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Abstract

In addition to remaining as one of the leading causes of global mortality, cardiovascu-

lar disease has a significant impact on overall health, well-being, and life expectancy.

Therefore, early detection of anomalies in cardiac function has become essential

for early treatment, and therefore reduction in mortalities. Echocardiography is the

most commonly used modality for evaluating the structure and function of the heart.

Analysis of echocardiographic images has an important role in the clinical practice

in assessing the cardiac morphology and function and thereby reaching a diagnosis.

The process of interpretation of echocardiographic images is considered challenging

for several reasons. The manual annotation is still a daily work in the clinical routine

due to the lack of reliable automatic interpretation methods. This can lead to time-

consuming tasks that are prone to intra- and inter-observer variability. Echocar-

diographic images inherently suffer from a high level of noise and poor qualities.

Therefore, although several studies have attempted automating the process, this re-

mains a challenging task, and improving the accuracy of automatic echocardiography

interpretation is an ongoing field.

Advances in Artificial Intelligence and Deep Learning can help to construct an auto-

mated, scalable pipeline for echocardiographic image interpretation steps, including

view classification, phase-detection, image segmentation with a focus on border de-

tection, quantification of structure, and measurement of the clinical markers. This

thesis aims to develop optimised automated methods for the three individual steps

forming part of an echocardiographic exam, namely view classification, left ventricle

segmentation, quantification, and measurement of left ventricle structure. Various

Neural Architecture Search methods were employed to design efficient neural network

architectures for the above tasks. Finally, an optimisation-based speckle tracking
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echocardiography algorithm was proposed to estimate the myocardial tissue velocit-

ies and cardiac deformation. The algorithm was adopted to measure cardiac strain

which is used for detecting myocardial ischaemia.

All proposed techniques were compared with the existing state-of-the-art methods.

To this end, publicly available patients datasets, as well as two private datasets

provided by the clinical partners to this project, were used for developments and

comprehensive performance evaluations of the proposed techniques. Results demon-

strated the feasibility of using automated tools for reliable echocardiographic image

interpretations, which can be used as assistive tools to clinicians in obtaining clinical

measurements.
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Chapter 1

Introduction

In 2016, of the 56.9 million deaths worldwide, the highest proportion can be at-

tributed to ischaemic heart disease and stroke; accounting for 15.2 million deaths

combined. These diseases have remained the leading cause of global mortality in the

last 15 years (World Health Organisation, 2018). Therefore, early detection of an-

omalies in cardiac function has become crucial for effective treatment and therefore

reduction in fatalities (Konofagou et al., 2011). Evaluation of cardiac motion plays

a significant role in the quantification of cardiac muscle elasticity and contractility,

which can help to distinguish between abnormal and normal cardiac function.

Medical image processing plays a significant contribution to clinical procedures by

providing clinicians with automated tools to diagnose and treat cardiovascular dis-

ease. Among different imaging modalities, echocardiography is commonly used in

both clinical procedures and research as a non-invasive technique to evaluate the

structure and function of the heart (Nikita, 2013).

Advances in Artificial Intelligence (AI) can help to develop an automated, scalable

pipeline for echocardiographic image analysis (displayed in Figure 1.1), including:

(a) view classification (identification), (b) phase-detection (c) image segmentation,

(d) and clinical measurements. Further details are provided in the following section.

In this chapter, an overview of echocardiography image interpretation, the problem

statement for automating the procedure is presented. Furthermore, the motivation,

main aim and objectives, and the contributions of this research are provided. Finally,

the thesis outline and research consortium are introduced.
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Figure 1.1: Process of an echocardiographic exam, which is currently an entirely
manual process. In the envisaged automated pipeline, while the image acquisition
and interpretation will still be carried out by a human operator, different steps in
image analysis can potentially be automated.
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1.1 Clinical Context and Problem Statement

Since many cardiac pathologies result in local myocardial dysfunction, the exam-

ination of local wall motion and deformation has gained significant attention over

the past decade. Also, several studies have proven their accuracy and consistency

(Mondillo et al., 2011; Geyer et al., 2010; Voigt et al., 2015). The focus of this thesis

is upon cardiac ultrasound images (i.e., echocardiography) since they possess high

temporal resolution, low cost, good compatibility, and extensive availability. How-

ever, the processing of ultrasound images can present significant difficulty due to the

typically high level of noise to signal ratio found in them. Additionally, in cardiac

ultrasound images, tracking walls of the heart is problematic due to the lower res-

olutions in the lateral wall of the heart, and the nature of heart motion (Golemati,

Gastounioti and Nikita, 2016). Below is an overview of the several steps involved in

echocardiography image interpretation.

1.1.1 Echocardiography View Classification

Echocardiography examinations are typically focused upon protocols containing di-

verse probe postures, providing various views of the heart anatomy. Standard echo-

cardiographic views require imaging the heart from multiple windows (Lang, Badano

et al., 2015). Each window is specified by the transducer position that will be ex-

plained in more detail in Chapter 2.

The interpretation of echocardiography images begins with view identification (i.e.,

classifying each acquired image to the corresponding cardiac views) which is currently

done manually in a laborious process.

The appearance of images acquired in the same view of heart could be different for

each patient due to two reasons: i) depending on the physical characteristics of pa-

tients, their heart structure could slightly vary, ii) since there is no specific marker

area to place the transducer on the patient body, the appearance-based method can-

not be applied for the view classification issue (Balaji, Subashini and Chidambaram,

2015). Therefore, accurate automatic classification of heart views has the poten-
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Figure 1.2: Examples of cardiac views in transthoracic echocardiography: a: ap-
ical four-chamber left ventricle focused (A4CH-LV), b: apical two-chamber (A2CH),
c:parasternal long-axis (PLAX-Full), d: parasternal short-axis left ventricle focused
(PSAX-LV), figure recreated from (Lynch and Jaffe, 2006).

tial to streamline workflow by aiding echocardiographers in reducing the inter-user

discrepancy, improving the accuracy for high throughput of echocardiographic data,

and the subsequent diagnosis.

Moreover, as is frequently observed in clinical practice, images from different mod-

alities are managed and stored in Picture Archiving and Communication Systems

(PACS). Recently, echocardiographic software packages, such as EchoPAC 1 and

QLAB (Philips) 2, attempt automating the tasks during the image analysis. How-

ever, they still require some level of human involvement in detecting relevant views.

Furthermore, echocardiography image frames are not easily discernible by the op-

erator in addition to high levels of background noise. Therefore, automatic view

classification could be crucially beneficial for pre-labelling a large database of un-

classified images (Khamis, Zurakhov et al., 2017). An example of different echo views

is outlined in Figure 1.2.

Automation of cardiac view detection will be discussed in Chapter 4.

1.1.2 Phase Detection

Cardiac function/motion is a cyclic process, and echocardiographic measurements

in an image sequence usually relate to certain time points in the cycle, namely

End-Diastolic (ED) and End-Systolic (ES) frames (Hall, 2016; Fukuta and Little,
1https://www.gehealthcare.co.uk/products/ultrasound/vivid/echopac
2https://www.philips.co.uk/healthcare/product/HCNOCTN14
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2008). The frame after ED is considered as systolic phase, i.e., the beginning of

a new cardiac cycle (heartbeat), and is typically marked by Mitral Valve Closure

(MVC). Conversely, the (ES) frame is used to describe the end of systole (beginning of

diastole) and is marked by Aortic Valve Closure (AVC). Mada et al. (2015) illustrated

the importance of accurate identification of ED and ES frames (Mada et al., 2015).

An error of just two to three frames in detecting ES frames causes approximately a

10% difference in segmental ES strain, which is one of the important clinical markers.

Additionally, the consequence of incorrect identification of ED and ES frames can

be extensive; impairing concordance between observers in both research and clinical

practice (Amundsen, 2015). Consequently, automated methods for the accurate ED

and ES phase-detection could significantly contribute to improving the consistency

of echocardiographic quantification.

Automation of cardiac phase detection was carried out in our research group, to

which I contributed 3.

1.1.3 Left Ventricle Segmentation

Image segmentation is a procedure that delineates the boundaries of an object of

interest within an image to simplify the representation of an image into something

more meaningful and easier to analyse. In the interpretation of echocardiography

images, one of the main steps is cardiac image segmentation which partitions the

image into several semantically (i.e., anatomically) meaningful regions that allow

extracting the quantitative measures such as the myocardial mass, wall thickness,

Left Ventricle (LV) and Right Ventricle (RV) volume as well as Ejection Fraction

(EF) (C. Chen et al., 2020).

The quantification of the LV shape and deformation relies on the accurate segmenta-

tion of the LV contour in ED and ES frames (Raynaud et al., 2017). In the context of

echocardiography interpretation, this procedure is often performed manually. How-

ever, a computer can also be taught to determine the same structure (Deo et al.,

2017). At present, the manual segmentation of the LV suffers from various complic-
3https://github.com/intsav/EchoPhaseDetection
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ations such as needs to be carried out only by an experienced clinician, inevitable

inter- and intra-observer variability in the annotations, and it is laborious and must

be repeated for each patient.

Therefore, accurate automatic segmentation of the LV has the potential to sim-

plify workflow by aiding echocardiographers in reducing the inter-user discrepancy,

thereby improving the accuracy for high throughput of echocardiographic data and

subsequent diagnosis. Nevertheless, segmentation of LV is a challenging task that

has to handle some problems inherent in ultrasound imaging such as, low signal-noise

ratio, edge dropout, and artifacts (Suyu Dong, G. Luo, Sun et al., 2016).

Automation of the LV segmentation will be discussed in Chapter 5.

1.1.4 Quantification and Strain Measurement

Speckle Tracking Echocardiography (STE) is considered to be one of the most com-

monly used techniques for global and regional quantitative assessment of myocar-

dial function (Mondillo et al., 2011). Speckle tracking is based on analysis of the

spatial dislocation of speckles (i.e., spots generated by the interaction between the

ultrasound beam and myocardial tissue) on image sequences (Mondillo et al., 2011;

C. B. R. Liberato et al., 2020). Displacement of these speckles is due to myocardial

deformation from which myocardial strain is calculated as a mechanical measure,

and will be discussed further in Chapter 2.

Before introducing the STE, Tagged Magnetic Resonance Imaging (MRI) was the

only imaging modality used for measuring the myocardial strain. However, the use of

tagged MRI is limited because of its poor availability, cost-intensive, time-consuming

image analysis, and complex acquisitions (Mondillo et al., 2011).

Although commercial STE software packages exist, the measurements they provide

yield unsatisfactorily wide discrepancies between measurements on the same patient.

To address this issue, the European Association of Cardiovascular Imaging (EACVI)

and the American Society of Echocardiography (ASE), along with representatives

from all vendors, have been endorsing a “task force” aimed to reduce the inter-vendor

variability of strain measurement. They propose acceptance in the clinical practice of
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inter-vendor variability up to 10% (Voigt et al., 2014; James D Thomas and Badano,

2013). However, currently used software packages have variability exceeding 10%.

Several approaches for speckle tracking in ultrasound sequences have been proposed.

However, it is a complicated task in which can be improved (Tavakoli et al., 2008; Z.

Liu and J. Luo, 2017; Garcia, Lantelme and Saloux, 2018; Bahreini Toosi, Zarghani,

Poorzand et al., 2019).

Therefore, the development of fully automated reliable, and reproducible STE tech-

niques is highly desirable and will be discussed in Chapter 6 and 7.

1.2 Motivation

Medical diagnosis and treatment tasks using computer-aided systems is a fast-growing

field of research that assists the clinician in obtaining measurements and identifying

anomalies with more accuracy, precision, and greater speed. Medical image pro-

cessing has an important influence in clinical procedures such as cardiac analysis

focuses on ultrasound image modality which provides clinicians automated tools to

support diagnosis and treatment tasks.

As discussed previously, in order to assess the cardiac function in ultrasound images,

accurate view identification and LV segmentation may help to reduce inter-user dis-

crepancy and provide fast and accurate measurement for high throughput of data.

However, view identification and segmentation of the LV are very challenging tasks

due to the high variation in shape, low image quality, and high level of noise that

exist in echocardiography images. Several classifications and segmentation models

have been proposed which will be reviewed in Chapter 4 and 5. However, there

is potential for future improvements in terms of the reliability and accuracy of the

techniques.

In recent years, deep learning has successfully been applied to the automated ana-

lysis of medical images including, tasks such as image classification, detection, and

segmentation. The performance of the deep learning models is dependent on the

configuration of the Convolutional Neural Network (CNN) architectures employed.
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However, the manual design of a CNN architecture is a time-consuming and error-

prone process. Therefore, it is also necessary to develop networks capable of auto-

mating this complex process. This project addresses the need for automated neural

architecture design by leveraging recent algorithmic developments known as Neural

Architecture Search (NAS) (H. Liu, Simonyan and Yang, 2019).

Echocardiographic techniques, such as strain imaging, have emerged as promising

quantitative tools in measuring LV function with superior prognostic value to EF for

predicting adverse cardiac events (Kalam, Otahal and Thomas H Marwick, 2014).

Clinical feasibility of strain resulting from STE has been demonstrated in many

studies (Barbosa et al., 2014; Ferraiuoli et al., 2019; Rodriguez et al., 2014; Joos

et al., 2018; Hui and Xinhua, 2020) which will be discussed further in Chapter 6.

For example, strain has been used for the detection of myocardial ischaemia; it may

apply after coronary reperfusion to predict infarct size. It has also been suggested for

patients during chemotherapy to detect a decline in cardiac function early. Similarly,

strain has been proposed to estimate the risk of ventricular arrhythmias; it may apply

to find the optimal position for the pacing lead in the LV free wall in the evaluation

of patients after implantation of cardiac resynchronisation therapy (Smiseth et al.,

2015).

Despite the vast amount of studies on strain imaging, showing its ability to detect

abnormal myocardial tissue and provide a more comprehensive diagnosis, it still has

some censorious drawback that is preventing its acceptance in the clinical practice.

This thesis will propose a method that does not require any additional ad-hoc filtering

process, which has been the major source of disagreement between the existing tech-

niques and can potentially help to reduce the variability in the strain measurements

caused by various post-processing techniques applied by different implementations

of the speckle tracking.
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1.3 Aims and Objectives

This PhD project forms part of a larger project which aims at developing a reliable

system to automate the image analysis steps of an echocardiographic exam workflow,

as illustrated in figure 1.1. This thesis has focused on automating several steps in

the workflow, namely view classification, LV segmentation, and quantification of the

myocardial strain. The automation of cardiac phase detection, which is an integral

part of the workflow, was pursued in parallel in another PhD project, to which

developments in this thesis contributed significantly.

The processing pipeline should preferably be fast enough, making it feasible for de-

ployment in real-time applications. Nevertheless, offline analysis of already acquired

images would still be immensely useful.

Therefore, the main objectives of this study are listed as below:

• Develop an automated model for view classification given two objectives of re-

ducing the neural network size and increasing its prediction accuracy to detect

various echocardiographic views.

• Develop an automated model to segment the left ventricle in detected views.

• Develop a reproducible algorithm to extract cardiac tissue movements and

the resulting strain measurements, thereby allowing for the assessment of LV

function.

• Evaluate the developed models/algorithms by conducting comprehensive ex-

periments using synthetic data with known Ground-Truth (GT).

1.4 Contributions to Knowledge

Considering the novel elements of the research undertaken, the main contributions

of this thesis can be summarised as follows:

View detection
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• Application of the state-of-the-art neural network search technique to design

efficient CNN architectures for echo view detection.

• Inclusion of 14 different anatomical echocardiographic views; larger than any

previous study.

• Analysis of computational and accuracy performance of the developed models

using large-scale datasets.

• Analysis of the impact of the input image resolution and size of training data

on the model’s performance.

• Analysis of the correlation between the image quality and accuracy of the model

for view detection.

Left ventricle segmentation

• Propose a neural network model using NAS algorithmic solution to segment

the LV aiming to present a model with high performance including comparison

with the state-of-the-art models.

• Analysis of the performance of the developed models using two private datasets

and one public dataset (Leclerc, Smistad, Pedrosa et al., 2019).

• Analysis of the impact of the size of training data on the model’s performance.

Myocardial strain imaging

• Development of novel speckle tracking algorithms to extract myocardial dis-

placements from the cardiac image sequences.

• Evaluate the fidelity of the developed algorithms comprehensively and using

synthetic data for which the exact solutions are known.

During the course of this PhD study, outcomes of the research have been published

in Three journal and presented at several relevant national and international confer-

ences. In addition, one journal papers is under the fine-tuning stage to be submitted:

Journal articles:
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• Azarmehr, N., Ye, X., Howes, J.D., Docking, B., Howard, J.P., Francis, D.P.

and Zolgharni, M., 2020. An optimisation-based iterative approach for speckle

tracking echocardiography. Medical & Biological Engineering & Computing,

pp.1-15.

• Azarmehr N, Ye X, Howard P, Lane E, Labs R, Shun-shin M, Cole G, Bidaut

L, Francis D, and Zolgharni M, 2020. Neural Architecture Search of Echocar-

diography View Classifiers, Journal of Medical Imaging

• Lane E S., Azarmehr N., Jevsikov, J., Howard J. P., Shun-shin M. J., Cole G

D., Francis D.P., and Zolgharni M., 2021. Multibeat Echocardiographic Phase

Detection Using Deep Neural Networks, Computers in Biology and Medicine

• Segmentation paper, to be submitted

Conference proceedings:

• Azarmehr, N., Ye, X., Janan, F., Howard, J.P., Francis, D.P. and Zolgharni, M.,

2019, April. Automated Segmentation of Left Ventricle in 2D echocardiography

using deep learning. In International Conference on Medical Imaging with Deep

Learning

• Azarmehr, N., Ye, X., Sacchi, S., Howard, J.P., Francis, D.P. and Zolgharni,

M., 2019, July. Segmentation of Left Ventricle in 2D echocardiography using

deep learning. In Annual Conference on Medical Image Understanding and

Analysis (pp. 497-504). Springer, Cham.

• Labs, R. B., Vrettos, A., Azarmehr, N., Howard, J.P., Shun-shin, M. J., Francis,

D.P. and Zolgharni, M., 2019, July. Automated Assessment of Image Quality in

2D Echocardiography Using Deep Learning In ICRMIRO 2020: International

Conference on Radiology, Medical Imaging and Radiation Oncology.

• Lane, E.S., Azarmehr, N., Jevsikov, J., Howard, J.P., Shun-shin, M., Fran-

cis, D.P. and Zolgharni, M., 2021. Echocardiographic Phase Detection Using

Neural Networks.In International Conference on Medical Imaging with Deep

Learning
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1.5 Thesis Structure

This thesis comprises eight chapters and two appendices. In the first section of every

chapter, there is an introduction on the subject of that chapter, followed by the main

body:

Chapter 2 describes the clinical background of the cardiac structure, significance

of echocardiography, different types of ultrasound images, different views of car-

diac. Moreover, the concept of speckle tracking and corresponding challenges, and

myocardial deformation parameters will be discussed.

Chapter 3 presents the technical overview of common neural networks classification

and a general overview of the common CNN segmentation models. Moreover, the

technical literature review of NAS solutions will be explained.

Chapter 4 investigates cardiac view classification using different deep learning meth-

odologies. A lightweight and optimal neural network architecture have been proposed

using the recent NAS solution to classify 14 echocardiographic views using a large

private patient dataset of echo images. Also, the efficiency of three different state-of-

the-art deep learning models for the classification of several views will be compared

with the Differentiable Architecture Search (DARTS) model.

Chapter 5 explores the segmentation of LV in Two Dimensional (2D) ultrasound

images using different state-of-the-art deep learning models. A neural network ar-

chitecture has been proposed using the recent NAS technique to segment the LV

in ultrasound images. The literature review on the segmentation of LV will be dis-

cussed.

Chapter 6 presents the related work in the STE and the feasibility of speckle track-

ing in the cardiac synthetic ultrasound dataset using a proposed optimised Block

Matching (BM) model will be investigated. Also, the results of the proposed BM

model will be compared with the standard BM model. Next, Chapter 7 will provide

the experiments of the public synthetic dataset to measure strain.

Finally, Chapter 8 summarises the thesis and provides a conclusion, and presents
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future directions. Finally, a list of appendices, publications, and the list of references

will be presented.

1.6 Research Consortium

This study forms part of a larger 3-year British Heart Foundation (BHF)-funded col-

laborative project, focused on developing automated echocardiographic image ana-

lysis pipelines, involving academic/clinical partners at University of Lincoln, Uni-

versity of West London, Imperial College London, and St Mary’s Hospital. This

research is devoted to the development of systems to carry out 3 constituent steps

of the overall echocardiographic examination workflow (view classification, LV seg-

mentation, and strain measurements), while the work by other researchers involved

developing deep learning models for phase detection, image quality assessment, Dop-

pler image analysis, and electrocardiogram signal analysis.
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Chapter 2

Clinical Background

2.1 Introduction

Medical imaging for cardiac function analysis is an established approach to help the

clinicians to diagnose the disease and its interventional treatment. Over the past

decade, the application of medical imaging techniques has facilitated state-of-the-art

image-based analysis of cardiac function.

To examine the cardiac condition, there are a series of tests to measure the hearts

function such as Electrocardiogram (ECG), Magnetic Resonance Imaging (MRI),

Cardiac Computed Tomography (Cardiac CT), Echocardiogram (Ultrasound), etc.

The echocardiogram is superior in comparison with other diagnostic imaging mod-

alities in terms of its lower cost, higher temporal resolution, lack of X-ray exposure,

and greater portability. Also, it is simple to use and able to produce a real-time mov-

ing image that is suitable for dynamic testing. However, ultrasound images suffer

from lower quality (Myronenko, Song and Sahn, 2007).

In this chapter, first a brief background on cardiology will be provided, followed

by a description of echocardiograms and its various modalities. Then, the speckle

concept in ultrasound images, speckle tracking fundamentals and its challenges will

be explained. Finally, a brief overview of the different datasets used in this thesis

will be provided.
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Figure 2.1: An apical four-chamber view of the heart (Yale Atlas of Echocardiology).

2.2 Overview of Cardiology

Heart is composed of three layers of tissue; a protective layer mainly made up of

connective tissue, the muscles of the heart, and the inner lining of the heart which

protects the valves and chambers that are called the epicardium, myocardium, and

endocardium respectively. The heart cavity has four chambers, these constituting the

right and left atrium above, and right and left ventricles below. The wall separating

the right and left blood chambers of the heart is called septum (R. B. Hinton and

Yutzey, 2011).

The heart also has one-way valves that separate the chambers and the major arteries,

which prevent the back-flow of blood. Figure 2.1 depicts an Apical Four-Chamber

(A4C) view of the heart; the only view that reveals all four chambers of the heart

(i.e., left ventricle, right ventricle, left atrium, and right atrium). Cardiac muscle

works constantly and automatically, with the LV contracting to generate pressure (a

process known as systole) to squeeze blood out of the heart. Then, it relaxes to fill

the heart with new blood (a process known as diastole). These sequences are known

as a cardiac cycle, which forms a single heartbeat. Figure 2.2 displays phases of

cardiac cycle. Being influenced by different factors such as exercise, emotions, fever,

diseases, and some medication heart contract at different rates. The heart typically
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Figure 2.2: Heart shown during phases of Cardiac Cycle, periods of contraction and
pumping are systole and periods of relaxation and filling are diastole (Mariana Ruiz
Villarreal, 2006).

beats at around 75 beats per minute, so the length of each cardiac cycle is usually

less than one second. But during this short time, a lot of pressure changes take place

in the heart (Klabunde, 2011).

2.3 Significance of Echocardiograms

An echocardiogram is a non-invasive examination that uses sound waves to look

at the size, shape, motion, performance of heart and its valves, pumping capacity,

and the location and extent of any tissue damage. This procedure is also known as

echocardiography (cardiac echo) or diagnostic cardiac ultrasound. Echocardiography

can allow extracting other measures such as measuring the EF, cardiac output, and

diastolic function (i.e., how well the heart relaxes) (Cleve and McCulloch, 2018).

In a patient with a suspected cardiac disorder, echocardiography is essential in assess-

ing wall motion and to detect some cardiomyopathies diseases such as hypertrophic

cardiomyopathy, dilated cardiomyopathy, etc. Also, it is helpful for early diagnosis

of myocardial infarction exposing regional wall motion abnormality of the heart, in

the treatment and follow-up in patients with heart failure by evaluating the EF.

