9 research outputs found

    Automated Segmentation of Left Ventricle in 2D echocardiography using deep learning

    Get PDF
    Following the successful application of the U-Net to medical images, there have been different encoder-decoder models proposed as an improvement to the original U-Net for segmenting echocardiographic images. This study aims to examine the performance of the state-of-the-art proposed models claimed to have better accuracies, as well as the original U-Net model by applying them to an independent dataset of patients to segment the endocardium of the Left Ventricle in 2D automatically. The prediction outputs of the models are used to evaluate the performance of the models by comparing the automated results against the expert annotations (gold standard). Our results reveal that the original U-Net model outperforms other models by achieving an average Dice coefficient of 0.92±0.05, and Hausdorff distance of 3.97±0.82

    Automated segmentation of left ventricle in 2D echocardiography using deep learning

    Get PDF
    Following the successful application of the U-Net to medical images, there have been different encoder-decoder models proposed as an improvement to the original U-Net for segmenting echocardiographic images. This study aims to examine the performance of the state-of-the-art proposed models claimed to have better accuracies, as well as the original U-Net model by applying them to an independent dataset of patients to segment the endocardium of the Left Ventricle in 2D automatically. The prediction outputs of the models are used to evaluate the performance of the models by comparing the automated results against the expert annotations (gold standard). Our results reveal that the original U-Net model outperforms other models by achieving an average Dice coefficient of 0.92±0.05, and Hausdorff distance of 3.97±0.82

    Segmentation of Left Ventricle in 2D echocardiography using deep learning

    Get PDF
    The segmentation of Left Ventricle (LV) is currently carried out manually by the experts, and the automation of this process has proved challenging due to the presence of speckle noise and the inherently poor quality of the ultrasound images. This study aims to evaluate the performance of different state-of-the-art Convolutional Neural Network (CNN) segmentation models to segment the LV endocardium in echocardiography images automatically. Those adopted methods include U-Net, SegNet, and fully convolutional DenseNets (FC-DenseNet). The prediction outputs of the models are used to assess the performance of the CNN models by comparing the automated results against the expert annotations (as the gold standard). Results reveal that the U-Net model outperforms other models by achieving an average Dice coefficient of 0.93 ± 0.04, and Hausdorff distance of 4.52 ± 0.9

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Automated Echocardiographic Image Interpretation Using Artificial Intelligence

    Get PDF
    In addition to remaining as one of the leading causes of global mortality, cardio vascular disease has a significant impact on overall health, well-being, and life expectancy. Therefore, early detection of anomalies in cardiac function has become essential for early treatment, and therefore reduction in mortalities. Echocardiography is the most commonly used modality for evaluating the structure and function of the heart. Analysis of echocardiographic images has an important role in the clinical practice in assessing the cardiac morphology and function and thereby reaching a diagnosis. The process of interpretation of echocardiographic images is considered challenging for several reasons. The manual annotation is still a daily work in the clinical routine due to the lack of reliable automatic interpretation methods. This can lead to time-consuming tasks that are prone to intra- and inter-observer variability. Echocardiographic images inherently suffer from a high level of noise and poor qualities. Therefore, although several studies have attempted automating the process, this re-mains a challenging task, and improving the accuracy of automatic echocardiography interpretation is an ongoing field. Advances in Artificial Intelligence and Deep Learning can help to construct an auto-mated, scalable pipeline for echocardiographic image interpretation steps, includingview classification, phase-detection, image segmentation with a focus on border detection, quantification of structure, and measurement of the clinical markers. This thesis aims to develop optimised automated methods for the three individual steps forming part of an echocardiographic exam, namely view classification, left ventricle segmentation, quantification, and measurement of left ventricle structure. Various Neural Architecture Search methods were employed to design efficient neural network architectures for the above tasks. Finally, an optimisation-based speckle tracking echocardiography algorithm was proposed to estimate the myocardial tissue velocities and cardiac deformation. The algorithm was adopted to measure cardiac strain which is used for detecting myocardial ischaemia. All proposed techniques were compared with the existing state-of-the-art methods. To this end, publicly available patients datasets, as well as two private datasets provided by the clinical partners to this project, were used for developments and comprehensive performance evaluations of the proposed techniques. Results demonstrated the feasibility of using automated tools for reliable echocardiographic image interpretations, which can be used as assistive tools to clinicians in obtaining clinical measurements

