
  

THE DEVELOPMENT OF AUTOMATED PALMPRINT 

IDENTIFICATION USING MAJOR FLEXION CREASES 

THOMAS CHARLES COOK BSc 

A thesis submitted in partial 

fulfilment of the requirements of the 

University of Wolverhampton for the 

degree of Doctor of Philosophy 

January 2012 

This work or any part thereof has not previously been presented in any 

form to the University or to any other body whether for the purposes of 

assessment, publication or for any other purpose (unless otherwise 

indicated). Save for any express acknowledgements, references and/or 

bibliographies cited in the work, I confirm that the intellectual content of 

the work is the result of my own efforts and of no other person. 

The right of Thomas Charles Cook to be identified as author of this work is asserted 

in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At 

this date copyright is owned by the author. 

Signature…………………………………. 

Date………………………………………





 i 

Abstract 

Palmar flexion crease matching is a method for verifying or establishing identity. 

New methods of palmprint identification, that complement existing identification 

strategies, or reduce analysis and comparison times, will benefit palmprint 

identification communities worldwide. To this end, this thesis describes new 

methods of manual and automated palmar flexion crease identification, that can be 

used to identify palmar flexion creases in online palmprint images. In the first 

instance, a manual palmar flexion crease identification and matching method is 

described, which was used to compare palmar flexion creases from 100 palms, each 

modified 10 times to mimic some of the types of alterations that can be found in 

crime scene palmar marks. From these comparisons, using manual palmar flexion 

crease identification, results showed that when labelled within 10 pixels, or 3.5 mm, 

of the palmar flexion crease, a palmprint image can be identified with a 99.2% 

genuine acceptance rate and a 0% false acceptance rate. Furthermore, in the second 

instance, a new method of automated palmar flexion crease recognition, that can be 

used to identify palmar flexion creases in online palmprint images, is described. A 

modified internal image seams algorithm was used to extract the flexion creases, and 

a matching algorithm, based on kd-tree nearest neighbour searching, was used to 

calculate the similarity between them. Results showed that in 1000 palmprint images 

from 100 palms, when compared to manually identified palmar flexion creases, a 

100% genuine acceptance rate was achieved with a 0.0045% false acceptance rate. 

Finally, to determine if automated palmar flexion crease recognition can be used as 

an effective method of palmprint identification, palmar flexion creases from two 

online palmprint image data sets, containing images from 100 palms and 386 palms 

respectively, were automatically extracted and compared. In the first data set, that is, 

for images from 100 palms, an equal error rate of 0.3% was achieved. In the second 

data set, that is, for images from 386 palms, an equal error rate of 0.415% was 

achieved. 



 ii 

Acknowledgements 

I would like to thank my director of studies, Dr. Raul Sutton, and my supervisor, Dr. 

Kevan Buckley, for their invaluable help, support, and advice throughout the 

duration of the project. I would also like to thank Esmin Powner and Matthew 

Eardley for their help in manually identifying palmar flexion creases, Darren Riley 

for describing and demonstrating automated palmprint identification using IDENT-1, 

and Abhishek Gupta for his help and support in the important, early stages of the 

project. 

I would also like to thank the University of Wolverhampton Research Centre in 

Applied Sciences for funding and support, without which this work would not be 

possible. Finally, I wish to thank my parents, Tim and Celia Cook, and my girlfriend, 

Charlie Ellis, for their patience and support. 



 iii 

Contents 

1. Introduction ........................................................................................................... 1 
1.1. Motivation .......................................................................................................... 1 

1.2. Thesis contributions ........................................................................................... 2 
1.3. Thesis structure ................................................................................................... 3 
2. Literature review ................................................................................................... 4 
2.1. Palmprint formation and structure ...................................................................... 4 
2.2. Palmprint identification ...................................................................................... 8 

2.3. Automated identification systems .................................................................... 11 
2.3.1. Acquisition .................................................................................................... 11 
2.3.2. Pre-processing ............................................................................................... 17 
2.3.3. Feature extraction and matching ................................................................... 25 
2.4. Computer vision and pattern recognition methods ........................................... 43 

2.5. Summary .......................................................................................................... 55 
3. Manual palmprint identification .......................................................................... 56 
3.1. Introduction ...................................................................................................... 56 

3.2. Materials and methods ...................................................................................... 58 
3.3. Results and discussion ...................................................................................... 67 
3.4. Summary .......................................................................................................... 71 
4. Automated flexion crease recognition ................................................................. 72 

4.1. Introduction ...................................................................................................... 72 
4.2. Materials and methods ...................................................................................... 73 

4.2.1. Palmar flexion creases as internal image seams ............................................ 76 
4.2.2. Palmar flexion crease matching .................................................................... 82 
4.3. Results and discussion ...................................................................................... 84 

4.4. Summary .......................................................................................................... 88 
5. Automated palmprint identification .................................................................... 89 

5.1. Introduction ...................................................................................................... 89 
5.2. Materials and methods ...................................................................................... 90 

5.3. Results and discussion ...................................................................................... 94 
5.4. Summary ........................................................................................................ 102 

6. Conclusions ....................................................................................................... 103 
6.1. Summary ........................................................................................................ 103 

6.2. Thesis contributions ....................................................................................... 106 
6.3. Future work .................................................................................................... 107 



 iv 

List of tables 

Table 1. The stages of foetal hand development (Ashbaugh, 1999a). ......................... 7 
Table 2. A summary of the three levels of friction ridge skin features. ....................... 9 

Table 3. A summary of palmprint feature line identification methods. ..................... 43 
Table 4. A summary of additive, subtractive, and conditional morphological 

operations, adapted from Pratt (2007). ....................................................................... 52 
Table 5. A summary of automated palmprint identification algorithms suitable for 

comparison. ................................................................................................................ 97 

Table 6. A summary of palmar flexion crease extraction method results. ................. 99 

 



 v 

List of figures 

Figure 1. A cross section of friction ridge skin, modified from Ashbaugh (1999a). 

The dermis is continuous with the epidermis, but has been separated in this diagram 

for clarity. ..................................................................................................................... 5 
Figure 2. The position of the major flexion creases. .................................................... 7 
Figure 3. A comparison of two sections of friction ridge skin................................... 10 
Figure 4. The structure of an online palmprint acquisition system (Zhang, 2004). ... 13 
Figure 5. A flat platen surface design with a) guide pegs, and b) simplified guide 

pegs (Zhang, 2004)..................................................................................................... 14 
Figure 6. A schematic design of Wong et al.’s (2005) final palmprint acquisition 

device. ........................................................................................................................ 15 
Figure 7. Imaging friction ridge skin using optical frustrated total internal reflection 

(Schneider, 2007). ...................................................................................................... 16 

Figure 8. Example fingerprint images taken using a) optical frustrated total internal 

reflection, and b) ultrasonic imaging (Schneider and Gojevic, 2001). ...................... 17 
Figure 9. The features of a palmprint: 1, the distal transverse crease, 2, the proximal 

transverse crease, and 3, the thenar crease; I, the finger-root region, II, the inside 

region, and III, the outside region; and the datum points, a b, and o (Zhang and Shu, 

1999). ......................................................................................................................... 18 
Figure 10. A two-dimensional right angle coordinate system using two invariant 

features: outer boundary detection, and the flexion crease end points (Li et al., 

2003b). ....................................................................................................................... 19 

Figure 11. The process of vertical axis determination (Li et al., 2003b). .................. 20 
Figure 12. A palmprint coordinate system origin detection process (Li et al., 2003b).

 .................................................................................................................................... 20 

Figure 13. An orthogonal coordinate system on a palmprint image (Li, 2003). ........ 22 
Figure 14. Palmprint samples taken from the same palm using an inscribed circle-

based pre-processing approach (Li et al., 2003a). ..................................................... 22 
Figure 15. Definitions for Li’s (2003) pre-processing accuracy test: flexion crease 

end points, A and B, the centre of the square region of interest, O1, and the centre of 

the circle region of interest, O2. ................................................................................. 23 

Figure 16. Han et al.’s (2003) coordinate system and region of interest. .................. 25 
Figure 17. Four improved directional templates for line segment determination: a) 

vertical, b) horizontal, c) left diagonal, and d) right diagonal (Zhang and Shu, 1999).

 .................................................................................................................................... 26 
Figure 18. The results of Zhang and Shu’s (1999) improved directional line detection 

algorithm. ................................................................................................................... 27 
Figure 19. Experimental results for Zhang and Shu’s (1999) feature line matching 

method (Zhang, 2004). ............................................................................................... 29 
Figure 20. The results of palmar line extraction: a) the original image, b) the resultant 

palmar line image, and c) the original image with the extracted palmar lines overlaid 

(Wu et al., 2002b). ..................................................................................................... 30 
Figure 21. The distribution of correct and incorrect matching scores (Wu et al., 

2002b). ....................................................................................................................... 32 
Figure 22. An example FDEEF extraction: a) an original palmprint image and its b) 

binary edge image, c) edge magnitude image, d) edge angle image, e) blocked edge 

image, f) partial magnitude and edge map, and g) partial feature vector (Wu et al., 

2002a). ........................................................................................................................ 34 

Figure 23. Wu et al.’s (2002a) directional structuring elements................................ 36 



 vi 

Figure 24. Wu et al.’s (2002a) fine-level palmar line extraction process: a) an 

extracted line, and b) its predicted region of interest and direction, c) the next line 

segment, d) the entire line, e) all regions of interest, and f) the extracted palmar lines.

 .................................................................................................................................... 36 

Figure 25. An example of 2-dimensional roof edge types (Chen and Don, 1992). ... 44 
Figure 26. Sobel difference operators (Duda and Hart, 1973). .................................. 45 
Figure 27. An a) 3x3 region of an image, and masks used to implement b) a four-

directional Laplacian and c) an eight-directional Laplacian (Gonzalez and Woods, 

2008). .......................................................................................................................... 46 

Figure 28. Probability densities of matching and non-matching scores (Bolle et al., 

2004). .......................................................................................................................... 54 
Figure 29. A ROC curve expresses the compromise between FAR and FRR (Bolle et 

al., 2004). ................................................................................................................... 55 
Figure 30. Palmar flexion creases in a) a digital camera image (The Hong Kong 

University of Science and Technology, 2003), and b) a Live Scan image. ............... 57 

Figure 31. Example of a) a Bézier curve, and b) a palmprint image (The Hong Kong 

University of Science and Technology, 2003) with the major palmar flexion creases 

overlaid by three Bézier curves. ................................................................................. 59 
Figure 32. A three-node Bézier curve control by control and anchor points (Kodicek, 

2005). .......................................................................................................................... 60 

Figure 33. Example of a cardinal spline with three different tension values: a) 0, b) 

0.5, and c) 1. ............................................................................................................... 61 

Figure 34. Example a) online palmprint image (The Hong Kong University of 

Science and Technology, 2003) with b) three cardinal splines overlaid. The tension 

value for all three cardinal splines is 0.5. ................................................................... 62 

Figure 35. A manual palmar flexion crease identification system user interface. ..... 63 
Figure 36. A manual palmar flexion crease identification control system: a) the user 

creates a control point to start the identification process,  then b) continues to identify 

the palmar flexion crease using additional control points, and c) completes the 

identification process. ................................................................................................. 64 
Figure 37. Example of a cardinal spline a) before, and b) after automated point 

normalisation. ............................................................................................................. 65 

Figure 38. Two flexion crease configurations from the same palm a) before and b) 

after GPA. ................................................................................................................... 66 

Figure 39. An example flexion crease configuration a) before, and b) after rotation by 

180 degrees, c) after translation by 25 pixels, and d) after noise corruption with a 

boundary size of 16 pixels or 5.6 mm. ....................................................................... 67 

Figure 40. Upper and lower distances of correct and incorrect matches at each 

boundary size. ............................................................................................................. 68 

Figure 41. Receiver operating characteristic curve for flexion crease identification. 69 
Figure 42. Example of the boundary at a) 6 pixels (2.1 mm), b) 10 pixels (3.5 mm), 

and c) 16 pixels (5.6 mm). .......................................................................................... 70 

Figure 43. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) a) before, and after applying b) the Sobel operator, c) the 

Laplacian of Gaussian operator, d) the Canny edge detector, and e) the phase 

congruency operator. For clarity, the colours of the edge images have been inverted.