Echocardiography should be performed by cardiologists or sonographers trained in
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Figure 2.3: The process of Transthoracic Echocardiography (TTE) examination us-
ing the probe and viewing the cardiac on TV monitor.

echocardiography (i.e., echocardiographers) (Modin, Andersen and Biering-Sørensen,

2018).

2.4 Different Types of Echocardiograms

There exist different types of echocardiograms which can be used depending on the

potential heart problem that doctors need to investigate. In the following, each type

is briefly introduced.

• Transthoracic Echocardiogram (TTE):

During this examination, a trained operator spreads a gel onto the chest and

presses a device called a transducer (probe) against the skin. The transducer

sends out high-frequency sound waves into the chest. This ultrasound wave

will bounce off the walls and valves of the heart. The sound waves known as

echoes return to the transducer and records the sound wave echoes from the

heart and displays a moving image of the heart’s chambers, walls, and valves on
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Figure 2.4: The standard recommended transducer positions in transthoracic echo-
cardiography. PLAX: Parasternal Long-Axis, PSAX: Parasternal Short-Axis, A:
Apical, SC: Subcostal, SSN: Suprasternal Notch (Bulwer, Shernan and J. Thomas,
2011).

a monitor while the scan is accomplished. The procedure of echocardiography

displays in Fig 2.3.

Echocardiographic views are identified by referring to the transducer location

and the imaging plane. The transducer can be placed in different locations of

the chest, and at different angles, to capture the image of the heart, with these

areas called ‘windows’. The most common echo windows are the parasternal,

apical, subcostal, and suprasternal. Fig 2.4 displays the most common echo

windows.

From each window, the transducer can be manipulated to obtain multiple

views of the heart. The different views can be attained by rotating and/or

tilting the transducer without moving it to a new window. The quantification

of the cardiac function and chambers with echocardiography has appeared

as a dominant technique in the detection and assessment of cardiac disease

because of its exclusive ability to provide real-time images of the beating heart

(Horton, 2010). This thesis has focused on TTE as the most frequent type of

echocardiography used in clinical practice.
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• Stress Echocardiogram:

Stress echocardiogram examination known as stress echo is to find out if the

patient has decreased blood flow to the heart muscle (i.e., coronary artery

disease). The stress echo uses ultrasound imaging of the heart to evaluate

the wall motion in response to physical stress. This examination increases the

heart rate and blood pressure. During this examination, two sets of images

will take including one at rest, and another after working out on a treadmill

or stationary bike. If the patient health condition limits physical activity, a

medication will be injected to simulates the effect of exercise (Prisant, Watkins

and Carr, 1984).

• Transesophageal Echocardiogram (TEE):

For TEE examination, the transducer instead of being moved over the outside

of the chest wall is passed down the oesophagus. TEE would allow producing

clearer pictures of the heart because the transducer is located closer to the

heart and the lungs and bones of the chest wall do not block the sound waves

generated by the transducer (O’Rourke and Mendenhall, 2019; Blinn, Margulis

and Joshi, 2019).

• Three Dimensional Echocardiogram:

A Three Dimensional (3D) echocardiogram uses either transesophageal or tran-

sthoracic echocardiography to generate a 3D image of the heart. This exam-

ination includes multiple images from various angles. It’s used for recognising

problems with heart valves, before heart valve surgery for replacement heart

valves, or diagnosis heart problems in children (Lang, Mor-Avi et al., 2006).

Currently, 3D echocardiography suffers from a considerable reduction in frame

rate and image quality, and this has hindered its adoption into routine prac-

tice. When such issues are resolved, automatic analysis of the 3D images could

also be explored. Meanwhile, 2D echocardiography remains unrivalled and

clinically relevant, particularly when high frame rates are needed.
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2.5 Different TTE Modalities

A-Mode (Amplitude Mode):

A-mode is an operational situation that a system has been transferred to, and a

normal mode occurs when all sections of a system oscillate with the same rate of

occurrence. For ultrasound imaging of the heart, diverse types of mode can be

controlled by the operator, each of them conveying a specific type of information to

the clinician. There are three basic modes used to image the heart which is briefly

explained in the following section:

• M-Mode (Motion Mode):

This mode is used to reflect the motion of an organ. Its application is also

used in cardiac timing and the measurement of dimensions. M-Mode displays

a one-dimensional image that measures the distance of the object from the

single transducer at a given moment. The ultrasound shows this informa-

tion as a 2D image which is depth and time. M-mode images have very high

sampling rate, which results in a high time resolution. Therefore, very rapid

motions can be recorded, displayed, and measured. However, in these type of

images, the ultrasound line is fixed to the tip of the ultrasound sector. It may

therefore be difficult to align the M-mode perpendicular to the structures which

are displayed (i.e. the septum), thus leading to false measurements (Loizou,

Pattichis and D’hooge, 2018).

• B-Mode (Brightness Mode):

This mode is more commonly known as 2D that allows a plane of tissue (both

depth and width) to be imaged and displays the ultrasound reflection as an

8bit greyscale image that composed of bright dots representing the ultrasound

echoes. The brightness of each dot is determined by the amplitude of the

returned echo signal. This allows for visualization and quantification of ana-

tomical structures, as well as for the visualization of diagnostic and therapeutic

procedures. The anatomic relationship between various structures is easier to

recognise than M-mode echocardiographic images.
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The formation of a B-mode image depends on the pulse-echo principle; assum-

ing the speed of sound remains constant, the position of a target of interest

may be inferred by the time taken from emission to its return to the transducer.

The limitless number of imaging plane through the heart is possible, however,

the standard view will use to assess the intra and extra cardiac structure. This

thesis focuses on 2D imaging (Prada et al., 2015).

• TDI (Tissue Doppler Imaging):

Tissue Doppler Imaging (TDI) is a modality that allows to measure myocar-

dial velocities to evaluate global and regional myocardial systolic and diastolic

function. It can also be employed to quantify right ventricular and left atrial

function (Atzeni et al., 2017). TDI is useful as a diagnostic as well as prognostic

tool in different cardiac conditions such as coronary artery disease, heart fail-

ure (both systolic and diastolic), valvular heart disease, cardiomyopathies and

constrictive pericarditis. Also, TDI measurements are helpful to recognise pa-

tients who will benefit from cardiac resynchronisation therapy. Although TDI

is reproducible and quite easy to acquire, it is underutilised in routine clinical

practice. (Kadappu and L. Thomas, 2015).

Fig 2.5 displays some examples of different modalities used in transthoracic

echocardiography.

Figure 2.5: Examples of different modalities used in transthoracic echocardiography.
a: B-Mode (2D imaging), b: M-Mode, c: TDI
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2.6 Speckle Tracking

The granular appearance of an image produced by the interference of ultrasound

waves in the tissue is known as ‘speckle’. This occurs when a random group of

scatterers is illuminated by waves bearing a wavelength larger than the size of the

individual scatterers, which causes speckles to appear.

Since in medical ultrasound imaging, soft tissues comprise of many scatterers, the

ultrasound waveforms perceived by the transducer are a group of diverse wave re-

flections caused by the distinct scatterers, with generated speckles observable in the

unfiltered grey-level (2D imaging) images where they appear as dark, bright specks.

These speckles can be used to provide predictions of some cardiac events and help

with the primary diagnosis of myocardial changes. Since speckles are identifiable by

the conventional 2D greyscale echocardiography, and speckle tracking is independent

of the angle of insonation, assessment of the cardiac mechanism is conceivable in

three-spatial orientations, such as longitudinal, radial, and circumferential (Abduch

et al., 2014).

These speckles exhibit a pattern that is assumed to be unique for each myocardial

segment that remains approximately stable under the same acquisitions during the

cardiac cycle (from frame to frame). Tracking these speckles, and analysing them

frame by frame can help to quantify the myocardial function and will allow the

extraction of some parameters such as displacement and strain that will be explained

in section 2.7 (Bansal and Kasliwal, 2013).

STE is a relatively novel imaging modality that was first presented by (Reisner et al.,

2004). It has developed quickly from a research tool to a technology tool that sits on

the threshold of becoming part of routine echocardiography (Blessberger and Binder,

2010). STE is one of the most outstanding and non-invasive ultrasound imaging

methods used to acquire quantifiable information regarding myocardial deformation,

motion, and function evaluation (Curiale, Vegas-Sánchez-Ferrero and Aja-Fernández,

2016).
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2.7 Myocardial Deformation Parameters

In this section, the concept and the significance of myocardial measures such as

displacement, velocity and strain that can be obtained by speckle tracking during

an assessment of cardiac function will be discussed.

2.7.1 Displacement and Velocity

Displacement defines the distance that certain speckle features (cardiac structure)

have moved between two consecutive frames. Velocities also reproduce displace-

ment per unit of time, that accounting for how fast the location of a speckle feature

changes. Since velocity and displacement are vectors, they have direction and amp-

litude. Therefore, they can be examined through different spatial movements along

with the anatomic coordinates of the cardiac chambers, longitudinal, radial and cir-

cumferential components, which are especially relevant for the characterization of

myocardial mechanics (Mor-Avi et al., 2011).

2.7.2 Global and Regional Strain

Over time, a moving object will change its position (displacement), but will not

deform if all its parts move with the same velocity. On the other hand, if different

parts of the object move with different velocities, the object will change its shape and

go through deformation. Therefore, the displacement and velocity of wall motion are

not enough to distinguish between the active and passive movement of myocardial

segments. However, strain can differentiate between active and passive myocardial

tissue movement (Dandel, Lehmkuhl et al., 2009).

Strain is a significant parameter in the quantification of myocardial function. Strain

describes the change of myocardial tissue length when compared to its original length.

Fundamentally, strain measures the extent (intensity) of the contraction and relaxa-

tion of myocardial tissue. When myocardial tissue is thinning or shortening strain is

negative, whereas when it is lengthening or thickening strain gives a positive value.

It is defined mathematically as the change of myocardial tissue length during stress
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at the end-systole which is compared with the original length in a relaxed state at

the end-diastole (Pavlopoulos and Nihoyannopoulos, 2008).

During the cardiac cycle, as the LV contracts, the muscle shortens in the longitudinal

and circumferential dimensions which can produce a negative strain. Also, the muscle

will thicken or lengthen in the radial direction to produce a positive strain (Thomas

H Marwick, 2006). The application of strain to measure deformation is one of the

objectives that this thesis intends to investigate, as it can be used to indicate the

health of a patient’s heart. To examine the strain on the heart’s muscle imaging of

the heart is required, and this can be achieved in numerous ways. This study focuses

on echocardiography, or imaging of the heart using an ultrasound scanner.

Strain has been used for the detection of myocardial ischaemia; it may apply after

coronary reperfusion to predict infarct size; it is suggested for patients during chemo-

therapy to detect a decline in cardiac function early. Similarly, the strain has been

proposed to estimate the risk of ventricular arrhythmias; it may apply to find the

optimal position for the pacing lead in the LV free wall in the evaluation of patients

after implantation of cardiac resynchronisation therapy (Smiseth et al., 2015).

A more detailed discussion to strain measurements is provided at the beginning of

Chapter 7.

2.8 Overview of Datasets Used in the Thesis

Representative multi-centre patient datasets are essential for ensuring that any de-

veloped models would scale up well to other sites and environments. Therefore, this

study employed several private and public datasets, originating from different clin-

ical sites and acquired by different imaging equipment from various vendors, and

representative of real-world patient population. Table 2.1 provides a brief summary

of the datasets used. Chapter 4, 5 and 6 will provide the details of each dataset,

when dealing with problem-specific data.
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Table 2.1: Summary of echocardiographic patient datasets used for different ap-
plications/tasks including classification, segmentation and Speckle Tracking in this
project.

Dataset Name PACS CAMUS EchoLab Synthetic

Use Classification, Segmentation Segmentation Segmentation Speckle Tracking

Type Private Public Private Public

Source NHS Trust, Imperial College Healthcare
University
Hospital of St
Etienne (France)

NHS Trust,
Imperial College
Healthcare

Alessandrini et
al.,2017

Ultrasound machine GE and Philips GE Vivid E95 Philips iE33 -

No of Patients 374 450 61 -

No of Videos 8732 450 61 14

Ground-truth 1 annotations 1 annotations 2 annotation by
2 experts 1 annotations

No of Frames 41321 1800 992 Different for
each vendor

Clinical Background 25



2.9 Conclusion

This chapter provided the clinical background of cardiology, the significance of echo-

cardiograms, the different types of echocardiograms and ultrasound modalities with

a focus on the Transthoracic Echocardiography (TTE) and B-Mode modality where

our dataset is gathered from this tool and modality. Moreover, the speckle tracking

concept and myocardial deformation parameters have been discussed.
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Chapter 3

Technical Background

Recently, advances in AI using deep learning has been used as a developing tool to

assist diagnosis in the medical domain (LeCun, Bengio and G. Hinton, 2015; Shen, G.

Wu and Suk, 2017; SUZUKI, 2017). Also, AI may have potential in the evaluation,

diagnosis and prognosis of cardiovascular disease (Shrestha and Sengupta, 2018;

Tabassian et al., 2018).

In contrast with classical machine learning that concerns the derivation of predefined

features in the input image, deep learning allows predicting the results automatic-

ally without pre-defined imaging features (M. I. Jordan and T. M. Mitchell, 2015).

Furthermore, CNN enable to extract high and low-level information from the input

image and combine these to create higher-order structural information, enabling the

identification of the complicated structures from the images (LeCun, Bengio and G.

Hinton, 2015; Amari et al., 2003).

In this chapter, first, an overview of neural networks will be presented, including

a brief introduction to CNN and different approaches to neural network design.

Then, the general CNN architectures used for classification and segmentation will

be described. Lastly, an overview of NAS will be illustrated.

3.1 Overview of Neural Networks

Deep learning is a subset of machine learning in AI that has become the "crown

jewel" of AI (LeCun, Bengio and G. Hinton, 2015). Deep learning methods have

emerged as robust techniques for learning feature representation automatically from
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the data (G. E. Hinton and Salakhutdinov, 2006). Also, Deep learning methods

have provided major improvements in the classification and segmentation of medical

images (Litjens et al., 2017; Ronneberger, Fischer and Brox, 2015; Shen, G. Wu and

Suk, 2017). Deep learning methods work toward learning feature hierarchies, where

features at higher levels of the hierarchy are formed using the features at lower levels

(Dean, 2016). In the following, CNNs are introduced, thereby providing a foundation

for describing the techniques used in this project.

3.2 Introduction to CNN

Convolutional neural networks are a kind of feed-forward artificial neural networks

that the connectivity pattern between its neurons is inspired by the human brain.

CNNs with a special multi-layer neural network will train with a version of the

back-propagation algorithm. CNNs are designed to recognise the visual patterns

directly from pixel images. CNNs are also composed of layers such as input layer,

convolutional layer, activation layer, pooling layer, and Fully Connected layer (FC)

(Kalchbrenner, Grefenstette and Blunsom, 2014):

• Input Layer: The input layer holds the raw pixel values of the input data that

in the case of the echocardiographic data; the width and height of the input

layer are the spatial dimensions of a single frame which will be exposed to the

network.

• Convolutional Layer: The convolution layer extracts features from the input

image using the kernels/filters (i.e. fixed size matrices). Kernels are sliding

(convolving), across the input image and the element-wise multiplication will

be computed between the values in the kernel matrix and the original image

value. The output of these operations will be called feature map. An example

of convolution operation is illustrated in Figure 3.1. The more kernels we have,

the more image features will get extracted and the network become better at

recognising the pattern in unseen images (test dataset).

The size of the feature map will be controlled by the number of kernels (depth),
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Figure 3.1: Illustration example of convolution operation

the number of pixels that slide over the input image (stride), and padding the

input image with 0s around the border (zero-padding).

• Activation Layer: The activation layer is a non-linear function to convert the

output of the convolutional layer to an output that can be used in the next

layer. In the past, non-linear functions like tanh and sigmoid were used, how-

ever, the Rectified Linear Unit (ReLU) layer works far better because the

network is also able to train a lot faster without making a significant difference

to the accuracy.

The ReLU layer applies the function f(x) = max(0, x) to all of the values in

the input i.e if x < 0 , f(x) = 0 and if x >= 0 , f(x) = x . Therefore, this

layer will change all the negative activations to 0, and this leaves the size of the

feature map unchanged. The ReLU visually looks like the Figure 3.2. This layer

increases the nonlinear properties of the model, and in the literature, the ReLU

is the most activation function used in deep learning methods as it can learn fast

in the large neural networks (G. E. Hinton, 2010). The networks trained with

the RelU function almost prevent the problem of vanishing gradient, allowing

models to learn faster and perform better. The vanishing gradient term refers

to the fact that in a neural network the backpropagated error usually increases
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Figure 3.2: ReLU Activation Function

or decreases exponentially as a function of the distance from the final layer

(Sussillo and Abbott, 2015).

Figure 3.3: Illustration example of max pooling and average pooling with the kernel
size of 2×2 and stride of 2. Digits express of the max and average pooling operations.

• Batch Normalisation: the batch normalisation operation introduced by (Ioffe

and Szegedy, 2015) is used to standardise each layer’s input to have zero mean

and unit variance. Generally, batch normalization aims to make the distribu-

tion of inputs to a given network layer more steady during the training. This
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is can be accomplished by augmenting the network with additional layers that

set the mean and variance of the distribution of each activation to be zero and

one respectively. Then, to preserve model expressivity, the batch normalization

inputs need to be scaled and shifted based on the trainable parameters. This

normalization will be applied before the non-linearity of the previous layer.

Batch normalization allows faster and more stable training of deep neural net-

works (Santurkar et al., 2018).

• Dropout: dropout is a technique that is introduced by (G. E. Hinton, Srivastava

et al., 2012). During the training phase, random samples of neurons will be

ignored and these neurons will not be considered during a particular forward or

backward pass. The main purpose behind the dropout technique is to prevent

overfitting. Dropout intended to change the network architecture randomly

to reduce the risks that the learned weight values get very adopted to the

underlying training data, and consequently cannot be generalised well to test

data (Garbin, X. Zhu and Marques, 2020).

• Pooling Layer: The pooling layer are responsible to reduce progressively the

spatial size of each slice of feature map independently using the maximum or

average operation and reduce the number of parameters and computations in

the network to control the overfitting model. The size of the pooling operation

or filter is smaller than the size of the feature map.

For example, if we have 4×4 matrix representing our initial input, and a 2×2

kernel that will run over the input with the stride of 2, the maximum or the

average of that region will take and create a new output matrix where each

element is the max of a region in the original input. An illustration example

displays in Figure 3.3.

• Fully Connected Layer: To wrap up the CNN architecture the fully connected

layer will place after the convolution and pooling layer. The output of the

convolution and pooling layers are represented of high-level features of the

input image, and the FC layer uses these features for classifying the input

image into different classes based on the training dataset. Neurons in a fully
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connected layer have a full connection to all the activations in the previous

layer.

3.3 Approaches to Neural Network Design

Neural networks are extremely effective at learning patterns and features from digital

images and have demonstrated success in many image classification and semantic

segmentation applications over the past few years (Krizhevsky, Sutskever and G. E.

Hinton, 2012; Litjens et al., 2017). However, the manual process of designing the

architecture has been accompanied by a growing demand for architecture engineering

of increasingly more complex deep neural networks through a time-consuming and

arduous manual process that deeply relies on expert domain knowledge.

Moreover, the developed architectures are usually dependent on the particular image

dataset used in the design process, and adapting the architectures to new datasets

remains a very difficult task that relies on extensive trial and error process and expert

knowledge.

Inspired by the AutoML (Cai, L. Zhu and Han, 2019; H. Liu, Simonyan and Yang,

2019; Hutter, Kotthoff and Vanschoren, 2019), there is a growing interest in al-

gorithmic solutions, such as NAS to automate the manual process of architecture

design and to discover better neural network architectures with better performance,

and fewer parameters, and even lower computation cost to speed up the inference

for classification and semantic segmentation.

Pivotal to the NAS architecture, is the creation of a large collection of potential net-

work architectures. These options are subsequently explored to determine an ideal

output with a specific combination of training data and constraints, such as network

size. Initial NAS approaches, such as Reinforcement Learning (RL) (Bello et al.,

2017; Zoph, Vasudevan et al., 2018) and evolution (Real et al., 2019b), search for

complete network topology, thus involving extremely large search spaces comprised

of arbitrary connections and operations between neural network nodes. Such com-

plexity results in using massive amounts of energy and requiring thousands of GPU
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hours or million-dollar cloud compute bills (Strubell, Ganesh and McCallum, 2019)

to design neural network architectures.

As discussed in the 3.2 section, the main layers of a CNN are used to create networks

for different purposes. Different types of neural networks are constructed to learn

and provide informative features for the classification and segmentation models. In

the following, the most common classification and segmentation architectures that

wildly have been used will be explained. This will be followed by an overview of

NAS methods applied to the classification and segmentation tasks.

3.4 General Classification Architectures

As discussed in the previous section, the main layers of a CNN are used to construct

networks for different purposes. In literature, several CNN architectures are created

to learn and provide informative features for the classification models including LeNet

(LeCun, Bottou et al., 1998), AlexNet (Krizhevsky, Sutskever and G. E. Hinton,

2012), VGG’16 (Simonyan and Zisserman, 2015), GoogleNet (Szegedy, Wei Liu et

al., 2015), ResNets (He et al., 2016), DenseNet (G. Huang et al., 2017), etc. In the

following, the most common CNN architectures that have been widely used will be

illustrated.

• LeNet: The LeNet architecture proposed by (LeCun, Bottou et al., 1998)

for handwritten and machine-printed character recognition in the 1990s. The

LeNet neural network contains two sets of convolution, activation and pooling

layers, followed by a Fully Connected (FC) layer, activation and another FC

layer and finally a softmax layer.

• AlexNet: The AlexNet architecture include eight layers such as five convolu-

tional layers and three FC layers. After each convolution and FC layer, ReLU

is applied (Krizhevsky, Sutskever and G. E. Hinton, 2012).

• VGGNet: The VGGNet is a well-known convolutional neural network pro-

posed by (Simonyan and Zisserman, 2015) and was used to win ILSVR (Large

Scale Visual Recognition Challenge, 2014) competition. This model makes
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Figure 3.4: Illustration of the VGG’16 architecture for image classification proposed
in (Simonyan and Zisserman, 2015)

an improvement over AlexNet architecture (Krizhevsky, Sutskever and G. E.

Hinton, 2012) by increasing the depth of the network. The architecture is

comprised of building blocks of two convolutional layers followed by a pooling

layer. This block is repeated multiple times, whilst all the convolution kernels

are of size 3×3. Finally, a stack of convolutional layers is followed by three FC

layers. Also, by introducing the number of layers (i.e. 11, 16 and 19) different

architectures were proposed and the VGG’16 with a total of 16 layers as shown

in Figure 3.4 recommended to have the best performance.

• GoogleNet: The GoogLeNet neural network is introduced by (Szegedy, Wei

Liu et al., 2015). They proposed an Inception Module that reduces the number

of parameters in the architecture. The Inception Module applies multiple con-

volutional filters for the same input and concatenates the result. The network

is consist of 22 layers.

• ResNet: Experiments have revealed if layers stacked in the network without

changing the network structure, the performance of the network would get

worse because gradients of network parameters will vanish as the depth is in-

creasing. To solve this challenge, He et al. (2016) present ResNet, which sug-

gested a residual learning framework through adding identity-mapping short-

cuts (He et al., 2016). The ResNet model utilises four modules comprising

residual blocks, each of which uses several refers blocks with the same number
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Figure 3.5: Illustration of the ResNet-18 architecture

of output channels. The number of channels in the first module is the same as

the number of input channels. Each residual block has two 3× 3 convolutional

layers with the same number of output channels. Each convolutional layer is

followed by a batch normalization layer and a ReLU activation function, ex-

cept the last operation of a block, that does not have the ReLU. There are

18 layers in total. Therefore, this model is commonly known as ResNet-18.

By configuring different numbers of channels and residual numbers of channels

and residual blocks in the module, different ResNet models have been created

such as ResNet-152 (He et al., 2016). Figure 3.5 illustrates the architecture of

ResNet-18.

• DenseNet: The DenseNet presented by (G. Huang et al., 2017) that in a

feed-forward fashion, connects each layer to every other layer. It includes a

convolution operation or pooling layers, batch normalization, and an activation

function. DenseNet concatenates the output feature maps of the layer with the

incoming feature maps as illustrated in Figure 3.6.