    A computer vision pipeline for fully automated echocardiogram interpretation

    Get PDF
    Cardiovascular disease is the leading cause of global mortality and continues to place a significant burden, in economic and resource terms, upon health services. A 2-dimensional transthoracic echocardiogram captures high spatial and temporal images and videos of the heart and is the modality of choice for the rapid assessment of heart function and structure due to it’s non-invasive nature and lack of ionising radiation. The challenging process of analysing echocardiographic images is currently manually performed by trained experts, though this process is vulnerable to intra- and inter-observer variability and is highly time-consuming. Additionally, echocardiographic images suffer from varying degrees of noise and vary drastically in terms of image quality. Exponential advancements in the fields of artificial intelligence, deep learning and computer vision have enabled the rapid development of automated systems capable of high-precision tasks, often out-performing human experts. This thesis aims to investigate the applicability of applying deep learning methods to automate key processes in the modern echocardiographic laboratory. Namely, view classification, quality assessment, cardiac phase detection, segmentation of the left ventricle and keypoint detection on tissue Doppler imaging strips. State-of-the-art deep learning architectures were applied to each task, and evaluated against ground-truth annotations provided by trained experts. The datasets used throughout each Chapter are diverse and, in some cases, have been made public for the benefit of the research community. To encourage transparency and openness, all code and model weights have been published. Should automated deep learning systems, both online (in terms of providing real-time feedback) and offline (behind the scenes), become integrated within clinical practice, there is great potential for improved accuracy and efficiency, thus improving patient outcomes. Furthermore, health services could save valuable resources such as time and money

    Deep Learning in Cardiac Magnetic Resonance Image Analysis and Cardiovascular Disease Diagnosis

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death in the world, accounting for 17.9 million deaths each year, 31\% of all global deaths. According to the World Health Organisation (WHO), this number is expected to rise to 23 million by 2030. As a noninvasive technique, medical imaging with corresponding computer vision techniques is becoming more and more popular for detecting, understanding, and analysing CVDs. With the advent of deep learning, there are significant improvements in medical image analysis tasks (e.g. image registration, image segmentation, mesh reconstruction from image), achieving much faster and more accurate registration, segmentation, reconstruction, and disease diagnosis. This thesis focuses on cardiac magnetic resonance images, systematically studying critical tasks in CVD analysis, including image registration, image segmentation, cardiac mesh reconstruction, and CVD prediction/diagnosis. We first present a thorough review of deep learning-based image registration approaches, and subsequently, propose a novel solution to the problem of discontinuity-preserving intra-subject cardiac image registration, which is generally ignored in previous deep learning-based registration methods. On the basis of this, a joint segmentation and registration framework is further proposed to learn the joint relationship between these two tasks, leading to better registration and segmentation performance. In order to characterise the shape and motion of the heart in 3D, we present a deep learning-based 3D mesh reconstruction network that is able to recover accurate 3D cardiac shapes from 2D slice-wise segmentation masks/contours in a fast and robust manner. Finally, for CVD prediction/diagnosis, we design a multichannel variational autoencoder to learn the joint latent representation of the original cardiac image and mesh, resulting in a shape-aware image representation (SAIR) that serves as an explainable biomarker. SAIR has been shown to outperform traditional biomarkers in the prediction of acute myocardial infarction and the diagnosis of several other CVDs, and can supplement existing biomarkers to improve overall predictive performance

    Handcrafted features vs ConvNets in 2D echocardiographic images

    No full text
    In this paper, we address the problem of automated pose clas-sification and segmentation of the left ventricle (LV) in 2Dechocardiographic images. For this purpose, we compare twocomplementary approaches. The first one is based on engi-neering ad-hoc features according to the traditional machinelearning paradigm. Namely, we extract phase features to buildan unsupervised LV pose estimator, as well as a global im-age descriptor for view type classification. We also apply theSupervised Descent Method (SDM) to iteratively refine theLV contour. The second approach follows the deep learn-ing framework, where a Convolutional Network (ConvNet)learns the visual features automatically. Our experiments ona large database of apical sequences show that the two ap-proaches yield comparable results on view classification, butSDM outperforms ConvNet on LV segmentation at a signifi-cantly lower training computational cost
    corecore