 .................................................................................................................................... 73 
Figure 44. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) after applying a) the phase congruency operator, followed by b) a 



 vii 

threshold using a value of 0.126 calculated automatically with Otsu’s (1979) method, 

and c) a threshold using a value of 0.25. .................................................................... 75 
Figure 45. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) after applying the phase congruency operator and then a) vertical 

line detection, b) horizontal line detection, and c) horizontal and vertical line 

detection. .................................................................................................................... 76 
Figure 46. Internal image seams represented as an 8-connected path of pixels: (a) an 

8-connected neighbourhood, (b) a vertical internal image seam, and (c) a horizontal 

internal image seam.................................................................................................... 77 

Figure 47. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) after applying a) the phase congruency operator, and then b) 

internal image seam detection. For clarity, the horizontal internal image seam is 

marked in red, while the vertical internal image seam is marked in green. ............... 78 
Figure 48. An internal image seam which a) marked in green, follows a false palmar 

flexion crease, and b) marked in red, identifies two palmar flexion creases. ............ 79 

Figure 49. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) a) before, and b) after region of interest selection. ..................... 80 
Figure 50. A stack of filtered images form a Laplacian pyramid. ............................. 81 
Figure 51. A palmprint image represented as a Laplacian pyramid at b) level 1, c) 

level 2, and d) level 3. ................................................................................................ 81 

Figure 52. A palmprint image (The Hong Kong University of Science and 

Technology, 2003) region of interest with b) its Laplacian pyramid representation at 

level 2, and c) three internal image seams overlaid. For clarity, the horizontal internal 

image seams are marked in red, and the vertical internal image seam is marked in 

green. .......................................................................................................................... 82 

Figure 53. Palmprint images with their flexion creases identified using b) manual and 

c) automatic methods. ................................................................................................ 85 

Figure 54. Mean coverage of manually identified flexion creases by automatically 

identified image seams when the two are overlaid. ................................................... 85 

Figure 55. ROC curve for automatic to manual palmar flexion crease identification at 

different threshold levels. ........................................................................................... 86 

Figure 56. An online palmprint image from a) The Hong Kong University of Science 

and Technology’s (2003) hand image database, and b) The Hong Kong Polytechnic 

University’s (2003) palmprint image database. ......................................................... 90 

Figure 57. a) A palmprint image (The Hong Kong Polytechnic University, 2003), b) 

converted to a binary image, and c) isolated from the background. .......................... 92 
Figure 58. The Moore neighbourhood (P1, P2, …, P8) of a pixel, P. ....................... 92 

Figure 59. A palmprint image (The Hong Kong Polytechnic University, 2003) with 

a) the contour of the hand outlined, b) the central part sub-image outlined, and c) the 

region of interest outlined. ......................................................................................... 93 
Figure 60. The region of interest from an online palmprint image (The Hong Kong 

Polytechnic University, 2003). ................................................................................... 93 

Figure 61. Receiver operating characteristics curve for automated palmar flexion 

crease identification for online palmprint images from The Hong Kong University of 

Science and Technology’s (2003) hand image database............................................ 95 
Figure 62. Receiver operating characteristic curve for automated palmar flexion 

crease identification for online palmprint images from The Hong Kong Polytechnic 

University’s (2003) palmprint image database. ......................................................... 99 

 



 viii 

 



 1 

1. Introduction 

This chapter describes the aims and objectives of the thesis, provides a motivation 

for the work, and defines the original contributions of the thesis. Furthermore, as an 

aid to the reader, the structure of the thesis is described. 

1.1. Motivation 

The aim of this thesis is to investigate the following research question: to what extent 

can automated palmar flexion crease recognition be used to identify online palmprint 

images? 

In answering this question, the thesis describes the design and implementation of two 

palmar flexion crease identification and matching methods, which are capable of 

addressing some of the problems in palmprint identification. Furthermore, to achieve 

this aim, a number of primary objectives are determined, and a motivation for each 

objective is described. 

In forensic science, traditional palmprint identification strategies use matching of 

minutia points, that is, the same methodology that is used to match fingerprints, to 

identify an individual. This method is time consuming for fingerprint examiners, and 

in database search times, as the surface area of a palmprint is approximately 40 times 

larger than that of a fingerprint, and may contain up to 8 times the number of minutia 

points (Jain and Feng, 2009). For this reason, alternative methods of palmprint 

identification, that complement existing identification strategies, or reduce analysis 

and comparison times, will be of considerable benefit to palmprint identification 

communities worldwide. However, as a prerequisite to automated identification, any 

new identification metric, such as palmar flexion creases, must first be tested to 

determine its feasibility for identification, before other external factors can be 

introduced. If these initial tests cannot be established, the usefulness of such a metric 

is limited. To this end, the first objective of this thesis is to determine the feasibility 

of palmar flexion crease identification in a forensic context using manual palmar 

flexion crease identification and matching in complete palmprint images. 

Given the feasibility of an identification metric, automated identification represents 

the single biggest advance in identification technology (Fisher, 2004). In forensic 

science and biometrics, automated identification enables efficient identification at 



 2 

local, national, and international level, by automating slow, labour-intensive 

processes previously undertaken only by specially trained examiners (Cole, 2004). 

Therefore, given the feasibility of palmar flexion creases as a method of palmprint 

identification, a viable palmar flexion crease identification system, that is, a palmar 

flexion crease identification system with real-world applications, must be capable of 

automated identification comparable with existing identification systems. For this 

reason, the second objective of this thesis is to describe the development of an 

automated palmar flexion crease identification and matching method, which can be 

used to improve traditional palmprint identification strategies through integration 

with existing identification platforms, or as a standalone identification system. 

Furthermore, as palmar marks recovered from scenes of crime are often partial, 

smudged, or otherwise distorted, an effective palmprint identification metric must 

also be capable of partial palmprint identification. This is highlighted by Libal (2006) 

and Parker (2006), who determined that 30% of all hand print impressions recovered 

from scenes of crime are palmprints. To this end, the third objective of this thesis is 

to investigate the effects of partial palmprint images on palmar flexion crease 

identification, to determine the feasibility of palmar flexion crease identification in 

partial palmprint images. 

1.2. Thesis contributions 

Given the objectives described in Chapter 1.1, the following original contributions 

have been identified, and are investigated in this thesis: 

1. The design and implementation of a manual palmar flexion crease extraction, 

modification, and matching method, which enables the user to efficiently map 

the location of palmar flexion creases in a given palmprint image, assess the 

effects of palmar flexion crease distortions through rotation, displacement, 

and additive noise, and determine the similarity between two or more palmar 

flexion creases. 

2. The design and implementation of an automated palmar flexion crease 

recognition and matching algorithm, which is capable of automatically 

extracting palmar flexion creases from online palmprint images, and 

calculating a matching score that can be used to determine the similarity 

between two or more palmar flexion creases. 



 3 

1.3. Thesis structure 

Chapter 2 surveys and critical assesses previous work relevant to this thesis, and 

provides an indication of the current state of knowledge. Chapter 3 describes a 

method of manual palmprint identification using palmar flexion creases, and presents 

an analysis and discussion of experimental results that were collected using the 

proposed method. In the same way, Chapter 4 presents a new method of automated 

flexion crease recognition, and presents an analysis and discussion of experimental 

results compared to manually identified palmar flexion creases. Chapter 5, using the 

same identification and matching method as in Chapter 4, uses two online palmprint 

image data sets to determine if automated palmar flexion extraction and matching 

can be used as an effective method of palmprint identification. Finally, as an aid to 

the reader, Chapter 6 restates the research objectives, gives a brief overview of the 

palmar flexion crease identification and matching methods presented in this thesis, 

presents a summary of the experimental results collected using those methods, and 

provides an indication of possible improvements and future work. 



 4 

2. Literature review 

The work presented in this thesis has foundations in numerous fields of research, 

including forensic science, biometrics, computer vision, and pattern recognition. This 

chapter surveys and critically assesses related work in these fields to provide an 

indication of the current state of knowledge. The literature review begins with an 

overview of palmprint identification, in which the definition of a palmprint, the 

formation and structure of palmprint features, and palmprint identification metrics 

are discussed. This is followed by a discussion of automated palmprint identification 

systems, and a summary of a number of computer vision and pattern recognition 

algorithms, which form the basis for much of the investigative work in this thesis. 

2.1. Palmprint formation and structure 

Palmprints provide a vast source of identification information that can be used in a 

number of important fields, such as biometrics (Kong et al., 2009), dermatoglyphics 

(Qiao et al., 2005), and forensic science (Ashbaugh, 1991a). The general flow of 

skin, its pattern configuration, and minutiae formation, all contribute towards making 

the palmprint a unique identification metric (Ashbaugh, 1999a). However, many 

palmprint identification systems are based on features, such as minutiae, ridge flow, 

singular points, and flexion creases (Zhang, 2004), which are formed during 

embryological development. Therefore, an understanding of palmprint 

morphogenesis, that is, of palmar friction ridge skin development, is necessary when 

discussing palmprint identification. 

Friction ridges first appear in the foetus in the form of localised cell proliferations in 

the deepest layer of the epidermis, that is, the outer layer of the skin, called the basal 

layer. The cell proliferations project into the superficial layers of the dermis, that is, 

the inner layer of the skin, and increase in number as new ridges begin to form 

between, or at the lateral surface, of existing ridges. The pattern of the epidermal 

ridges are created by forces driving differential growth in the basal layer, resulting in 

continued cell proliferation. This causes interruptions in the continuous flow of 

ridges, and an isolation of short ridge segments. These are known as branchings and 

islands respectively, and are grouped under the general term of minutiae (Hale, 

1949). As the epidermis continues to develop, the ridges at epidermal-dermal 



 5 

junction begin to define the basic ridge configurations of the surface of the skin. The 

number of primary ridges increase, both in number and width, while penetrating 

deeper into the underlying dermis (Hale, 1952). Subsequent to the completion of 

ridge growth, peg-like formations called dermal papillae begin to develop, and 

irregularities appear in the regions between the epidermal ridges (Babler, 1991). At 

this stage, epidermal ridges begin to show on the surface of the skin, and the foetus 

has an epidermal ridge configuration and morphology comparable to that of an adult 

(Babler, 1977). Figure 1 shows an illustration of a cross section of fully developed 

friction ridge skin. 

 

Figure 1. A cross section of friction ridge skin, modified from Ashbaugh (1999a). The dermis is 

continuous with the epidermis, but has been separated in this diagram for clarity. 

To enforce the permanence of the ridge configuration, only cells in the basal layer 

have the capacity for DNA synthesis and mitosis (Fuchs, 1999). Under a trigger of 

terminal differentiation, a basal cell will begin the process of keratinisation, 

undergoing a series of morphological and biochemical changes that culminate in the 

production of dead, flattened, enucleated epithelial cells, which are continually 

sloughed from the surface and replaced by inner cells differentiating outwards. Cells 

generated in the basal layer are connected together by intracellular fibrils which 



 6 

remain connected until exfoliation occurs at the surface of the skin (Matolsy, 1976). 

The secure intercellular junction prevents epidermal cells generated in the basal layer 

moving in discord (Matolsy, 1976), and therefore, ensures the intricate detail of the 

epidermal ridges and furrows remain intact as the cells differentiate towards the 

surface of the skin (Wertheim and Maceo, 2002). 

The second structure that enforces permanence in friction ridge skin is the delicate 

membrane between the epidermis and dermis (Wertheim and Maceo, 2002). Misumi 

and Akiyoshi (1984) identified the pattern on the dermal surface as a reflection of the 

upper surface in a negative image, confirming earlier theories by Hale (1952) and 

Penrose and O'Hara (1973). Misumi and Akiyoshi (1984) also confirmed that, 

despite showing smaller and more complicated papillae than a younger person, an 

older person retains their original fingerprint pattern: "no such variations reflected 

site-specific characteristics on the fingerprint pattern" (Misumi and Akiyoshi, 1984, 

p.50). Furthermore, fibres seen on the dermal surface prevent the basal layer sliding 

along the epidermal-dermal junction (Misumi and Akiyoshi, 1984), thereby 

preventing a different formation developing on the surface ridge, and enforcing 

friction ridge permanence. 

Similar to epidermal ridge patterns, palmar flexion creases are formed during early 

intrauterine life, and can be influenced by various factors interfering with normal 

foetal development. Studies by Lacroix et al. (1984), Kimura and Kitagawa (1986), 

and Stevens et al. (1988), based on the observations of palmar development at 

different foetal ages, have shown that palmar flexion creases develop by thirteen 

weeks of gestation (Kimura, 1991). However, while the timing of flexion crease 

development is well established, their origin is less certain. Flexion creases are 

typically located, even in cases of hand malformation, in correspondence with the 

underlying joint (Popich and Smith, 1970). However, it is believed that physical 

movements and environmental factors, as well as genetic programming, contribute to 

palmar flexion crease development (Ashbaugh, 1999a). This theory is supported by 

the observation of missing flexion creases in individuals with normal joint function 

and abnormal underlying bone structure (Kimura, 1991). Furthermore, in a study by 

Tay (1979), 659 children and 613 first degree relatives were observed with regard to 

four palmar flexion crease variations. Tay (1979) found that the four flexion crease 

variations occurred more significantly in the parents of the subjects compared with 



 7 

400 controls, indicating the presence of genetic factors in their embryogenesis. Table 

1 shows the stages of foetal hand development as observed by Kimura and Kitagawa 

(1986). 

Table 1. The stages of foetal hand development (Ashbaugh, 1999a). 

Gestation (weeks) 6 8 10 12 14 16 18 20 

Hand formation > > > > >           

Volar pad growth > > > > > > >         

Flexion creases     > > > > > >      

Volar pad regression       > > > > >     

Friction ridges       > > > > > >    

Secondary creases          > > > > > > 

After development, the surface of the palm can be divided into topographic areas, 

where each area is consistent with early volar pad development. Furthermore, three 

main groups of flexion creases can be defined: major flexion creases, minor flexion 

creases, and secondary creases (Ashbaugh, 1999a). The major flexion creases are the 

most prominent and permanent of the flexion crease groups, and, in general, three 

major flexion creases can be defined: the thenar, the proximal transverse, and the 

distal transverse. 

 

Figure 2. The position of the major flexion creases. 

The thenar crease is a curved crease which encircles the thenar eminence, and 

typically begins in the mid-palm above the wrist. The thenar ends on the radial side 

of the hand, and often joins the proximal transverse near the radial border, but may 

also extend to a separate radial terminus. The proximal transverse crease typically 

starts at the radial border, and extends horizontally in a gentle, concave bow toward 

the ulnar border on the opposite side of the palm. Finally, the distal transverse crease 

is located between the proximal transverse and the heads of the underlying 

metacarpal bones. The distal transverse begins at the ulnar border, and curves toward 



 8 

the radial edge. In some cases, the distal transverse extends further toward the palmar 

border, and ends between the index and middle fingers (Kimura, 1991). Figure 2 

shows the position of the major flexion creases. 