The depth of the CNN network shows a significant impact on the performance of the

model, however, getting deeper without applying changes in the structure can cause a

poor performance, lead to loss of information and vanishing-gradient problem (Wenqi

Liu and K. Zeng, 2018). To overcome these challenges, Huang et al. (2017) presented

DenseNet architecture which reduces the number of parameters, enhance the gradient

and information flow throughout the network that make the network easier to train.

In addition, DenseNet achieves better feature reuse through connecting the output
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Figure 3.6: Illustration of a 5-layer dense block (G. Huang et al., 2017)

of each layer to another layer (G. Huang et al., 2017). This thesis investigates the

performance of VGG16, ResNet18, and DenseNet201 classification models to classify

different views in echocardiography images.

3.5 General Segmentation Architectures

With the promising capacity of a CNN in the image classification task, applying a

CNN to medical image segmentation has been explored by many researchers. The

general idea is to perform segmentation by using a 2D input image and applying 2D

filters on it (Hesamian et al., 2019). Image semantic segmentation aims to obtain

pixel classification of an image. For this goal, researchers introduced the encoder-

decoder structure such as Fully Convolution Network (FCN) (Long, Shelhamer and

Darrell, 2015), U-Net (Ronneberger, Fischer and Brox, 2015), Deeplab (L.-C. Chen,

Papandreou, Schroff et al., 2017), etc. In these structures, an encoder is often used

to extract image features while a decoder is often used to restore extracted features

to the original image size and output the final segmentation results. In the following

general segmentation architectures will be presented.
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Figure 3.7: U-Net architecture (example for 32×32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations (Ronneberger, Fischer and Brox, 2015).

• FC-DenseNet: FC-DenseNet model is a relatively more recent model which

consists of a downsampling and up-sampling path made of dense block. The

down-sampling path is composed of two Transitions Down (TD) while an up-

sampling path is containing two Transitions Up (TU). Before and after each

dense block, there is concatenation and skip connections. The connectivity

pattern in the up-sampling is different from the down-sampling path. In the

down-sampling path, the input to a dense block is concatenated with its output,

leading to linear growth of the number of feature maps, whereas in the up-

sampling path, it is not (Jégou et al., 2017).

• U-Net: Standard and well-established U-Net neural network architecture has

been successfully applied to multiple medical image segmentation problems

(Ronneberger, Fischer and Brox, 2015). The U-Net architecture comprises of

three main steps such as down-sampling, upsampling steps and cross-over con-
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nections. During the down-sampling stage, the number of features will increase

gradually while during up-sampling stage the original image resolution will re-

cover. Also, cross-over connection is used by concatenating equally size feature

maps from down-sampling to the up-sampling to recover features that may be

lost during the down-sampling process. Each down-sampling and up-sampling

has five levels, and each level has two convolutional layers with the same num-

ber of kernels ranging from 64 to 1024 from top to bottom correspondingly.

All convolutions kernels have a size of (3× 3). For downsampling Max pooling

with size (2 × 2) and equal strides was used. U-Net architecture has a lot of

attention in medical image segmentation and based on which many variations

have been developed (Çiçek et al., 2016; Gordienko et al., 2018; G. Zeng et al.,

2017).

• SegNet: The SegNet model contains an encoder stage, consists of 13 con-

volutional layers which correspond to the first 13 convolutional layers in the

VGG16 network (Simonyan and Zisserman, 2015) designed for object classi-

fication. Each encoder layer has a corresponding decoder layer and hence the

decoder network has 13 layers. The final decoder output is fed to a multi-class

softmax classifier to produce class probabilities for each pixel independently.

In SegNet model, to accomplish non-linear up-sampling, the decoder performs

pooling indices computed in the max-pooling step of the corresponding encoder

(Badrinarayanan, Kendall and Cipolla, 2017). The number of kernels and ker-

nel size was the same as the U-Net model. This architecture is illustrated in

Figure 3.8.

• DeepLab: DeepLab is another state-of-the-art semantic segmentation model

introduced by Google (L.-C. Chen, Papandreou, Kokkinos et al., 2017). Mul-

tiple improvements have been made to the model since then, including Dee-

pLab V2, DeepLab V3, and the latest DeepLab V3+. The DeepLab model

is based on combining two popular neural network architectures such as spa-

tial pyramid pooling and encoder-decoder networks. Spatial pyramid pooling

networks can encode multi-scale contextual information. This is done using

pooling operations at multiple rates. DeepLab has introduced the concept of
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Figure 3.8: An illustration of the SegNet architecture. A decoder upsamples its in-
put using the transferred pool indices from its encoder to produce a sparse feature
map(s). It then performs convolution to densify the feature map. The final de-
coder output feature maps are fed to a softmax classifier for pixel-wise classification
(Badrinarayanan, Kendall and Cipolla, 2017).

atrous convolutions which require a parameter called rate that would be used

to explicitly control the effective field of view of the convolution. The normal

convolution is a special case of atrous convolutions with a rate of 1.

The Atrous Spatial Pyramid Pooling (ASPP) introduced in deepLab model

that uses spatial pyramid pooling with atrous convolutions. ASPP uses atrous

convolution with rates 6, 12, and 18. It also adds image-level features with

global average pooling. Bilinear upsampling also is used to scale the features

to the correct dimensions. Deeplabv3-ResNet101 is constructed by a Deeplab

v3 model with a ResNet-101 backbone using atrous convolution (He et al.,

2016).

• UNet++ (Nested U-Net): UNet++ introduced an architecture for med-

ical image segmentation. This network starts with an encoder sub-network

or backbone followed by a decoder sub-network. There are re-designed skip

pathways (green and blue) that connect the two sub-networks and the use of

deep supervision (red) as shown in Figure 3.9 (Z. Zhou et al., 2018).

This thesis investigate the performances of U-Net, SegNet, Deeplabv3-ResNet101,
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Figure 3.9: UNet++ architecture consists of an encoder and decoder that are con-
nected through a series of nested dense convolutional blocks. The black indicates the
original U-Net, green and blue show dense convolution blocks on the skip pathways,
and red indicates deep supervision.(Z. Zhou et al., 2018).

and UNet++ dense prediction models to segment LV in echocardiography im-

ages.

3.6 Overview of the Neural Architectures Search

Recently, several related algorithms for NAS have arisen. NAS solutions aims to

create a network architecture with the best performance automatically with less

human intervention. Pioneering work of NAS are NAS-RL (Zoph and Le, 2017),

MetaQNN (Baker et al., 2017) and RL methods.

NAS techniques have outperformed manually designed architectures on some tasks

such as image classification (Zoph, Vasudevan et al., 2018; Real et al., 2019a), object

detection (Zoph, Vasudevan et al., 2018) or semantic segmentation (L.-C. Chen,

Collins et al., 2018). This confirm that the idea of automated network architecture

design is feasible. NAS can be perceived as a subfield of AutoML (Hutter, Kotthoff
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Figure 3.10: Fundamental of Neural Architecture Search procedure.(Elsken, J. H.
Metzen, Hutter et al., 2019)

and Vanschoren, 2019) and has significant overlap with hyperparameter optimisation

(Feurer and Hutter, 2019) and meta-learning (Vanschoren, 2019).

Methods for NAS will be categorised into three dimensions: search space, search

strategy, and performance estimation strategy. As can be seen in Fig 3.10 in NAS

technique, a search strategy selects a NAS architecture from a predefined search

space. Then, the architecture will be pass to a performance estimation process that

returns the performance feedback of the selected architecture to the search strategy.

In the following, each section will be explained.

3.6.1 Search Space

The search space determines which neural architectures a NAS approach might dis-

cover. A better search space may reduce the complexity of searching for suitable

neural architectures. There are different strategies for architecture search spaces. A

nearly simple search space includes all sets of layer configurations stacked on each

other, as shown in Figure 3.11 (left). This is known as a chain-structured neural

network architecture including a sequence of n layers, where the nth layer ln receives

its input from layer n – 1 and its output will be as the input for layer n + 1. Then,

the search space is parameterised by the following conditions:

• The number of layers (n)

• The Type of operation for each layer such as convolution, pooling, depth-
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wise separable convolutions (Chollet, 2017) or dilated convolutions (F. Yu and

Koltun, 2016)

• Hyper-parameters related to the operation such as number of kernels, size of

kernel and stride for a convolutional layer (Baker et al., 2017)

Recently, NAS solutions utilise modern element such as skip connections (Zoph, Vas-

udevan et al., 2018; Real et al., 2019a), which would allow designing more complex

and multi-level network as displayed in Figure 3.11 (right). In this case, the input

of the layer (i) can be defined as a function that combines all previous layers. These

multi-branch architectures have specific cases such as the chain-structured networks,

Residual Networks where previous layer outputs are summed (He et al., 2016), or

DenseNets, where previous layer outputs are concatenated (G. Huang et al., 2017).

Zoph et al. (2018) propose to search for repeated elements rather than for whole

architectures. They optimised two different cells known as a normal cell that keeps

the same dimension as the input and reduction cell which decreases the spatial

dimension. Then, the final architecture will be created by stacking these cell together

(Zoph, Vasudevan et al., 2018), as displayed in Figure 3.12. This search space

has some significant advantages in comparison with the search space for the chain

structured that will be discussed in the following:

• This search space contains less layer than whole architectures and estimates a

seven-times speed-up while attain better performance in comparison with the

previous work (Zoph and Le, 2017).

• Neural networks obtained from cells would be adopted to other datasets through

changing parameters such as filters or the number of cells.

• In general, designing a neural network by repeating building blocks has estab-

lished beneficial design principle (e.g. Long short-term memory (LSTM) block

in Recurrent Neural Network (RNN)s or stacking a residual block).

The cell-based search space has been successfully applied by some recent research

work (Real et al., 2019a; C. Liu, Zoph et al., 2018; H. Liu, Simonyan and Yang,

2019; Elsken, J. H. Metzen and Hutter, 2019). However, the question is how many
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Figure 3.11: An illustration of different architecture spaces. (Elsken, J. H. Metzen,
Hutter et al., 2019)

cells should be used or how the cells should be connected to create the actual model.

For instance, Zoph et al. (2018) created a sequential design where each cell receives

the outputs of the two preceding cells as input.

Liu et al. (2018) introduced the hierarchical search space toward the optimization

of architecture that includes three levels of operations. The first level is composed

of a set of fundamental operations, the second-level connects the fundamental oper-

ations through a directed acyclic graph, and the third level encodes how to connect

the second-levels and so on. This thesis adopted the hierarchical search space ap-

proach for the view classification and segmentation of LV. In the next section, search

strategies that are well-suited for these kinds of search spaces will be reviewed.

3.6.2 Search Strategy

The space of the neural architecture can be investigated with different search strategies

such as random search, Bayesian optimization, RL, gradient-based methods, and

evolutionary methods.

Bayesian optimization and RL achieved competitive performance on different public

datasets such as CIFAR-10 and Penn Treebank benchmarks. However, these search
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Figure 3.12: An illustration of the cell search space. (Elsken, J. H. Metzen, Hutter
et al., 2019)

strategies used immense computational resources to achieve this result (800 GPUs

for three to four weeks). After this work, several types of search strategies have

been published to decrease the computational costs and obtain further performance

improvements (Bergstra, Yamins and Cox, 2013; Zoph and Le, 2017).

To construct NAS as an RL problem (Zoph and Le, 2017; Zoph, Vasudevan et al.,

2018), the generation of a neural architecture can be granted to be the agent’s action,

with the action space identical to the search space. The agent’s reward is based on an

estimate of the performance of the trained architecture on unseen data. Zoph and Le

(2017) employed an RNN policy to sequentially sample a string that in turn encodes

the neural architecture. They initially trained this network with the REINFORCE

policy gradient algorithm (Williams, 1992).

The first neuro-evolutionary approaches date back to nearly three decades (Miller,

Todd and Hegde, 1989) where used genetic algorithms to propose architectures and

backpropagation to optimize their weights. Many neuro-evolutionary methods utilize

genetic algorithms to optimize the neural architecture and its weights; however,

Stochastic Gradient Descent (SGD)-based weight optimization methods currently
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outperform evolutionary approaches when comparing to current neural architectures

with millions of weights for supervised learning tasks (Elsken, J. H. Metzen, Hutter

et al., 2019).

In evolutionary algorithms, a population of the possibly trained network will be

developed and in every step, at least one model will be sampled from the population

and serves as a parent to generate offspring by applying some local operations such

as adding or removing a layer, altering the layer’s hyperparameters, adding skip

connections, and altering training hyperparameters. After training the offsprings,

their performance on a validation set will be evaluated and they will be added to the

model(Elsken, J. H. Metzen, Hutter et al., 2019).

A recent case study compared RL, evolution, and the random search and infer-

ring that in terms of final test accuracy, RL and evolution search strategy perform

equally well, with the evolution producing better anytime performance and finding

smaller models (Real et al., 2019a). This thesis used the evolution search strategy

for view classification. In terms of the architecture search method, and evolution-

ary algorithms would be intensive on the high-resolution images, therefore probably

not suitable for semantic image segmentation. Therefore, for the segmentation of

LV, a continuous relaxation of the discrete architectures that exactly matches the

hierarchical architecture search space has been used.

3.6.3 Performance Estimation Strategy

As discussed in the previous section, the search strategies aim to achieve a neural

network that maximizes accuracy or other performance measures on the test dataset.

The most manageable way to estimate the performance of the selected network is to

train the selected network on training data and assess its performance on validation

data. Though, training each network from scratch generates computational demands

(thousands of GPU days for NAS). Performance can be estimated based on different

strategies such as lower fidelities, learning curve extrapolation, network morphisms

(weight inheritance), and one-shot models (weight sharing). In the following, these

performance estimation strategies will be discussed:
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Lower fidelities performance strategy involves less training times (Zoph, Vasudevan

et al., 2018; Zela et al., 2018), training with fewer cells and kernels per layer (Zoph,

Vasudevan et al., 2018; Real et al., 2019a), training on lower-resolution images (Chra-

baszcz, Loshchilov and Hutter, 2017) or training on a sample of the dataset (Klein et

al., 2017). Therefore, in the lower fidelities strategy, computational cost will reduce

through the downscale of epochs, data, or models, however, it also includes bias in

the evaluation because performance will be underestimated.

Learning curve extrapolation is another performance estimation strategy pro-

posed by (Domhan, Springenberg and Hutter, 2015). Also, Liu et al. (2018a) do

not employ the Learning curve extrapolation but proposed predicting performance

based on architectural/cell properties and extrapolate to architectures/cells with a

larger size than seen during training.

Network morphisms or weight inheritance is another approach to estimating the

performance which allows initialising the weights of novel architectures based on

weights of other architectures that have been trained before (Wei et al., 2016). This

allows increasing the capacity of networks and maintaining high performance without

needing training from scratch. Continuing training for a few epochs can also make

use of the additional capacity proposed by network morphisms. A benefit of these

strategies is that they allow search spaces without an inherent upper bound on the

architecture’s size (Elsken, J.-H. Metzen and Hutter, 2018). Though, strict network

morphisms may lead to complex architectures as it can make architectures larger

and this can be attenuated by using approximate network morphisms that support

shrinking architectures (Elsken, J. H. Metzen and Hutter, 2019).

One-shot architecture search is another performance estimation strategy that

only the weights of a single one-shot model need to be trained, and architectures can

then be assessed without any separate training by inheriting trained weights from

the one-shot model.

Technical Background 46



3.7 Neural Architectures Search for Classification

NAS-derived architectures have accomplished highly competitive performance in im-

age classification tasks (Zoph and Le, 2017; Pham et al., 2018; H. Liu, Simonyan and

Yang, 2019; Xie et al., 2019). Here, recent popular NAS works on image classification

will be described.

Zoph and Le (2016) used a RNN as the controller to compose neural network archi-

tectures. Their method is flexible so that it can search variable-length architecture

space. They show how the recurrent network can be trained with a policy gradient

method to maximize the expected accuracy of the sampled architectures. However,

their method needs 800 GPUs for three to four weeks (Zoph and Le, 2017).

Liu et al. (2018) propose a method for learning the structure of CNN based on RL

and evolutionary algorithms. Their approach uses a sequential model-based optim-

isation strategy, in which they search for structures in order of increasing complexity,

while simultaneously learning a surrogate model to guide the search through struc-

ture space. Direct comparison under the same search space showed that their method

is up to 8 times more faster than the RL method of Zoph et al. (2018) in terms of

total compute (C. Liu, Zoph et al., 2018).

Real et al. (2019) proposed aging evolution used an evolutionary algorithm known

as AmoebaNet-A to discover image classifier architectures. They presented the first

controlled comparison of algorithms for image classifier architecture search in a case

study of evolution, RL and random search (Real et al., 2019b).

Successful NAS approaches, such as Efficient Neural Architecture Search (ENAS)

from Google Brain (Pham et al., 2018) and more recently DARTS (H. Liu, Simonyan

and Yang, 2019), have been shown to reduce the search costs by orders of magnitude,

requiring ∼100x fewer GPU hours. These methods leverage an important observa-

tion that popular CNN architectures often contain repeating blocks or are stacked

sequentially. Their effectiveness is thus owing to the key idea of focusing on finding

a small optimal computational cell (as the building block of the final architecture),

rather than searching for a complete network.
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The size of the search space is therefore significantly reduced since the computational

cells contain considerably fewer layers than the whole network architecture, which

would make such approaches potentially viable for solving real-world challenges.

The DARTS method has been shown to outperform ENAS in terms of the GPU hours

required for the search process (H. Liu, Simonyan and Yang, 2019). While most NAS

studies report experimental results using standard image datasets such as CIFAR

and ImageNet, the effectiveness of DARTS on scientific datasets, including medical

images, has also been demonstrated. In this thesis, we have therefore adopted the

DARTS method for designing customised architectures to classify echo view images.

3.8 Neural Architectures Search for Segmentation

The majority of NAS-derived networks for image segmentation are designed in encoder-

decoder style, exploring the repeatable cells to construct the encoder backbone or

the decoder part.

Chen et al. (2018) introduced the first trial on semantic segmentation using NAS.

Since DeeLabv3+ has achieved remarkable results, the DeepLab team shifts the

emphasis towards the automatic architecture search. Based on the encoder-decoder

structure as DeepLab, this work aims to seek a more efficient decoder instead of

ASPP following an existing small encoder backbone. A recursive search space is

built to encoder multi-scale context information known as Dense Prediction Cell

(DPC) (L.-C. Chen, Collins et al., 2018). An efficient random research method is

applied as the search strategy. The work achieves 82.7% of the mean IoU (mIoU) on

Cityscapes datasets and 87.9% mIoU on PASCAL VOC 12 datasets. Although, the

high computational cost (2600 GPU days) limits the application of this approach.

Weng et al. (2019) designed three types of primitive operations set on search space to

find two cell architecture automatically for semantic image segmentation especially

medical image segmentation. They update the U-Net architectures simultaneously by

a differential architecture search strategy. Their proposed model achieved about 0.8

million number of parameters. They demonstrated the good segmentation results on
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Promise12, Chaos, and ultrasound nerve datasets, which were collected by magnetic

resonance imaging, computed tomography, and ultrasound, respectively (Weng et

al., 2019).

Kim et al. (2019) proposed a novel stochastic sampling algorithm based on con-

tinuous relaxation for scalable gradient-based optimization on the 3D medical im-

age segmentation tasks. They used four types of cells, encoder-normal, reduction,

decoder-normal, and expansion cell to create the encoder and the decoder for the

learned 3D U-Net (Çiçek et al., 2016) network (S. Kim et al., 2019).

In another study (Bae et al., 2019) an efficient search space proposed using macro

search with parameter sharing for training a controller to apply to 3D medical ima-

ging segmentation tasks. Zhu et al. (2019) examine to search the building blocks

to construct U-Net (Ronneberger, Fischer and Brox, 2015) structure for volumet-

ric medical image segmentation problem. They define a cell composed of several

convolutional (Conv+BN+ReLU) layers, which are then repeated multiple times to

construct the entire neural network. Their segmentation networks follow the encoder-

decoder (Milletari, Navab and Ahmadi, 2016; Ronneberger, Fischer and Brox, 2015)

structure while the architecture for each cell, (i.e., 2D, 3D, or P3D), is learned in a

differentiable way (Z. Zhu et al., 2019).

3.9 Conclusion

This chapter provided some technical background on methods used in this thesis.

This included an overview of neural networks, approaches to neural network design,

general classification, and segmentation architectures. Moreover, an overview of the

NAS including search space, search strategy, and performance estimation strategy

has been illustrated. Chapter 4 will apply NAS techniques to design time-efficient

and lightweight neural networks for accurate echocardiograhic view classification,

while Chapter 5 has focused on designing image segmentation networks.
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Chapter 4

Echocardiography View Classifica-

tion

4.1 Introduction

Echocardiographic (Echo) examinations are typically focused upon protocols con-

taining diverse probe positions and orientations providing several views of the heart

anatomy. Standard echo views require imaging the heart from multiple windows.

Each window is specified by the transducer position and includes parasternal, ap-

ical, subcostal, and suprasternal. The orientation of the echo imaging plane produces

views such as long axis, short axis, four-chamber, and five-chamber (Lang, Badano

et al., 2015).

Interpretation of echo images begins with view identification. This is a time-consuming

and manual process that requires specialised training and is prone to inter-and intra-

observer variability. Echo images are very similar and can be particularly challenging

for an operator to successfully categorise.

Therefore, accurate automatic classification of heart views has several potential clin-

ical applications such as improving workflow, guiding inexperienced users, reducing

inter-user discrepancy, and improving accuracy for high throughput of echo data and

subsequent diagnosis.

In most current clinical practice, images from different modalities are managed and

stored in PACS. Recently, add-on echo software packages, such as EchoPAC (GE
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Healthcare) and QLAB (Philips), attempt to automate the analysis and diagnosis

process. However, they still necessitate human involvement in detecting relevant

views. Because the automated model could be able to distinguish echo views with

distinct characteristics (e.g., PLAX-full and Suprasternal views), but the model may

get confused on occasion with no distinct characteristics. For example, the difference

of A4CH-LV versus A5CH is whether the scanning plane has been tilted to bring the

aortic valve into view, which would make it A5CH. When the valve is only partially

in view, or only in view during part of the cardiac cycle. Also, the A3CH view varies

from the A2CH view only in a rotation of the probe anticlockwise, again to bring

the aortic valve into view. Therefore, integration of information resulting from auto-

mated deep learning models and clinician interpretation could be the opportunity to

improve the accurac (Narula et al., 2016; Jeganathan et al., 2017; Madani, Arnaout

et al., 2018).

As previously stated, echocardiography image frames are not easily discernible by

the operator, plus there is often background noise. Therefore, automatic view clas-

sification could be widely beneficial for pre-labelling large datasets of unclassified

images (Khamis, Zurakhov et al., 2017; J. Zhang et al., 2018).

Application of machine learning algorithms in computer vision has improved the

accuracy and time-efficiency of automated image analysis, particularly automated

interpretation of medical images (Park et al., 2007; Siegersma et al., 2019; Østvik,

Smistad, Aase et al., 2019; S. K. Zhou et al., 2006). However, traditional machine

learning methods are constructed using complex processes and tend to have restricted

scope and effectiveness (Stoitsis et al., 2006; Doi, 2007). Recent advances in the

design and application of deep neural networks have resulted in increased possibilities

when automating medical image-based diagnosis (Coates et al., 2013; Tarroni, Bai

and Sinclair, 2017).

In this chapter, an overview of the classification methods in the literature will be

explained first. This is followed by highlighting the main contribution of this study on

the topic of view detection, and a detailed description of the proposed classification

models. Finally, the experimental setup, results, and discussion will be presented.

Echocardiography View Classification 51



4.2 Previous Work on View Classification

Most previous studies on automatic classification of echocardiographic views have

used hand-crafted features and traditional machine learning techniques, achieving

varying degrees of success in classifying a limited number of common echocardio-

graphic views (Strubell, Ganesh and McCallum, 2019; Ebadollahi, Chang and Henry

Wu, 2004; Agarwal, Shriram and Subramanian, 2013; Hui Wu et al., 2013; Kumar

et al., 2010; Otey et al., 2006; Beymer, Syeda-Mahmood and F. Wang, 2008; Kumar

et al., 2009; X. Gao et al., 2017).

Following the recent success of deep convolutional neural networks in computer vis-

ion, and particularly for image classification tasks, there has been a handful of reports

on the application of deep learning for cardiac ultrasound view identification. This

section has focused on such studies.

