. The order of the elements is
not related to their spatial location, instead they
are indexed by their oids, and stored sequentially
in main-memory which allows for fast insert, delete
and update operations.

Since there is no spatial ordering of the elements,
it is necessary to traverse the entire structure in
order to answer spatio-temporal queries, i.e., this
structure is used to examine to which extent fast
updates can compensate for slow queries, to deter-
mine the level of justification, if any, of advanced
indexing structures like the Grid and the R-tree.

One major disadvantage of the array structure is
that it needs to be rebuilt in the event that the num-
ber of monitored objects exceeds the initially defined
size of the array. This leads to a severe degradation
of performance during the regeneration process.

6 Implementation
Before we proceed to describe our experimental set-
ting, we want to discuss some challenges that apply
specifically to main-memory implementations. Be-
yond the discussions within this section, some other
implementation details are presented in Appendices
A, C, D, and E.

6.1 Timing measurements

Since the indexes run in main-memory, operations
are performed very fast compared to disk-based
indexes. Therefore, the Standard C++ Library
clock() function, which depending on the operating
system can measure up to 1 micro second granular-
ity, is not sufficiently accurate.

Today, most CPUs have an internal cycle
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counter, which counts the total number of CPU cy-
cles from the computer boot up. The RDTSC in-
struction is used for reading the value of the counter.
The instruction is used to measure the cycle count
before an operation, e.g. a query or an update, and
after the operation. By subtracting the numbers
the operation CPU cycle count is acquired, which
is then divided by the CPU work frequency to get
the result in seconds. Before running the RDTSC
instruction, the CPU pipeline has to be cleared in
order to avoid out-of-order execution, where instruc-
tions are not necessarily performed in the order they
appear in the source code. Therefore, the CPUID
instruction, which ensures proper CPU cycle count
reads, is used before each RDTSC instruction.

In order to minimize inaccuracy due to process
switching by the operating system, all of the tests
are rerun a fixed number of times. After a fixed
number of reruns, standard deviations and means
are calculated for each of the timing results, e.g., for
the average update time, and for the average range
query time. If the standard deviation divided by the
mean is more than 1%, the tests are run again, until
it is less then 1%. At this point the fastest run is
returned.

6.2 Alignment in memory

Data stored in main-memory is said to be aligned
on an X byte boundary, if the start address of the
data is a multiple of X bytes. An unaligned memory
access, e.g. on 64 byte cache line system an access of
a 64 byte data structure aligned on a 16 byte bound-
ary, is broken up and turned into two aligned cache
line fetches. This is because the memory bus can
not perform unaligned cache line accesses to main-
memory. The same thing happens at the lower CPU
level, e.g. on a 64 bit system when accessing an 8
byte pointer aligned on a 4 byte boundary, the ac-
cess is split into two aligned 8 byte accesses (the
standard size of 64-bit CPU registers is 8 bytes), i.e.
two 4-byte pointer parts are loaded into two different
CPU registers. Therefore, unaligned access to mem-
ory represents a huge degradation of performance.

The standard c++ dynamic allocation function
malloc typically (depending on the operating sys-
tem) allocates memory where the start address is a
multiple of 16 bytes, i.e. the allocated memory is
aligned on a 16 byte boundary. In order to avoid
unaligned accesses, a different allocation function
posix malloc is used. This function can allocate
memory on a given boundary. Therefore we use this
allocation function in our indexes when allocating
data structures on a cache-line size boundary, e.g.,
when allocating nodes in the R-Tree or allocating
buckets in the Grid.

7 Experimental Setting
In this section we present the experimental work-
loads used to evaluate the indexes. We furthermore
describe the purpose of the individual experiments,
and describe the test setup.

7.1 Test Data

We create a number of benchmark experiments, each
defined by a set of workload parameters. As a point
of reference, we have identified a default workload
with settings that represent a scenario, which we
consider realistic for the type of LBS application
described in the Introduction. The set of default
values are listed in Table 5. In each experiment, we
alter a single parameter value, in order to determine
the influence which each individual parameter value
has on index performance. The values of the param-
eters are selected to reflect many different settings,
including some extreme cases to determine the ver-
satility of the indexes.