At times, the major flexion creases appear to be constructed of smaller creases, called 

major accessory creases, that branch off or separate the main crease into two or more 

smaller creases. Major accessory creases can be considered part of the secondary 

crease group, which may be found anywhere on the palmar surface, and are typically 

of short length (Ashbaugh, 1999a). Finally, the minor flexion crease group contains 

creases that are more stable than secondary creases, but are typically more variable in 

presence, prominence, and length than the major flexion creases. While many minor 

flexion creases may be present on the palmar surface, they often differ in location 

and direction from person to person, and so generally, cannot be reliably defined 

(Kimura, 1991). 

2.2. Palmprint identification 

Palmprint identification is the process of matching an unknown palmprint against a 

database of known prints to establish a person’s identity. To this end, given an 

understanding of palmprint structure, that is, of friction ridge skin and flexion crease 

structure, a number of palmprint identification metrics can be defined. Ashbaugh 

(1999b) proposed that three levels of information, which describe the visible features 

of the skin, that can be distinguished in a section of friction ridge skin: level 1, level 

2, and level 3. Depending on the size (or magnification) and clarity of the friction 

ridge skin impression, an identification metric may be classified as level 1, 2, or 3, as 

shown in Table 2. 

 

 

 

 

 

 

 



 9 

Table 2. A summary of the three levels of friction ridge skin features. 

Level Definition Examples 

1 Level 1 features refer to the general flow of friction ridge skin 

and the overall pattern formed by the flow of papillary ridges 

(Champod et al., 2004). A number of classification systems, 

most notably Galton (1892) and Henry (1900), which simplify 

the continuum of papillary ridge flow, have been proposed for 

level 1 features. However, as stated in Ashbaugh (1999a), first 

level detail is not sufficient to individualise as the flow of 

ridges may be influenced by heredity through the volar pads, 

or repeated by chance due to the limited number of pattern 

configurations. Therefore, first level detail is often used 

during the identification process only to reduce the number of 

possible donors, or to estimate the position of an isolated 

section of friction ridge skin (Tietze and Witthuhn, 1975 in 

Champod et al., 2004). 

 

 
2 Level 2 features refer to major ridge path deviations, or 

minutiae, palmar flexion creases (Ashbaugh, 1991a), and 

occasional features such as scars, warts, creases, and wrinkles 

(Champod et al., 2004). If sufficient information is present, 

second level detail can be used to individualise, and often 

accounts for a major part of the identification process 

(Ashbaugh, 1999a). 

   

 

3 Level 3 features refer to the relative location of the pores, the 

shape and alignment of each ridge unit (Champod et al., 

2004), and small features found in accidental damage to the 

friction ridges. Third level details are compared during the 

identification process, and often form part of the comparison 

at the second level (Ashbaugh, 1999a).  

The identification process using first, second, and third level detail typically follows 

an analysis, comparison, evaluation, and verification (ACE-V) structure, as 

developed by the Royal Canadian Mounted Police (Huber, 1972), and adopted by 

Ashbaugh (1991b). The first stage in this process, analysis, requires an expert, that is, 

a fingerprint examiner, to survey the quality of the friction ridge skin impression 

(Ashbaugh, 1999a). The analysis stage allows the fingerprint examiner to determine, 

among other things, what part of the palmar or plantar surface deposited the print, 

which features are visible on the print, how clearly the print was deposited, and 

which features were affected by pressure, distortion, or the nature of the recipient 

surface (Champod et al., 2004). If the fingerprint examiner determines that the print 

is of sufficient quality for assessment, an iterative comparison, typically using an 

automated identification system, between the unknown print and a known print is 

performed (Ashbaugh, 1999a). The outcome of the comparison process is a 

comparison image, as shown in Figure 3, with which the similarities and differences 



 10 

between the unknown print and one or more known prints can be highlighted 

(Champod et al., 2004). 

 

Figure 3. A comparison of two sections of friction ridge skin. 

After the comparison stage, the fingerprint examiner then evaluates each charted 

comparison to reach one of three conclusions: elimination, where the specific details 

in each print are not the same, and therefore the donors are different; 

individualisation, where the specific details in both prints are the same, and there is 

sufficient uniqueness to eliminate all other possible donors; or insufficient 

uniqueness to individualise or eliminate, where, although a number of specific details 

may be in agreement, they lack quality or quantity, and so an opinion cannot be 

formed (Ashbaugh, 1999a). At this stage in the identification process, after a 

thorough analysis, comparison, and evaluation of the unknown print, the fingerprint 

examiner is able to reach a valid conclusion. However, as the opinion of 

individualisation is subjective, a verification process must be performed (Champod et 

al., 2004). Verification is a peer reviewed consultation that is used to verify the 

integrity of the identification process, ensure the objectivity of the fingerprint 

examiner, and confirm that there is sufficient evidence to justify the stated 

conclusion (Ashbaugh, 1999a). After the verification process, the friction ridge skin 

impression can be reliably identified, eliminated, or determined to be inconclusive. 

The ACE-V protocol aims to provide a structured and documented approach to 

friction ridge skin identification. However, following several Daubert hearings in 

legal proceedings in the United States, that is, a challenge to the admissibility of 



 11 

expert evidence based on the validation of scientific techniques, where the 

acceptability of friction ridge skin evidence was challenged, a number of critical 

reactions have been presented (Cole, 2006; Haber and Haber, 2008). A 

comprehensive discussion and critical analysis of the ACE-V protocol can be found 

in Tuthill (1994), Ashbaugh (1991b; 1999a), Clark (2002), Epstein (2002), Champod 

et al. (2004), and Champod (2008). 

2.3. Automated identification systems 

Automated palmprint identification has received considerable attention in literature 

in recent years, resulting in the growth of commercial identification systems in law 

enforcement and biometrics. In forensic science, the National Policing Improvement 

Agency (NPIA) in the United Kingdom, and the Federal Bureau of Investigation 

(FBI) in the United States, have included initiatives for integrated national palmprint 

identification in their existing automated fingerprint identification systems (AFIS) 

(Federal Bureau of Investigation, 2005b; Police IT Organisation, 2005). While in 

biometrics, palmprint identification methods based on texture analysis, feature line 

extraction, and subspace analysis have shown promising recognition rates, that are 

comparable with other methods of identification, such as face recognition and 

automated fingerprint identification (Zhang, 2004; Kong et al., 2009). 

A typical automated identification system consists of four distinct stages: acquisition, 

pre-processing, feature extraction, and matching, and should be designed in 

consideration of five main objectives: cost, user acceptance and environmental 

constraints, accuracy, computation speed, and security. A practical identification 

system should balance all of these aspects (Kong et al., 2009). 

2.3.1. Acquisition 

There are two distinct methods of palmprint acquisition: offline and online. In offline 

acquisition, palmprint data is captured from a non-digital source. Instead, a reference 

palmprint is collected by printing with ink on to paper, or by visible and latent mark 

deposition detection at scenes of crime (Champod et al., 2004), then digitised, often 

with a scanner, and stored for further processing (Zhang and Shu, 1999). Offline 

reference palmprints can be collected in a controlled environment, in which set 

procedures and processes are followed. However, at scenes of crime, visible and 

latent palmprint deposition is caused by a complex mixture of natural secretions and 



 12 

contaminants from the environment, in which surface characteristics play an 

important role. Therefore, the properties of each surface must be considered before 

any attempt is made to develop a mark (Champod et al., 2004). To this end, a wide 

range of detection sequences, based on varying conditions of temperature, surface 

structure, and electrostatic forces, have been suggested in literature. This literature 

will not be reviewed here; however, a comprehensive review of offline scenes of 

crime acquisition can be found in Margot and Lennard (1994) and Champod et al. 

(2004). 

Unlike in offline acquisition, where considerations must be made before a palmprint 

image can be captured, a real-time palmprint identification system requires a 

palmprint scanner that can quickly capture high quality palmprint images. To this 

end, online palmprint acquisition is the most direct way to digitise palmprint data 

(Zhang et al., 2003). An online system captures a palmprint using a capture sensor, 

usually a scanner, digital camera, or video recorder, that is typically connected 

directly to the identification system, obviating the need for a third medium, such as 

paper (Zhang, 2004). A typical device must be able to acquire good quality palmprint 

images, which users find comfortable and intuitive to use. Wong et al. (2005) 

identified a number of user interface and optical system requirements that should be 

present in an effective palmprint acquisition device: 

 The palmprint should be captured in real-time to provide a development platform 

for practical applications. 

 The palmprint image should be at a quality as to enable subsequent image 

processing. 

 The system should provide the best performance for reasonable costs. 

 The system should provide a user interface so that the user feels comfortable 

during the acquisition process, including easy guides to position the palm on the 

device and at an appropriate size. 

The structure of one proposed online palmprint acquisition system is shown in Figure 

4. The user interface consists of a flat platen surface, which acts as an input channel 

for the user and system, and for the acquisition of palmprint data. The light from the 

palm passing through the aperture is converged by the lens to form an image. A ring 

light source provides a high intensity white light that is used to increase the contrast 



 13 

of the palmprint when the skin surface is uneven. A video frame grabber processes 

the analogue signal from a charge-coupled device (CCD) sensor, and an analogue to 

digital conversion takes place in the on-board processor, before the palmprint image 

is stored in system memory (Zhang, 2000). 

 

Figure 4. The structure of an online palmprint acquisition system (Zhang, 2004). 

The first palmprint capture device of this type was created in December 1999 at The 

Hong Kong Polytechnic University (Zhang, 2000). The device was made using an L-

shaped plastic box, a light source, a mirror, a glass plate, and a CCD camera. 

However, after testing it was decided that an image formed through a mirror was not 

as effective as direct reflection, because the second surface created a ghost image on 

the final output. Furthermore, the glass plate used to hold the palm distorted the 

surface of the skin so that features of the palm were not clear enough for feature 

extraction (Zhang, 2004). To alleviate these problems, a number of improved 

palmprint acquisition devices were designed. 

The most important concern in palmprint acquisition is the quality of the resultant 

image. Therefore, to address the problems arising from their previous L-shaped 

design, The Hong Kong Polytechnic University group made a number of changes to 

their palmprint acquisition system. Using a traditional straight-through optical axis, a 

long horizontal tube device was designed, allowing the glass plate and mirror to be 

removed, and for the palmprint to be captured without distortion. Furthermore, a 

more powerful light source was used in the optical system to illuminate the palm, in 

an approach that greatly improved image quality (Zhang, 2004). 

After testing, a number of users found the horizontal arrangement of The Hong Kong 

Polytechnic University’s second device to be inconvenient. Consequently, a vertical 



 14 

device was created. To ensure correct lighting, the light source was changed from a 

standard light bulb to a fluorescent ring light, which, in terms of illumination, 

produces a more uniform palmprint image (Zhang, 2004). Furthermore, a flat platen 

surface was designed, allowing the palm to be digitised without contact, and thereby 

eliminating distortion, which is often a problem in traditional devices. In order to 

help users correctly place their palm, a number of pegs, as shown in Figure 5(a), 

were added for guidance. Additionally, a marked area, as shown in Figure 5 by a 

dashed line, was removed from the flat platen surface to allow the CCD camera 

underneath to acquire a palmprint image. With this design, an image can be obtained 

from large or small hands, while still retaining the important palmprint features 

(Wong et al., 2005). 

 

Figure 5. A flat platen surface design with a) guide pegs, and b) simplified guide pegs (Zhang, 

2004). 

However, testing showed that a proliferation of pegs on the flat platen surface 

confused some users as to how they should place their palms. Wong et al.’s (2005) 

final design takes this into consideration, with the use of pegs balancing user 

convenience and system stability. As shown in Figure 5(b), the flat platen surface 

requires only three pegs: a large triangular peg to guide the middle and ring fingers, a 

round peg on the left to guide the index finger, and a final peg on the right to guide 

the little finger. This provides a clear and easy-to-use user interface, and a stable 

palmprint alignment positioning mechanism (Wong et al., 2005). 

A schematic diagram of Wong et al.’s (2005) final design is shown in Figure 6. 

When an enhanced flat platen surface, fluorescent ring light, ½ inch lens, and ⅓ inch 

CCD sensor are used, palmprint features such as flexion creases, wrinkles, and ridge 

texture can be obtained at 150 dots per inch (dpi) in an average of 0.09 seconds. 



 15 

 

Figure 6. A schematic design of Wong et al.’s (2005) final palmprint acquisition device. 

For biometric applications, such as access control, time and attendance systems, and 

personal verification, where ridge texture, flexion creases, and wrinkles are used as 

identification metrics, low resolution palmprint images are acceptable. However, in 

forensic science, where low level details, such as minutiae, pores, and ridge flow, 

contribute to offender identification, high resolution palmprint acquisition devices 

are required. Furthermore, to qualify for FBI Integrated Automated Fingerprint 

Identification System (IAFIS) certified status (Federal Bureau of Investigation, 

2005a), or to meet the requirements of the Interpol standard for exchanging 

computerised fingerprint images (Interpol, 2004), which also includes palmprints 

(National Institute of Standards and Technology, 1999), the device must be capable 

of producing images that exhibit good geometric fidelity, sharpness, detail rendition, 

grey-level uniformity, and greyscale dynamic range, with low noise characteristics, 

and without creating any significant artefacts, anomalies, false detail, or cosmetic 

image restoration effects (Federal Bureau of Investigation, 2005a). In addition, the 

acquisition device must also adhere to output resolution guidelines: 

The scanner’s final output resolution, in both sensor detector row and column 

directions, shall be in the range: (R–0.01R) to (R+0.01R) and shall be gray-level 

quantized to 8 bits per pixel (256 gray-levels). The magnitude of “R” is either 

500 pixels per inch (ppi) or 1000 ppi; a scanner may be certified at either one, or 



 16 

both, of these resolution levels. The scanner’s true optical resolution shall be 

greater than or equal to R (Federal Bureau of Investigation, 2005a, pp.F-2). 