Gao et al. (X. Gao et al., 2017) proposed a fused CNN architecture by integrating

a deep learning network along the spatial direction, and a hand-engineered feature

network along the temporal dimension. The final classification result for the two-

strand-network was obtained through a linear combination of the classification scores

obtained from each network. They used a dataset of 432 image sequences acquired

from 93 patients. For each strand of the CNN network implemented using Matlab,

it took 2 days to process all images. Their model achieved an average accuracy rate

of 92.1% when classifying 8 different echocardiographic views.

In another study (Deo et al., 2017), view identification formed part of an automated

pipeline designed for the interpretation of echocardiograms. The standard VGG

architecture was employed as the CNN model, and 6 different echocardiographic

views were included in the study. The class label for each video was assigned by

taking the majority decision of predicted view labels on the 10 frames extracted from

the video. The overall classification accuracy, calculated from the reported confusion

matrix, was 97.7%, and no results for single image classification was reported.

In a follow-up study (J. Zhang et al., 2018), they included 23 views (9 of which were 3

apical planes, each one divided into ’no occlusions’, ’occluded LA’, and ’occluded LV’
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categories) from 277 echocardiograms. The reported overall accuracy of the VGG

model dropped to 84% at an individual image level, with the greatest challenge being

distinctions among the various apical views. By averaging across multiple images

from each video, higher accuracies could be achieved.

Madani et al. (Madani, Arnaout et al., 2018) proposed a CNN model to classify 12

standard B-mode echocardiographic views (15 views, including Doppler modalities)

using a dataset of 267 transthoracic studies (90% used for training-validation, and

10% for testing). An inference latency of 21ms per image was achieved for images

with a size of 60×80 pixels.

They also reported an average overall accuracy of 91.7% for classifying single frames,

compared to an average of 79.4% for expert echocardiographers classifying a subset

of the same test images. However, this may not be a fair comparison as the expert

humans were given the same downsampled images that were fed into the CNN model,

but the human experts are not trained and have no experience of working with such

low-resolution images. Later on, they reported an improved classification accuracy of

93.64% by first applying a segmentation stage, where the field of view was extracted

from the images using U-net model(Ronneberger, Fischer and Brox, 2015) and the

isolated image segment was then fed into the classifier (Madani, Ong et al., 2018).

In a more recent study (Østvik, Smistad, Aase et al., 2019), a CNN model was

proposed to balance accuracy and effectiveness. The design was inspired by the

Inception (Szegedy, Vanhoucke et al., 2016) and DenseNet (G. Huang et al., 2017)

architectures. The performance of the model was examined using a dataset of 2559

image sequences from 265 patients, and overall accuracy of 98.3% was observed for

classifying 7 echocardiographic views. The reported inference time was 4.4 ms and

15.9 ms when running the model on the GPU and CPU, respectively, for images with

a size of 128×128 pixels.

Vaseli et al. (Vaseli et al., 2019) reported on designing a lightweight model with the

knowledge of three state-of-the-art networks (VGG16, DenseNet, and ResNet) for

classifying 12 echocardiographic views. Maximum accuracy of 88.1% was observed
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using their lightweight models, with a minimum inference time of 52µs for images

with a size of 80×80 pixels.

However, the reported accuracies are provided for classifying cine loops and are

computed as the average of the predictions for all constituent frames in each cine loop.

It is unclear how many frames constituted a cine loop. For a cine loop containing

120 frames (time-window of 2s acquired at 60 frames/s), therefore, an inference

time of ≥6.2ms would be required to achieve the reported accuracy. A more rigorous

examination of their models also seems necessary and, as apparent from the provided

confusion matrices, a great majority of the reported misclassifications, seen as a

failure of the models, occurred for parasternal short-axis views.

4.3 Main Contributions

Given our two competing objectives of minimising the neural network size and max-

imising its prediction accuracy, this study aims to adopt the recent NAS solution of

DARTS for designing efficient neural networks. To the best of our knowledge, no

other study has applied DARTS to the complex problem of echocardiographic views

classification.

This study aimed at including subclasses of a given echocardiographic view and

did not focused on subclass-based hierarchical classification (Cerri, Barros and De

Carvalho, 2014), and each of the echo views examinations has been considered as a

single class. In general, the more numerous the view classes, the more difficult the

task of distinguishing the views for the CNN model. This is because if a group of

images is considered as a single view in one study and as multiple views in another,

those multiple views are likely to be relatively similar in appearance. Perhaps this

is one of the primary reasons for the wide range of accuracies (84-97%) reported in

the literature. This study will use a private dataset to design customised network

architectures for the task of echo view classification.

The input image resolution could potentially impact the classification performance.

In case of aggressively downsampled images, the relevant features may in fact be
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lost, thus lowering the classification accuracy. On the other hand, unnecessarily

large images would result in more computations. Nevertheless, all previous reports

considered one particular (but dissimilar in different studies) image resolution, the

selection of which was always unexplained. Herein, the impact of different input

image resolutions on the performance of the model has been investigated.

The accuracy of deep learning classifiers is largely dependent on the size of high-

quality initial training datasets. Collecting an adequate training dataset is often

the primary obstacle of many computer vision classification tasks. This could be

particularly challenging in medical imaging where the size of training datasets are

scarce, e.g. because the images can only be annotated by skilled experts. Hence,

it would be advantageous to require less training data. Therefore, the influence of

the size of training data on the model’s performance for each of the investigated

networks examined in this study.

No matter how ingenious the deep learning model, image quality places a ceiling on

the reliability of any automated image analysis. Echocardiograms inherently suffer

from relatively poor image quality. Therefore, also the impact of image quality on

the classification performance has been examined.

In light of the above, the main contributions of this chapter can be summarised as

follows:

• Inclusion of 14 different anatomical echocardiographic views (outlined in sec-

tion 4.4 Figure 4.1); larger than any previous study. Additional cases when only

7 or 5 different views were included to investigate the impact of the number of

views on the detection accuracy were also investigated.

• Analysis of three well-known network topologies and of a proposed neural net-

work, obtained from applying NAS techniques to design network topologies

with far fewer trainable parameters and comparable/better accuracy for echo

view classification.

• Analysis of computational and accuracy performance of the developed models

using our large-scale test dataset.
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Figure 4.1: The 14 cardiac views in transthoracic echocardiography: apical two-
chamber (A2CH), apical three-chamber (A3CH), apical four-chamber left ventricle
focused (A4CH-LV), apical four-chamber right ventricle focused (A4CH-RV), ap-
ical five-chamber (A5CH), parasternal long-axis (PLAX-Full), parasternal long-axis
tricuspid valve focused (PLAX-TV), parasternal long-axis valves focused (PLAX-
Valves), parasternal short-axis aortic valve focused (PSAX-AV), parasternal short-
axis left ventricle focused (PSAX-LV), subcostal (Subcostal), subcostal view of the
inferior vena cava (Subcostal-IVC), suprasternal (Suprasternal), and apical left at-
rium mitral valve focused (LA/MV).

• Analysis of the impact of the input image resolution; 4 different image sizes

were investigated.

• Analysis of the influence of the size of training data on the model’s performance

for all investigated networks.

• Analysis of the correlation between the image quality and accuracy of the model

for view detection.
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4.4 PACS-Dataset

This section will introduce the private dataset used for the 2D echocardiographic view

classification in this thesis. A random sample of 374 echocardiographic examinations

of different patients and performed between 2010 and 2020 was extracted from Imper-

ial College Healthcare NHS Trust’s echocardiogram database. The acquisition of the

images was performed by experienced echocardiographers and according to standard

protocols, using ultrasound equipment from GE and Philips manufacturers.

Ethical approval was obtained from the Health Regulatory Agency (Integrated Re-

search Application System identifier 243023). Only studies with full patient demo-

graphic data and without intravenous contrast administration were included. Auto-

mated anonymisation was performed to remove all patient-identifiable information.

The videos were annotated manually by an expert cardiologist (JPH), categorising

each video into one of 14 classes which are outlined in Figure 4.1. Videos thought

to show no identifiable echocardiographic features, or which depicted more than one

view, were excluded. Altogether, this resulted in 9,098 echocardiographic videos.

Of these, 8,732 (96.0%) videos could be classified as one of the 14 views by the

human expert. The remaining 366 videos were not classifiable as a single view,

either because the view changed during the video loop, or because the images were

completely unrecognisable. The cardiologist’s annotations of the videos were used

as the GT for all constituent frames of that video.

DICOM-formatted videos were then split into constituent frames, and three frames

were randomly selected from each video to represent arbitrary stages of the heart

cycle, resulting in 41,321 images. The dataset was then randomly split into training

(24791 images), validation (8265 images), and testing (8265 images) sub-datasets in

a 60:20:20 ratio. Each sub-datasets contained frames from separate echo studies to

maintain sample independence.

The relative distribution of echo view classes labelled by the expert cardiologist is

displayed in Figure 4.2 and indicates an imbalanced dataset, with a ratio of 3%
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Figure 4.2: Distribution of data in the training, validation and test dataset; values
show the number of frames in a given class.

(Subcostal-IVC view as the least represented class) to 13% (PSAX-AV view as the

dominant one).

4.5 Method

In this section, a description of a proposed CNN model that has been achieved by the

DARTS technique and inspired by the work of Liu et al. (2018) has been provided.

4.5.1 DARTS Method

DARTS method consists of two stages: architecture search and architecture evalu-

ation. Given the input images, it first embarks on an architecture search to explore

for a computation cell as the building block of the neural network architecture. Once

the best-learnt cell is obtained based on its validation performance, the final archi-

tecture could be formed from one cell or a sequential stack of cells. The weights

of the cell learned during the search stage are then discarded, and are initialised

randomly for the final training stage of the generated neural network model.
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Figure 4.3: Schematic of a DARTS cell. Left: a computational cell with four nodes
C0-C3. Edges connecting the nodes represent some candidate operations (e.g., 5×5
convolution, 3×3 convolution, and max-pooling represented in Figure 4.3 by red,
blue, and green lines, respectively). Right: the best-performing cell learnt from
retaining the optimal operations. Figure inspired by (Elsken, J. H. Metzen, Hutter
et al., 2019)

Two types of cells are defined in DARTS: (1) a “Normal Cell” which keeps the output

spatial dimension the same as input, and (2) a “Reduction Cell” which halves the

output spatial dimension while doubling the number of filters/channels.

A cell, depicted in Figure 4.3, is an ordered sequence of N nodes in which one

or multiple edges meet. Each node C(i) represents a feature map in convolutional

networks. Each edge (i,j) is associated with some operation O(i,j), transforming

the node C(i) to C(j). This could be a combination of several operations, such as

convolution, max pooling, and ReLU. Each cell is assumed to have 2 inputs which

are the outputs from the previous and penultimate cells. The output of the cell is

defined as the depth-wise concatenation of all nodes in the cell. The task of learning

the optimal cell is effectively finding the optimal placement of operations at the

edges.

Each intermediate node C(j) is computed based on all of its predecessors as:

C(j) =
∑
i<j

O(i,j)
(
C(i)

)
(4.1)

Refer to equation 4.2, ∂ is a set of candidate operations such as convolution, max

pooling where each operation is indicate of some function O(.) to be applied to C(i).
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The continuity of the search space is obtained by relaxing the categorical choice of

a particular operation to a softmax over all possible operations where for a pair of

nodes (i, j), the operation mixing weights are parameterised by a vector α(i, j) of

dimension |∂|. Then, the task of architecture search simplify to learning a set of

continuous variables α = { α(i, j)}.

Ō(i,j)(C) =
∑
o∈∂

exp(αo(i,j))∑
o′∈∂exp(α

(i,j)
o′ )

O(C) (4.2)

Refer to equation 4.3, at the end of the search, by replacing each mixed operation

Ō(i,j) with the most likely operation (O((i,j))) a discrete architecture can be acquired

(edges display in Figure 4.3,right, are the strongest operation). α in 4.3 refers to

the architecture. Among all operations, the top 2 strongest operations have been

collected, and week operation has been dropped.

O(i,j) = argmaxo∈∂ α
(i,j)
0 (4.3)

The DARTS method optimises the network weights and associated architecture in

conjunction with alternating gradient descent steps on the training data for weights

and on validation data for architectural parameters, such as α. The aim for architec-

ture search in DARTS is to identify architecture refers to α* in (4.4) that minimises

the validation loss Lval(ω*, α* ), where the weights ω* associated with the architec-

ture is obtained by minimising the training loss that displays in (4.5). This indicates

a bi-level operations problem (Anandalingam and Friesz, 1992; Colson, Marcotte and

Savard, 2007) where α is the upper-level variable and ω is the lower-level variable.

min
α

Lval(ω∗(α), α) (4.4)

such.that ω∗(α) = argminω Ltrain(ω, α) (4.5)
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4.5.2 DARTS Parameters for Architecture Search

For the stage of architecture search, 80% of the dataset was held out for equally-sized

training and validation subsets, and 20% for testing. Images were normalised and

downsampled to 4 different sizes of 32×32, 64×64, 96×96, and 128×128 pixels, with

corresponding batch sizes of 64, 14, 8, and 4, respectively.

The following candidate operations were included in the architecture search stage:

3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions,

3×3 max-pooling, 3×3 average-pooling, skip-connection, and zero. For the convo-

lutional operations, a ReLU-Conv-BN order was used. If applicable, the operations

were of stride one. The convolved feature maps were padded to preserve their spatial

size.

A network of 8 cells was then used to conduct the search for a maximum of 30

epochs. The initial number of channels was 16 to make sure the network could fit

into a single GPU. Stochastic Gradient Decent (SGD) with a momentum of 0.9,

an initial learning rate of 0.1, and weight decay of 3 × 10−4 was used to optimise

the weights. To obtain enough learning signal, DARTS utilises zero initialisation

for architecture variables indicating the same amount of attention over all possible

operations as it is taking the softmax after each operation.

Adam optimiser (Kingma and Ba, 2015) with an initial learning rate of 0.1, mo-

mentum of (0.5, 0.999), and weight decay of 10−3 were used as the optimiser for

α.

4.5.3 Models Training Parameters

Training occurred subsequently, using annotations provided by the expert cardiolo-

gist. It was carried out independently for each of the 4 different image sizes of

32×32, 64×64, 96×96, and 128×128 pixels. Identical training, validation, and test-

ing datasets were used in all network models. The validation dataset was used for

early stopping to avoid redundant training and overfitting. Each model was trained

until the validation loss plateaued. The test dataset was used for the performance
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assessment of the final trained models. The DARTS models were kept blind to the

test dataset during the stage of architecture search.

Adam optimiser with a learning rate of 10−4 and a maximum number of 800 epochs

was used for training the models. The cross-entropy loss was used as the network’s

objective function. For training the DARTS model, a learning rate of 0.1 was deemed

to be a better compromise between speed of learning and precision of result and was

therefore used. A batch size of 64 or the maximum which could be fitted on the

GPU (if <64) was employed.

It is evident from Figure 4.2 that the dataset is fairly imbalanced with unequal dis-

tribution of different echo views. To prevent potential biases towards more dominant

classes, we used online batch selection where an equal number of samples from each

view were randomly drawn (by over-sampling of underrepresented classes). This led

to training on a balanced dataset representing all classes in every epoch. An epoch

was still defined as the number of iterations required for the network to meet all

images in the training dataset.

4.6 Evaluation Metrics

Several metrics were employed to evaluate the performance of the examined and

proposed classification models in this study such as classification accuracy, confusion

matrix, Macro Average Recall Rate (RECM), and Macro Average Precision (PREM),

F measure.

• Classification Accuracy:

Overall accuracy was calculated as the number of correctly classified images as

a fraction of the total number of images which can be computed as follows:

Accuracy = Number of correct predictions

total number of predictions
(4.6)

• Confusion Matrix:

Confusion matrix is a two-dimensional matrix that presents a brief overview
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of the classification performance of a classifier on a test dataset which gives us

insight not only into the error being made by a classifier but more importantly

the types of errors that were made. In one dimension the true classes of the

test dataset, and in the other dimension, the prediction results by the classifier

will be assign. In other words, the confusion matrix displays the number of

correct and incorrect predictions broken down by each class (Ting, 2010).

• Macro Average Recall (RECM):

Recall is the fraction of instances of a class that were correctly predicted, and

in the binary classification problem recall can be computed by the equation 4.7

where tp (true positive) is where the model correctly predicts the positive class,

and fn (false negative) is where the model incorrectly predicts the negative

class. For multi-class cases, the macro-averaged recall will be computed by

an equation 4.8 which calculates metrics for each class (k) and finds their

unweighted mean.

REC = tp

(tp+ fn) (4.7)

RECmacro = REC1 + ...... RECk
k

(4.8)

• Macro Average Precision (PREM):

Precision is defined as the fraction of correct predictions for a certain class, and

in the binary classification case precision can be calculated by the equation 4.9

where tp (true positive) is the correctly predicted samples on the test dataset,

and fp (false positive) is the total number of prediction errors. For multi-class

cases, macro-averaged precision will be computed by equation 4.10 which gives

equal weight to each class and averages the performance of each individual.

PRE = tp

(tp+ fp) (4.9)
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PREmacro = PRE1 + ...... PREk
k

(4.10)

• F1 Score:

F1 is an overall measure of a model’s accuracy which is the harmonic mean

of the precision and recall. A good F1 score means that you have low false

positives (fp) and low false negatives (fn), so you’re correctly identifying real

threats and you are not disturbed by false alarms. Equation 4.11 displays how

the F1 score will be calculated. When the F1 score is 1, it is considered perfect,

while 0 means the model is a total failure. In the multi-class cases, the F1 score

is the average of each class with weighting.

F1 = 2 ∗ PRE ∗ REC

PRE + REC
(4.11)

• Inference Time (latency time):

Inference time is used to determine the amount of time that a model could

return the prediction of view classes for one image from the test dataset on

GPU. To this end, a total of 100 images were processed in a loop, and the

average time was recorded.

• Number of Parameters and Training Time:

The number of trainable parameters in each network and training time per

epoch was also recorded. All computations were carried using identical hard-

ware resources, allowing for a fair comparison of computational time-efficiency

between all investigated network models.

PyTorch (Paszke et al., 2017) was used to implement the models. For the com-

putationally intensive stage of architecture search, a GPU server equipped with 4

NVIDIA Titan V GPUs with 12 GB of memory was rented. For the subsequent train-

ing of the searched networks and also the standard models, the utilised GPU was an

Nvidia QUADRO M5000 with 8 GB of memory, representing more widely accessible

hardware for real-time applications. Inference time (latency time for classifying each
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image) was also estimated with the trained models running on the GPU. To this

end, a total of 100 images were processed in a loop, and the average time was recor-

ded. All training/prediction computations were carried using identical hardware and

software resources, allowing for a fair comparison of computational time-efficiency

between all network models investigated in this study.

The number of trainable parameters in the model, as well as the training time per

epoch, was also recorded for all CNN networks.

4.7 Experimental Results and Discussion

4.7.1 Architecture Search

The search took ∼6, 23, 42, and 92 hours for image sizes of 32×32, 64×64, 96×96,

and 128×128 pixels, respectively, on the computing infrastructure described earlier

(section 4.6). Figure 4.4 displays the best convolutional normal and reduction cells

obtained for the input image size of 128×128 pixels. The retained operations were

3×3 and 5×5 dilated convolutions, 3×3 max-pooling, and skip-connection. Each cell

is assumed to have 2 inputs which are the outputs from the previous and penultimate

cells. The output of the cell is defined as the depth-wise concatenation of all nodes

in the cell.

Two network architectures were assembled from the optimal cell; "1-cell-DARTS"

comprised of one reduction and one normal cell, whereas "2-cell-DARTS" formed

from a sequential stack of 2 cells which contain 2 normal and 2 reduction cells.

The addition of more cells to the network architecture did not significantly improve

the prediction accuracy, as reported in the next section, but increased the number of

trainable parameters in the model and thus the inference time for view classification.

Therefore, the models with more than 2 cells, i.e. architectures with redundancy,

were judged as being comparatively inefficient and thus discarded. Figure 4.4 (left

side) also displays the full architecture for the "2-cell-DARTS" model for the input

image size of 128×128 pixels.

Results for 5 different network topologies and different image sizes are provided in
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Figure 4.4: Optimal normal and reduction cells for the input image size of 128×128
pixels, as suggested by the DARTS method, where 3×3 and 5×5 dilated separable
convolutions, 3×3 max-pooling, and skip-connection operations have been retained
from the candidate operations initially included. Each cell has 2 inputs which are
the cell outputs in the previous two layers. The output of the cell is defined as the
depth-wise concatenation of all nodes in the cell. A schematic view of the "2-cell-
DARTS", formed from a sequential stack of 2 cells, is also displayed on the left. Stem
layer incorporates a convolution layer and a batch normalisation layer.

Table 4.1. Despite having significantly fewer trainable parameters, the two DARTS

models showed competitive results when compared with the standard classification

architectures (i.e., VGG16, ResNet18, and DenseNet201). The 2-cell-DARTS model,

with only ∼0.5m trainable parameters, achieves the best accuracy (93-96%), preci-

sion (92.5-95.2%), and recall (92.3-95.1%) among all networks and across all input

image resolutions. Deeper standard neural networks, if employed for echo view de-

tection, would therefore be significantly redundant, with up to 99% redundancy in

trainable parameters.

On the other hand, while maintaining a comparable accuracy to standard network

topologies, the 1-cell-DARTS model has ≤0.09m trainable parameters and the lowest

inference time amongst all models and across different image resolutions (range 3.6-
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Table 4.1: Experimental results on the test dataset for input sizes of (32×32),
(64×64), (96×96) and (128×128) and different network topologies. Accuracy is
the ratio of correctly classified images to the total number of images; precision and
recall are the macro average measures (average overall views of per-view measures);
F1 score is the harmonic mean of precision and recall. The values in bold indicate
the best performance for each measure.

Network AccuracyPrecisionRecall F1 Score Parameters Inference TimeTime/epoch
(%) (%) (%) (%) (thousands) (ms) (s)

(32×32)
1-cell-DARTS 88.4 87.8 87.1 87.4 58 3.6 41
2-cell-DARTS 93.0 92.5 92.3 92.3 411 7.0 46
ResNet18 90.6 89.9 89.7 89.8 11,177 11.8 184
Vgg16 90.7 89.9 89.5 89.6 134,316 8.3 210

DenseNet201 88.3 87.9 87.0 87.4 20,013 119 1303
(64×64)

1-cell-DARTS 90.0 89.4 88.7 89.0 92 6.5 81
2-cell-DARTS 95.0 94.7 94.2 94.4 567 12.6 121
ResNet18 92.1 91.5 91.7 91.5 12.0 185
Vgg16 92.4 91.5 92.2 91.8 8.5 240

DenseNet201 93.1 92.5 92.8 92.6 127.3 1322
(96×96)

1-cell-DARTS 93.2 92.8 92.3 92.5 101 7.2 141
2-cell-DARTS 95.4 95.1 94.9 94.9 669 14.2 264
ResNet18 93.1 92.4 92.2 92.3 12.1 186
Vgg16 93.6 92.9 93.0 92.9 8.6 276

DenseNet201 93.8 93.0 93.3 93.1 129.0 1336
(128×128)

1-cell-DARTS 92.5 92.3 91.4 91.8 89 5.9 180
2-cell-DARTS 96.0 95.2 95.1 95.1 545 11.8 380*
ResNet18 92.9 92.6 92.2 92.4 12.2 196
Vgg16 93.2 92.1 92.7 92.3 9.0 429*

DenseNet201 93.8 93.1 93.2 93.1 129.4 1605*
* For these experiments, a maximum batch size of <64 could be fitted on the
GPU.
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Figure 4.5: Confusion matrix for the 2-cell-DARTS model and input image resolution
of 128×128 pixels.

7.2ms). This would allow processing about 140-280 frames per second, thus making

real-time echo view classification feasible.

Compared with manual decision making, this is a significant speedup. Although the

identification of the echo view by human operators is almost instantaneous (at least

for easy cases), the average time for the overall process of displaying/identifying/recording

the echo view takes several seconds.

Having fewer trainable parameters, both DARTS models also exhibit faster conver-

gence and shorter training time per epoch than standard deeper network architec-

tures.