First, we briefly describe the values in Table 5.
We monitor 100,000 objects in an area of 100 x 100
km. Each object is assigned with a speed of either
12.5, 25, 37.5 or 50 m/s. A reasonable index lifetime
is offered by the 2,000,000 updates, which means
that on average, objects are updated 20 times dur-
ing one workload. The objects move between 500
hubs, which gives an object distribution with a low
level of clustering. 1,000 queries are performed in
total, distributed as 600 current-time (ct-RQ) and
200 predictive range queries (p-RQ), and 200 kNN
queries (kNN). The range queries cover 0.5% of the
monitored area and the predictive queries project
object positions between 0 - 30 seconds into the fu-
ture. The kNN queries locate the 100 objects that
are closest to the query point. As discussed in Sec-
tion 2.2, we use the point-based update policy, and
set the threshold to 100 meters in the default case.

We conduct eight different experiments, and in
the following subsections, the detailed goals and ex-
perimental parameters are described.

Experiment 0: Default parameter values

In this experiment, we test the performance of the
indexes with the default test data to get a point of
reference for the remainder of the tests.
Parameter values:
See Table 5.
Number of workloads:
1.

Experiment 1: Number of objects

This experiment is conducted to test the scalability
of the indexes. The number of objects is increased
while the total number of updates is kept constant.
Parameter values:
Objects = 200, 400,...,1000K.
Number of workloads:
5.
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Parameter Value
Objects 100,000
Space 100,000 x 100,000 m
Speedi, i = 1, .., 4 12.5, 25, 37.5, 50 m/s
Total Updates 2,000,000
Hubs 500
Query Quantity 1,000
Query Types ct-RQ, p-RQ, kNN; 600:200:200
Query Size 0.5%
Query Prediction offset 30 s
Number of NNs 100
Update Policy Point-based
Threshold 100 m

Table 5: Default workload parameters used in experiments.

Experiment 2: Index lifetime

In this experiment, the effect of extending the index
lifetime is examined by increasing the total num-
ber of updates while keeping the number of objects
constant. This test is done to determine to which
extent the indexes degrade when run longer than the
default time.
Parameter values:
TotalUpdates = 4, 8,...,20M.
Number of workloads:
5.

Experiment 3: Position skew

The purpose of this experiment is to determine the
performance of indexes when objects are clustered.
A high level of positional skew means that the ob-
jects generated tend to be clustered in one part of
the monitored area. With few hubs, the objects will
tend to be clustered, and with many hubs they will
tend to be more evenly distributed. If no hubs are
defined the objects will be distributed uniformly.
Parameter values:
Hubs = 5,10,15,20 (Very high skew); Hubs
= 50,100,150,200 (average skew); Hubs =
1000,2000,3000,4000,5000; Hubs = 0 (uniform dis-
tribution).
Number of workloads:
14.

Experiment 4: Maximum Speeds of Objects

This experiment tests the effects of varying the dis-
tribution of speeds among objects (Part 1), as well as
the the effects of varying maximum speeds (Part 2).
Fast objects are updated more frequently per time
unit in the Point-based update policy scheme, so the
update frequency increases with higher speeds.
Parameter values:
Part 1 (Distribution of speeds): All objects are as-
signed with either speed 12.5 m/s or 50 m/s, and
fractions of objects travelling 50 m/s are: 0.1; 0.5;
0.9.
Part 2 (Equal maximum speeds for all objects):

Speed = 1.67; 16.67; 33.33; 50; 166.67 m/s.
Number of workloads:
3 for Part 1; 5 for Part 2.

Experiment 5: Position accuracy threshold

This experiment is conducted in order to examine
the effects of varying the distribution of thresholds
among objects (Part 1), as well as the effects of vary-
ing the threshold for all objects (Part 2). The up-
date rate depends on the threshold, so the simula-
tion time increases when updates become infrequent.
Parameter values:
Part 1 (Distribution of thresholds): All objects are
assigned either threshold 100m or 1000m, and frac-
tions of objects with threshold 1000m are: 0.1; 0.5;
0.9.
Part 2 (Equal thresholds for all objects): Threshold
= 10, 250, 1000 m.
Number of workloads:
3 for Part 1; 3 for Part 2.

Experiment 6: Query types

This experiment tests the performance of the three
different query types: Current-time, predictive
range queries and kNN queries. The tests are per-
formed with the default test set, but instead of inter-
mixing the three query types only one type of query
is performed in each test. The number of queries is
kept at 1,000 per workload.
Parameter values:
Query Type Ratio = (1 : 0 : 0), (0 : 1 : 0), (0 : 0 :
1).
Number of workloads:
3.