Since the introduction of the IAFIS image quality standard, a number of certified 

palmprint acquisition devices, often called Livescan, have become commercially 

available, many of which use optical frustrated total internal reflection (FTIR) to 

detect the presence of finger or palm friction ridge skin. When light passes through 

one medium, such as a lens or prism, at a given angle of incidence with a given index 

of refraction, to another medium, such as a finger or palm, energy from the light will 

be reflected at an angle of reflection equal to the angle of incidence (Schneider, 

2007). Therefore, a light ray incident upon a specular reflector, that is, upon an area 

not in contact with the lens or prism, such as a valley of friction ridge skin, will be 

reflected back without obstruction at an angle of reflection equal to that of the angle 

of incidence. Conversely, a light ray incident upon a surface in contact with the lens 

or prism, such as a ridge of friction ridge skin, will be partially absorbed, and the 

amount of energy reflected back at the specular angle will be significantly reduced 

(Schneider and Wobschall, 1991). Using this theory, and by placing a photo detector 

at an appropriate angle to detect the reflected light, as shown in Figure 7, an image of 

the friction ridge skin can be captured. 

 

Figure 7. Imaging friction ridge skin using optical frustrated total internal reflection (Schneider, 

2007). 

However, the physics of FTIR present a number of limitations when capturing 

certain types of friction ridge skin. The skin must be in contact with the platen 

surface, or within the depth of penetration, to interfere with the light source. For this 

reason, if the skin contains irregular ridges, or if contamination on either the skin or 



 17 

platen is greater than the depth of penetration, then an accurate image of the friction 

ridge skin is not possible (Schneider, 2007). 

In response to these limitations, some palmprint acquisition devices use ultrasonic 

imaging to capture an image of the palmar friction ridge skin (Schneider, 2007). 

Ultrasonic imaging of friction ridge skin is based on the difference in acoustical 

impedance between human tissue, that is, a ridge, and air, that is, a valley. An image 

of the friction ridge skin can be produced from the difference in acoustic energy 

between the two receivers (Schneider and Wobschall, 1991). However, to obtain a 

uniform, high quality image, the reflectivity coefficient, that is, the relative acoustic 

impedance between a ridge and a valley, along the surface of the skin must vary 

significantly. This can be achieved by maximising the ultrasonic return caused by a 

valley, while minimising the ultrasonic return caused by a ridge, allowing most of the 

acoustical energy to pass into the skin (Schneider, 2007). Figure 8 shows an example 

of a fingerprint image captured using FTIR and ultrasonic imaging, both of which 

provide an accurate representation of the friction ridge skin of the finger (Schneider 

and Gojevic, 2001). 

 

Figure 8. Example fingerprint images taken using a) optical frustrated total internal reflection, 

and b) ultrasonic imaging (Schneider and Gojevic, 2001). 

2.3.2. Pre-processing 

As a palmprint is captured, it may exhibit some degree of distortion through varying 

conditions of time, temperature, humidity, brightness, or other external factor, 

regardless of the acquisition method. Pre-processing aims to correct these distortions, 

by placing each image under the same coordinate system, so that the correct area of 

each palmprint can be extracted for feature extraction and matching (Zhang and Shu, 

1999). However, before palmprint pre-processing can take place, a number of 

specific notations and definitions must be considered. 



 18 

In general, three major palmar flexion creases can be defined on the surface of the 

palm: the distal transverse, the proximal transverse, and the thenar. Due to the 

stability of the major flexion creases, two end points, a and b , and their midpoint, 

o , can be obtained from their intersection with each side of the palm. Furthermore, 

using these definitions, Zhang and Shu (1999) identified a number of significant 

properties: 

 The location of the end points and their midpoint are rotation invariant in a given 

palmprint image. 

 A two-dimensional right angle coordinate system can be established, of which 

the origin is the midpoint, with the main axis passing through the end points. 

 A palm can be divided into three regions, as shown in Figure 9, named the finger-

root region (I), the inside region (II), and the outside region (III), by connections 

between the end points and their perpendicular bisector. 

 The size of a palm can be estimated by both the Euclidean distance between the 

end points and the length of their perpendicular bisector. 

 

Figure 9. The features of a palmprint: 1, the distal transverse crease, 2, the proximal transverse 

crease, and 3, the thenar crease; I, the finger-root region, II, the inside region, and III, the 

outside region; and the datum points, a b, and o (Zhang and Shu, 1999). 

Using these features, Li et al. (2003b) proposed an offline palmprint image 

alignment method, as shown in Figure 10. The outside boundary of an offline 

palmprint image is usually clear and stable, and can often be described by a straight 

line. As such, a vertical axis can be defined along the outside boundary of the image 

to describe its orientation. Furthermore, an intersect point, between the outer 



 19 

boundary and the major flexion creases, as described by Zhang and Shu (1999), can 

be determined as the origin for the rotation. 

 

Figure 10. A two-dimensional right angle coordinate system using two invariant features: outer 

boundary detection, and the flexion crease end points (Li et al., 2003b). 

Using this coordinate system, any number of palmprint images may be rotated to the 

same direction, so that a rotation and translation invariant comparison may be 

performed. The vertical axis of a given offline palmprint image can be defined as 

baxy  , where  

xbya  , and 
xx

xy

l

l
b  , 

and x , y , xxl , and xyl  are defined as: 





n

i

ix
n

x
1

1
, 




n

i

iy
n

y
1

1
, 2

1

)(



n

i

ixx xxl , and ))((
1





n

i

iixy yyxxl , 

where ),,1)(,( niyx ii   are points on the edge of the outer boundary of the 

palmprint (Li et al., 2003b). Figure 11 illustrates vertical axis determination by this 

method, where Figure 11(a) is the original image, Figure 11(b) is a binary image on 

which boundary tracing is performed, and Figure 11(c) is the outer boundary and 

vertical axis, which describes the direction of the palmprint image. 



 20 

 

Figure 11. The process of vertical axis determination (Li et al., 2003b). 

To determine the origin of the coordinate system, the end point of the distal 

transverse must be detected. After the vertical axis is discovered, a projection, that is, 

the sum of pixel values in each row, is calculated to obtain the position of the end 

point of the distal transverse (Li et al., 2003b). This process is shown in Figure 12. 

Figure 12(a) shows a rotated palmprint image from which a rectangular sub-image, 

shown in Figure 12(b), is extracted. From a horizontal projection of this sub-image, 

the intersect point between the distal transverse and the outer boundary can be 

determined, as shown in Figure 12(c). 

 

Figure 12. A palmprint coordinate system origin detection process (Li et al., 2003b). 

Having determined the vertical axis and origin of the coordinate system, each 

palmprint image can be rotated so that all palmprints are aligned in the correct 

position. However, since the image quality and format of offline palmprints differs 

from that of online images, the offline pre-processing method proposed by Li et al. 

(2003b) cannot be applied as successfully to online palmprint images. As a result, Li 

(2003) proposed a square-based segmentation approach for online palmprint images. 



 21 

Li (2003) defined three key points, based on the position of the fingers, from which 

an orthogonal coordinate system can be derived. An area, or region of interest, with a 

fixed size can then be extracted from a predefined position in the coordinate system, 

the size and shape of which can be determined as required. The three key points, 1k , 

2k , and 3k , are shown in Figure 13, and represents the midpoint between the index 

finger and the middle finger, the midpoint between the middle finger and the ring 

finger, and the midpoint between the ring finger and the little finger. 1k  and 3k  are 

connected to form a vertical axis, then a line, through 2k , perpendicular to the  

vertical axis, is used to determine the origin of the coordinate system (Li, 2003). 

To obtain the three key points, and subsequently the region of interest, Li (2003) 

defined a number of key stages: 

1. Use a threshold,  , to convert the original image into a binary image. 






0

1
),( jiIbinary  









),(

),(

jiI

jiI

original

original
 

2. Smooth the binary image using a Gaussian filter, A . 

AII binarysmoothed *  

3. Trace the boundary of the holes between the fingers. 

4. Calculate the centre of gravity between the holes and decide the key points, 

1k , 2k , and 3k . 

5. Line up 1k  with 3k  to obtain a horizontal axis, and draw a line through 2k , 

perpendicular to the horizontal axis, to determine the origin of the coordinate 

system. 

6. Once the coordinate system has been determined, the region of interest can be 

extracted. 

As shown in Figure 13, the area, ABCD , is the region of interest, the position of A  

in the coordinate system is fixed, and the size of ABCD  is the same in all palmprint 

images. An assumption is made that the fingers are not joined together, and that at 

least four fingers are present in the palmprint image (Li, 2003). 



 22 

 

Figure 13. An orthogonal coordinate system on a palmprint image (Li, 2003). 

In contrast to square-based pre-processing methods, a circle-based approach, as 

proposed by Li et al. (2003a), can be used to extract as large an area as possible from 

the central part of an online palmprint image. The palmprint image is first converted 

into a binary image, and the boundary is smoothed to obtain an accurate contour of 

the palmprint. The biggest inscribed circle for the contour is calculated, and its centre 

and radius are obtained. As each palmprint is different, the radii will be variable 

across individual palmprint samples. If the radii of two samples are significantly 

different, it can be concluded that the samples are from two different palms. 

Otherwise, further matching is needed within the circle. Once the circle is 

determined, extraction involves obtaining all the pixels inside the circle (Li et al., 

2003a). Figure 14 shows several segmented central part palmprint sub-images. 

 

Figure 14. Palmprint samples taken from the same palm using an inscribed circle-based pre-

processing approach (Li et al., 2003a). 

A comparison and analysis of square- and circle-based methods was performed by Li 

(2003), in which three criteria were used to evaluate each segmentation approach: 

1. How precisely does it extract the required region of interest? 

2. Can the algorithm handle distortions in the palmprint image? 

3. Does the extracted region contain an effective number of useful features? 



 23 

Commonly, there are three major flexion creases visible on a palmprint image. From 

the end points of these flexion creases, two key points, A  and B , can be defined, as 

shown in Figure 9 as a  and b , and again in Figure 15. The centre of the square 

region of interest, 1O , and of the circular region of interest, 2O , can also be defined. 

In addition, the distance between 1O  and A  can be denoted as asquareD  , the distance 

between 1O  and B as bsquareD  , the distance between 2O  and A  as acircleD  , and the 

distance between 2O  and B  as bcircleD   (Li, 2003). 

 

Figure 15. Definitions for Li’s (2003) pre-processing accuracy test: flexion crease end points, A 

and B, the centre of the square region of interest, O1, and the centre of the circle region of 

interest, O2. 

To test the evaluation criteria, Li (2003) took four hundred palmprint images from 

eighty palms, and manually determined the two key points, A  and B , for each 

image. The distances, asquareD  , bsquareD  , acircleD  , and bcircleD  , were automatically 

calculated, and the average distance between the centre points of five square and five 

circle regions was determined. The pixel shift of asquareD   and bsquareD   was six 

pixels, while the shift of acircleD   and bcircleD   was five pixels, thereby showing the 

circle-based approach to be a little more accurate than the square-based approach 

between samples of the same palm (Li, 2003). Furthermore, in some cases a 

palmprint cannot be segmented correctly using a square-based method, while it can 

be using a circle-based method. In a database of over ten thousand samples, Li 

(2003) determined that only 80% could be correctly segmented using a squared-

based approach, but all of them could be segmented using a circle-based approach. 



 24 

Palmprint pre-processing involves extracting a region of interest from a palmprint 

image for feature extraction and matching. For square-based approaches, Li (2003) 

determined that this region of interest is normally 128128  pixels (16348 pixels) in 

size, while the average size for circle-based approaches, calculated from a database 

of ten thousand images, is 14.3100100   pixels (31400 pixels). Therefore, it was 

concluded that more palmprint features can be extracted by circle-based 

segmentation than in analogous squared-based methods. Furthermore, different 

palms may exhibit large differences between their circle sizes, providing a useful 

means of palmprint classification, in which the circle size is the first step in the 

classification criteria. If the circle size of two palmprint samples is too variable, it 

may be concluded immediately that they are from different palms. Only when the 

circles of two images are of a similar size, will they be compared with other features 

in order to decide whether they are from the same palm (Li, 2003). 

However, despite Li’s (2003) work on circle-based pre-processing, square-based 

methods continue to prevail, so much so that many feature extraction and matching 

algorithms are reliant on square or rectangular regions of interest (Kong et al., 2009). 

Han (2003), Zhang et al. (2003), Kumar et al. (2003), Poon et al. (2004), and Han 

(2004) have all proposed pre-processing methods for square- or rectangular-based 

palmprint segmentation. However, in each of these methods, the same basic 

algorithm is employed: 

1. The palmprint image is converted to a binary image using a given threshold. 

2. The contour of the hand and/or fingers are extracted from the binary image. 

3. A number of key points are detected, and a coordinate system is defined. 

4. The central part sub-image is extracted. 

Poon et al. (2004) and Zhang et al. (2003) used two key points, one between the 

index finger and the middle finger, and another between the ring finger and little 

finger, with a perpendicular axis, to define their coordinate systems. Kumar et al. 

(2003) used the centre of a binary hand image, without defining any key points, as 

the centre coordinate for extracting a fixed square region of interest. While Han et al. 

(2003) and Han (2004), used the position of the fingers. As shown in Figure 16, Han 

et al. (2003) used the tip of the middle finger, and a horizontal axis from the base of 

the same finger, to extract the region of interest. 



 25 

 

Figure 16. Han et al.’s (2003) coordinate system and region of interest. 

Furthermore, using the same approach as Han et al. (2003), Han (2004) found the 

position of index finger, middle finger, and ring finger to further refine his finger-

based pre-processing method. 