4.7.2 View Classification

The confusion matrix for the 2-cell-DARTS model and image resolution of 128×128

pixels is provided in Figure 4.5. The errors appear predominantly clustered between
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Figure 4.6: t-Distributed Stochastic Neighbor Embedding (t-SNE) visualisation of
14 echo views from the 2-cell-DARTS model (128×128 image size). Each point rep-
resents an echo image from the test dataset, and different coloured points represent
different echo view classes.

a certain pair of views which represent anatomically adjacent imaging planes. The

A5CH view proves to be the hardest one to detect (accuracy of about 80%), as the

network is confused between this view and other apical windows. This is in line with

previous observations that the greatest challenge lies in distinguishing between the

various apical views (Deo et al., 2017).

Interestingly, the two views the model found most difficult to correctly differentiate

(A4CH-LV versus A5CH, and A2CH versus A3CH) were also the two views on which

the two experts disagreed most often (Howard et al., 2020). The A4CH view is in an

anatomical continuity with the A5CH view. The difference is whether the scanning

plane has been tilted to bring the aortic valve into view, which would make it A5CH.

When the valve is only partially in view, or only in view during part of the cardiac

cycle, the decision becomes a judgement call and there is room for disagreement.

Similarly, the A3CH view differs from the A2CH view only in a rotation of the probe

anticlockwise, again to bring the aortic valve into view.
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Figure 4.7: Three different misclassified examples predicted by the 2-cell-DARTS
model for the image resolution of 128×128 pixels.

It is also interesting to note that the misclassification is not fully asymmetrical. For

instance, while 42 cases of A5CH images are confused with A4CH-LV, there are only

14 occasions of A4CH-LV images mistaken for A5CH.

On the other hand, echo views with distinct characteristics are easier for the model

to distinguish. For instance, PLAX-full and Suprasternal seem to have higher rates

of correct identification, and the network is confused only on one occasion between

these two views.

This is also evident on the t-Distributed Stochastic Neighbor Embedding (t-SNE)

plot in Figure 4.6, which displays a planar representation of the internal high-

dimensional organisation of the 14 trained echo view classes within the network’s

final hidden layer (i.e. input data of the fully connected layer). Each point in the

t-SNE plot represents an echo image from the test dataset.

Noticeably, not only has the network grouped similar images together (a cluster for

each view, displayed with different colours), but it has also grouped similar views

together (highlighted with a unique background colour). For instance, it has placed

A5CH (blue) next to A4CH (dark brown), and indeed there is some "interdigitation"

of such cases, e.g. for those whose classification between A4CH and A5CH might

be debatable. Similarly, at the top right, the network has discovered that the fea-

tures of the Subcostal-IVC images (green) are similar to the Subcostal images (red).

This shows that the network can point to relationships and organisational patterns

efficiently.
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Figure 4.8: Comparison of accuracy for different classification models and different
image resolutions; image width of 32 correspond to the image resolution of 32×32
pixels.

Figure 4.7 shows examples of misclassified cases when the prediction of the 2-cell-

DARTS model disagreed with the expert annotation. The error can be explained

by the inherent difficulty of deciding, even for cardiologist experts, between views

that are similar in appearance to human eyes and are in spatial continuity (case of

A4CH / A5CH mix-up), images of poor quality (case of A4CH / PSAX mix-up), or

views in which a same view-defining structure may be present (case of PSAX-LV /

PSAX/AV mix-up).

4.7.3 Impact of Image Resolution, Quality, and Dataset Size

The models seem to exhibit a plateau of accuracy between the two larger image

resolutions of 96×96 and 128×128 pixels (Figure 4.8). On the other hand, for the

smaller image size of 32×32 pixels, the classification performance seems to suffer

across all network models, with a 2.3-5.1% reduction in accuracy relative to the

resolution of 96×96 pixels.

Shown in Figure 4.9’s upper panel, is the class-wise view detection accuracy for

various input image resolutions. Classification accuracy was calculated as the number

of correctly classified items as a fraction of the total number of the item. Notably,

not all echo views are affected similarly by using lower image resolutions. The drop

in overall performance is therefore predominantly caused by a marked decrease in
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detection accuracy of only certain views. For instance, A4CH-RV suffers a sharp

reduction of ∼25% in prediction accuracy when dealing with images of 32×32 pixels.

Figure 4.9’s lower panel shows the relative confusion matrix, illustrating the improve-

ment associated with using image resolution of 96×96 versus 32×32 pixels. Being

already a difficult view to detect even in higher resolution images, A5CH will have

47 more cases of misclassified images when using images of 32×32 pixels. Overall,

apical views seem to suffer the most from lower resolution images, being mainly

misclassified as other apical views. For instance, the two classes associated with the

A4CH will primarily be mistaken for one another. This is likely because, with a

decreased resolution, the details of the aortic valve would be less discernible by the

network.

Conversely, parasternal long-axis views seem to be less affected, and still detectable

in downsampled images. For instance, PLAX-full will have only 4 more cases of

misclassified images. This might be due to the fact that the relevant features, on

which the model relies for identifying this view, are still present and visible to the

model.

Overall, and for almost all echo views, the image size of 96×96 pixels appeared to

be a good compromise between classification accuracy and computational costs.

To examine the influence of the size of the training dataset on the model’s per-

formance, an additional experiment conducted where the training data split into

sub-datasets with strict inclusion relationship (i.e., having the current sub-dataset

a strict subset of the next sub-dataset), and ensured all the sub-datasets were con-

sistent (i.e., having the same ratio for each echo view as in the original training

dataset). Then, all targeted neural networks retrained on these sub-datasets from

scratch and investigated how their accuracy varied concerning the size of the dataset

used for training the model. The size of the validation and testing datasets, however,

remained unchanged.

Figure 4.10 shows a drop in the classification accuracy across all models when smaller

sizes of training data are used for training the networks. However, various models

are impacted differently. Suffering from redundancy, deeper neural networks require
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Figure 4.9: Accuracy of the 2-cell-DARTS model for various input image resolutions.
Upper: class-wise prediction accuracy. Lower: relative confusion matrix showing
improvement associated with using image resolution of 96×96 versus 32×32 pixels.
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Figure 4.10: Comparison of accuracy of different classification models for an image
size of 128×128 versus different fragments of training dataset used when training the
models. For each sub-dataset, all models were retrained from scratch.

more training data to achieve similar performances. DenseNet, with the largest

number of trainable parameters, appears to be the one which suffers the most, with

a 20% reduction in its classification accuracy, when only 8% of the training dataset

is used.

However, the DARTS-based models appear to be relatively less profoundly affected

by the size of the training dataset, where both models demonstrate no more than

an 8% drop in their prediction accuracy when deprived of the full training data-

set. When using fewer than 12,400 images (i.e., 50% of the training dataset), both

DARTS-based models exhibit superior performance over the deeper networks.

Accordingly, this study hypothesised that the more numerous the echo view classes,

the more difficult the task of distinguishing the views for deep learning models, e.g.

because of more chances of misclassifications among classes. This is potentially the

underlying reason for the inconsistent accuracies (84-97%) reported in the literature

when classifying between 6 to 12 different view classes. To investigate this premise,

cases when only 5 or 7 different echo views were present in the dataset have been

considered. For each study, the aim was including views representing anatomically

adjacent or similar imaging planes such as apical windows (thus challenging for the
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Table 4.2: The dependence of overall accuracy on the number of echo views; exper-
imental results on the test dataset with 5, 7, and 14 classes for different network
topologies, and image resolution of 64×64 pixels. The 7-class study included A2CH,
A3CH, A4CH-LV, A5CH, PLAX-full, PSAX-LV, Subcostal-IVC, and a total of 24464
images. The 5-class study included A4CH-LV, PLAX-full, PSAX-AV, Subcostal,
Suprasternal, and a total of 18896 images.

Network Accuracy Precision Recall F1 Score Parameters Inference Time Time/epoch
(%) (%) (%) (%) (thousands) (ms) (s)

1-cell-DARTS
14-classes 90.0 89.4 88.7 89.0 92 6.5 81
7-classes 96.4 96.1 96.1 96.1 110 7.8 58
5-classes 98.1 98.3 97.9 98.1 85 6.6 38

2-cell-DARTS
14-classes 95.0 94.7 94.2 94.4 567 12.6 121
7-classes 97.0 96.9 96.7 96.8 709 15.6 85
5-classes 99.3 99.3 99.1 99.2 556 12.9 55

Accuracy is the ratio of correctly classified images to the total number of images;
precision and recall are the macro average measures (average overall views of
per-view measures); F1 score is the harmonic mean of precision and recall.

models to distinguish), as well as other echo windows. The list of echo views included

in each study is provided in Table 4.2.

The results show an increase in the overall prediction accuracy for the two DARTS-

based models, when given the task of detecting fewer echo view classes and despite

having relatively smaller training datasets to learn from. The 1-cell-DARTS model

shows an 8% improvement in its performance when the number of echo views is

reduced from 14 to 5. The 2-cell-DARTS model reaches a maximum accuracy of

99.3%, i.e. higher than any previously reported accuracies for echo view classification.

This highlights the fact that for a direct comparison of the classification accuracy

between the models reported in the literature, the number of different echo windows

included in the study must be taken into account.

Finally, to study the impact of image quality on the classification performance, a

second expert cardiologist provided an assessment of image quality in the A4CH-LV

views and assign a quality label to each image where the quality was classified into

5 grades: very poor, poor, average, good, and excellent. Figure 4.11 displays the
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Figure 4.11: Correlation between the classification accuracy and the image quality
(judged by the expert cardiologist) of the A4CH-LV view in the test dataset. The
area of the bubbles represents the relative frequency of the images in that quality
score category. Results correspond to the 2-cell-DARTS model and image resolution
of 128×128 pixels.

relationship between the classification accuracy of the 2-cell-DARTS model and the

image quality in the test dataset. The area of the bubbles represents the relative

frequency of the images in that quality score category, with the "good" category as

the dominant grade. This is likely because the image acquisition had been performed

mainly by experienced echocardiographers.

The correlation between the classification accuracy and the image quality is evident

(p-value of 0.01). Images labelled as having "excellent" quality, indicated the highest

classification accuracy of ∼100%. It is apparent that the discrepancy between the

model’s prediction and the expert annotation is higher in poor quality images. This

could potentially be due to the fact that poorly visible chambers with a low degree of

endocardial border delineation could result in some views being mistaken for other

apical windows.
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4.8 Conclusion

In this chapter, efficient CNN architectures are proposed for the automated identific-

ation of the 2D echocardiographic views. The DARTS method was used in designing

optimised architectures for rapid inference while maintaining high accuracy. A data-

set of 14 different echocardiographic views was used for training and testing the

proposed models. Compared with the standard classification CNN architectures,

the proposed models are faster and achieve comparable classification performance.

Such models can thus be used for real-time detection of the standard echo views.

The impact of image quality and size of the training dataset on the efficacy of the

models was also investigated. Deeper neural network models, with a large number

of redundant trainable parameters, require more training data to achieve similar

performances. A direct correlation between the image quality and classification

accuracy was observed.

The number of different echo views to be detected has a direct impact on the per-

formance of the deep learning models, and must be taken into account for a fair

comparison of classification models. The more numerous the echo view classes, the

more difficult the task of distinguishing the views for deep learning models.

Aggressively downsampled images will result in losing relevant features, thus lowering

the prediction accuracy. On the other hand, while much larger images may be

favoured for some fine-grained applications (e.g., segmentation), their use for echo

view classification would offer only slight improvements in performance (if any) at

the expense of more processing and memory requirements.
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Chapter 5

Left Ventricle Segmentation

5.1 Introduction

Image segmentation is a powerful and challenging technique of image processing to

process an image that divides an image into different parts or segments consisting of

each section with similar attributes to provides the meaningful objects of the image

(Shanazaman, Harapriyasahoo and Rajanjha, 2015; Jaglan, Dass and Duhan, 2019).

Some of the basic applications of image segmentation are object detection, recog-

nition tasks, video surveillance, medical imaging, etc. Two basic types of image

segmentation are local segmentation which is concerned with a specific region of an

image and global segmentation which is concerned with segmenting the whole image,

including a large number of pixels (D. Kaur and Y. Kaur, 2014).

To assess the cardiac function in 2D ultrasound images, quantification of the LV

shape and deformation are crucial, and this relies on the accurate segmentation

of the LV contour in ED and ES frames (Raynaud et al., 2017). At present, the

manual segmentation of the LV suffers from various complications: (i) it needs to be

carried out only by an experienced clinician; (ii) inevitable inter-and intra-observer

variability in the annotations; (iii) and it is laborious and must be repeated for each

patient. Therefore, the automatic segmentation methods may help to resolve these

issues and also can lead to increased patient throughput and can reduce the inter-user

discrepancy.

There are many suggested methods for 2D LV segmentation. Recently deep convo-
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lutional neural networks have been widely applied in medical image segmentation

field by extracting features through CNN (Greenspan, Van Ginneken and Summers,

2016; Jafari et al., 2018; Leclerc, Smistad, Pedrosa et al., 2019). In literature, dif-

ferent CNN architectures are constructed to complete the segmentation task such

as FC-DenseNet (Jégou et al., 2017), U-Net (Ronneberger, Fischer and Brox, 2015),

SegNet (Badrinarayanan, Kendall and Cipolla, 2017).

Same as classification networks, well-designed established segmentation architectures

have been developed manually by human experts, which is a time-consuming and

error-prone process. Therefore recently, there is significant interest in automated

architecture design. In the past years, NAS has successfully recognised neural net-

works that outperform human-designed architectures on the image classification task

(Zoph, Vasudevan et al., 2018; C. Liu, Zoph et al., 2018; Real et al., 2019b). Image

classification is a good starting point for NAS; however, image classification should

not be the endpoint for NAS, and a recent study shows promise to extend into image

segmentation problems (C. Liu, L.-C. Chen et al., 2019). In this study, the Hier-

archical Neural Architecture Search method for designing customised segmentation

architectures has been adopted.

In this chapter, first, previous work on LV segmentation will be discussed. Fol-

lowed by the main contribution of this study, dataset, and a detailed description of

the proposed segmentation model. Afterward, the experimental setup, results, and

discussion will be presented. Finally, this chapter is summarised.

5.2 Previous Work on LV Segmentation

Several studies have been conducted to produce automatic segmentation of LV in

echocardiographic images. Traditional methods correspond to methods such as active

contour, active shape, and appearance methods, bottom-up approaches, and machine

learning-based methods (Noble and Boukerroui, 2006; Carneiro, Nascimento and

Freitas, 2011; Oghli, Fallahi et al., 2012; Bosch et al., 2002; S. C. Mitchell et al.,

2002; Lin, W. Yu and Duncan, 2003; Wolf et al., 2002; K. E. Leung et al., 2010;

Oghli, Mohammadzadeh et al., 2018; Ghelich Oghli et al., 2017). Most of these
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methods focus on endocardial border detection in a single frame echocardiography

image.

Following the recent success of deep neural networks for medical image analysis (Lu

et al., 2017; Anwar et al., 2018; Tajbakhsh et al., 2016), there has been a handful

of reports on the application of deep learning for LV segmentation in echo images.

This section has focused on such studies.

Carneiro et al. (2011) introduced a new approach based on Deep Belief Network

(DBN) that decouples the rigid and nonrigid classifiers to complete the segment-

ation task of LV in A4C view echocardiographic images. They used a dataset of

diseased cases containing 400 annotated images and another dataset of normal cases

comprising 80 annotated images, where both sets present long-axis views of the LV.

They have compared their segmentation results with two state-of-the-art segment-

ation models on the dataset of normal cases, and the results show their approach

is comparable to the state-of-the-art two approaches (Carneiro, Nascimento and

Freitas, 2011).

In another study, a deep learning model proposed to use transfer learning from cross

domains to enhance feature representation (H. Chen et al., 2016). Oktay et al.

(2017) suggested a strategy that incorporates anatomical prior knowledge and label

structure into the U-Net model through a new regularisation model (Oktay et al.,

2017).

Smistad et al. (2017) studied if the need for manual annotation can be reduced

by using pre-trained U-Net (Ronneberger, Fischer and Brox, 2015) and previously

published automatic Kalman Filter (KF) based segmentation model. Their results

reveal that CNN can produce similar accuracy to the automatic method, by only

training with generated data. The Dice Coefficient (DC) was 0.86 ± 0.06 for the

CNN versus 0.87 ± 0.06 (Smistad, Østvik et al., 2017).

Zyuzin et al. (2018) utilised the U-Net network for LV segmentation in echo images in

A4C view. They obtained an accuracy of up to 92.3%, which suggests the efficiency

of using the U-Net model for automatic identification of the LV endocardial border

on echo images (Zyuzin et al., 2018).
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Dong et al. (2018) developed a coarse-to-fine framework to complete the segmenta-

tion of the LV on 3D echocardiography images. First, they use a deep fusion network

and transfer learning, combining the residual modules, to achieve coarse segmenta-

tion of LV in 3D. Then, they utilised a geometrical model for a deformable model

based on the results of coarse segmentation. Finally, the deformable model was

implemented to further optimise the segmentation results (Suyu Dong, G. Luo, K.

Wang et al., 2018).

Moradi et al. (2019) proposed a novel architecture that features maps in all levels

of the decoder path of U-Net are concatenated, their depths are equalized, and up-

sampled to a fixed dimension. This stack of feature maps would be the input of

the semantic segmentation layer. They evaluated the performance of their proposed

model using a private dataset and the public CAMUS dataset introduced in (Leclerc,

Smistad, Pedrosa et al., 2019). They achieved an average dice metric of 0.953,

Hausdorff Distance (HD) of 3.49 (Moradi et al., 2019) on the CAMUS dataset, and

an average dice metric of 0.945 ± 0.12 on the private dataset.

Leclerc et al. (2019) evaluated how far the state-of-the-art encoder-decoder deep

CNN methods can go to evaluate 2D echocardiographic images. They introduced

two neural networks utilised from the U-Net model called U-Net 1 optimised for

speed, and U-Net 2 optimised for accuracy. They used a dataset contains Apical

Two-Chamber (A2C) and A4C echo views from 500 patients with annotation from

one cardiologist on the full dataset and three cardiologists on a fold of 50 patients.

They reveal that encoder-decoder-based architectures outperform state-of-the-art

non-deep learning methods (Leclerc, Smistad, Pedrosa et al., 2019). Furthermore,

in a more recent study, the same group proposed a multi-stage framework where

both the localisation and segmentation steps are optimised simultaneously. Their

proposed model is comprised of a combination of the U-Net model followed by a

standard regression network. They achieved DC of 0.95 and 0.93 for LV-endo and

LV-epi respectively (Leclerc, Smistad, Østvik et al., 2020).

In another study, Azarmehr et al. (2020) examined the performance of U-Net 1 and

U-Net 2 introduced by (Leclerc, Smistad, Pedrosa et al., 2019) as well as the original
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U-Net model by applying them to an independent dataset of patients to segment

the endocardium of the LV in 2D echocardiography images. The prediction outputs

of the models are used to evaluate the performance of the models by comparing

the automated results against the expert annotations. Their results show that the

original U-Net model outperforms other models by achieving an average DC of 0.92

± 00.05, and HD of 3.97 ± 00.82 (Azarmehr et al., 2019).

Li et al. (2020) proposed a deep pyramid and deep supervision network to pro-

cess each frame of the sequence independently. Their model incorporates a densely

connected network, a feature pyramid network, and a deeply supervised network to

extract and fuse multilevel and multiscale semantic information. Interestingly, this

method outperforms the baseline U-Net model for the segmentation of ED and ES

frames (Li, Shizhou Dong et al., 2020). Moreover, later on, part of the same group

proposed another method based on a recurrent aggregation network to integrate tem-

poral coherency during the segmentation of one full cardiac cycle. They achieved

DC of 0.92 ±0.04 (Li, C. Wang et al., 2020).

5.3 Main Contributions

This chapter aims to adopt NAS algorithm particularly Hierarchical Neural Archi-

tecture Search to design a neural network to perform the segmentation of LV with

the objective of maximising its prediction accuracy. To the best of our knowledge, no

other study has applied NAS technique to the complex problem of echocardiographic

LV segmentation.

High-quality and large-scale training datasets are a crucial part of achieving an

outstanding deep learning segmentation model. Collecting an adequate training

dataset is often the main difficulty of many computer vision segmentation tasks

including medical imaging where the size of training datasets is rare, e.g. because

the images can only be annotated by skilled experts. Therefore, it would be beneficial

to require less training data. Consequently, this study investigates the influence of

the size of training data on the model’s performance for all developed networks.

Left Ventricle Segmentation 82



Echocardiograms inherently suffer from relatively poor image quality and no matter

how ingenious the deep learning model is, the image quality has an impact on the

reliability of any automated image analysis. Therefore, the impact of image quality

on the performance of the model is investigated. The contributions of this chapter

can be listed as follows:

• Adopting the NAS method to design a network for more precise LV segment-

ation in echo images.

• Inclusion of 2 different private datasets for A4C (outlined in Chapter 2, table

2.1). In addition, including performance reports on a publicly available dataset

(CAMUS) which could provide a benchmark for future studies. The public

dataset includes A4C and A2C views.

• Comparative performance analysis of four well-known network topologies and

the proposed neural network, obtained from applying NAS technique to design

network topology with improved accuracy for LV echo segmentation.

• Investigate the influence of the size of the training dataset on the model’s

performance for the public CAMUS dataset for all investigated networks.

• Investigate the influence of single structure and multi-structure of training data

on the model’s performance derived from NAS technique.

• Investigate the impact of image quality on the accuracy of LV segmentation

model.

5.4 Datasets

This section will present two private and one public dataset known as CAMUS

employed for the segmentation in the 2D echocardiographic images.

5.4.1 CAMUS-Dataset

The public CAMUS dataset consists of clinical exams from 450 patients, acquired

at the University Hospital of St Etienne (France). The dataset comprises a wide
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Figure 5.1: Example of images from public CAMUS dataset for (a) Good, (b) Me-
dium and (c) poor image quality. Left: input images; Right: corresponding manual
annotations. LV-Endocardium (LV-Endo) and LV-epicardium (LV-Epi) and left at-
rium (LA) wall are displayed respectively in green, blue and magenta.

variation of acquisition settings. For instance, for some patients, parts of the wall

were not visible in the images; this produced a highly heterogeneous dataset, in terms

of image quality and pathological cases, which is typical of daily clinical practice data.

The full dataset was acquired using GE Vivid E95 ultrasound scanners (GE Vingmed

Ultrasound, Horten Norway), with a GE M5S probe (GE Healthcare, US). For each

patient, 2D A4C and A2C view sequences were exported from EchoPAC analysis

software (GE Vingmed Ultrasound, Horten, Norway). At least one full cardiac cycle
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was acquired for each patient in each view, allowing manual annotation of cardiac

structures at ED and ES. In total, the dataset includes 1800 2D ultrasound sequences

(2 chamber and 4 chamber views of 450 patients) along with the provided multi-

structure annotation (i.e. endocardium (LV-Endo), the myocardium (epicardium

contour more specifically, named LV-Epi), and the left atrium (LA)) by one expert

at the ED and ES instants (Leclerc, Smistad, Pedrosa et al., 2019). An example of

images from a public CAMUS dataset with a different range of quality (i.e. good,

medium, and poor) has been displayed in Figure 5.1.

5.4.2 PACS-Dataset

PACS dataset is introduced with details in Chapter 4 for echocardiography view

classification. From PACS dataset only A4C-LV view has been used for segmentation

of LV. From 1606 videos, to obtain the GT (exact solutions) measurements, one

experienced cardiologist manually traced the LV borders of 1029 videos. Where the

operator judged a video to be of extremely low quality, it was declared invalid and

no annotation was made. A custom-made program was developed which closely

replicated the interface of echo hardware. The expert visually inspected the cine

loops by controlled animation of the loops using arrow keys and manually traced

the LV borders using a track-ball for the ED and ES frames. Out of 1029 available

videos, a total of 2058 frames were annotated (2 ED/ES frames).

5.4.3 EchoLab-Dataset

The EchoLab private dataset is consisted of 61 patients (30 males), with a mean age

of 64±11, who were recruited from patients who had undergone echocardiography

with Imperial College Healthcare NHS Trust. Only patients in sinus rhythm were

included. No other exclusion criteria were applied. The study was approved by

the local ethics committee and written informed consent was obtained. Each patient

underwent standard TTE using a commercially available ultrasound machine (Philips

iE33, Philips Healthcare, UK), and by experienced echocardiographers. A4C views

were obtained in the left lateral decubitus position as per standard clinical guidelines

(J. Zhang et al., 2018).
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Figure 5.2: An example of A4C view with the LV myocardium segmentation regions
overlaid. The blue and yellow curves represent the annotations by Operator-A and
Operator-B, respectively.