Experiment 7: Query parameters

The purpose of this test is to determine how the
indexes handle queries when the query parameters
are changed. In the current-time range queries the
query area size is changed to see how this affects
the performance (Part 1). In the predictive range
query, the prediction offset is changed to determine
how well the indexes handle the query expansion and
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subsequent filtering of results (Part 2). In the kNN
queries, different k-values are tested to determine
the effect of having to identify few or many Nearest
Neighbours (Part 3).
Parameter values:
Part 1 (spatial extents): QueryTypes = 1 : 0 : 0,
QuerySize = 0.05, 0.25, 1, 5, 10% of queried area.
Part 2 (temporal extents): QueryTypes = 0 : 1 : 0,
QueryWindow = 6s, 60s, 5min, 10min, 50min.
Part 3 (object extents): QueryTypes = 0 : 0 : 1, k
= 1, 10, 100, 1000.
Number of workloads: 5 for Part 1; 5 for Part 2, 4
for Part 3.

7.2 Test Setup

The tests are conducted on a machine with an Intel
Pentium D 2.8 GHz CPU (64-bit Dual Core), 1 GB
of RAM and a Debian 64-bit operating system. The
L1 cache is 32KB (16KB for instructions and 16KB
for data), L2 cache is 1MB and the cache line size is
64 bytes. The tests are run with the highest possible
process priority in the operating system.

8 Results
In this section, we first discuss how the optimal in-
dex parameters were determined. Then we discuss
the results of running the workloads described in the
previous section. Finally, we show the average up-
date cost composition for the Grid and the R-tree.

8.1 Determining Optimal Index Pa-
rameters

In the previous section, the different test scenar-
ios relevant for benchmarking the indexes were dis-
cussed. In order to perform the tests and see the
effect of changing different test data parameters, it
is necessary to determine the best performance of
the indexes in a default setting. In this way we de-
termine the optimal default index parameters.

The indexes have different individual parame-
ters, which were introduced in Section 5, and find-
ing the optimal values for the indexes is performed in
three phases. In the first phase the index parameters
are tested with a large step size to determine a gen-
eral performance trend and find an interval where
the total running time is the lowest. In the second
phase the test is performed with a smaller parame-
ter step size and using the results from this test the
third test is performed with the smallest parame-
ter step size. Combining the test data, we generate
a graph that shows the overall trend of the index
while showing the optimal area with enough detail
that we get an exact optimal default value. The dif-
ferent values defining the size of a node and a bucket
are chosen to be a multiple of a cache line size, i.e.
64 bytes on the tested system.

The test data parameter values in the default test
set are shown in Table 5. The default test workload

is assumed to be a fair, average use-case scenario and
therefore the total running time of a run is assumed
to be a fair measure of the optimal settings for the
indexes.

8.1.1 Optimal Grid Parameters

Figure 13: Determining optimal Grid parameters for total
CPU time.

As shown in Figure 13 the optimal parameters
for the Grid index are: a grid cell size gcs of 6,700,
which results in a total of 225 grid cells, and a
bucket size of 24,384 bytes. The CPUtime axis
represents the total CPU time taken to complete the
test run., i.e. total running time. The CPU time is
quite high with very low values of grid cell size, i.e.
approximately from 100 to 1,000, due to the high
cost of non-local updates. With the higher values
of the grid cell size, i.e. approximately from 10,000
to 100,000, the trend of the total CPU time is going
up due to the poor performance of the queries, be-
cause performing a query becomes more like a linear
scan of the data. With low values of the bucket size,
i.e. approximately from 64 to 1024, the total perfor-
mance suffers from frequent memory allocations and
deallocations when updating and inefficient queries.
The effect of the bucket size is discussed in more
detail in Section 8.1.3.

8.1.2 Optimal R-Tree Parameters

In Figure 14 the CPUtime axis represents the to-
tal CPU time taken to complete the test run., i.e.
total running time. Therefore Figure 14 shows the
total running time of the R-Tree when running the
default test set with different values of fanout and
minchildren. The minchildren does not affect index
performance noticably. The minchildren at the op-
timal point is 25%, but the difference between the
minchildren with the longest and shortest runtime
is less than 5%. When testing the index with differ-
ent parameters we have found that the nodes of the
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Figure 14: Determining optimal R-tree parameters for total
CPU time.