2.3.3. Feature extraction and matching 

After pre-processing, palmprint identification, as with any automated identification 

system, requires two further operations: feature extraction and matching. In 

biometrics, feature extraction and matching methods using texture analysis, subspace 

analysis, and feature line extraction, have been covered extensively in literature. This 

review will consider line-based feature extraction and matching methods for primary 

flexion creases, secondary flexion creases, and wrinkles. The literature on texture 

analysis and subspace analysis will not be reviewed here, but is instead available in 

Zhang (2004) and Kong et al. (2009).  

Feature line extraction is an important stage in image processing and verification that 

has resulted in a number of proposed general line detection algorithms. However, 

many general line detection algorithms cannot generate a precise edge map of 

textured stripe images, such as those of offline fingerprints or palmprints (Wu and Li, 

1997). Therefore, a specific feature line extraction algorithm is often required for 

these types of images. Kung et al. (1995) used a face and palm recognition algorithm 

based on a low-resolution palmprint edge map, and a decision-based neural network, 

to recognise palmar line patterns from similar palm configurations. Rodrigues and 

Silva (1996) and Boles and Chu (1997) used a combination of Sobel edge detection 



 26 

and morphological filtering to construct a binary edge image, which was then used to 

compare palmar lines. Wu and Li (1997) proposed a pyramid edge detection method 

for stripe images, which, when tested against a series palmprint images, performed 

well. However, Wu and Li’s (1997) method is only capable of detecting strong 

flexion creases. This can be a problem in some images as many important line 

features, including major and minor flexion creases, have the same width, but a 

shorter length, as coarse wrinkles, making pyramid edge detection cumbersome in 

acquiring palmprint line features. Furthermore, the mass of ridges and fine wrinkles 

in an offline palmprint image may dirty the line features (Zhang and Shu, 1999). 

 

Figure 17. Four improved directional templates for line segment determination: a) vertical, b) 

horizontal, c) left diagonal, and d) right diagonal (Zhang and Shu, 1999). 

An improved pyramid edge detection algorithm was proposed by Zhang and Shu 

(1999). Using four directional templates, Zhang and Shu’s (1999) method is able to 

effectively extract the flexion creases and wrinkles from an offline palmprint image. 

Their algorithm consists of the following three steps: 

1. Determine the vertical line segments using four near-vertical templates, as 

shown in Figure 17, apply morphological thinning, and then remove short 

line segments, leaving only the major lines. 

2. Using the same method, detect lines in the horizontal, left diagonal, and right 

diagonal directions. 

3. Combine the results of each direction, and remove overlapping segments. 

The results of Zhang and Shu’s (1999) improved line detection algorithm for offline 

palmprint images is shown in Figure 18. 



 27 

 

Figure 18. The results of Zhang and Shu’s (1999) improved directional line detection algorithm. 

Following feature line detection and extraction is feature line matching. In general, 

there are many ways to represent a single line. One such method, as used by Keegan 

(1977), is to store the end points of each straight line in a line segment. In a two-

dimensional right angle coordinate system, line segments can be described by end 

points, niiyixiyix ,,1)),(),(()),(),(( 2211  , where n  is the number of line 

segments. The end points of each line segment can then be exchanged so that 

niixix ,,1),()( 21  , and if )()( 21 ixix  , so that )()( 21 iyiy  . Furthermore, a 

number of parameters, such as slope, intercept, and angle of inclination,  , can be 

calculated for each line segment: 

)()(

)()(
)(slope

12

12

ixix

iyiy
i




  

)(slope)()(intercept 11 iixiy(i)   

)).(slope(tan)( 1 ii   

The aim of this type of matching is to determine whether the line segments from a 

pair of palmprint images were taken from the same palm. For example, two line 

segments from two images can be represented as ))(),(()),(),(( 2211 iyixiyix  and 

))(),(()),(),(( 2211 jyjxjyjx , with the Euclidean distances, that is, the straight line 

distance between two points, between the end points represented as: 

2

11

2

111 ))()((())()((( jyiyjxix   

2

22

2

222 ))()((())()((( jyiyjxix   



 28 

Based on these definitions, Zhang and Shu (1999) proposed a number of conditions 

for line segment matching: 

1. If both 1  and 2  are less than a given threshold, D , then it indicates that 

the two line segments are the same. 

2. If the difference in the angle of inclination between the two line segments is 

less than a given threshold,  , and that of the intercepts is also less than a 

given threshold, B , then it shows that the two line segments have an equal 

angle of inclination and intercept. Within those equal segments, if 1  and 2  

are less than D  then the two line segments are considered to be from the 

same line. 

3. When two line segments overlap, they are regarded as the same line segment 

if the midpoint of one line segment is between the two end points of the other 

line. 

By applying the above rules to a pair of palmprint images, a corresponding pair of 

lines can be identified. Furthermore, a verification function, r , can be defined as: 

21

2

NN

N
r


  

where N  is the number of corresponding pairs, and 1N  and 2N  are the number of 

line segments determined from each image. In principle, two images are from the 

same palm if r is more than a given threshold, T , between 0 and 1 (Zhang and Shu, 

1999). 

To test their method, Zhang and Shu (1999) used 200 palmprint images from 20 

palms. The false rejection rate (FRR), that is, the number of palms that were 

incorrectly identified as non-matching, and false acceptance rate (FAR), that is, the 

number of palms that were incorrectly identified as matching, were used to determine 

the experimental results. Figure 19 shows the results for offline palmprint 

identification using Zhang and Shu’s (1999) feature line extraction method at various  

threshold, T , levels, where 5D , 157.0 , and 10B . An ideal result, that is, 

where the FAR and FRR are minimised, can be obtained while T  is between 0.1 and 

0.12. 



 29 

 

Figure 19. Experimental results for Zhang and Shu’s (1999) feature line matching method 

(Zhang, 2004). 

Flexion creases and wrinkles in an online palmprint image can be described as a type 

of roof edge (Wu et al., 2002b), that is, a region in an image where the intensity 

steadily increases and then, after a certain point, steadily decreases (Haralick, 1984). 

Furthermore, roof edges can be defined as a discontinuity in the first-order derivative 

of a grey-level profile, and the magnitude of the edge points’ second-derivative can 

reflect the strength of the edge points (Wu et al., 2002b). Wu et al. (2002b) 

successfully used these properties to detected palmar flexion creases and wrinkles in 

online palmprint images. 

To improve the connectivity and smoothness of the palmar lines, the image, ),( yxI , 

is first smoothed horizontally using a 1D Gaussian function, 
s

G , with variance, s : 

s
GII s  , 

where   is the convolve operation. The first- and second-order vertical derivatives 

can then be computed by convolving the smoothed image with the first-, 
d

G ' , and 

second-order, 
d

G " , derivative of a 1D Gaussian function, 
d

G , with variance, d : 

0

1' HII   and 0

2" HII  , 

where 
T

ds
GGH )'(0

1   , 
T

ds
GGH )"(0

2   , T  is the transpose operation, and   

is the convolve operation (Wu et al., 2002b). 

The horizontal lines and their strengths can be determined by looking for the zero-

cross points of 'I  in the vertical direction, and then at their corresponding points in 

"I : 



 30 

otherwise

0),1('),('or  0),(' if 

0

),,("
),(








yxIyxIyxIyxI

yxEH . 

Furthermore, the type of roof edge, that is, valley or peak, can be determined from 

the sign of the values in ),( yxEH . A positive value represents a valley, while a 

negative value represents a peak. Since all palmar lines can be considered valleys, 

the negative values in ),( yxEH  can be discarded: 

otherwise

0),( if 

0

),,(
),(

1

0

1

0 






yxLyxL

yxEH . 

Flexion creases and strong wrinkles are much thicker than small wrinkles and ridges. 

Therefore, one or more thresholds can be used to obtain a binary image, called the 

binary edge image, of only the flexion creases and strong wrinkles. Furthermore, the 

directional line detectors, 0

1H  and 0

2H , can be obtained for any direction,  , by 

rotating 0

1H  and 0

2H  with the appropriate   angle. Finally, each binary edge image 

can be combined using a logical OR operation to obtain a new image containing line 

edges from all extracted directions. After morphological thinning the combined 

binary edge image, that is, reducing the lines to be minimally connected, a palmar 

line image is obtained (Wu et al., 2002b). Figure 20 shows the results of Wu et al.’s 

(2002b) line extraction algorithm. 

 

Figure 20. The results of palmar line extraction: a) the original image, b) the resultant palmar 

line image, and c) the original image with the extracted palmar lines overlaid (Wu et al., 2002b). 

The two parameters, s  and d , in the directional line detectors control the 

performance of the detection algorithm. s  controls the connectivity and smoothness 

of the lines, while d  controls the width of the lines that can be detected. A small s  

value results in poor connectivity and smoothness, while a large s  value results in 



 31 

the loss of some short or curved line segments. Furthermore, thin edges cannot be 

extracted when the d  value is large. For palmar lines, s  should be large and d  

should be small (Wu et al., 2002b). During experimentation, Wu et al. (2002b) used 

1.0 for s  and d . However, Zhang (2004) determined that s  and d  should be 

1.8 and 0.5 for effective palmar line extraction. 

Palmar lines extracted using Wu et al.’s (2002b) method are difficult to represent in a 

mathematical form, as they are represented by irregular patterns. However, an 

efficient method for storing irregular lines is chain code. A direction code is defined, 

according to its neighbour, for each point on a line, which is then stored in a list 

called a chain code. Each line can be recreated by the coordinates of its beginning 

point, and its chain code. This representation allows palmar lines to be easily, and 

accurately, stored (Wu et al., 2002b). 

Let S  denote a palmar line image, and T  denote a palmar line image restored from 

template represented by chain codes. To decrease computation complexity, the 

partial directed Hausdorff distance, ),( TShk , from S  to T  is compared. If the 

distance between a point in S  and a point in T  are below a given maximum, , they 

are regarded as matching. However, due to noise and other external factors, the line 

points may not be placed in the same position on a pair of palmprint images captured 

from the same palm but at different times. To overcome this problem, Wu et al. 

(2002b) dilated T  with a  -sized structuring element, and identified the overlapping 

points using a logical AND operation, to give a new palmar line image, K . 

However, due to imperfect pre-processing, rotation and translation may be present 

between samples of the same palmprint image. To minimise the effects of rotation 

and translation, a transformation, t , for S  which maximises K  is calculated, giving 

maxK . A matching score between S  and T  can then be given by: 

21

max2
Score

mm

K




 , 

where 1m  and 2m  are the number of edge points in S  and T  (Wu et al., 2002b). 



 32 

 

Figure 21. The distribution of correct and incorrect matching scores (Wu et al., 2002b). 

To test the performance of their palmar line extraction and matching algorithms, Wu 

et al. (2002b) took each image from a database of 675 palmprint images from 135 

right hand palms, and compared them to one another. Figure 21 shows the 

distribution of correct and incorrect comparisons, in which there are two distinct 

peaks. The distribution curve of the correct matching scores intersects very little with 

that of the incorrect matching scores, demonstrating how effectively the system 

distinguishes palmprints from different people (Wu et al., 2002b). 

Directional element features (DEF) are a statistical measure for calculating the 

structure information of line-based characters, and are one of the most efficient 

methods of offline Chinese character recognition (Wu et al., 2002a). To identify the 

major flexion creases in online palmprint images, Wu et al. (2002a) developed a 

modification of DEF, named fuzzy directional element energy features (FDEEF), of 

which three key stages can be defined: line edge detection, fuzzy dot orientation, and 

vector construction. 

To obtain a line edge map of the major flexion creases, the FDEEF algorithm uses a 

Canny edge detection algorithm to generate an edge magnitude image, Mag , and a 

gradient angle image, Angle , where  90),(90 jiAngle . For fuzzy dot 

orientation, in which each contour pixel is assigned a direction, let U  be a collection 

of all edge points in a palmprint, and define four fuzzy line element sets, 0F , 45F , 

90F , and 135F , in U : 

 ),(),( jijiF AA    , 



 33 

where ),( ji  is the coordinates of an edge point, A  is the fuzzy line element angle 

and ),(),( jijiA  is the membership function: 














135),(45

180),(135 and 45),(0

,0

)),,(*2cos(
),(0

jiAng

jiAngjiAngjiAng
ji , 














180),(90

90),(0

,0

)),,(*2sin(
),(45

jiAng

jiAngjiAng
ji , 
















135),(45

180),(135 and 45),(0

)),,(*2cos(

,0
),(90

jiAng

jiAngjiAng

jiAng
ji , 
















180),(90

90),(0

)),,(*2sin(

,0
),(135

jiAng

jiAng

jiAng
ji , 

where  90),(),( jiAnglejiAng , which is the angle of the line element containing 

the point ),( ji . Using these membership functions, two properties can be defined: 

1. For each point, at least two of its membership grades are zero. 

2. Given an angle,  ,  9045  , at point ),( ji , when  varies from 45° to 

90°, 45  decreases from 1 to 0, while 90  increases from 0 to 1. 

To construct the FDEEF vector, the palmprint edge image is divided into equal 

MM   blocks, and labelled MM ,,1 . For the block labelled p , its fuzzy 

directional element energies can be defined as: 




 
m

i

iiAii

p

A yxyxMagE
1

2)),(),((  , 

where A  is the fuzzy line element angle, m  is the total number of points in the 

block, and ),(,),,(),,( 2211 mm yxyxyx   are the coordinates of these points. Four 

fuzzy directional element energies in each block can form a four-dimensional vector, 

pE 0 , pE 45 , pE 90 , and pE 135 . Therefore, a 4MM -dimensional feature vector can be 

obtained from the complete image: 

),,,,,,,,( 13590450

1

135

1

90

1

45

1

0

MMMMMMMM EEEEEEEEV 













  . 