All recordings were obtained with a constant image resolution of 480×640 pixels.

The operators performing the exam were advised to optimise the images as would

normally be done in clinical practice. The acquisition period was 10s to make sure

at least 3 cardiac cycles were present in all cine loops. In order to take into account,

the potential influence of the probe placement (the angle of insonation) on the meas-

urements, the entire process was conducted three times, with the probe removed

from the chest and then placed back on the chest optimally between each recording.

Therefore, a total of three 10-second 2D cine loops were acquired for each patient.

The images were stored digitally for subsequent offline analysis.

To obtain the GT measurements, one accredited and experienced cardiology expert

manually traced the LV borders. Where the operator judged a beat to be of extremely

low quality, it was declared invalid and no annotation was made. A custom-made

program was developed which closely replicated the interface of echo hardware. The

expert visually inspected the cine loops by controlled animation of the loops using

arrow keys and manually traced the LV borders using a track-ball for the ED and ES

frames. Three heartbeats (6 manual traces for ED and ES frames) were measured

within each cine loop. Out of 1098 available frames (6 patients × 3 positions × 3

heartbeats × 2 ED/ES frames), a total of 992 frames were annotated. In order to

investigate the inter-observer variability, a second operator repeated the LV tracing

on 992 frames, blinded to the judgment of the first operator. A typical 2D A4C view
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is shown in Figure 5.2, where the locations of manually segmented endocardium by

the two operators are highlighted.

5.5 Method

Details of the well-known segmentation network architectures investigated in this

study (i.e., U-Net, U-Net ++, SegNet, DeepLabV3ResNet101) can be found in

Chapter 3, section 3.5. Here, a detailed description of the designed network will

be provided.

Proposed by Liu et al. (2019) Auto-DeepLab use differential NAS to reduce the

computational power. Most of the NAS methods usually focus on searching the cell

structure and hand-designing an outer network structure. However, Auto-DeepLab

will search the network level structure as well as the cell level structure.

5.5.1 Cell Level Search Space

A cell depicted in Figure 5.3,-Bottom is a fully convolutional module consist of B

blocks. Each block is a two-branch structure. The set of possible inputs for a block

is the output of the previous two cells (HI-2), and previous blocks’ output (HI-1) in

the current cell (Hι1 , . . . , Hιi ). Therefore, as more blocks are added in the cell, the

next block has more choices as a potential source of input. The output of the cell

(Hl) is the concatenation of output from all of the blocks.

Each block can be defined by a 5-tuple (I1, I2, O1, O2, C) where I1, I2 is the set of

all possible selections of input for block i in layer L. O1, O2 is a selection of layer

types for block C which is the method used to combine the individual outputs of the

two branches to get the output of this block (H i
I).

The types of branches that will be considered in every block are 3×3 depthwise-

separable conv, 5×5 depthwise-separable conv, 3×3 atrous conv with rate 2, 5×5

atrous conv with rate 2, 3×3 average pooling, 3×3 max pooling, skip connection and

no connection (zero). For the set of possible combination operators (C), element-
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Figure 5.3: Top: network level search space with L = 12. Gray nodes represent the
fixed “stem” layers. The path along the green nodes represents a candidate network
level architecture. The green dots represent of node (output of each cell)

. Bottom: During the search, each cell is a densely connected structure. Every
yellow arrow is associated with the set of normalised scalars associated with each
operator (αj→i). The three arrows after "concat" are associated with the scalar.

wise addition is the only choice. To form the entire neural network a cell is repeated

multiple times.

5.5.2 Network Level Search Space

In the image classification NAS framework, once the best cell structure is found,

the entire network is created using a hand design pattern. Therefore, the network

level was not part of the architecture search, and the search space for the whole

network has never been designed. However, in the dense image prediction problem,

the network-level search space is required. The networks for such issues tend to start
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with a high-resolution image and get the spatial dimension down somewhere during

the network and then back up again to the original dimension.

Among the diverse network architectures for dense image prediction, two principles

are consistent: the spatial resolution of the next layer is either twice as large, or twice

as small, or remains the same. Also, the smallest spatial resolution is downsampled

by 32. Following these common practices, Figure 5.3,-Top displays a mesh of spatial

dimension factor versus layer number that is the representation of the network-level

search space.

The beginning of the network is a two "stem" structure that each reduces the spatial

resolution by a factor of 2. The "stem" layer incorporates a 3×3 convolutions layer

and a batch normalisation layer. This “stem” has been shown to be effective for seg-

mentation in (Zhao et al., 2017; P. Wang et al., 2018). Next, there are L layers with

unknown spatial resolutions, with the maximum being downsampled by 4 and the

minimum being downsampled by 32. Since each layer may differ in spatial resolution

by at most 2, the first layer after the "stem" could only be either downsampled by 4

or 8. The goal is to find a good path in this L-layer trellis.

When searching the architecture, the ASPP (explained in Chapter 3-section3.5) mod-

ule is put at every possible layer according to every possible final spatial dimension

factor (i.e. 4,8,16,32). Their outputs are bilinear upsampled to the original resolution

before summed to produce the prediction.

5.5.3 Cell and Network Architecture

The continuous relaxation introduced in DARTS technique (H. Liu, Simonyan and

Yang, 2019) has been used for the cell architecture. The weights are given to every

possible connection that is possible for all the layers (i.e. input, branch and the

spatial dimension to be selected) using equations described in the following.

Every block’s output tensor (Hιi ) is connected to all hidden states and is computed

as equation 5.1 where (Oj → i) is possible operator for each branch and (Iιi ) is input

tensors.
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Hιi =
∑
Hιj∈I

ι
i

Oj → i(Hιj ) (5.1)

Also, each branch (Oj → i) is estimated to be used for each connection using dif-

ferentiable equation 5.2. Along with the normal CNN weights, the meta-weights

(αkj→i) added through the whole latent search space that contains all the connections

between possible inputs and the possible branches within a cell. Since equation 5.2

is differentiable, the meta-weights can be trained simultaneously along with the nor-

mal weights. After the addition of weights, it will be identified what combination of

these meta-weights gives the best structure of the cell.

Ōj → i(Hιj ) =
∑
Ok∈O

αkj→ iOk(Hιj ) (5.2)

where
|∂|∑
k=1

αkj→i = 1 ∀i, j and αkj→i ≥ 0 ∀i, j, k (5.3)

In other word, αkj→i are normalised scalars associated with each operator Ok ∈ O.

As explained in the cell level search space, each cell has the output from the previous

cell (Hι−1) and the previous two cells (Hι−2). Therefore, each output of the cell

(Hι) can be written as equation 5.4 to give output at layer (L):

Hι = Cell(Hι−1, Hι−2;α) (5.4)

All tensors within a cell with the same spatial size enable the (weighted) sum in

Equation 5.1 and Equation 5.2. Though, tensors may take different sizes in the

network level as demonstrated in Figure 5.3. Therefore to set up the continuous

relaxation, each layer (ι) will have at most 4 hidden states ( 4Hι, 8Hι, 16Hι, 32Hι),

which the upper left superscript is representative of the spatial resolution.

Also, as explained in the network level search space, the structure of the network

needs to be searched. If the spatial dimension factor at the current layer is s, then

input to this layer can have three spatial dimensions; twice as small, remain the
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same, or twice as large (i.e. s
2 , s and 2s respectively). A scalar is associated with

each solid grey arrows in Figure 5.3, and, the network level update will be defined

as:

sHι = βιs
2→s

Cell( s
2Hι−1,sHι−2;α)

+βιs→sCell(sHι−1,sHι−2;α)

+βι2s→sCell(2sHι−1,sHι−2;α)

(5.5)

Where s = 4, 8, 16, 32 and ι = 1, 2, . . . , L. Here β is the set of meta-weights

which controls the outer network level, therefore depends on the spatial size and

layer index. Each scalar in β governs an entire set of α whereas α specifies the

same architecture that it is not depends on spatial size or layer index. The relation

between βs is would be given as follows and also implemented as softmax:

βιs→ s
2

+ βιs→s + βιs→2s = 1 ∀s, ι (5.6)

βιs→ s
2
≥ 0 βιs→s ≥ 0 βιs→2s ≥ 0 ∀s, ι (5.7)

As displayed in Figure 5.3, ASPP modules are connected to each spatial resolution

at the L-th layer (atrous rates are adjusted accordingly). Their outputs are bilinear

upsampled to the original resolution before summed to produce the prediction.

5.5.4 Optimisation

The scalars control the connection strength between different nodes are part of the

differentiable computation graph. Consequently, they can be optimised efficiently

using gradient descent. Similar to train the normal weights in CNN, the meta-weights

trained using cross-entropy loss to get an optimised condition where various values

of α describe the network within a cell and various values of β describe the overall

structure. The first-order approximation in DARTS technique (H. Liu, Simonyan
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and Yang, 2019) adopted, and the training data partition into two disjoint sets

trainA and trainB to prevent the architecture from overfitting the training data.

The optimisation alternates between; update network weights ω by ∇ω LtrainA(ω,

α, β) and update architecture α, β by ∇α,βLtrainB(ω, α, β).

5.5.5 Decoding Architectures

Similar to the DARTS technique, the cell structure was decoded by taking the two

strongest connections from all possible inputs using the largest values of α for that

branch and repeating this exercise for all the blocks. In addition, “zero” means no

connection, and the most likely operator selected by taking the argmax.

For network architecture, the β values that give the maximum value will be selected.

Based on equation 5.6, sums of the “outgoing probability” at each of the nodes

(green nodes in Figure 5.3) is equal to 1. The β values can be described as the

“transition probability” between different spatial resolutions across different layer

numbers. The goal is to find the best path with the “maximum probability” from

start to end. Then, the path decoded using the classic Viterbi algorithm.

5.5.6 Parameters for Architecture Search

For the stage of architecture search, CAMUS public dataset was used for model

development. In this stage, 80% of the public CAMUS dataset was held out for

training and validation subsets, and 20% for testing. Half of the train-set images were

randomly selected as trainA, and the other half as trainB. Images were normalised

and downsampled to 256 × 256 size with a batch size of 2 due to GPU memory

constraint. Stochastic Gradient Decent (SGD) optimiser with a momentum of 0.9,

cosine learning rate that decays from 0.1 to 0.000001, and weight decay 0.0003 was

used to optimise the weights. The initial values of α, β before softmax are sampled

from standard Gaussian times 0.001. They are optimised using Adam optimiser

(Kingma and Ba, 2015) with a learning rate of 0.003 and weight decay 0.001.

A total of L = 12 layers in the network and B = 5 blocks in a cell was used to

conduct the search. Every green node in Figure 5.3 has B × F × s
4 output filters,
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where B is block, F is the filter multiplier which controls the model capacity and s is

downsample rate. During the architecture search, F = 8 is considered. The search

was conducted for a maximum of 60 epochs. Also tried searching for longer epochs

(100) but did not observe benefit. If α and β were optimised from the beginning when

ω are not well trained, the architecture will fall into bad local optima. Therefore, α

and β optimised after 30 epochs.

To reduce the spatial size and double the number of filters a stride 2 convolution

is used for all s
2 → s connections. Also, to increase the spatial size and halve the

number of filters, bilinear upsampling followed by 1 × 1 convolution is used for all

2s → s connections.

The ASPP module introduced in (L.-C. Chen, Papandreou, Schroff et al., 2017) has 5

branches such as one 1 × 1 convolution, three 3 × 3 convolutions with various atrous

rates, and pooled image feature. However, in this model ASPP simplified during the

search to have 3 branches by only using one 3 × 3 convolution with atrous rate 96
s
.

The number of filters produced by each ASPP branch is still B × F × s
4 .

5.5.7 Models Training Parameters

Training performed on CAMUS, PACS, and EchoLab dataset using annotations

provided by the expert cardiologists. The automated model developed through ar-

chitecture search method using CAMUS dataset have used for training. The train-

ing was carried out independently for each of the three different datasets. Identical

training, validation, and testing were used in all investigated network models for

each dataset. The validation dataset was used for early stopping to avoid redundant

training and overfitting. Each model was trained until the validation loss plateaued.

The test dataset was used for the performance assessment of the final trained models.

The model derived from NAS solution were kept blind to the test dataset during the

stage of architecture search.

For training the automated network, a learning rate of 0.1 with a weight decay of

0.0001 and momentum of 0.9, and a maximum number of 6000 epochs was used

for training the model. The cross-entropy loss is used for this model. For human-
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designed networks, (U-Net, U-Net++, SegNet, DeepLabV3ResNet101) Adam optim-

iser (Kingma and Ba, 2015) with a learning rate of 0.01 for 6000 epochs deemed to

be a better compromise. The Negative log likelihood loss was used as the network’s

objective function for these networks.

5.6 Evaluation Metrics

Metrics employed to evaluate the performance of the proposed model in segmenting

the LV structure are such as the DC, HD, and Intersection-Over-Union (IoU) known

as the Jaccard index. Evaluation metrics are defined as follows:

• Dice Coefficient (DC):

The DC as shown in equation 5.8 was calculated to measure the overlapping

regions of the predicted segmentation (P) and the GT. The range of DC is a

value between 0 and 1, which 0 indicates there is not any overlap between two

sets of binary segmentation results while 1, indicates complete overlap.

DC = 2|P ⋂
GT |

|P | + |GT | (5.8)

• Hausdorff Distance (HD):

The HD was calculated using the equation 5.9 for the contour of segmentation

where, d (j, GT, P) is the distance from contour point j in GT to the closest

contour point in P. The number of pixels on the contour of GT and P is

specified withO and M respectively.

HD = max (maxj∈[0,O−1] d(j,GT, P ), maxj∈[0,M−1] d(j, P,GT )) (5.9)

• Intersection-over-Union (IoU):

The IoU was calculated image-by-image between the predicted segmentation

(Ip) and GT. This metric ranges from 0–1 with 0 signifying no overlap and 1
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Figure 5.4: Top: The proposed architecture found by the Hierarchical Neural Archi-
tecture Search on CAMUS dataset. Bottom: The best cell found for the CAMUS
dataset. atr: atrous convolution. Sep: depthwise-separable convolution, none: Zero,
and APool: average pooling.

signifying perfectly overlapping segmentation. IoU measures the overlap area

between the predicted segmentation and the GT divided by the area of union

between the predicted area and GT. IoU is defined as:

IoU(GT, Ip) = |GT
⋂
Ip|

|GT ⋃
Ip|

(5.10)

PyTorch (Paszke et al., 2017) was used to implement the models. For the stage of

architecture search and also training the models the utilised GPU was an NVIDIA

TITAN V GPU with 12 GB of memory. All training/prediction of experiments were

carried using identical hardware and software resources.
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5.7 Experimental Results and Discussion

All images for all experiments and in all datasets (CAMUS, PACS, and EchoLab)

were resized to the dimension of 256×256 pixels, allowing for a fair comparison. All

models produce the output with the same spatial size as the input image. All models

were trained separately using the annotations provided for each dataset. The DC,

HD and IoU were employed to evaluate the performance of the models.

The search took ∼ 44 hours for proposed architecture on CAMUS dataset. Figure

5.4 visualises the best cell and network obtained for the proposed model on CAMUS

dataset. The retained operations for Auto-Deeplab were 5 × 5 depthwise-separable

conv, 3 × 3 depthwise-separable conv, no connection (zero), 5 × 5 atrous conv with

rate 2, and 3 × 3 average pooling. The network is a mesh of spatial dimension factor

vs layer number as displayed in figure 5.4. It starts with the high-resolution image

and gets the spatial dimension down to a factor of 16 and then back up again to

the original dimension by using the ASPP. The total number of layers is 12. In the

following, the experimental results for each dataset will be explained.

5.7.1 CAMUS-Dataset

The best cell and network derived from the CAMUS dataset on the search stage have

been used to train the CAMUS dataset. The DC, HD and IoU were employed to

evaluate the segmentation testing accuracy of the models in segmenting the LV-Endo,

LV-Epi, and LA structures on the CAMUS dataset.

Table 5.1 displays the results for five different network topologies on the CAMUS

dataset for all three structures. The values in bold correspond to the best values

for each metric. From these results, can see that the proposed model achieved from

automated neural network design gets the overall best segmentation scores on all

metrics for all three structures when compared with the standard dense prediction

architectures (i.e. U-Net, U-Net++, SegNet, DeepLabV3ResNet101).

The proposed model achieves the best average DC of (LV-Endo: 0.944, LV-Epi:

0.892, LA: 0.920), HD of (LV-Endo: 2.947, LV-Epi: 2.993, LA: 3.003), and IoU of
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Table 5.1: Experimental results on the test public CAMUS dataset and different
network topologies. Evaluation measures expressed as mean±SD. The values in
bold indicate the best performance for each measure.

Model DC HD iOU
(LV-Endo)

U-Net 0.911 ± 0.044 3.388 ± 0.764 0.839 ± 0.069
U-Net ++ 0.926 ± 0.041 3.208 ± 0.680 0.864 ± 0.067
SegNet 0.897 ± 0.053 3.558 ± 0.466 0.817 ± 0.082

DeepLabV3ResNet101 0.921 ± 0.048 3.511 ± 0.776 0.856 ± 0.075
Proposed 0.944 ± 0.034 2.947 ± 0.698 0.886 ± 0.065

(LV-Epi)
U-Net 0.849 ± 0.053 3.585 ± 0.558 0.741 ± 0.075

U-Net ++ 0.859 ± 0.051 3.596 ± 0.501 0.756 ± 0.074
SegNet 0.825± 0.064 3.906 ± 0.524 0.706 ± 0.086

DeepLabV3ResNet101 0.851 ± 0.051 5.128 ± 0.713 0.744 ± 0.074
Proposed 0.892 ± 0.042 2.993 ± 0.604 0.784 ± 0.063

(LA)
U-Net 0.887 ± 0.084 4.417 ± 1.709 0.805 ± 0.108

U-Net ++ 0.892 ± 0.081 4.166 ± 1.380 0.812 ± 0.103
SegNet 0.849 ± 0.104 5.142 ± 1.322 0.749 ± 0.128

DeepLabV3ResNet101 0.887 ± 0.083 4.693 ± 1.352 0.806 ± 0.111
Proposed 0.920 ± 0.061 3.003 ± 0.670 0.833 ± 0.101

(LV-Endo: 0.886, LV-Epi: 0.784, LA: 0.833) among all networks and for all three

structures (i.e. LV-Endo, LV-Epi, LA). As can be seen in Table 5.1, the average of

HD has decreased from 3.388 to 2.974, the average of DC has increased from 0.911 to

0.944, and also the average of IoU has increased from 0.839 to 0.886 for the LV-Endo

across the U-Net and proposed model. The same condition has been observed for LV-

Epi and LA structures. The proposed model outperforms almost other investigated

approaches for all three-segmented structures, indicating discrepancies with the GT

from which it has learned.

Figure 5.5 displays output examples from the five models on the CAMUS dataset.

To specify the borders, the contour of the predicted segmentation was used. The blue

is manual annotation (GT) and the red line is prediction. As can be seen, a visual

inspection of the automatically detected borders confirms that the proposed model
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Figure 5.5: Example A4C view outputs from five different models on CAMUS data-
set. The prediction is in red while the GT is in blue.

achieved a better result on all the datasets. However, all models look to perform

with reasonable accuracy.

Influence of the Size of the Training Dataset

The accuracy of dense prediction networks is dependent on the size of training data-

sets. Data collection and annotation is a major bottleneck in medical imaging where

the size of the training dataset is scarce as the images can only be annotated by

experts. Therefore, it would be beneficial to require less training data. This study

examined the influence of the size of training data on the model’s performance for

each of the investigated networks in this chapter.

Figure 5.6 exhibits the influence of the size of the training dataset on the quality

of the segmentation of the LV-Endo, LV-Epi, and LA structures. To this aim, 4

different experiments for each model conducted where the same data kept as a test

and validation set to allow fair comparison. As for the training set, starting from

8% of the training set, then 16%, and 50% until 100% was reached for the last
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examination. As can be seen in Figure 5.6, the overall improvement of DC score can

be observed for the three cardiac structures with the increasing training set. The

performance of the LA structure seems to suffer most across all network models,

except for the proposed model interestingly, the improvement between 8% to 100%

training set is quite pronounced (e.g. an increase of average DC for the LA from

0.863 to 0.920).
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Figure 5.6: Comparison of DC score of different dense prediction models versus
different fragments of training dataset used when training the models. (a): LV-
Endo, (b): LV-Epi, and (c): LA. For each of the fragments (sub-dataset), all models
were retrained from scratch.
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The Effect of Poor Quality Images

CAMUS dataset maintains a wide heterogeneity of image quality and pathological

cases to preserve the clinical realism. Therefore, to assess the overall robustness

of the investigated network including the proposed model, this study has kept the

poor image quality in all the experiments as well. Regardless of how intelligent

the deep learning model, image quality plays a significant role in the reliability of

automated image analysis. Echocardiography images can suffer inherently from poor

image quality. Therefore, this study investigated how image quality can affect the

performance of the standard dense prediction model in comparison with the proposed

model derived from the automated neural network design.

Figure 5.7 in the right panel displays the relationship between the DC score of the U-

Net model and the image quality in the test dataset. Also, the left panel demonstrates

the relationship between the DC score of the proposed model and the image quality

in the test dataset. Section (a), (b), and (c) are relevant to LV-Endo, LV-Epi, and

LA structure respectively. The area of the bubbles represents the relative frequency

of the images in that quality score category. The ”good and medium” categories are

the dominant grade.

As can be seen in 5.7-(a) the Pearson correlation coefficient for LV-Endo derived from

U-Net and proposed model are 0.851 and 0.990 respectively. This confirms that the

U-Net model is more likely to be affected by poor image quality in comparison with

the proposed model but the proposed model still shows more robustness on poor

image quality cases. However, it is evident that both the U-Net model and the

proposed model can cope with the poor-quality images that exist in the CAMUS

dataset.
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Figure 5.7: Correlation between the dice coefficient score and the image quality
(manual quality score provided in CAMUS dataset by the expert) in the test dataset
for three structures. (a): LV-Endo, (b): LV-Epi, and (c): LA. Right: Results
correspond to the U-Net model, Left: Results correspond to the proposed model.
The area of the bubbles represents the relative frequency of the images in that
quality score category.
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Figure 5.8: Box plots are computed from the results of the proposed architecture for
two different approaches. Red boxes for learning to simultaneously segment all three
structures (multi). Blue boxes for learning to segment one structure.

Mono Versus Multi-Structures

This study evaluated the impact of learning approaches on the performance of seg-

mentation of the LV-Endo, LV-Epi, and LA. In particular, 4 different experiments

have been performed with the same proposed model but with different training sets,

i.e. one model trained on only the LV-Endo, one with only LV-Epi, one with only

LA, and one on all three structures. Figure 5.8 displays the mono (i.e. trained with

only one structure) and multi results of the proposed architecture.

As can be seen in the box plots, the mono and multi-structures approaches produced

very close results without considering the structure. This is evident that, with the

proposed model, learning the segmentation of only one structure (e.g. LV-Epi) or

the combination of structures (e.g. LV-Endo, LV-Epi, and LA) does not improve

significantly the results compared to learning the segmentation of the structure alone.

This indicates that the proposed architecture is good enough to exploit the contextual

information provided in the segmentation masks. Moreover, even if the segmentation

of the LA structure is challenging in comparison to LV-Epi and LV-Endo due to

acquisition conditions, the proposed network can get close results both in terms of

average DC of 0.954, 0.944, average HD of 2.725, 2.947, and average IoU of 0.894,

and 0.886 for mono and multi-structure respectively across the LV-Endo. The same

behavior was observed for the LV-Epi and LA structures.
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5.7.2 PACS and EchoLab Dataset

The network achieved from CAMUS dataset on search stage has been used to train

the PACS and EchoLab datasets separately. The DC, HD and IoU were employed

to evaluate the performance of the models in segmenting the LV-Endo region. Table

5.2 provides average DC, HD and IoU for the five different network topologies across

PACS and EchoLab datasets for all testing images. The values in bold represent the

best scores for the corresponding metric. As for segmentation, the proposed model

obtained the best DC of (PACS: 0.943, EchoLab: 0.941), HD of (PACS: 3.694,

EchoLab: 4.097), and IoU of (PACS: 0.876, EchoLab: 0.887) on PACS and EchoLab

dataset respectively.