R-Tree are approximately 55%-60% full on average,
ranging over the different parameter settings. The
running time of the default test begins high with a
very small node size, whereafter it drops near 4Kb
which is enough to contain approximately 160 chil-
dren in every node. With nodes filled to 60% ca-
pacity on average, the height of the R-Tree is 3. It
peaks around 10.5Kb (approx. 430 children maxi-
mum) where the cost of scanning individual nodes
and the height of the tree combine to make updates
expensive. This is because the tree height is reduced
to 2, but the sequential scanning of nodes during
non-local updates and queries makes it inefficient.
After the peak it flattens out because the height of
the tree is 2 and the children of the root become
fewer as their individual capacity becomes larger. If
all the nodes were completely full, the tree structure
would have flattened out at 7.5Kb (approx. 317 chil-
dren), but because of the average node fullness the
flattening out is shifted. The lowest running time
is at 61Kb (approx. 2,500 children) where the root
node contains 55 children.

8.1.3 Conclusion on Optimal Index Param-
eters

As observed in the results in Sections 8.1.1 and 8.1.2
the total times tend to reach the minimum once
reaching a certain bucket size or fanout in the Grid
and R-tree, respectively. At some point, the index
substructures become big enough to contain the el-
ements that are assigned to them. After this point,
there is no reason to increase the size of a node or a
bucket for the default workload because the perfor-
mance gain is minimal and the space consumption
becomes unnecessarily big. In the Grid this occurs
when there is no need for more than 1 bucket for ev-
ery cell, and in the R-tree it occurs when the fanout
results in only a root node and 1 additional level
of nodes that contain the objects. As explained by
Drepper [4], the reason why bigger substructures are

Figure 15: Test on the default data set.

more efficient is that the hardware prefetching en-
sures that the latency of memory accessing is hidden
by pipelining from memory to cache. Another factor
is that sequential memory accesses can be accom-
plished with very high sustained data rates because
less time is spent on precharging and preparing ac-
cessing of new rows (setting the RAS 2). This shows
that memory locality is an extremely important is-
sue when working in main-memory.

8.2 Performance of the Indexing
Structures

In this section, the results of performing the tests de-
scribed in the previous section are shown. Each set
of test results is displayed and analysed. In Figure
16, the legend for all of the following plot figures is
displayed. In the following figures ’Average update’
refers to the average time in seconds that it takes
to process one update,’Average ct-RQ’ refers to the
average time per current-time range query, ’Aver-
age p-RQ’ refers to the average time per predictive
range query, ’Average kNN’ refers to the average
kNN query time, and ’Total’ refers to the total run-
time of the experiment.

8.2.1 Experiment 0: Default data set

In this experiment the indexes are tested on the de-
fault workload. As illustrated in Figure 15, the av-
erage update in the Array is about 2 and 3 times
faster than in the Grid and the R-Tree, respectively.
The Grid updates about 20% faster than the R-
Tree. The clear advantage of using more sophisti-
cated data structures is observed from the perfor-
mance of queries, e.g. in range queries, the Array
is approx. 20 and 6 times slower than the Grid and
the R-Tree, respectively. The total runtime is about
the same with a small variation in all indexes.

2Row Address Selection (RAS) defines which row in main-
memory is selected for reading/writing [4]
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Figure 16: Legend of figures.

Figure 17: Number of objects.

8.2.2 Experiment 1: Number of objects

The graphs in Figure 17 show that the indexed num-
ber of objects does not influence the average cost of
performing an update in the Array and the Grid.
In the R-Tree the average update cost is increas-
ing with the number of indexed objects, because of
the increased height of the tree and the increased
number of expensive node splitting and merging op-
erations. The Array shows a significant decrease
in query performance because the queries are per-
formed with a linear scan through the Array and
the performance therefore depends on the number
of objects that need to be scanned. The total run-
time graph shows that the performance of the Grid
degrades less than the other indexes when increasing
the number of indexed objects.

8.2.3 Experiment 2: Index lifetime

In this experiment, indexes are tested on the increas-
ing number of total updates. In Figure 18 the aver-
age cost of operations shows that none of the indexes
degrade over time, i.e. over the number of handled
updates. The total time is increasing because the
number of updates is increasing, whereas the aver-
age cost of an update stays about the same.

8.2.4 Experiment 3: Position skew

In this experiment, the indexes are tested on the
varying object distribution, from a very clustered
object distribution (a low number of hubs used when
generating the data) to a uniform object distribu-
tion. Results of the position skew test are shown in

Figure 18: Index life time.

Figure 19: Position skew.

Figure 19. As for the average update performance
there is no singificant change in any of the indexes.
The same holds for the queries in the Array, whereas
the cost of an average range query in the R-Tree is
increasing with the increasing number of hubs. In
the Grid index the average kNN query performance
is mostly affected by a very clustered object dis-
tribution, i.e. by the low number of hubs. This is
because there is no spatial ordering within a list of a
bucket, i.e., with a clustered object distribution, the
kNN query is treated more like a linear scan than
an efficient best-first on-demand traversal of cells.