Finally, to remove the effects of illumination variance, the vector can be normalised 

by the total energy: 



 34 

),,,,,,,,(
~

13590450

1

135

1

90

1

45

1

0

MMMMMMMM eeeeeeeeV 













  , 






 


MM

i

iiii

k

A

k

A

EEEE

Ee

1

13590450 )(

1000
, 

where MMk  ,,1 , and  135,90,45,0A . The normalised vector, V
~

, is the 

fuzzy directional element energy feature (Wu et al., 2002a). Figure 22 shows an 

example FDEEF extraction process. 

 

Figure 22. An example FDEEF extraction: a) an original palmprint image and its b) binary edge 

image, c) edge magnitude image, d) edge angle image, e) blocked edge image, f) partial 

magnitude and edge map, and g) partial feature vector (Wu et al., 2002a). 

To test the performance of their FDEEF-based flexion crease identification 

algorithm, Wu et al. (2002a) compared the feature vectors of 450 palmprint images, 

measuring 128128  pixels, from 50 different right hand palms. From each palm, 9 

images were captured, of which 4 were used as training templates, and 5 were used 

as comparison tests. The training templates were created by taking the mean vector 

value from each training sample set. Each remaining palmprint was then compared, 

using the Euclidean distance, against the training templates. The template vector 

nearest to the test vector was considered the identification result. The genuine 

acceptance rate (GAR), that is, the number of palms that were correctly identified as 

matching, was 97.2% (Wu et al., 2002a). 

Similarly, Wu et al. (2004a) used morphological operations to explicitly extract 

palmar flexion creases and wrinkles. Mathematical morphology is a set-based 



 35 

method of image analysis for providing a quantitative description of geometrical 

structures, that is often used to extract components in binary or greyscale images.  

In greyscale morphology, two basic morphological operations, dilation and erosion, 

can be defined as: 

 bf D(x,y)Dytxsyxbytxsftsbf   and ),(|),(),(max),)(( , 

f( Ө  bf DyxDytxsyxbyttsftsb  ),( and ),(|),(),(min),)( , 

where   is the erosion operation, Ө is the dilation operation, and fD  and bD  

represent the domains of the image, f , and structuring element, b . Furthermore, 

two additional operations, opening and closing, can be defined by combining the 

dilation and erosion operations: 

fbf ( Ө bb ) , 

)( bfbf  Өb . 

Finally, using the closing operation, the bottom hat operation, that is, the image 

minus the closing of the image, which can be used to detect valleys in an image, can 

be defined: 

fbfh  )( . 

Morphological operations apply a structuring element to an input image, and create 

an output image of the same size, in which the value of each pixel is based on a 

comparison of the corresponding pixel in the input image with its neighbours. To this 

end, the shape of the structuring element heavily influences the results of the 

operation. Since the direction of the palmar lines is irregular, a number of directional 

structuring elements are required. The directional structuring element, 0b , which is 

used to extract 0° palmar lines, is shown in Figure 23(a). Furthermore, the directional 

structuring element, b , which is used to extract   palmar lines, can be obtained by 

rotating 0b  by  , as shown in Figure 23. 



 36 

 

Figure 23. Wu et al.’s (2002a) directional structuring elements. 

Using these directional structuring elements, Wu et al. (2004a) defined the following 

process to extract   palmar lines: 

1. Smooth the original image, I , by convolution with 90b . 

2. Process the smoothed image using a bohat operation, with a structuring 

element, b , to get the  -directional magnitude image, M . 

3. Find the local maximum along 90  in M . 

4. Apply a threshold to the maximum magnitude image. 

However, while the majority of palmar lines can be extracted using this method, 

some weak line segments fail to be identified. To this end, Wu et al. (2004a) defined 

a fine-level feature extraction method to predict the position and direction of the 

missing line segments. Figure 24 shows the process of fine-level palmar line 

extraction. 

 

Figure 24. Wu et al.’s (2002a) fine-level palmar line extraction process: a) an extracted line, and 

b) its predicted region of interest and direction, c) the next line segment, d) the entire line, e) all 

regions of interest, and f) the extracted palmar lines. 



 37 

Let ab  be an extracted segment from line A . To extract the next line segment, that 

is, the segment connected to b , the line is traced from a  to b  to get the thK  point, 

c . Joining points b  and c  gives a straight line cb , of which the slope angle is  . 

Since palmar lines do not curve greatly, a region of interest, in which the next line 

segment is predicted to be located, can be defined as an WL  rectangular region, 

with midpoint b . In this region of interest, directional structuring elements, as 

described above, can be used to identify   line branches. If only one of these line 

branches connects with cb , it is regarded as the next line segment, bh . Otherwise, 

the branch that is smoothest at point b is chosen (Wu et al., 2004a). 

After the next line segment has been obtained, the line can be completed. If the line, 

ch , satisfies one of the following conditions, the line is considered to have reached it 

end point: 

1. If ch  has reached the border of the image, then h  is the end point. 

2. If the minimum distance from the end point, h , to three sides of the region of 

interest exceeds a given threshold, dT , then h  is the end point. 

3. If the angle cmh  is less than a given threshold, T , having joined points c  

and h , given that point m  is the farthest point to ch , and having joined cm  

and hm , then m  is the end point. 

If none of these conditions are satisfied by ch , the process is repeated using ah  until 

the line is considered complete (Wu et al., 2004a). 

A hierarchical identification system, such as that proposed by Wu et al. (2004a), 

allows palmar lines of any strength to be extracted. To this end, Li and Leung (2006) 

used coarse- to fine-level hierarchical matching in their line-based Hough transform 

identification system. In the coarse-level stage, a Sobel line detector, morphological 

thinning, contour extraction, and polygon approximation are applied to a given 

online palmprint image to extract a line edge map (Goa and Leung, 2002). The line 

edge map, which is a series of approximated straight line segments, is then 

transformed using a line-based Hough transform into a two-dimensional feature 

vector, ),( pL , where all the line segments are converted to points in parametric 

space. By converting the line segments into parametric space, the location and 



 38 

orientation of the flexion creases and wrinkles can be easily described by the feature 

vector: 

 
maxmaxminmin

,,,,  ppp LLLL  . 

Furthermore, to reduce the number of cells in L , the p  space is evenly divided 

into 916  bins. The feature vector, L , is therefore simplified to 916  values, which 

represent the complete palmar line pattern (Li and Leung, 2006). 

To extract the major flexion creases from the simplified feature vector, a line 

parameter deviation filter was proposed. As there are only slight deviations in the 

line segment parameters for each approximated curve, line segments with similar 

parameters can be identified and grouped. Using this method, the three longest 

curves, and therefore, the major flexion creases, can be dynamically extracted: 

Find 3 peak cells in p-θ as seeds 

For 3 seeds Pi 

Sort other cells, Cj, according to Distance(Pi,Cj) 

For 3 links 

Merge into one with ascend Distance(Pi,Cj)  

Keep first half of the combined link for seed growing 

For 3 seeds 

Merge nearest neighbours of current seed 

Each major flexion crease can be identified by L , p , and   in the feature vector: 

 ),,(),,,(),,,( 333222111  pLpLpLMajor  , 

which represents the central location and accumulated length of the three peak 

clusters (Li and Leung, 2006). 

Given the global and major flexion crease feature vectors of two palmprint images, 

the distance between them can be defined as: 

)()(),( majordistglobaldisttmD  , 

where )(globaldist  and )(majordist  are defined as: 





]16,0[],9,0[

2)()(




p

tm pp
LLglobaldist , and 





]2,0[

22 ))()(()(
i

tmtmm iiiii
ppLprincipaldist  . 



 39 

Using these definitions, Li and Leung (2006) processed 600 palmprint images from 

100 different palms to achieve 71% accuracy for the top match, and 100% accuracy 

for the top 15 matches. However, to improve these results, a fine-level matching 

stage was introduced. Based on the work of Goa and Leung (2002), the distance 

algorithm was improved to compare line segments rather than line points: 

)),(tan()
),(

(),( tm
tmd

width
tmd

displace

  , 

where width  is the width of the image, m  is a line segment from a template set, t  is 

a line segment from a test set, ),( tm  is the smallest intersecting angle between m  

and t , and ),( tmddisplace  is the position distance of the two lines: 

2

||

2 ),(),(),( tmdtmdtmddisplace   , 

where ),( tmd  is the perpendicular distance between two line segments, and 

),(|| tmd  is the minimum displacement to align either the left or right end points of m  

and t  (Li and Leung, 2006). 

To test the performance of their improved distance measure, Li and Leung (2006) 

again compared 600 images from 100 different palms, that is, 6 images from each 

palm. For each palm, 3 images were randomly chosen as template images, while the 

remaining 3 were used as test images. A hierarchical matching scheme was used, that 

is, coarse-level matching and then fine-level matching, to achieve an identification 

rate of 99%. 

Another approach to palmar flexion crease identification, as proposed by Huang et 

al. (2008) and Jia et al. (2008), is to use the Radon transform. The Radon transform 

of a two-dimensional function ).( yxf  is defined as: 

 







 dxdyyxryxfyxfrR )sincos(),()],()[,(  , 

where r  is the perpendicular distance of a line from the origin, and   is the angle 

between the line and the vertical axis. The Radon transform accentuates linear 

features, and therefore, can be used to detect linear trends in an image. However, the 

Radon transform cannot effectively detect line segments which are significantly 

shorter than the image dimensions. To this end, the finite Radon transform (FRAT) 



 40 

was proposed (Matus and Flusser, 1993) as an effective method for performing the 

Radon transform on finite length signals. Denoting }1,,1,0{  pZ p  , where p  is a 

prime number, the FRAT of a real function, ],[ yxf , on the finite grid 2

pZ  is defined 

as: 





lkLji

fk jif
p

lkFRATlr
,),(

],[
1

),(][ , 

where lkL ,  is the set of points in a line on the finite grid, 2

pZ . Therefore, 

pkZiplkijjiL plk  0 },),(mod,:),{(, , and 

}:),{(, plp ZjjlL  , 

where k  is the corresponding slope of the line, and l  represents the intercept (Huang 

et al., 2008). 

Palmar flexion creases and wrinkles in an online palmprint image can be regarded as 

straight line segments in a small, localised area. Therefore, palmar flexion creases 

and wrinkles can be detected by FRAT. However, as FRAT treats the input as a 

periodic image, the detected lines exhibit a wrap around effect. To this end, Huang et 

al. (2008) and Jia et al. (2008) proposed a modified finite Radon transform 

(MFRAT) algorithm to detect and extract palmar line features. Again, denoting 

}1,,1,0{  pZ p  , where p  is a positive integer, the MFRAT of a real function, 

],[ yxf , on the finite grid 2

pZ  is defined as: 





kLji

fk jif
c

kMFRATLr
),(

],[
1

)(][ , 

where C  controls the scale of ][ kLr , and kL  is the set of points in a line on the finite 

grid, 2

pZ : 

},)(:),{( 00 pk ZijiikjjiL  , 

where ),( 00 ji  is the centre point of 
2

pZ , and k  is the corresponding slope of kL . 

Furthermore, the direction, k , and the energy, e , of the centre point, ),( 00 jif , of 

2

pZ  can be calculated as: 



 41 

]))[(arg(min),( 00 kkjik Lr , Nk ,,2,1  , and 

])[min(),( 00 kji Lre  , Nk ,,2,1  , 

where |   |  denotes the absolute operation. Using these definitions, the direction and 

energy of the entire image can be calculated (Huang et al., 2008; Jia et al., 2008). In 

addition, before palmprint matching, Huang et al. (2008) obtained a binary image, 

Lines , using a threshold, T , from the energy image, e . The binary image, Lines , 

was then be divided in to LA  and LB  according the direction, ),( yx , of each pixel, 

to separate the flexion creases from the wrinkles: 

otherwise

20 and ,1),( if

,0

,1
),(

),(  


yxyxLines
yxLA , 

otherwise

2 and ,1),( if

,0

,1
),(

),(  


yxyxLines
yxLB . 

To determine the location of the flexion creases, LA  or LB , two Radon transform 

energy maps can be created, )],([ yxLAR  and )],([ yxLBR , in which the energy of 

the flexion creases will be greater than that of the wrinkles. For a binary image, 

),( yxF , the Radon transform energy of )],([ yxFR  can be calculated as: 


 


m

x

n

y

total yxFRyxFE
1 1

)]),([()),(( , 

where )),(( yxFEtotal  is the total sum of all of the values of )],([ yxFR . By 

comparing the energies of LA  and LB , the location of the major flexion creases can 

be determined (Huang et al., 2008). 

To calculate the degree of similarity between two palmprint images, Huang et al. 

(2008) and Jia et al. (2008) used a matching algorithm based on pixel to area 

comparison. In contrast with pixel to pixel matching, as is used in a number of 

palmprint identification methods (Zhang et al., 2003; Kong and Zhang, 2004; Kong 

et al., 2006a), pixel to area comparison is more robust to changes in rotation and 

translation. In many cases, pixel to pixel comparison does not perform well, as it is 

often difficult to obtain perfect superposition of two palmprint images captured at 

different times but from the same palm (Jia et al., 2008). Huang et al. (2008) 

compared flexion crease binary images, LA  or LB , as determined above, while Jia 



 42 

et al. (2008) compared Radon energy images, e . Suppose A  is a test image and B  is 

a template image, and the size of A  and B  is nm . The matching score from A  to 

B  can be defined as: 

A

m

i

n

j

NjiBjiABAs 
 


1 1

)),(),((),( , 

where   is the logical AND operation, AN  is the number of comparison points in 

A , and ),( jiB  is a small area around ),( jiB . Similarly, the matching score from B  

to A  can be defined as: 

A

m

i

n

j

NjiAjiBABs 
 


1 1

)),(),((),( . 

Finally, the final matching score between A  and B  can be defined as: 

)),(),,(max(),(),( ABsBAsABsBAs  , 

where ),( BAs  is between 0 and 1. The larger the matching score, the greater the 

match between A  and B  (Huang et al., 2008; Jia et al., 2008). 