Figure 5.9 and 5.10 display output examples from five models for PACS and EchoLab

dataset respectively. To specify the LV-Endo border, the contour of the predicted

segmentation was used. The solid blue line indicates the manual annotation (GT)

while the red line shows the automated results. As can be seen, a visual inspection

of the automatically detected borders confirms that the proposed network achieved a

better result on all the datasets. However, all models look to perform with reasonable

accuracy.

Since for EchoLab dataset, GT was provided with two operators, plausible scenarios

for manual or automated (proposed model only) are provided on Table 5.3. For

each image, there were 4 assessments of the LV border; 2 human and 2 automated

(trained by annotation of either of human operators). The automated model per-

forms similarly to human operators. The model disagrees with Operator-A (OA),

but so does Operator-B (OB). Since different experts make different judgments, it

is not possible for any automated model to agree with all experts. However, it is

desirable for the automated models not to have larger discrepancies when compared

with the performance of human judgments; that is, to behave approximately as well

as human operators.
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Table 5.2: Comparison of segmentation performance between the proposed method
and related different network topologies using PACS and EchoLab test dataset. Eval-
uation measures are expressed as mean±SD. The values in bold indicate the best
performance for each measure.

Model DC HD iOU
(PACS)

U-Net 0.923 ± 0.048 3.784 ± 1.000 0.861 ± 0.072
U-Net ++ 0.927 ± 0.039 3.856 ± 0.992 0.866 ± 0.063
SegNet 0.913 ± 0.046 3.882 ± 0.900 0.843 ± 0.072

DeepLabV3ResNet101 0.911 ± 0.041 3.846 ± 0.999 0.840 ± 0.066
Proposed 0.943 ± 0.037 3.694 ± 0.938 0.876 ± 0.064

(EchoLab)
U-Net 0.918 ± 0.047 4.191 ± 0.919 0.852 ± 0.076

U-Net ++ 0.916 ± 0.051 4.241 ± 0.981 0.849 ± 0.077
SegNet 0.916 ± 0.093 4.115 ± 0.929 0.854 ± 0.114

DeepLabV3ResNet101 0.931 ± 0.034 4.123 ± 0.895 0.873 ± 0.057
Proposed 0.941 ± 0.034 4.097 ± 0.869 0.887 ± 0.060

Table 5.3: Comparison of evaluation measures expressed as mean±SD for 5 possible
scenarios for the proposed model only. OA and OB are Operator-A and Operator-B
respectively. POA and POB are the predicted results by the proposed model trained
by gold-standard from Operator-A and Operator-B respectively. The values in bold
indicate the best performance for each measure.

Model DC HD iOU
(EchoLab)

OA vs OB 0.883 ± 0.059 4.496 ± 0.875 0.830 ± 0.030
POA vs OA 0.941 ± 0.034 4.097 ± 0.869 0.887 ± 0.060
POA vs OB 0.926 ± 0.039 4.309 ± 0.964 0.863 ± 0.062
POB vs OB 0.933 ± 0.033 4.551 ± 0.943 0.879 ± 0.055
POB vs OA 0.913 ± 0.060 4.326 ± 0.889 0.862 ± 0.092
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Figure 5.9: Example outputs from five different models on the PACS dataset. In
each A4C image, the contours of LV-Endo are displayed. The prediction is in red
while the GT is in blue.

Figure 5.10: Example outputs from five different models on the EchoLab dataset. In
each A4C image, the contours of LV-Endo. The prediction is in red while the GT is
in blue.
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5.8 Summary

In this chapter, the efficient neural network architecture is proposed for the auto-

mated segmentation of LV in 2D echocardiographic images. The NAS technique,

Hierarchical Neural Architecture Search method, was used to design customised

neural networks for segmentation of LV in 2D echocardiographic images. Three

different datasets of echocardiographic images including one public and two private

datasets were used for training and testing the investigated models. Compared with

the established dense prediction architectures, the proposed model achieved com-

parable performance. The impact of image quality, size of the training dataset, and

single or multi-structure on the performance of the networks was also investigated.

The proposed model demonstrated robustness on poor image quality. Deeper neural

network models require more training data to achieve similar performances. It was

also demonestrated that the number of different structures to be segmented has an

impact on the performance of the network.
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Chapter 6

Speckle Tracking Echocardiography

6.1 Introduction

Two dimensional speckle tracking echocardiography (STE) is a promising relatively

new imaging modality. Speckles are created when a random group of scatterers is

illuminated by waves bearing a wavelength larger than the size of the individual

scatterers. The speckle pattern remains approximately stable from frame to frame.

Tracking these speckles frame by frame will allow the extraction of some parameters

such as displacement (K. Wu, Shu and Dillenseger, 2014; Jensen, 1996). For example,

in a medical application such as evaluation of cardiac function, tracking these speckles

and analysing them can help to quantify the myocardial function.

Although there are commercially available STE software packages, the measurements

they provide are mutually inconsistent. To address this issue, the EACVI, the ASE

along with representatives from all vendors have been endorsing a “task force” aimed

to reduce the inter-vendor variability of strain measurement. They propose accept-

ance in the clinical practice of inter-vendor variability up to 10% (Voigt et al., 2014;

James D Thomas and Badano, 2013). However, different commercially available

software packages yield unsatisfactorily wide discrepancies between measurements

on the same patient images; wider than 10% proposed as acceptable (Voigt et al.,

2015).

The processing of ultrasound images is difficult due to typically high levels of noise

contained within them. For example, in cardiac ultrasound images tracking walls of

the heart is problematic, because of the high level of noise, the lower resolution in
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the lateral wall, and the nature of the heart motion. Different approaches for the

speckle tracking in ultrasound sequences have been proposed, but it is a complicated

task in which there is room for improvement (Tavakoli et al., 2008; Z. Liu and J.

Luo, 2017; Albinsson et al., 2018).

Several models have received extensive attention in the ultrasound engineering com-

munity, such as BM (Khamis, Shimoni et al., 2016; Zolgharni et al., 2017; De Luca,

Székely and Tanner, 2015; Jasaityte, Heyde and D’hooge, 2013), optical flow (Tork-

ashvand, Behnam and Sani, 2012; Porée et al., 2018; Tenbrinck et al., 2013), elastic

registration (Chakraborty et al., 2018; Heyde et al., 2012), and machine learning

models (Gandhi et al., 2018; Alsharqi et al., 2018). The most computationally effi-

cient method of quantifying tissue motion on ultrasound is BM.

Traditional BM approaches are extremely vulnerable to the presence of image noise,

which is always present in everyday clinical cine loops (Voigt et al., 2014). Since

BM possesses conceptual simplicity and high computational speed and can provide

a robust estimation of the motion by comparing the similarity between blocks of two

images or two video frames, it has been commonly used in the ultrasound community

(Tavakoli et al., 2008; J.-N. Kim et al., 2002).

This chapter, therefore, investigates methods of improving speckle tracking tech-

niques to enhance its reliability for the calculation of myocardial velocities and de-

formation parameters such as strain and strain rate. An overview of the speckle

tracking studies in the literature will be provided first. This is followed by high-

lighting the main contributions of the chapter on the topic of speckle tracking, and

a detailed description of the proposed BM model. Finally, the experimental setup,

results, and discussion will be presented.

6.2 Previous Work on Speckle Tracking

Several studies have attempted to improve the accuracy of the speckle tracking al-

gorithms. Active shape models have been used to extract several physical properties

of the myocardium in its different layers by applying some constraints to improve the
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accuracy of the motion estimation (D’hooge, Schlegel et al., 2001). The use of the

Viterbi algorithm to overcome the effect of peak hopping error has also been repor-

ted. They tried to overcome the limitations of speckle decorrelation noise (Petrank,

L. Huang and O’Donnell, 2009).

Barbosa et al. (2014) presented a combined method for segmentation and tracking of

LV in 4D ultrasound sequences. They used a combination of automatic segmentation

at the ED frame and tracking using a global optical flow-based tracker and local BM.

The core novelty of the proposed model relies on the recursive formulation of BM.

Their proposed model obtained the average segmentation errors of 2.29 and 2.26 mm

while the tracking error is not reported (Barbosa et al., 2014).

Khamis et al. (2016) introduced a novel algorithm known as K-SAD that integrates

the physiological constraint of smoothness of the displacement field into the tracking

algorithm to overcome the limitation of speckle decorrelation noise. They observe

improve performance under noisy conditions by comparing a subgroup of 40 subjects

with the best image quality. The K-SAD model hardly requires any "post-tracking"

techniques that may have positive effect regarding inter-vendor differences (Khamis,

Shimoni et al., 2016).

Joos et al. (2018) proposed a novel technique based on the combination of motion

compensation (MoCo) and speckle tracking to quantify the 2D motion and tissue

velocities of the LV (Joos et al., 2018). The 2D motion estimation was performed

using standard cross correlation combined with three different subpixel adjustment

techniques. They evaluated the proposed model on in vitro and in vivo in the four-

chamber view of 10 volunteers, and their estimated in vitro velocity vectors derived

from STE were consistent with the expected values, with normalised errors ranging

from 4% to 12% in the radial direction and from 10% to 20% in the cross range

direction.

Ouzir et al. (2018) introduced a cardiac motion estimation technique using the sparse

properties of motion when decomposed on a dedicated dictionary. They formulated

the motion estimation problem as a weighted energy minimisation in an optical

flow framework with combined spatial and sparse regularisation. They evaluated the
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proposed method on synthetic data, realistic simulation sequences with available GT

and two sequences of in vivo images. Their results show the interest of the proposed

approach for 2D cardiac ultrasound imaging (Ouzir, Basarab, Lairez et al., 2018).

Some ST methods are based on BM. Since BM can provide a robust estimation of

the motion by comparing the similarity between blocks of two images or two video

frames, it has been commonly used in the ultrasound field (Tavakoli et al., 2008).

During BM, a block of pixels exists in the first frame (known as reference or source

frame) will compare with the second frame to search and find this block in the next

frame. This description is valid based on the assumption that the reference block

remains stable over time. Motion (pixel velocities) is also valid if the frame rate

is adequately high. To overcome this limitation and to estimate the velocity of a

block in different situations, such as conversion, rotation and scaling (Dufaux and

Moscheni, 1995), the BM model is recommended for use.

6.3 Main Contributions

The contributions of this chapter can be listed as follows:

• The feasibility of adopting an optimisation-based BM algorithm to perform

speckle tracking in echocardiographic image sequences using was investigated.

• The proposed technique was evaluated using a publicly available synthetic echo-

cardiographic dataset with known GT (i.e., exact values for displacement vec-

tors) from several major ultrasound vendors, and for healthy/ischaemic cases.

The results were compared with the results from the classic (standard) 2D BM.

6.4 Synthetic-Dataset

This section describes the employed synthetic cardiac dataset which is publicly avail-

able, and the GT is known for the speckle tracking in the 2D echocardiographic

images (Alessandrini et al., 2017). This dataset 1 consists of simulated ultrasound
1https://gbiomed.kuleuven.be/english/research/50000635/50508167/open-data
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images from 7 major vendors such as GE, Hitachi-Aloka, Esaote, Philips, Samsung,

Siemens, and Toshiba.

The simulation process is briefly described here, and further details can be found

in (Alessandrini et al., 2017). The ultrasound images were simulated from a cloud

of point scatterers (scatter map), and using an ultrasound simulator (H. Gao et

al., 2009). To take realistic speckle texture for each vendor, scattering amplitude

was sampled from a 2D real clinical recording ultrasound as a template. Then,

an electromechanical cardiac model was used to relocate the scatterers inside the

myocardium and to have a realistic heart motion in the simulated images. Moreover,

synthetic probe settings such as scan depth, focus depth, beam density, etc. were

specialized by using the values communicated by each vendor upon signature of

nondisclosure agreements. They have defined GT displacement and strain in agree-

ment with the recent recommendations from the EACVI/ASE/Industry task force

(Voigt et al., 2014; James D Thomas and Badano, 2013).

The GT has been provided as a set of seed points (36 points) along the longitudinal,

and 5 points in radial directions. Points were further subdivided into six segments

by splitting the endocardial contour into six parts with the same length as shown

in Figure 6.1. Synthetic images were provided for normal (healthy) and ischaemic

cases for each vendor. Only the A4C views, which is the most commonly used echo

view, was included for longitudinal strain calculation.

The total number of frames for vendors GE, Hitachi-Aloka, Esaote, Philips, Sam-

sung, Siemens, and Toshiba, were 54, 72, 54, 50, 65, 56, and 60 respectively. Also, the

image size for each vendor is as follows: GE: (479×616), Hitachi-Aloka: (565×811),

ESAOTE: (580×682), Philips: (487×619), Samsung: (381×483), Siemens: (617×736),

and Toshiba: (489×636). The pixel depth was 8-bit, providing an intensity resolution

of 256 gray levels in the synthetic images.
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Figure 6.1: an A4C view with the LV myocardium segmentation regions overlaid.

6.5 Method

6.5.1 Standard Block Matching

Classic BM begins by positioning a window on one frame and searching for a pattern

with the most similar features within the dimensions of the placed window in the

next frame. A cluster of speckles can be combined into one functional unit which

is called a kernel; each kernel has a unique fingerprint that is determined using a

similarity measure and can be tracked throughout the entire cine loop by the BM

algorithm. In the reference frame (first image in Fig 6.2, the current frame or a frame

at time t0) the region of interest (Blue Square) has speckle patterns. In the next

frame (a frame at time t+1), a broad region of the image is searched for a similar

speckle pattern. The location whose speckle pattern matches best is considered to

be the estimated new location of the original kernel, thereby providing an estimated

displacement vector.

This procedure is repeated across the whole of the reference frame, obtaining a

displacement map between the two images. Repeating this procedure across the

whole image sequence produces a vector field across space and time. In this study,

Sum of Squared Differences (SSD) is used as a similarity measure which calculates

the difference between the intensity pattern of a grid of pixel (original kernel) in

one frame and a set of identically sized kernels in the next frame, to find the best-
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Figure 6.2: Speckle tracking using BM where a region in the image (kernel) is selected
and sought for in the next image by sequentially trying out different positions, testing
the similarity between the kernel and the pattern observed in that position. The
position where the similarity between the kernel and the observed pattern is maximal
is accepted as the new position of the original kernel.

matched kernel. Assuming a (m×n) kernel, the comparison between a kernel in the

current reference frame (I1) and a kernel in the target frame (I2) moved by (p, q)

pixel is:

SSD(p, q) =
m∑
i=0

n∑
j=0

(I1 (i, j)− I2 (i+ p, j + q))2 (6.1)

where p and q are shift components along the x-direction and y-direction, respect-

ively. The lowest SSD value indicates the most probable direction of the movement

of the tissue. Effectively, the BM algorithm tracks the speckles by minimising a cost

function. This method is based on the assumption that the SSD value should gradu-

ally increase as blocks move further away from the best-matched kernel. Since the

smallest step size within the search window is one pixel, it is only able to evaluate the

displacement vector to one pixel. To achieve sub-pixel accuracy, a parabolic fitting

method was implemented (Gergonne, 1974).

To estimate the motion with sub-pixel precision in the spatial movement, two ortho-

gonal parabolic curves were fitted to the horizontal and vertical of SSD values along

with the best matching position. The local minima of the fitted curves were then

selected as the final solution, which allows the displacement vector to be evaluated

with sub-pixel precision. Based on the parabolic model, denoted by the equation

6.2 where a, b and c are the real constant values, the minimum of the curve can be
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found by differentiating and setting the derivative to zero, as shown in the equation

6.3:

yy = ax2 + bx+ c (6.2)

yy

dx
= 2ax+ b = 0 x = − b

2a (6.3)

Substituting the SSD values for each of these three-data points into the equation 6.2

will give:

P1 = a− b+ c P2 = c P3 = a+ b+ c (6.4)

where P2 is the minimum SSD value from the kernel, P1 and P3 are SSD values from

the neighbouring position on either side. The sub-pixel shift x0 was computed by:

X0 = P1 − P3

2P1 − 4P2 + 2P3
(6.5)

This was done for horizontal and vertical components separately, and the shift values

were added to the corresponding integer displacements (p and q in equation 6.1) to

obtain sub-pixel accuracy.

6.5.2 Proposed Optimised Block Matching Approach

In this study, a new displacement estimation method is introduced by formulating

the tracking as an optimisation problem that jointly penalises intensity disparity

and motion discontinuity and is, therefore, more robust to the signal decorrelation

when compared to previous approaches. The speckle tracking algorithm combines

the BM algorithm with a smoothness constraint for a neighbourhood of kernels, and

minimises the following cost function:

Costfunction =
∑
r

(ESSD + λEN) (6.6)
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Figure 6.3: Flowchart showing the steps involved in solving the proposed
optimisation-based tracking algorithm.

where r is the total number of kernels being tracked, ESSD is the sum of r SSD values.

Penaltyfunction =
∑
r

(λEN) (6.7)

The second component of the cost function (∑r En) which defined in equation 6.7

is a penalty function for speckle (i.e. intensity) decorrelation which penalises the

motion discontinuity, and λ is the regularisation weight. This optimisation problem

is then solved iteratively.

For the first iteration of the tracking algorithm, the calculated displacement vector

field will be smoothed by applying a median filter with kernel size identical to the

neighbourhood size. An overall representative displacement vector for the neigh-

bourhood is then obtained by taking the average of all kernels in the neighbourhood.

Then, the difference between each potential position in the search window for a

kernel and the representative vector is calculated. This is done for r kernels being

tracked, and the sum will be the term (∑r En) in equation 6.6. In the next stage,
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the overall cost function for each kernel’s candidate positions will be computed, in-

corporating the original SSD values and the penalty term obtained in the previous

step. An updated displacement vector field will then be computed by taking each

kernel’s candidate position with the lowest-cost value, and the process is repeated

by estimating a new average representative vector. After each iteration, the new

displacement field will be used as an input to the next iteration until either no fur-

ther changes are observed, indicating the optimisation problem is converged, or a

maximum number of iterations is satisfied. Figure 6.3 provides an overall view of

the working principles of the proposed tracking algorithm.

6.5.3 Tracking Parameters

The standard BM was carried out with a kernel size of (11×11) pixels with a spa-

cing of 1 pixel, providing a dense solution. This kernel size deemed to be a good

compromise for the optimum tracking accuracy.

The size of a search window is also important since a small size would result in the

algorithm failing to capture the larger displacements occurring between consecutive

frames, and excessively large search window sizes would result in features outside the

maximal feasible translation distance to be evaluated as possible links. An optimum

size can be estimated from the maximum possible velocity of the myocardium, frame

rate, and spatial resolution of the images (i.e., pixels per mm). However, due to

the lack of such information being available about the synthetic sequences made

accessible, the trial and error method adopted to estimate a reasonable size for the

search window, which turned out to be 21×21 pixels (central pixel ±11 pixels). The,

this adopted size verified by reviewing the GT (maximum simulated displacement

between any pair of frames) across all image sequences.

For the optimised BM approach, the number of iterations was set to 20, which

was deemed to be a good compromise between the accuracy and computational run

time; a threshold for which the solution was converged, and any further update in

the displacement vectors was insignificant. The parameter λ was 0.3, giving more

emphasis to the data term versus the regularisation term in equation 6.6. Larger
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Figure 6.4: An example A4C from the Siemens healthy sequence and corresponding
displacement vector fields during the rapid ejection phase (peak systole): (a) zoomed-
view of LV cropped from the original image, (b) ground-truth, (c)-(d) displacement
fields obtained from standard BM and optimised BM approach in the rapid ejec-
tion phase, respectively. Corresponding Figures for other vendors are provided in
Appendix A.

values of λ tend to heavily regularise the displacement vectors, which would result

in an unrealistically uniform vector field where most of the vectors are aligned. A

neighbourhood of (45×45) kernels were included in the iterations for updating the

solution for the central kernel. The tracking accuracy was estimated by comparing

the displacement field obtained from the speckle tracking algorithms and the GT.

6.6 Evaluation Metrics

In order to evaluate the efficiency of the proposed ST model, displacement and ve-

locity have been measured. Displacement defines the distance that certain speckle

features (cardiac structure) have moved between two consecutive frames. Velocit-

ies also reproduce displacement per unit of time, that accounting for how fast the

location of a speckle feature changes. Since velocity and displacement are vectors,

they have direction and amplitude. Therefore, they can be examined through dif-

ferent spatial movements along the anatomic coordinates of the cardiac chambers

(longitudinal components), which is especially relevant for the characterization of

myocardial mechanics (Mor-Avi et al., 2011; Voigt et al., 2015).
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Figure 6.5: Boxplots of the error for the healthy sequence from Siemens. The error
is computed as the magnitude of the difference between the calculated and ground-
truth displacement vectors, and is provided for standard (left) and proposed (right)
tracking methods. The x-axis shows the frame number. The red points represent
outliers.

6.7 Experimental Results and Discussion

6.7.1 Displacement Vector Field

The tracking parameters were similar for all vendors and cases. The algorithm re-

turned a dense displacement field between pairs of consecutive frames. Figure 6.4

illustrates an example A4C view from the healthy Siemens sequence in the rapid

ejection phase (peak systole), together with the corresponding GT. The computed

displacement vector field by the two tracking approaches (standard BM and optim-

ised BM approach) is also shown. The presence of noise in the results is evident in

the standard BM technique, whereas the optimised BM approach seems to suffer less

from this problem.

Figure 6.5 shows the distribution of error for the same image sequence, obtained

from both tracking methods. The displacement errors across all vendors for their

corresponding healthy image sequences are shown in Figure 6.6.

As can be seen in Figure 6.5, the optimised BM approach suffers less from the pres-

ence of outliers and noise spikes in the computed displacement field. The significant

errors in standard BM appear to correspond to the cardiac phases when the heart
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Figure 6.6: Displacement error for the healthy A4C synthetic sequences across all
vendors for the two speckle tracking approaches. The horizontal line represents
mean; the box signifies the quartiles, and the whiskers represent the 2.5% and 97.5%
percentiles.

muscle has the highest velocities, which happen during the rapid ejection phase.

For such instances, the magnitude of the displacement is high, and the deforma-

tions are relatively large, resulting in lower SSD peaks (or other similarity measures

such as correlation-coefficient) in BM. Therefore, secondary peaks caused by random

correlations between speckle kernels can sometimes exceed the actual peak. This ef-

fect can produce "peak-hopping" artefacts in which a secondary peak is chosen as

the best match within a search region, giving rise to significant errors in displace-

ment and deformation estimates. However, the optimised BM approach seems to

be less prone to this phenomenon as the fidelity of the solution is checked by the

neighbourhood consensus representing the overall motion of the myocardium. The

optimised BM approach demonstrates consistently lower errors across all vendors

except Philips (Figure 6.6). In the case of synthetic sequences from Philips, the two

tracking approaches behave similarly, with the optimised BM approach performing

slightly better.

Speckle Tracking Echocardiography 120



6.8 Execution Time

The proposed speckle tracking algorithms were implemented in C++ programming

language. Currently, it takes a maximum of 10s to process a pair of ultrasound frames

using an Intel Xeon E5630 CPU, with an internal clock frequency of 2.53 GHz. The

focus in this chapter was the accuracy of the tracking results, for offline analysis of the

echocardiographic studies. The follow-up studies can look into the implementation

of the algorithms on the Graphics Processing Units for parallel computations, from

which >1000-fold increase in the processing speed can be expected. This should

make the run time feasible for a real-time application.

6.9 Summary

An optimised-based speckle tracking echocardiography algorithm was proposed in

this chapter. Its performance was evaluated using a publicly available synthetic

echocardiographic dataset with known GT. The results showed improved perform-

ance compared with the standard BM in estimating the displacement vector. Next

chapter will apply the proposed technique further to calculate the strain values from

the tracked displacements.
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Chapter 7

Strain Imaging

7.1 Introduction

When cost is immaterial, techniques such as cardiac MRI with semi-automated

quantification software improved accuracy and precision, but this is not practical

in everyday cardiology. New echocardiographic techniques, such as strain imaging,

have emerged as promising quantitative tools in measuring LV function with superior

prognostic value to the EF for predicting adverse cardiac events (Kalam, Otahal and

Thomas H Marwick, 2014).