8.2.5 Experiment 4: Maximum Speeds of
Objects

In part 1 of this experiment, various distributions of
speeds among objects are tested. The result graphs
of this part of the experiment are displayed in Fig-
ure 20. There is no significant change in the indexes
when changing the distribution of fast and slow ob-
jects.
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Figure 20: Maximum speed of objects, part 1

Figure 21: Maximum speed of objects, part 2

In part 2, the effect of varying maximum speeds
is tested. Results of this part are displayed in Fig-
ure 21. There is no significant change in perfor-
mance when the maximum speed of objects is in-
creased. The reason for this is that we are using
the point-based update policy, which means that no
matter how fast the objects are moving they will
trigger updates at the same spatial positions. The
increased speed only affects the indexes in predic-
tive range queries where the expansion of the query
area is bigger with higher speeds. The conclusion is
that there is a direct correlation between increasing
the speed of objects and the number of updates in
a given time interval.

8.2.6 Experiment 5: Position accuracy
threshold

In part 1 of this experiment, various distributions
of thresholds among objects are tested and results
are displayed in Figure 22. The average update cost
in the Array is not affected by the distribution of

Figure 22: Position accuracy threshold, part 1

Figure 23: Position accuracy threshold, part 2

objects with different thresholds. In the Grid the
cost of an update increases slightly because a larger
number of objects change grid cells on updates. In
the R-Tree the average cost of an update increases
significantly for a higher ratio of objects that use a
larger position accuracy threshold. This is because
a larger position accuracy threshold makes updates
less local. When updates are less local, bottom-up
updating becomes more expensive because the up-
wards traversal will, on average, go higher up the
tree before finding a suitable subtree to insert the
object in. The queries are not affected in the Array
and the Grid, whereas in the R-Tree, queries cost
slightly more with an even distribution of objects
with different threshold values.

In part 2, effects of varying the threshold for all
objects is tested and the results are presented in
Figure 23. The cost of an average update is not af-
fected in the Array, slightly affected in the Grid and
significantly increases in the R-Tree when increas-
ing the threshold value. The increased thresholds
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Figure 24: Query Types

affect the Grid due to the increasing number of non-
local updates. This also the cause of ineffciency in
the R-tree. The average cost of performing a range
query slightly increases in all of the indexes due to
the expansion of the query by the position accuracy
threshold value. The kNN queries are not affected
by the changing position accuracy threshold.

8.2.7 Experiment 6: Query types

In Figure 24, performance graphs for the different
types of queries are displayed. The range query is
about 3 times faster in the Grid than in the R-Tree,
whereas in the R-Tree it is about 6 times faster than
the Array. The cost of a predictive range query is
higher than the cost of a simple range query in all
of the indexes, althogh the relative cost difference
between the indexes is about the same. The kNN
query is also about 3 times faster in the Grid than
in the R-Tree, although the R-Tree is only about 4
times faster than the Array.

8.2.8 Experiment 7: Query parameters

The effects of changing the query parameters are
displayed in Figure 25. Increasing the current-time
range query coverage increases the running time in
all of the indexes, because a bigger result list is con-
structed. There is an additional cost increase in the
Grid and the R-Tree because more grid cells and
nodes have to be checked in range queries with a
bigger coverage area.

The array is not affected much by the increas-
ing prediction offset in the predictive range query,
because the size of the result list does not change
significantly due to the filtering of objects. In the
Grid and the R-Tree, a higher value of the prediction
offset means a bigger expansion of the query, which
results in checking more grid cells and nodes, hence
the cost of a predictive range query increases. The
Grid becomes less efficient than the R-Tree with a
prediction offset higher than approximately 40 min-
utes.

Figure 25: Query Parameters

No sigificant change is observed when changing
the k value of a kNN query from 1 to 100 in all the
indexes. However, when changing from 100 to 1000
the Array is affected the most, because the result
list constructed in the Array is a linked list ordered
on the distance to the query point in a descending
order. Complexity of inserting into that list is O(n).
The same holds for the Grid and the R-Tree result
list, although due to the specifics of the algorithms,
the elements inserted into the list tend to be closer
to the start of the list. The performance of the kNN
queries in the Grid and the R-Tree is affected more
by a higher number of cells or nodes visited when
increasing k from 100 to 1000. Of all the indexes,
the kNN algorithm used in the Grid is least affected
by the increasing number of nearest neighbours to
be found.