To test their identification methods, Huang et al. (2008) and Jia et al. (2008) 

compared 7 752 online palmprint images, measuring 128128  pixels at 75 dpi, from 

386 different palms. Huang et al. (2008) created two databases, I and II, containing 

palmprint images from 100 palms in database I, and 386 palms in database II. In 

database I, an equal error rate (EER), that is, the rate at which the FAR and FRR are 

equal, of 0.49% was achieved, while in database II, an EER of 0.565% was achieved. 

Similarly, Jia et al. (2008), using palmprint images from all 386 palms, performed a 

number of experiments, and achieved a GAR of 98.37%, an FAR of 5104  %, and 

an EER of 0.16%. 

Table 3 shows a summary of palmprint feature line identification methods. Of the 

results presented, Huang et al. (2008) recorded the most effective palmar line 

identification method, with a GAR of 99.43%. However, Jia et al. (2008), using a 

similar method, that is, based on a modified Radon transform, recorded the most 

secure, with an FAR of 5104  %. 

 

 



 43 

Table 3. A summary of palmprint feature line identification methods. 

Algorithm Type Sample Size Image Size Recognition 

Rate Images Palms Dimensions 

(pixels) 

Resolution 

(dpi) 

Kung et al. 

(1995) 

Online 96 32 a
 

a
 99% GAR 

Rodrigues 

and Silva 

(1996) 

Online 15 5 a
 

a
 

a
 

Boles and 

Chu (1997) 

Online 10 3 a
 

a
 77% GAR 

Zhang and 

Shu (1999) 

Offline 200 20 400400 100 a
 

Wu et al. 

(2002a)  

Online 450 50 128x128 a
 97.2% GAR 

Wu et al. 

(2002b) 

Online 675 135 128128 a
 99.5% GAR 

Wu et al. 

(2004a) 

Online Several thousand 128128 a
 

a
 

Li and 

Leung 

(2006) 

Online 600 100 160160 a
 99% GAR 

Huang et 

al. (2008) 

Online 7 752 386 384284 75 99.43% GAR 

0.565% FAR 

Jia et al. 

(2008) 

Online 7 752 386 384284 75 98.37% GAR 

410
-5

% FAR 

a
 Data not available.

 

2.4. Computer vision and pattern recognition methods 

In addition to the methods described above, a number of computer vision, pattern 

recognition, and image processing algorithms can be used to identify palmar flexion 

creases. A typical palmar flexion crease identification system contains an edge 

detection algorithm, which identifies the palmar flexion creases, morphological 

processing, which enhances and segments the palmar flexion crease line edge map, 

and a line matching algorithm, which is used to compare two or more palmprint 

images (Zhang, 2004). 

As stated in Wu et al. (2002b), and detailed above, palmar flexion creases can be 

described as a kind of roof edge. In an intensity image, that is, a greyscale image, a 

roof edge occurs where a discontinuity in intensity causes a crease to form on the 

intersection of two planes, and a local maximum is observed (Chen and Don, 1992). 

Figure 25 shows the gradient profiles of a number of 2-dimensional roof edge 

intensity instances. 



 44 

 

Figure 25. An example of 2-dimensional roof edge types (Chen and Don, 1992). 

Furthermore, a roof edge can also be considered an intersection of two step (or jump) 

edges. A step edge can be defined as “the boundary between two regions whose 

brightness values are significantly different, and usually correspond to occluding 

boundaries of objects in a scene” (Chen and Don, 1992, p.2). To this end, with a 

sufficiently defined neighbourhood, that is, a sub-region of the image, any step edge 

detector can be used to detect roof edges, and therefore, palmar flexion creases (Chen 

and Don, 1992).  

There are two generic approaches to detecting edge in images: differential detection, 

where spatial processing is performed to produce a differential image with 

accentuated spatial amplitude, and model fitting, where a local region of pixel values 

are fit to a model of the edge, line, or spot to be detected (Pratt, 2007). Since the 

introduction of image processing, many methods have been proposed for detecting 

edges in images. Most edge detection algorithms differ only in their smoothing 

filters, differentiation operators, labelling processes, goals, computational 

complexity, and the mathematical models used to derive them (Ziou and Tabbone, 

1998). For this reason, an exhaustive review of edge detection will not be presented 

here. Instead, a comprehensive discussion of edge detection may be found in Davis 

(1975), Torre and Poggio (1986), Nawal (1993), Zamperoni (1995), and Ziou and 

Tabbone (1998). 

In palmar flexion crease identification, the Sobel (Sobel and Feldman in Duda and 

Hart, 1973, p.271) and Canny (Canny, 1986) edge detectors are popular (Rodrigues 

and Silva, 1996; Boles and Chu, 1997; Wu et al., 2002a; Li and Leung, 2006). The 

Sobel operator is a type of first-order derivative edge gradient measure (a name by 

which a number of other measures can be described), which emphasises regions of 

high spatial frequency. As described in Pratt (2007), given an image, the gradient 

magnitude,  , and the edge direction,  , can be calculated at each point, ),( yx , in 

the image as: 

22),( GyGxyx   and )arctan(),( GyGxyx  , 



 45 

where Gx  and Gy  are difference operators, and a 0  edge direction refers to the 

direction of maximum contrast from black to white from left to right. Alternatively, 

for computational efficiency, an approach used frequently is to approximate the 

gradient using absolute values: 

yx GGyx  ),( . 

Given the gradient magnitude and edge direction equations, the difference operator 

for Sobel’s (Sobel and Feldman in Duda and Hart, 1973, p.271) algorithm consists of 

two 33  kernels, as shown in Figure 26, which, when convolved with an input 

image, respond maximally to horizontal and vertical edges (Duda and Hart, 1973). 

-1 0 +1 
 

+1 +2 +1 

-2 0 +2 
 

0 0 0 

-1 0 +1 
 

-1 -2 -1 

Gx   Gy  

Figure 26. Sobel difference operators (Duda and Hart, 1973). 

As stated earlier, a number of edge detectors can be described as first-order 

derivative edge gradient measures. The Sobel (Sobel and Feldman in Duda and Hart, 

1973, p.271), Prewitt (Prewitt and Mendelsohn, 1966), Roberts (Roberts, 1965), Frei-

Chen (Frei and Chen, 1977), pixel difference, and separated pixel difference 

operators differ only in the type of impulse response kernels they employ. A 

comparison of first-order derivative difference operators can be found in Pratt (2007, 

p.478). 

In addition, second-order derivative operators, which are similar to first-order 

derivative operators, are also used to detect edges in images. For a given step edge, 

first-order derivative operators generally give a stronger response, and therefore, 

produce thick edges, while second-order derivative operators give a weaker response, 

and therefore, produce thin edges. Furthermore, second-order derivative operators 

are much more aggressive in enhancing sharp changes in intensity. Therefore, a 

second-order derivative operator is much more likely to enhance fine detail, such as 

isolated points and thin lines. However, as expected, a stronger response to fine 

detail allows second-order derivative operators to be more sensitive to noise. For this 

reason, second-order derivative operators are more suited to image enhancement, 



 46 

while first-order derivative operators are more suited to edge detection (Gonzalez 

and Woods, 2008). However, a second-order derivative operator that is often used for 

edge detection is the Laplacian. The Laplacian of a 2-dimensional function, ),( yxf , 

in the continuous domain is defined as: 

2

2

2

2
2

y

f

x

f
f









 . 

The Laplacian is zero if ),( yxf  is constant or changing linearly in amplitude. If the 

rate of change of ),( yxf  is greater than linear, the Laplacian exhibits a sign change 

at the point of inflection. The zero crossing, that is, the point at which the sign 

changes, indicates the presence of an edge (Pratt, 2007). For the Laplacian operator 

to be useful for digital image processing, the equation needs to be expressed in 

discrete form. A discrete approximation of a four-directional Laplacian, using a 33  

neighbourhood, can be calculated from the difference of slopes along each axis: 

)(4 85425

2 zzzzzf  , 

and, for an eight-directional Laplacian, that is, including the diagonal neighbours, by: 

)(8 9876543215

2 zzzzzzzzzzf  , 

where Figure 27 shows the four- and eight-directional masks, and the location of 

each z  in a 33  region of an image (Gonzalez and Woods, 2008). 

1z  2z  3z   0 -1 0  -1 -1 -1 

4z  5z  6z   -1 4 -1  -1 8 -1 

7z  8z  9z   0 -1 0  -1 8 -1 

(a)  (b)  (c) 

Figure 27. An a) 3x3 region of an image, and masks used to implement b) a four-directional 

Laplacian and c) an eight-directional Laplacian (Gonzalez and Woods, 2008). 

As a second-order derivative operator, the Laplacian is very sensitive to noise, 

unable to detect edge direction, and often produces double edges, that is, where 

multiple edges are detected at the location of a single true edge (Gonzalez and 

Woods, 2008). As such, the Laplacian is generally not used in its original form. 

Instead, Marr and Hildrith (1980) proposed the Laplacian of Gaussian (LoG), where 

the Laplacian is combined with a smoothing function as a precursor to edge 

detection. Consider the function 



 47 

2

2

2)( 

r

erh


 , 

where 222 yxr   and   is the standard deviation. Convolving this function with a 

given image blurs the image, where   determined the strength of the blur. Given 

this equation, the Laplacian of h , and consequently, the LoG, can be calculated as: 

2

2

2
4

22
2 )( 




r

e
r

rh









 
 . 

The effect of the LoG is to reduce the noise on the image, and therefore, counter the 

increased noise caused by the second-derivative operator (Gonzalez and Woods, 

2008). 

Despite the popularity of gradient-based operators, many first- and second-order 

derivative difference operators often identify false or multiple edges, and do not 

provide adequate localisation. To this end, the Canny operator (Canny, 1986) is a 

modified first-order derivative operator based on three basic objectives: a low error 

rate, which states that all edges should be found as close as possible to the true edge; 

a localised response, which states that each edge point, in terms of distance, should 

correspond closely to the true edge, and a single edge point response, which states 

that the detector must not identify multiple edges where a single true edge exists 

(Canny, 1986). 

First, the image is smoothed using a Gaussian filter, with a specified standard 

deviation,  , to reduce noise, by weighting each pixel, ),( yx , according to: 

2

2

2

2

1
),( 



d

eyxg


 , 

where 22 )()( cc yyxxd   is the distance of the neighbourhood pixel, ),( yx , 

from the centre pixel, ),( cc yx , of the output image (Shapiro and Stockman, 2001). 

Second, given a smoothed image, the local gradient magnitude,  , and edge 

direction,  , are then calculated for each point, ),( yx , as described earlier, as: 

22),( GyGxyx   and )arctan(),( GyGxyx  , 



 48 

where Gx  and Gy  are difference operators (Pratt, 2007), using two 33  kernels, 

typically Sobel and Prewitt. Third, an edge point is defined, using a process called 

non-maximal suppression, as a point where gradient magnitude is locally maximum 

in the direction of the gradient, and a threshold is applied, using two values, 1T  and 

2T , where 21 TT  . Pixels with a value greater than 2T  are said to be strong pixels, 

and pixels with a value between 1T  and 2T  are said to be weak pixels. Finally, edge 

linking is performed by connecting weak pixels that are 8-connected, that is, in a 

33  neighbourhood of pixels, X , if the value of 710 ,,, XXX   is logical 1, to the 

strong pixels (Gonzalez and Woods, 2008). 

While Canny’s (1986) algorithm improved on earlier edge detection, such as those 

proposed by Sobel (Sobel and Feldman in Duda and Hart, 1973, p.271) and Prewitt 

(Prewitt and Mendelsohn, 1966), all gradient-based edge detection methods, 

including Canny, are sensitive to variations in image illumination, orientation, 

blurring, and magnification. For this reason, it can be difficult, if not impossible, to 

set appropriate thresholds in extended image sequences, where variations in 

illumination, orientation, and translation may be present (Kovesi, 2003). To address 

these problems, a model of feature perception using local energy, which has been 

used successfully in palmprint texture verification (Štruc and Pavešić, 2009a; Štruc 

and Pavešić, 2009b), was developed by Morrone et al. (1986) and Morrone and 

Owens (1987), which proposed that local features, such as step edges, lines, and roof 

edges, can be perceived at points in an image where Fourier components are 

maximally in phase (Kovesi, 1999). The local Fourier components at a location, x , 

in a one-dimensional signal will have an amplitude, )(xAn , a phase angle, )(xn , 

and, when represented as complex vectors, adding head to tail, a magnitude, or local 

energy, )(xE . Using these definitions, a measure of phase congruency, as developed 

by Morrone et al. (1986), can be given as: 

)(

)(
)(1

xA

xE
xPC

nn
 , 

where the phase congruency is the ratio of )(xE  to the overall path length of the 

local Fourier components in reaching the end point. If all the Fourier components are 

in phase, the complex vectors will be aligned, and the ratio will be 1. Conversely, If 



 49 

there is no coherence of phase, the ratio will fall to a minimum of 0 (Kovesi, 2003). 

Using these definitions, it can be shown that phase congruency is a function of the 

cosine of the deviation of each phase component from the mean: 













)(

))()((cos(
)(1

xA

xxA
xPC

n n

n n
. 

However, this measurement of phase congruency is sensitive to noise and does not 

provide adequate localisation (Kovesi, 2003). To this end, Kovesi (1999) developed 

an improved phase congruency measure which produces a localised response and 

incorporates noise compensation: 

 








n n

nnnn

xA

TxxxxxAxW
xPC





)(

)))()(sin())()()(cos(()(
)(2 , 

where )(xW  is a factor that weights frequency spread,   is a small constant to avoid 

division by zero, and    denotes that the enclosed quantity is equal to itself when its 

value is positive, and otherwise, zero. Furthermore, to compensate for noise, only 

values that exceed T , which can be determined from the filter responses to the 

image, are included in the result (Kovesi, 2003). 