Strain imaging have been used to evaluate myocardial function in a wide range of

cardiac conditions (D. Y. Leung and Ng, 2010). Strain imaging allows measurement

of active tissue deformation in three directions including longitudinal shortening,

circumferential shortening, and radial thickening. As the most relevant and clinically

useful marker, this thesis has focused on the longitudinal direction. Strain can

be obtained from both TDI and 2D B-mode imaging (Dandel and Hetzer, 2009)

ultrasound modalities. In the case of B-mode images, speckles are tracked using

speckle tracking during the cardiac cycle to provide information of the lengthening or

shortening of the myocardial segment. A significant advantage of 2D speckle tracking

in comparison with the strain derived from tissue Doppler is that 2D speckle tracking

is angle independent and less affected by artifacts (Teske et al., 2007). Therefore,

B-mode strain imaging has been widely accepted and perused as the modality of

choice for measuring myocardial deformations.

Clinical feasibility of strain resulting from STE has been shown in many studies (Fer-
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raiuoli et al., 2019; Rodriguez et al., 2014; Joos et al., 2018; Hui and Xinhua, 2020;

D’hooge, Konofagou et al., 2002; D’hooge, Heimdal et al., 2000; D’hooge, Bijnens

et al., 2002). For example, strain has been used for the detection of myocardial

ischaemia; it may apply after coronary reperfusion to predict infarct size; it is sug-

gested for patients during chemotherapy to detect a decline in cardiac function early.

Similarly, strain has been proposed to estimate the risk of ventricular arrhythmias;

it may apply to find the optimal position for the pacing lead in the LV free wall

in the evaluation of patients after implantation of cardiac resynchronisation therapy

(Smiseth et al., 2016).

Although, there has been significant research and advances in strain imaging, use of

strain imaging is technically challenging, and have not been successfully incorpor-

ated into everyday clinical practice. Continuing technical development and further

research are expected to improve the quality of the strain quantification, and more

general acceptance of the strain imaging in echocardiography (D. Y. Leung and Ng,

2010).

In this chapter, an overview of strain imaging studies in the literature will be illus-

trated first. This is followed by evaluation metrics. Finally, the proposed BM model

introduced in Chapter 6 will be applied and evaluated on public synthetic datasets

to measure strain.

7.2 Previous Work on Strain Imaging

D’hooge et al. (2002) introduced a study on a healthy 29 year old volunteer using

VIVID V, GE Vingmed, Horten, Norway, ultrasound scanner. The data were ac-

quired in both the axial and lateral dimensions of the interventricular septum with

high temporal resolution and post processed to obtain strain. The direct compar-

ative measurements were not reported while they showed the negative strain during

systole. They observe the limitation which the strain in the lateral plane was slightly

noisier than in the axial plane (D’hooge, Konofagou et al., 2002).

Ingul et al. (2005) evaluated three methods of strain measurement including a com-
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bination of TDI and comparing manual and automated measurements as well. They

stated that the automated methods were as effective as the manual method to differ-

entiate between normal and infarcted segments. They found that whilst the manual

technique took 11 min to collect the data, the automated technique reduced this to

only 2 min. They also demonstrated the angle dependency of Doppler-derived strain

and superiority of speckle tracking in measuring strain with greater accuracy (Ingul

et al., 2005).

Ouzir et al. (2017) introduced a method based on the sparse representation and

dictionary learning to estimate the cardiac motion of 2D echo images. They evaluated

the proposed method based on motion estimation accuracy and strain error on one

dataset with available GT, including four sequences of highly realistic simulations

as well as on both healthy and pathological sequences of in vivo data. The in vivo

strain analysis demonstrates that meaningful clinical interpretation can be achieved

from the estimated motion vectors (Ouzir, Basarab, Liebgott et al., 2017).

Østvik et al. (2018) developed a U-Net type of CNN to classify muscle tissue, and

partitioned into a semantic measurement kernel based on LV length and ventricular

orientation. They predicted dense tissue motion using stacked U-Net architectures

with image warping of intermediate flow to tackle variable displacements. They

used a mixture of real and synthetic data for training. The resulting segmentation

and motion estimates was fused in a Kalman filter and used as basis for measuring

Global Longitudinal Strain (GLS). The qualitative assessment showed comparable

deformation trends as the clinical analysis software. They have reported the average

deviation for the GLS -0.6 ± 1.6% for A4C view (Østvik, Smistad, Espeland et al.,

2018). The same group was developed a motion estimator based on a PWC-Net

architecture, which achieved an average end point error of (0.06 ± 0.04) mm per

frame using simulated data from an open access database (Ostvik et al., 2021).

Joos et al.(2018) proposed a novel technique using the combination of speckle track-

ing and motion compensation (MoCo) on high-frame-rate B-mode images to quantify

the tissue velocities of the LV. They evaluated their method on in vitro and in vivo

in the A4C view of 10 volunteers. They obtained GLS of the LV from speckle track-
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Figure 7.1: Illustration of GLS. L, length; L0, total longitudinal length of the LV
border in diastole; L1, total longitudinal length of the LV border in systole.

ing in 10 subjects and compared to the results provided by a clinical scanner which

achieved p value of 0.33 (Joos et al., 2018).

7.3 Strain Calculations and Evaluation Metrics

In order to evaluate the efficiency of the proposed ST model presented in Chapter

6, GLS and regional/segmental strain have been measured. Strain describes the

deformation of an object normalised to its original shape and size. Using the dis-

placement vectors obtained from the speckle tracking, and according to the recent

recommendations from the EACVI/ASE/Industry task force (Voigt et al., 2014;

James D Thomas and Badano, 2013), strain can be calculated as:

ε (t) = L(t)− L0

L0
(7.1)

where L(t) is either the length of a segment (in case of segmental/regional strain) or

the length of the LV contour (in case of GLS) at a given point in time, and L0 is the

reference length at the reference time t0. In the case of computing GLS, L0 is the

total longitudinal length of the LV border in ED frame. Strain is a dimensionless

entity, reported as a fraction or percent (Dandel, Lehmkuhl et al., 2009; Sanfilippo et
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Figure 7.2: violin plots of the error in the segmental strain measurements for the
healthy synthetic sequence from Siemens. The solid black line represents mean, and
the green line represents the median; the box signifies the quartiles, and the whiskers
represent the 2.5% and 97.5% percentiles.

al., 2018). The conceptual assessment of myocardial function with GLS is illustrated

in Figure 7.1. 1

7.4 Experimental Results

Since this thesis has focused on strain measurements in the LV only, the images

were cropped manually before speckle tracking process, by considering a rectangle

containing the LV. However, the initial positioning of the tracking kernels was auto-

matic.

Regional (Segmental) longitudinal strain values were calculated from the estimated

displacement vector field which explained in Chapter 6. Figure 7.2 displays the violin

plots of the regional strain error (the difference between the speckle tracked and the

GT) for all LV segments.

GLS values were computed from the estimated displacement vector fields for the
1As per our discussions with the project clinical partners at Imperial College London, GLS

measurements in LV was assumed to be the most clinically relevant and useful component.
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Figure 7.3: Example of synthetic image (Toshiba vendor). The rectangle displays
the region of interest considered for speckle tracking.

healthy and ischemic sequences across all vendors. The results are provided in Fig-

ure 7.4 and 7.5 for the standard BM and the optimised BM approaches, respectively.

An improvement in the case of the optimised BM approach is evident. Figure 7.5

illustrates that by minimising the cost function (Chapter 6, equation 6.6), the es-

timated strain values are more reliable for both healthy and ischaemic cases and

across all vendor except the healthy case for the Samsung image sequences, where

a considerable bias between the calculated strain and the GT is evident. This is

most likely due to the missing/smeared walls in the images as shown in Appendix A,

where the algorithms fail to return meaningful speckle tracked displacement vectors.

In the case of synthetic sequences from Philips, the two tracking approaches behave

similarly, with the optimised BM approach performing slightly better. Similar be-

haviour is observed in the calculated strain measurements. A considerable improve-

ment in the basal segments (both lateral and septal) can be seen in the optimised

BM approach when compared with the standard BM approach. This is likely to be

because of the fast-moving heart muscles in these segments for which the standard

BM struggles to track, most likely due to the peak-hopping artefacts. For the apical

segments, where the site of measurement is in the vicinity of the apex and, therefore,

moves at relatively lower velocities, the error in both methods drops, relative to the

corresponding basal segments.
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Figure 7.4: Comparison of GLS measurements obtained from the standard BM ap-
proach for the healthy and ischemic-LCX (Ischemic-left circumflex coronary artery)
cases across all vendors with the known ground-truth. The solid and dashed blue
lines represent the calculated strain values for healthy and ischemic cases, respect-
ively. The solid and dashed magenta lines indicate the corresponding ground-truth.

The statistical analysis of standard and optimised BM approaches has been presented

for the GLS measurements for the healthy and ischaemic cases across all vendors in

Tables 7.1 and 7.2, respectively. As shown in Table 7.1 and 7.2, overall, the optimised

BM approach demonstrated better performance in estimating the GLS values in

comparison with the standard BM. In case of ischemic GE sequences, a close to

zero correlation coefficient for the standard BM indicated very poor tracking results,

where the optimised approach seems to be offering more reliable results, with a

correlation coefficient of 0.98. For the ischemic sequences from Philips, however, both

tracking approaches suffer from poor strain measurement errors, with correlation

coefficients of 0.32 and 0.34, respectively. The simulated image sequences for both

vendors have relatively poorer image qualities, with segments of the myocardium

is missing/invisible in the simulated imaging plane, where the tracking algorithms

struggle to follow the speckle movements between consecutive images. For all other

vendors, the optimised BM approach demonstrates an acceptable level of accuracy.
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Table 7.1: Statistical analysis of standard and optimised BM approaches for the GLS
measurements for healthy sequences across all vendors; the slope of the regression
line (α), correlation coefficient (ρ), bias (µ), upper limits of agreement (ULOA), and
lower limit of agreement (LLOA) are provided.

Standard BM Optimised BM
Vendor α ρ µ ULOA LLOA α ρ µ ULOA LLOA
Hitachi 0.28 0.57 2.34 8.05 -3.36 0.86 0.93 0.29 1.61 -1.03
Toshiba 0.93 0.72 2.42 5.48 -0.63 1.05 0.98 0.20 0.91 -0.50
Esaote 0.20 0.23 6.17 12.62 -0.27 1.08 0.99 -0.17 0.51 -0.86
Samsung 0.14 0.33 6.15 16.02 -3.71 1.09 0.89 1.20 3.34 -0.93
Siemens 1.27 0.97 0.40 2.02 -1.21 1.18 0.99 0.48 1.44 -0.46
Philips 0.81 0.51 0.55 4.63 -3.53 1.21 0.99 0.19 1.12 -0.72
GE 0.04 0.08 5.96 14.10 -2.16 1.07 0.99 0.05 0.61 -0.49

Table 7.2: As Table 7.1, but for ischaemic sequences.

Standard BM Optimised BM
Vendor α ρ µ ULOA LLOA α ρ µ ULOA LLOA
Hitachi 0.06 0.18 1.82 10.20 -6.55 0.69 0.74 -0.12 1.96 -2.21
Toshiba 0.28 0.49 1.74 6.34 -2.84 0.84 0.97 -0.26 0.64 -1.17
Esaote 0.18 0.28 3.77 8.96 -1.42 1.07 0.97 0.35 1.15 -0.43
Samsung 0.26 0.43 0.63 5.13 -3.87 0.90 0.86 0.54 2.07 -0.99
Siemens 0.73 0.66 0.74 3.38 -1.88 1.08 0.95 0.47 1.56 -0.60
Philips 0.02 0.32 0.48 40.75 -39.79 0.02 0.34 -1.89 31.98 -35.77
GE -0.07 -0.14 2.15 9.15 -4.85 1.05 0.98 0.29 0.89 -0.30
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Figure 7.5: Same as Fig 7.4, but for the optimised BM approach.

Considerable biases are observed in both healthy and ischemic cases in GLS values

obtained from the standard BM approach and for some of the vendors (Figure 7.4).

7.5 Discussion

It is worth noting that such poor results are less likely to be observed when using

vendors’ software packages. This is because here the results have presented from a

purely BM step where no additional post-processing is applied. From a clinical image

sequence, speckle-matching alone never provides an unambiguous, obviously correct,

velocity field. Physical limitations of ultrasound, and out-of-plane motion, prevent

perfect speckle matching. There are often several ways that a speckle pattern in one

frame could transform into its counterpart in the next frame. Therefore, this study

presume the current strategy undertaken by most vendors is a 2-step process. First,

calculate the displacement vector field maximising the match between successive

frames (i.e. standard BM). Second, apply automated “common sense” editing that

weeds out implausible vectors, and instead infer values using regions adjacent in

space and/or time (i.e., spatial or temporal filtering).
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Figure 7.6: Example of a (presumably) “common sense” editing on one frame, where
3 regional strain values are given for the lateral wall, but there is no visible myocar-
dium to be tracked in that region (QLAB 10.0, Philips).

Figure 7.6 illustrates an example providing evidence for this "common sense" editing,

where 3 reasonable strain values are given for the lateral wall, but there is no myocar-

dium to be tracked in that region. Exactly how this "common sense" work has a large

effect on all downstream results including strain. This can potentially explain the

persistent contradiction between vendors despite their standardising definitions for

the acquisition and nomenclature. Task Force acknowledging the inability to resolve

the vendor discrepancy, and recommending follow-up measurements to be done with

the same software as before. This causes logistical problems (if a hospital has >1

vendor) or vendor lock-in (Lang, Badano et al., 2015).

Interestingly, a recent study (Negishi et al., 2013) has concluded that post-processing

is the most important determinant in inter-vendor variation, with differences in ac-

quisition having a small effect. None of the vendors included in this study has

disclosed its algorithms for strain measurements. Therefore, could not reproduce the

result of their corresponding software packages for a direct comparison here.

Speckle decorrelation is signal- and motion-dependent. Therefore, it cannot be com-

pensated by simple post-tracking spatial or temporal smoothing. Thus, the proposed

approach simultaneously maximises match and penalises implausibility (fusing BM

and biological constraints), optimised by minimising the two-element cost function.

The optimisation process jointly maximises signal correlation and motion continuity,

Strain Imaging 131



eliminating the need for subsequent editing of the raw displacement vectors which is

probably the underlying cause of vendor discrepancy.

7.6 Summary

The proposed optimised-based speckle tracking echocardiography algorithm was used

to calculate longitudinal strain in echocardiographic images. The results showed

improved performance compared with the standard BM in estimating the strain

measurements. The proposed tracking method does not require any post-processing

or filtering steps and can potentially reduce the variability in strain measurements

caused by various implementations of such filtering techniques.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

This thesis focused on contributing to the automation of image interpretation in echo-

cardiography as the most commonly used non-invasive modality, in clinical practice

and research, to evaluate the structure and function of the heart. Such automated

systems can provide a significant contribution to the clinical procedures by provid-

ing clinicians with the assistive decision-making tools to reliably diagnose and treat

cardiovascular disease.

The clinical background of cardiology, the significance of echocardiograms, the dif-

ferent varieties of echocardiograms, and ultrasound modalities with a focus on the

TTE and B-Mode modality, were provided in Chapter 2. Additionally, speckle

tracking concept and myocardial deformation parameters were explained.

Chapter 3 provided the technical background on methods used in this thesis such as

an overview of neural networks, approaches to neural network design, most common

classification, and segmentation architectures. Moreover, an overview of the NAS

including search space, search strategy, and performance estimation strategy has

been discussed.

In Chapter 4, the differentiable architecture search approach was utilised to design

a neural network for the automated identification of 14 different anatomical echo-

cardiographic views in a large dataset. The main aim of the model was to design

a small neural network architecture for rapid inference while maintaining high ac-
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curacy. The impact of 4 different image sizes such as 32×32, 64×64, 96×96, and

128×128 pixels were investigated. The direct correlation between the image quality

and classification accuracy was observed.

The influence of different training dataset sizes (i.e. 100%, 50%, 16%, 8%) on the ac-

curacy of the models also was examined. The adopted models derived from DARTS

solution appear to be relatively less profoundly affected by the size of training data-

set, where both 1-cell-DARTS and 2-cell-DARTS models demonstrate no more than

an 8% drop in their prediction accuracy when deprived of the full training dataset.

When using 50% of the training dataset, both DARTS-based models exhibit better

performance over the deeper networks.

The impact of image quality on the efficacy of the models was also investigated.

There is a correlation between classification accuracy and image quality (p-value

0.01). The images labelled as ”excellent” quality showed the highest classification

accuracy of about 100%. The discrepancy between the model’s prediction and the

expert annotation is higher in poor quality images.

The model was evaluated on a private dataset of 14 different echocardiographic views

and the results were compared with the standard classification CNN architectures.

In contrast to the deeper classification architectures, the proposed model has a sig-

nificantly lower number of trainable parameters (up to 99.9% reduction), achieved

comparable classification performance (accuracy 88.4-96.0%, precision 87.8-95.2%,

recall 87.1-95.1%) and real-time performance with inference time per image of 3.6-

12.6ms.

Chapter 5 utilised a NAS technique to design a neural network for the automated

segmentation of LV in 2D echocardiographic images. Three different datasets of

echocardiographic images including one public and two private datasets were used

for training and testing the proposed models. The proposed model was applied to

one public dataset and two private datasets for A4C and A2C of echocardiographic

views, and its performance was compared with the state-of-the-art dense prediction

architectures such as U-Net, U-Net ++, SegNet, and DeepLabV3ResNet101.

The results revealed that the proposed model outperforms other models for all data-
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set. The proposed model on public CAMUS dataset achieved an average DC of 0.944

± 0.038, 0.892 ± 0.042, and 0.919 ± 0.075 for LV-Endo, LV-Epi, and LA respectively.

The influence of different training dataset sizes (i.e. 100%, 50%, 16%, 8%) on the

performance of the models also was examined. The proposed model is affected

relatively less by the size of training dataset. The impact of image quality on the

performance of the models was also investigated. Also, the impact of mono and

multi-structure learning approaches on the performance of the proposed network

was examined.

Chapter 6 presented a novel optimisation-based BM algorithm to perform speckle

tracking iteratively. The proposed model was evaluated using a publicly available

synthetic echocardiographic dataset with known ground-truth from several major

vendors, and for healthy and ischemic cases. The new method of improving resistance

to image noise is introduced by applying a penalty for spatial inhomogeneity of

velocity to perform speckle tracking iteratively in cardiac synthetic ultrasound image

sequences.

The results were compared with the results from the classic (standard) 2D BM. The

proposed method presented an average displacement error of 0.57 pixels, while classic

BM provided an average error of 1.15 pixels.

In Chapter 7, the novel model presented in Chapter 6 was applied to public syn-

thetic images to estimate the segmental and regional longitudinal strain in healthy

cases. The proposed method, with an average strain error of 0.32±0.53, outper-

formed the classic counterpart, with an average 3.43±2.84. A similar superior per-

formance was observed in ischaemic cases.

The proposed method does not require any additional ad-hoc filtering process. There-

fore, can potentially help to reduce the variability in the strain measurements caused

by various post-processing techniques applied by different implementations of speckle

tracking.
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8.2 Future Work

The proposed methods for automatic classification, segmentation, speckle tracking,

and strain calculation were evaluated on different private and public datasets. The

evaluation results presented reasonable performances compared to the state-of-the-

art results. The potential future directions are summarised below.

8.2.1 Echo View Classification

This study has focused on the rapid and accurate classification of individual frames

from an echo cine loop. Such a task will be crucial for a real-time view detection

system in clinical scenarios where images need to be processed while they are ac-

quired from the patient and/or where the system is to be used for operator guidance.

However, for offline studies and when the entire cine loop is available, classification

of the echo videos could also be of practical use.

Some studies have attempted video classification using the majority vote on some or

all frames from a given video (Østvik, Smistad, Aase et al., 2019; Madani, Ong et al.,

2018). However, this approach does not use the temporal information available in the

cine loop, such as the movement of structures during the cardiac cycle. Therefore, a

future study could look into using all available information for view detection.

This study investigated 2D echocardiography as a clinically relevant modality. Cur-

rently, 3D echocardiography suffers from a considerable reduction in frame rate and

image quality, and this has limited its adoption into routine practice over the past

decade (Cheng et al., 2018). When such issues are resolved, automatic processing

of the 3D modality could also be explored. In the meantime, 2D echocardiography

remains unrivalled, particularly when high frame rates are needed.

Also, this study investigated the impact of image quality on the classification accur-

acy for A4C views only. A more comprehensive examination of the image quality

and its influence on the detection of different echo views would be informative.

The dataset used in this study was comprised of images acquired using ultrasound

equipment from GE and Philips manufacturers. Although the proposed models do

Conclusions and Future Work 136



not make any a priori assumptions on data obtained from specific vendors and there-

fore should be vendor-neutral, echo studies using more diverse ultrasound equipment

should still be explored.

Similar to all previous studies, in this study, the dataset originated from one medical

centre, i.e. Imperial College Healthcare NHS Trust’s echocardiogram database. Rep-

resentative multi-centre patient data will be essential for ensuring that the developed

models will scale up well to other sites and environments.

In this study interpreting the results of the proposed models alongside other proposed

architectures in the literature (with a wide range of reported accuracies) was not

feasible. This is due to the fact that a direct comparison of the classification accuracy

would require access to the same patient dataset. At present, no echocardiography

dataset and corresponding annotations for view detection are publicly available.

Moreover, this study examined the proposed neural network using only one manual

expert annotations. Future study can consider examining the performance of the

models using more than one manual expert judgment to study the discrepancies of

the variability of annotations.

However, generally, training a neural network requires large amounts of annotated

data, which is often very difficult to obtain, especially in the medical field. To alle-

viate this problem and to reduce the cost of annotation, an important direction that

needs to be study is examining the possibility of self supervised learning to classify

echo view images. Recently, self-supervision hold the potential to yield significant

improvements in the learning process of the target task (Danu, Ciuşdel and Itu,

2020).

8.2.2 Left Ventricle Segmentation

This study examined the proposed network using manual expert annotations. Due to

the label scarcity and high-cost of annotation, future study can consider examining

the performance of self supervised or semi-supervised learning for the segmentation

of echo images to leverage the large quantity of unlabeled echo images.
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Cardiologists usually examine multi-view echocardiographic images in clinical decision-

making (Madani, Arnaout et al., 2018). The A2C, A3C, and A4C views are the

most commonly used views for the LV functional assessment. This study used A4C

for private datasets and A4C and A2C views in public dataset (CAMUS) for the

segmentation of echo images. Future study can consider to search and train the

proposed model to achieve a network for multi-view such as A2C, A3C, and A4C for

echocardiographic segmentation.

Also, this study considered the single frames to train the neural network, however,

future study can focus on the sequences which carries the LV information from

previous frames to following frames that can help the matching between consecutive

frames naturally (Li, W. Zhang et al., 2019).

8.2.3 Speckle Tracking and Strain Imaging

This study considered only the A4C view, which is the most common apical probe

orientation. However, no view-specific assumptions were made during the algorithm

developments, and the proposed tracking method should, in principle, apply to other

echo views. Therefore, future studies would include other standard echocardiographic

views such as 2-chamber and 3-chamber.

Additionally, in this study, synthetic image sequences were used for evaluating the

performance of the tracking algorithms. This provided the advantage of knowing

the exact solution (GT) for the speckle tracking which could be used for error cal-

culations. However, future studies would consider using large datastes acquired

echocardiographic image sequences, representing real-world clinical data.

The purpose of this study was to examine the performance of an improved speckle

tracking technique in estimating the displacement of strain measurements. Hopefully,

this would serve as a stepping stone to addressing the issue of inter-vendor variability,

which has become the main limitation to the implementation of this technique in

clinical settings. Assuming the vendor discrepancy is partly due to different ”common

sense” editing and filtering techniques applied by the vendors to the erroneous speckle

tracking results (to make the results see more reasonable), this improved version of
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tracking could potentially help in reducing the variability by eliminating the need

for all subsequent editing of the results.

A thorough investigation of this issue would require the use of echocardiograms ob-

tained from the same patient, but using different vendors. The synthetic available

and used dataset in this study provides sequences from different vendors and patients.

Therefore, a direct comparison of the results to examine the inter-vendor variability

was not possible in the current study. A future comprehensive study must exam-

ine the potential influence of the proposed tracking algorithm on the inter-vendor

variability in the strain measurements.

Conclusions and Future Work 139



Appendix A

An example A4C from 6 vendors with the healthy sequence and corresponding dis-

placement vector fields: (a) zoomed-view of LV cropped from the original image, (b)

ground-truth, (c)-(d) displacement fields obtained from standard BM and optimized

BM approach in the rapid ejection phase, respectively.

Toshiba
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Hitachi
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