8.3 Average update cost composition

In this section the cost of an average update is
analyzed by breaking it down into smaller sub-
operations. The measurements are done on the de-
fault data set with the optimal index parameters.
The average cost of the sub-operations is measured
by using the technique described in Section 6.1. Af-
terwards the average sub-operation cost is multi-
plied by the number of its occurrences during up-
dating and divided by the total number of updates.
Finally, the number is divided by the average cost
of an update to get the relative cost of the sub-
operation. This way the composition of an average
update cost is constructed. The cost of initial object
inserts into the indexes is not taken into account.
Therefore the total number of updates is 2, 000, 000.
In the following subsections the compositions of an
average update cost in the Grid and the R-Tree are
presented and discussed.

8.3.1 Average update in the Grid

As illustrated in Figure 26, the average update cost
in the Grid is mainly composed of 6 sub-operations.
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Figure 26: Composition of the average update cost in the
Grid.

The number of sub-operation occurrences during up-
dating is given in the parenthesis. The most expen-
sive one is the Hash table find sub-operation, which
is 50.4% of the cost of an average update. This can
be improved by using a different hash table imple-
mentation as discussed in Appendix A. 24.6% time
of an average update is spent on the Local update,
which only involves the updating of object data in
the index. 16% of the cost is spent on calculating
the cell address that corresponds to the new update.
Checking if the update is within the boundaries of
the Grid index takes 6.5% of the cost. Finally, the
lowest cost of the two sub-operations, delete and
insert, is due to the fact that only 37521 grid cell
changes occur, which is only about 1.8% of total
updates.

8.3.2 Average update in the R-Tree

In Figure 27 the composition of the cost of the av-
erage update in the R-Tree is displayed. The cost
is mainly composed of 6 sub-operations. The num-
ber of sub-operation occurrences during updating is
given in the parenthesis. As in the Grid the most
expensive sub-operation is Hash table find, which
takes up 40.5% of the cost. As in the Grid this can
be improved by using a different hash table imple-
mentation as discussed in Appendix A. Checking if
the object remains within its current node is 20.1%
of the cost. The delete sub-operation occurs only
in 15836 updates, but its relative cost to the aver-
age update is quite high - 20.2%. This is because,
the delete involves expensive linear scans of siblings
when recalculating MBRs, because the MBRs might
have to be contracted. This takes up 97% on average
of the time spent on the delete sub-operation. This
does not occur in the insert, because the MBRs only
need to be expanded, which does not involve linear
scans. The Local update takes up about 17.9% of
the average update, whereas locating the new node

Figure 27: Composition of the average update cost in the
R-Tree.

for an object is 0.9% of the cost. Object insertion
into a new node takes up 0.4% of the cost. The
difference between the occurrence of New node find
and insert/delete is 16321 − 15836 = 485. This is
because in 485 updates the new optimal node found
for the updating object is the same as its old one,
but the node MBR needs to be epxanded.

8.4 Summary

As observed in Section 8.1 the indexes can be fine
tuned by determining the optimal parameters for
a particualar setting of hardware and data. An in-
teresting observation is that the optimal bucket size
and fanout values determined are hundreds of times
larger than the cache line size, which suggests that
the optimal structures in a memory setting should
be flat to preserve locality as much as possible.

The performance results from Section 8.2 show
that the Array is superior in updating, but slow at
performing queries. Regarding the performance of
the advanced index structures, the Grid is gener-
ally superior to R-tree, although not significantly.
R-tree queries are slow with low values of fanout,
because of the MBR overlaps. They are still slower
than in the Grid with a high value of fanout, due
to the longer linear scans than in the Grid. Since
the R-tree is more versatile, both proposed designs
are good solutions for indexing moving objects in a
main-memory setting. In some settings, the total
CPU cost of the Array is similar to that of the ad-
vanced indexes. However, since end-users of LBSs
value the performance of queries more than the per-
formance of updates, the Array is a less desirable
solution.

As seen in Section 8.3 both indexes spend the
most time on hash table look-ups when updating.
Therefore, using a better hash table implementation
would improve the update performance significantly
in both of the indexes.
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9 Conclusion
We present the problem of creating update-efficient
main-memory structures that index the positions
of dynamic spatio-temporal objects. Compared to
traditional databases, LBS applications that offer
current-time and near-future predictive queries are
characterized by requiring much more efficient up-
date handling while maintaining fast query times,
posing a huge challenge to the design of index struc-
tures. However, LBSs typically do not index past
object positions, which makes persistence less of an
issue. Thus, main-memory indexes are well-suited
for the task, and for the past decade, a number of
such indexes have therefore been proposed.

