30 research outputs found

    A color hand gesture database for evaluating and improving algorithms on hand gesture and posture recognition

    Get PDF
    With the increase of research activities in vision-based hand posture and gesture recognition, new methods and algorithms are being developed. Although less attention is being paid to developing a standard platform for this purpose. Developing a database of hand gesture images is a necessary first step for standardizing the research on hand gesture recognition. For this purpose, we have developed an image database of hand posture and gesture images. The database contains hand images in different lighting conditions and collected using a digital camera. Details of the automatic segmentation and clipping of the hands are also discussed in this paper

    Hand-based multimodal identification system with secure biometric template storage

    Get PDF
    WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio

    New Mobile Phone and Webcam Hand Images Databases for Personal Authentication and Identification

    Get PDF
    AbstractIn this work we created two hand image databases, usingmobile phone cameras and webcams. Themajor goal of these databases is to build upon aperson's authentication/identification using hand biometrics,decreasing the need for expensive hand scanners. Both databases consist of 3000 hand images, 3 sessions x 5 images (per person)x 200 persons, and are available to freely download. The test protocol is defined for both databases; simple experiments were conducted using the same protocol. The results were encouraging for most of the persons (accuracy was greater than 80%), except for those who rotated their hands in an exaggerated manner in all directions

    Transformation of Hand-Shape Features for a Biometric Identification Approach

    Get PDF
    The present work presents a biometric identification system for hand shape identification. The different contours have been coded based on angular descriptions forming a Markov chain descriptor. Discrete Hidden Markov Models (DHMM), each representing a target identification class, have been trained with such chains. Features have been calculated from a kernel based on the HMM parameter descriptors. Finally, supervised Support Vector Machines were used to classify parameters from the DHMM kernel. First, the system was modelled using 60 users to tune the DHMM and DHMM_kernel+SVM configuration parameters and finally, the system was checked with the whole database (GPDS database, 144 users with 10 samples per class). Our experiments have obtained similar results in both cases, demonstrating a scalable, stable and robust system. Our experiments have achieved an upper success rate of 99.87% for the GPDS database using three hand samples per class in training mode, and seven hand samples in test mode. Secondly, the authors have verified their algorithms using another independent and public database (the UST database). Our approach has reached 100% and 99.92% success for right and left hand, respectively; showing the robustness and independence of our algorithms. This success was found using as features the transformation of 100 points hand shape with our DHMM kernel, and as classifier Support Vector Machines with linear separating functions, with similar success

    Evaluation of a Vein Biometric Recognition System on an Ordinary Smartphone

    Get PDF
    Nowadays, biometrics based on vein patterns as a trait is a promising technique. Vein patterns satisfy universality, distinctiveness, permanence, performance, and protection against circumvention. However, collectability and acceptability are not completely satisfied. These two properties are directly related to acquisition methods. The acquisition of vein images is usually based on the absorption of near-infrared (NIR) light by the hemoglobin inside the veins, which is higher than in the surrounding tissues. Typically, specific devices are designed to improve the quality of the vein images. However, such devices increase collectability costs and reduce acceptability. This paper focuses on using commercial smartphones with ordinary cameras as potential devices to improve collectability and acceptability. In particular, we use smartphone applications (apps), mainly employed for medical purposes, to acquire images with the smartphone camera and improve the contrast of superficial veins, as if using infrared LEDs. A recognition system has been developed that employs the free IRVeinViewer App to acquire images from wrists and dorsal hands and a feature extraction algorithm based on SIFT (scale-invariant feature transform) with adequate pre- and post-processing stages. The recognition performance has been evaluated with a database composed of 1000 vein images associated to five samples from 20 wrists and 20 dorsal hands, acquired at different times of day, from people of different ages and genders, under five different environmental conditions: day outdoor, indoor with natural light, indoor with natural light and dark homogeneous background, indoor with artificial light, and darkness. The variability of the images acquired in different sessions and under different ambient conditions has a large influence on the recognition rates, such that our results are similar to other systems from the literature that employ specific smartphones and additional light sources. Since reported quality assessment algorithms do not help to reject poorly acquired images, we have evaluated a solution at enrollment and matching that acquires several images subsequently, computes their similarity, and accepts only the samples whose similarity is greater than a threshold. This improves the recognition, and it is practical since our implemented system in Android works in real-time and the usability of the acquisition app is high.MCIN/AEI/ 10.13039/50110001103 Grant PDC2021-121589-I00Fondo Europeo de Desarrollo Regional (FEDER) and Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía Grant US-126514

