3 research outputs found

    Hand vein authentication using biometric graph matching

    No full text
    This study proposes an automatic dorsal hand vein verification system using a novel algorithm called biometric graph matching (BGM). The dorsal hand vein image is segmented using the K-means technique and the region of interest is extracted based on the morphological analysis operators and normalised using adaptive histogram equalisation. Veins are extracted using a maximum curvature algorithm. The locations and vascular connections between crossovers, bifurcations and terminations in a hand vein pattern define a hand vein graph. The matching performance of BGM for hand vein graphs is tested with two cost functions and compared with the matching performance of two standard point patterns matching algorithms, iterative closest point (ICP) and modified Hausdorff distance. Experiments are conducted on two public databases captured using far infrared and near infrared (NIR) cameras. BGM's matching performance is competitive with state-of-the-art algorithms on the databases despite using small and concise templates. For both databases, BGM performed at least as well as ICP. For the small sized graphs from the NIR database, BGM significantly outperformed point pattern matching. The size of the common subgraph of a pair of graphs is the most significant discriminating measure between genuine and imposter comparisons

    BioTwist - overcoming severe distortions in ridge-based biometrics for successful identication

    Get PDF
    Biometrics rely on a physical trait's permanence and stability over time, as well as its individuality, robustness and ease to be captured. Challenges arise when working with newborns or infants because of the tininess and fragility of an infant's features, their uncooperative nature and their rapid growth. The last of these is particularly relevant when one tries to verify an infant's identity based on captures of a biometric taken at an earlier age. Finding a physical trait that is feasible for infants is often referred to as the infant biometric problem. This thesis explores the quality aspect of adult fingermarks and the correlation between image quality and the mark’s usefulness for an ongoing forensic investigation, and researches various aspects of the “ballprint” as an infant biometric. The ballprint, the friction ridge skin area of the foot pad under the big toe, exhibits similar properties to fingerprint but the ball possesses larger physical structures and a greater number of features. We collected a longitudinal ballprint database from 54 infants within 3 days of birth, at two months old, at 6 months and at 2 years. It has been observed that the skin of a newborn's foot dries and cracks so the ridge lines are often not visible to the naked eye and an adult fingerprint scanner cannot capture them. This thesis presents the physiological discovery that the ballprint grows isotropically during infancy and can be well approximated by a linear function of the infant's age. Fingerprint technology developed for adult fingerprints can match ballprints if they are adjusted by a physical feature (the inter-ridge spacing) to be of a similar size to adult fingerprints. The growth in ballprint inter-ridge spacing mirrors infant growth in terms of length/height. When growth is compensated for by isotropic rescaling, impressive verification scores are achieved even for captures taken 22 months apart. The scores improve even further when low-quality prints are rejected; the removal of the bottom third improves the Equal Error Rate from 1-2% to 0%. In conclusion, this thesis demonstrates that the ballprint is a feasible solution to the infant biometric problem
    corecore