Existing main-memory indexes are hard to com-
pare, as they are presented in different settings. In
fact, it is unclear, whether a space partitioning or a
data partitioning approach is superior for the pur-
pose of indexing moving objects in main-memory.

We use the COST benchmark [7] in a main-
memory setting, as it is specifically designed for eval-
uating the performance of these indexes. Using an
update policy, we ensure that updates occur only
when it is required in order to meet guaranteed po-
sition accuracies, within a specified threshold. We
define a variety of experiments and generate cor-
responding workloads, which simulate a variety of
situations that could occur in the real world, along
with a number of extreme cases that evaluate the
robustness of the indexes.

We propose two main-memory variants of spatio-
temporal indexing structures: the Grid and the R-
tree, which represent a space partitioning and a data
partitioning approach to update-efficient dynamic
object indexing, respectively. Additionally, we of-
fer an implementation of a non-spatial Array index,
which acts as a point of reference for the results of
the other indexes.

We evaluate how the indexes handle a variety of
current-time and predictive range queries, as well as
kNN queries, to determine the CPU processing time,
when running different workloads. From the results
we conclude that the Grid is generally faster than
the R-tree in both updating and querying. Non-
local updates are handled noticeably slower in the
R-tree, which is anticipated since the tree structure
has to be maintained. This means that the Grid is
superior when it comes to the total running time.

The Array provides the fastest updates and the
slowest queries. For some experiments, the total
running time is similar to the Grid and the R-tree.
However, we find that the high query times make it
ill-suited for LBSs, where end-users value fast query
responses higher than fast updates.

The bucket size in the Grid and the fanout with
min children in R-Tree are the parameters that can
be used to fine tune the indexes for a particular set-
ting. The fact that the grid cell size gcs and the total
monitored area have to be defined before using the

Grid, makes the Grid a less attractive solution than
the R-Tree, which is more versatile since it does not
need any information about the monitored area.

In the future, we would like to evaluate the per-
formance of other existing index structures such as
the TPR-tree in a main-memory setting, to deter-
mine whether the fewer amount of updates compen-
sate for the added operation costs of each inividual
update, when indexing object trajetories. Another
interesting direction is to explore the effects of intro-
ducing compression techniques like in the CSB+-tree
and the CR-tree. In addition, there are further op-
timizations for the proposed indexing structures to
explore, e.g. adding space-filling curves in the Grid
and optimizing the MBR recalculations in the delete
operation of the R-Tree.
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Appendices

A Secondary Index
The choice of a hash table implementation has a
significant influence on the index update perfor-
mance. One choice is the hash table implementa-
tion hash map from the Standard C++ Library.
This implementation is used in the indexes of this
paper. A possible alternative is the google imple-
mentation of hash map, which has two variants, a
dense hash map, which is more time efficient, and
a sparse hash map, which is more space efficient.

B Call stack
A call stack is a dynamic stack data structure which
stores information about the active subroutines of
an application. In many programming languages,
including c++, the call stack contains a limited
amount of memory, usually determined at the start
of the program. The size of the call stack depends on
many factors, including the programming language,
machine architecture, multi-threading, and amount
of available memory. When too much memory is
used on the call stack, e.g. in an excessively deep or
infinite recursion, the stack is said to overflow, which
typically results in the crash of the application.

C Framework
For the implementation of the indexes we created
a framework consisting of common data structures
and virtual functions that need to be implemented
in all the indexes. This was done to ensure compa-
rability between the indexes because both the input
and the output from different indexes would in the
same format. The following is a list of common data
structures:

Point: A data structure used to contain two dimen-
sional values. It is a template structure that
consists of an x-value and a y-value of a given
data type. Examples of usage is as a pair of in-
teger values describing coordinates or a pair of
float values describing an object velocity vec-
tor.

ObjectData: A data structure used to contain ob-
ject information. This data structure is used
for updates and query results. It consists of
a long value identifying the object, an inte-
ger Point coordinate and a float Point velocity
vector.

ObjectDataList: A data structure that extends
the ObjectData structure with a pointer, mak-
ing it possible to create linked lists of Object-
Data.