    A novel hand reconstruction approach and its application to vulnerability assessment

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, 238 (2014) DOI: 10.1016/j.ins.2013.06.015The present work proposes a novel probabilistic method to reconstruct a hand shape image from its template. We analyse the degree of similarity between the reconstructed images and the original samples in order to determine whether the synthetic hands are able to deceive hand recognition systems. This analysis is made through the estimation of the success chances of an attack carried out with the synthetic samples against an independent system. The experimental results show that there is a high chance of breaking a hand recognition system using this approach. Furthermore, since it is a probabilistic method, several synthetic images can be generated from each original sample, which increases the success chances of the attack.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186), BIOSINT (TEC2012-38630-C04-02) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica. Marta Gomez-Barrero is supported by a FPU Fellowship from Spanish MECD

    The development of automated palmprint identification using major flexion creases

    Get PDF
    Palmar flexion crease matching is a method for verifying or establishing identity. New methods of palmprint identification, that complement existing identification strategies, or reduce analysis and comparison times, will benefit palmprint identification communities worldwide. To this end, this thesis describes new methods of manual and automated palmar flexion crease identification, that can be used to identify palmar flexion creases in online palmprint images. In the first instance, a manual palmar flexion crease identification and matching method is described, which was used to compare palmar flexion creases from 100 palms, each modified 10 times to mimic some of the types of alterations that can be found in crime scene palmar marks. From these comparisons, using manual palmar flexion crease identification, results showed that when labelled within 10 pixels, or 3.5 mm, of the palmar flexion crease, a palmprint image can be identified with a 99.2% genuine acceptance rate and a 0% false acceptance rate. Furthermore, in the second instance, a new method of automated palmar flexion crease recognition, that can be used to identify palmar flexion creases in online palmprint images, is described. A modified internal image seams algorithm was used to extract the flexion creases, and a matching algorithm, based on kd-tree nearest neighbour searching, was used to calculate the similarity between them. Results showed that in 1000 palmprint images from 100 palms, when compared to manually identified palmar flexion creases, a 100% genuine acceptance rate was achieved with a 0.0045% false acceptance rate. Finally, to determine if automated palmar flexion crease recognition can be used as an effective method of palmprint identification, palmar flexion creases from two online palmprint image data sets, containing images from 100 palms and 386 palms respectively, were automatically extracted and compared. In the first data set, that is, for images from 100 palms, an equal error rate of 0.3% was achieved. In the second data set, that is, for images from 386 palms, an equal error rate of 0.415% was achieved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Texture based vein biometrics for human identification : A comparative study

    Get PDF
    Hand vein biometric is an important modality for human authentication and liveness detection in many applications. Reliable feature extraction is vital to any biometric system. Over the past years, two major categories of vein features, namely vein structures and vein image textures, were proposed for hand dorsal vein based biometric identification. Of them, texture features seem important as it can combine skin micro-textures along with vein properties. In this study, we have performed a comparative study to identify potential texture features and feature-classifier combination that produce efficient vein biometric systems. Seven texture features (HOG, GABOR, GLCM, SSF, DWT, WPT, and LBP) and three multiclass classifiers (LDA, ESVM, and KNN) were explored towards the supervised identification of human from vein images. An experiment with 400 infrared (IR) hand images from 40 adults indicates the superior performance of the histogram of oriented gradients (HOG) and simple local statistical feature (SSF) with LDA and ESVM classifiers in terms of average accuracy (> 90%), average Fscore (> 58%) and average specificity (>93%). The decision-level fusion of the LDA and ESVM classifier with single texture features showed improved performances (by 2.2 to 13.2% of average Fscore) over individual classifier for human identification with IR hand vein images.Proceedings - International Computer Software and Applications Conferenc
    corecore