Linked: A data structure used to create linked lists
for kNN queries. It is not used by the frame-
work, but it has been used in all implemen-
tations of the kNN query function and it was
added in the framework to avoid multiple def-
initions. It is a template structure containing
a pointer to the next element in the linked list,
an unsigned long long to contain the distance
between two points and a variable data type
that can be used to store the actual data of
the list.

Rectangle: A data structure which is used in range
queries to define a query rectangle. It consists
of two integer Point’s which describe the maxi-
mum and minimum points of the queried area.

The functions defined in the index framework do
not contain any implementation details, but they
clearly define the formats for input and output from
the indexes. In this way using an index which has
been built on the framework requires no knowledge
of the actual implementation of a given index. The
following is a list of the functions defined in the
framework:

insertObject: inserts a new object in the index
without returning anything. It uses Object-
Data to define the information of the object.

deleteObject: deletes an object from the index.
For all of the implemented indexes, the only
information used is the object ID, but this is
because every index is either using a hash ta-
ble to locate the object or the index is directly
addressable using the object ID as a key.

updateObject: is used when updating an object
in the index. It contains the updated object
data.

rangeQuery: is used to perform current time range
queries. It defines the query area using the
Rectangle data structure and returns a pointer
to a linked list of the objects that were within
the query.

predictiveRangeQuery: works in the same way
as the rangeQuery function, but uses a pre-
diction offset to calculate the expansion of the
query range.

kNNQuery: finds the k objects nearest to the
query point p and returns the results in a
linked list of ObjectData.

D Test Automation
In order to automate the testing as much as possible,
config files are used. A library libConfig++ is used
in order to achieve that goal. Within a config file,
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1 Test1{
2 verbose = "yes";
3 runs = "10";
4 Grid{
5 gcs{"100";"200";}
6 bucket_size{"64";"512";}
7 }
8 Data{
9 query_verification = "no";

10 datafiles_q{
11 kNN_k{"100";"200";}
12 files{"data1.sql";"data2.sql";}
13 }
14 }
15 }
16 Test2{
17 ...
18 }

Table 6: An example of a config file.

a number of tests can be defined, as shown in Table
6.

Within a test specification, parameter verbose
denotes how much output to the screen is shown and
parameter runs defines how many reruns of each
test are ran, of which average values of timing mea-
surements are taken. In the test section data the in-
put data is defined. Parameter query verification
is used to turn on and off the query verification ex-
plained in Section E. The subsection datafiles q
defines the input data files. Within datafiles q a
number of kNN query k values kNN k and data
files files can be defined, which are then iteratively
used for testing. In future work parsing of different
input data can be implemented. In the config file it
could just be a different subsection of section Data,
e.g. sql data.

Within a test specification section Grid denotes
the index that should be used for testing. The sec-
tion names can also be R − tree and Array, which
respectively denote the use of an R-tree or the sim-
ple array. Within a test all three indexes can be
specified. Each of the index specifications, contain
index parameters, e.g. gcs and bucket size for the
Grid index section. A number of index parameter
values can be defined. Tests are run, by taking each
data input, i.e. a data file, loading it into memory,
then iteratively measuring timings of each of the in-
dexes with all combinations of the parameters de-
fined. As mentioned before, average timing results
are taken by rerunning each test a fixed number of
times (runs).

E Query verification
Original index descriptions are usually high level
specifications of the structures and algorithms. A
lot of implementation details are left out, e.g. the
grid kNN query description [17] is for an infinite
grid, whereas in a real implementation a grid has
boundaries and is not infinite. Therefore a particu-

lar programmer has to be very careful when imple-
menting an index, because even if the index appears
to work, it might not actually do what it is supposed
to do.

One way to verify the correctness of a index is
by veryfing the query results. The correct results of
a query are acquired by doing a linear scan of the
objects, i.e. querying the simple array. Querying
the array is straightforward and simple, therefore it
is assumed that the simple array query implementa-
tion is good and the query results are correct. This
assumption is validated, when other indexes return
the same results, because it is quite improbable that
all of the indexes return the exactly the same wrong
results.

All three types of queries, i.e. range, predictive
range and kNN queries, are implemented in the ar-
ray index, therefore all three types of queries can
be verified. The result of a query in a particular
index is compared to the result of the query in the
array index, if any mismatch is found, both query
results and the mismatch is output to the screen for
debugging purposes.

After each major modification of the implemen-
tation and before doing the final experiments for this
paper queries are reverified. The query verification
is turned off for timing measurments used to com-
pare the indexes. This query verification, adds the
possibilty to easier correctly implement any other
indexes in the framework.
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