Given the definition of phase congruency for one-dimensional signals, and to obtain 

an overall measurement of phase congruency in two dimensions, that is, to detect 

edges and corners in an image, local energy can calculated in several orientations 

using data from two-dimensional Gabor wavelets (Lee, 1996). Furthermore, to define 

how phase congruency varies with orientation, local energy can be calculated 

independently, and the variation of the moments at each orientation can be 

calculated. The principal axis, corresponding to the axis about which the moment is 

minimised, provides an indication of the orientation of the feature, while the 

magnitude of the maximum moment, corresponding to the moment about an axis 

perpendicular to the principal axis, provides an indication of the significance of the 

feature. (Kovesi, 2003). Given this theory, a , b , and c  can be calculated at each 

point in an image: 

 2))cos()(( PCa , 

  ))sin()(())cos()((2  PCPCb , and 



 50 

 2))sin()(( PCc , 

where PC  refers to the phase congruency value determined at orientation  , and the 

sum is performed over a discrete set of orientations. The angle of the principal axis, 

 , can then be given by: 






















2222 )(
,

)(b

b
atan2

2

1

cab

ca

ca
, 

and the maximum, M , and minimum, m , moments as: 

))((
2

1 22 cabacM  , and ))((
2

1 22 cabacm  . 

Phase congruency, unlike gradient-based methods, provides a measure of edge 

strength that is invariant to variations in illumination and contrast, meaning a fixed 

threshold of feature significance can be applied to complete image sequences 

(Kovesi, 2002). 

After edge detection, the palmprint line edge map, that is, an image containing only 

edge-like features, is typically processed using mathematical morphology to, for 

example, remove unwanted edge points, improve localisation, and link missing edge 

segments (Zhang, 2004). As described earlier, mathematical morphology is a set-

based method of image analysis for providing a quantitative description of 

geometrical structures, that is often used to extract components in binary or greyscale 

images. Morphological operations apply a structuring element to an input image, and 

create an output image of the same size, in which the value of each pixel is based on 

a comparison of the corresponding pixel in the input image with its neighbours (Wu 

et al., 2004a). 

Two fundamental operations in binary morphology, as described earlier for greyscale 

morphology, are dilation and erosion, both of which can be defined and implemented 

by a hit-and-miss transform. A small odd-sized binary mask, typically 33 , is 

passed over an image. If the pattern of the mask matches the state of the image under 

the mask, a hit occurs, and the image pixel corresponding to the spatial location of 

the centre of the mask is set to a given binary state. If the pattern of the mask does 

not match the state of the image under the mask, a miss occurs, and the image pixel 

corresponding to the spatial location of the centre of the mask is set to the opposite 



 51 

binary value (Pratt, 2007). Given this process, the shape of the structuring element 

heavily influences the results of the operation. In algebraic terms, Ritter and Wilson 

(2001) define the hit-and-miss transform of a set, A , by the expression: 

}E and :{ p AADpBA p
 , 

where   is the hit-and-miss operation, ),( EDB   are a pair of structuring elements, 

and ED . The dilation, that is, the expansion of the boundary of a region of 

foreground pixels, and the erosion, that is, the reduction of the boundary of a region 

of foreground pixels, of A  by B , where ),( EDB   and E ,  as: 

 BbAabaBA  ,:  

for the dilation, and: 

)( *  BABA  

for the erosion, where *B  is the reflection of B , and A  is the complement of A . 

Furthermore, in addition to erosion and dilation, a number of additive, subtractive, 

and conditional operations can be defined. Additive operations cause the centre pixel 

in a 33  region to be converted from a logical 0, for example, a white pixel, to a 

logical 1, for example, a black pixel, if the neighbouring pixels meet certain 

requirements. Conversely, subtractive operators cause the centre pixel in a 33  

region to be converted from a logical 1 to a logical 0. Conditional operations, such as 

thinning and thickening, are erosion or dilation operations, which are controlled to 

prevent total erasure, while ensuring total connectivity (Pratt, 2007). Table 4 

describes a number of important additive, subtractive, and conditional morphological 

operations. 

 

 

 

 

 

 

 



 52 

Table 4. A summary of additive, subtractive, and conditional morphological operations, adapted 

from Pratt (2007). 

Name Output  Condition 

Additive operations   

Interior fill Logical 1 If all four-connected neighbour pixels are logical 1. 

Diagonal fill Logical 1 If creations eliminates the eight-connectivity of the 

background. 

Bridge Logical 1 If creation results in connectivity of previously 

unconnected neighbouring logical 1 pixels. 

Eight-neighbour dilate Logical 1 If at least one eight-connected neighbour pixel is 

logical 1. 

Fatten Logical 1 If at least one eight-connected neighbour pixel is 

logical 1, provided that creation does not result in a 

bridge between previously unconnected logical 1 

pixels. 

Subtractive operations   

Isolated pixel remove Logical 0 If all eight-connected neighbour pixels of a logical 1 

pixel are logical 0. 

Spur remove Logical 0 If a logical 1 pixel is connected to a single eight-

connected logical 1. 

Interior remove Logical 0 If all four-connected neighbour pixels of a logical 1 

pixel are logical 1. 

H-break Logical 0 If a logical 1 pixel is H-connected, that is, for 

example, if pixels to the northeast, east, southeast, 

southwest, west, and northwest are logical 1. 

Eight-neighbour erode Logical 0 If at least one eight-connected pixel of a logical 1 

pixel is logical 0. 

Conditional operations   

Majority black Logical 0 If less than five pixels are logical 1. 

Logical 1 If five or more pixels are logical 1. 

Shrink Logical 0 Until an object, consisting of logical 1 pixels, 

without holes erodes to a single pixel at, or near, its 

centre of mass. An object with holes erodes to a 

connected ring midway between each hole and its 

nearest boundary. 

Thinning Logical 0 Until an object, consisting of logical 1 pixels, 

without holes erodes to a minimally connected 

stroke located equidistant from its nearest outer 

boundaries. An object with holes erodes to a 

minimally connected ring between each hole and its 

nearest boundary. 

Skeletonising Logical 0 Until an object, consisting of logical 1 pixels, is 

reduced to a minimally connected set of points that 

are equally distant from the two closest points of the 

object boundary. 

Thickening The thickening process ensures that objects separated by a 

double width boundary are not fused together when fattened. 

This is achieved by iteratively thinning the background of the 

image, and then performing a diagonal fill operation. 



 53 

A combination of morphological operations can be used to process a palmprint 

image after edge detection. In palmar flexion crease identification, thinning, 

thickening, skeletonising, and isolated pixel remove are commonly used operations 

(Zhang and Shu, 1999; Wu et al., 2002b; Li and Leung, 2006). However, depending 

on the requirements and objectives of the system, any number of morphological 

operations can be used. A discussion of mathematical morphology, and the 

implementation details of many morphological operations, can be found in Serra 

(1986), Haralick et al. (1987), and Soille (2003). 

After edge detection and morphological processing, palmar flexion creases can be 

represented in a variety of storage formats, such as chain code (Wu et al., 2002b), 

straight line segments (Zhang and Shu, 1999), or parametric space vectors (Li and 

Leung, 2006), which depend on the nature of the feature extraction algorithm. 

Consequently, the feature extraction algorithm, and therefore, the palmar flexion 

crease storage format, determines the basis of the feature matching algorithm (Li, 

2003). 

A matching algorithm is a component in an identification system which returns a 

score, s , indicating the similarity of two or more given samples. The reliability of 

such a matching score is influenced by many factors, typically caused by user, 

sensor, or algorithm variability. Given these variables, two samples, and a score 

threshold, T , the matching algorithm returns one of two outcomes: 

match.not  do samples  twothe :hypothesis  The

match; samples  twothe :hypothesis  The





a

o

halternate

hnull
 

From these hypotheses, the identification rate (and error rates) of an identification 

metric can be calculated (Bolle et al., 2004). In palmprint identification, as in most 

identification systems, the identification rate is used to demonstrate the accuracy, 

fallibility, and efficiency of a given system. This identification rate is typically 

determined from experimental results as: 

attempts

successes
rate  , 

where attempts  is the number of times the system was queried, that is, the number of 

palmprint samples which were given to be identified, and successes  is the number of 

times the system returned the correct answer (Li, 2003). 



 54 

 
Figure 28. Probability densities of matching and non-matching scores (Bolle et al., 2004). 

In deciding between the two hypotheses, that is, if the sample matches or not, a 

matching algorithm can make two types of error: a false acceptance (or type I error), 

where a matching score, s , is greater than the threshold, T , and the algorithm 

decides oH  is true, when actually aH  is true; and a false rejection (or type II error), 

where a matching score, s , is less than or equal to the threshold, T , and the 

algorithm decides aH  is true, when actually oH  is true. As described earlier, the 

false acceptance rate (FAR) and the false rejection rate (FRR) can then be given as 

the frequencies at which false acceptance and false rejection occur. As illustrated in 

Figure 28, the non-matching score distribution, )(spn , and the matching score 

distribution, )(spm , often overlap. In such cases, it is not possible to determine a 

threshold value where both the FAR and FRR are zero (Bolle et al., 2004), and so a 

compromise between false acceptance and false rejection is required (Li, 2003). 

However, to determine the optimal performance characteristics of a given matching 

algorithm at various threshold levels, the FAR and FRR can be plotted against each 

other as: 

))(),(()( TFRRTFARTROC  , 

where ROC is a two-dimensional curve, which is referred to as a receiver operating 

characteristic (ROC) curve. As shown in Figure 29, any point on the ROC curve 

defines an operating point of the matching algorithm, which can be chosen using a 

threshold value, T , or a FAR or FRR value (Bolle et al., 2004). 



 55 

 
Figure 29. A ROC curve expresses the compromise between FAR and FRR (Bolle et al., 2004). 

The equal error rate (EER), as shown in Figure 29, is the value of the error rates for 

an operating point of a matching algorithm at the intersection of the line 

FARFRR  . The EER is a single value representing the quality of the matching 

algorithm that can be used to benchmark system performance. However, as many 

systems operate with an unequal FRR and FAR to maintain a balance between 

efficiency and accuracy, the EER is typically an unreliable summary of operational 

performance for real world applications (Bolle et al., 2004). 

2.5. Summary 

This chapter presented an overview of palmprint identification, in which the 

definition of a palmprint, the formation and structure of palmprint features, palmprint 

identification metrics, automated palmprint identification systems, and a number of 

computer vision and pattern recognition algorithms were discussed. In Chapter 3, a 

new method of manual palmprint identification using palmar flexion creases is 

described, and experimental results are presented that show palmar flexion creases to 

be an effective method of palmprint identification. 



 56 

3. Manual palmprint identification 

Traditional palmprint identification strategies, particularly in forensic science, use 

matching of minutia points, that is, the same methodology that is used to match 

fingerprints, to identify an individual. Therefore, new methods of palmprint 

identification, that complement existing identification strategies, or reduce analysis 

and comparison times, will be of considerable benefit to palmprint identification 

communities worldwide. To this end, this chapter describes a method of manual 

palmprint identification and matching using palmar flexion creases, and presents an 

analysis and discussion of experimental results that were collected using the 

proposed method. 

3.1. Introduction 

Despite the frequency of palmprint impressions at scenes of crime, where they 

constitute 30% of all hand print impressions (Libal, 2006; Parker, 2006), little work 

has been reported on improving palmprint identification for forensic science (Jain 

and Feng, 2009). Alternative methodologies, new identification metrics, or additions 

to existing identification strategies, that can be used to improve palmprint 

identification, will be of considerable assistance to fingerprint experts and law 

enforcement communities. To this end, one group of palmprint features, that provide 

a rich source of information in palmprint images, are palmar flexion creases. Palmar 

flexion creases have often been considered an accessory feature in palmprint 

identification (Zhang et al., 2003). However, they provide valuable information 

about a person, and present an opportunity for identification based on low-resolution, 

distorted, or partial palmprint images (Kong and Zhang, 2002). As shown in Figure 

30, palmar flexion creases are visible in palmprint images, such as those from a 

digital camera, scanner, or digital video, and in palmar marks, such as inked, Live 

Scan, or those recovered from scenes of crime. Furthermore, although palmar flexion 

creases are genetically dependent (Kong et al., 2006b), they can be differentiated 

based solely on their spatial characteristics (Zhang and Shu, 1999), even in 

monozygotic twins using secondary creases and wrinkles (Kong et al., 2006b), and 

therefore, are a prime candidate in an identification metric. 



 57 

  

(a) (b) 

Figure 30. Palmar flexion creases in a) a digital camera image (The Hong Kong University of 

Science and Technology, 2003), and b) a Live Scan image. 

As described in Chapter 2.2, palmprints are currently identified by applying a similar 

method to that used for fingerprints, in which a fingerprint expert identifies minutiae 

from crime scene prints, enters the marked prints into an AFIS, which compares 

them to stored palmar images, finding the best matches. The expert then compares 

the best matches with the crime scene prints in order to establish identity. If no match 

is found, or if identity cannot be established, then a new database record is stored, 

allowing for future identification (Townley and Ede, 2004). However, as the surface 

area of a palmprint is approximately 40 times larger than that of a fingerprint, and 

may contain 8 times the number of minutia points (Jain and Feng, 2009), 

identification by minutiae can be a time consuming process. Furthermore, 

approximations by Jain and Feng (2009) suggest that a modern AFIS can be up to 64 

times slower when matching palmprints than when matching fingerprints. To this 

end, alternative methodologies, that can complement existing identification 

strategies, reduce analysis and comparison times by fingerprint experts, or partially 

automate the process, will be of considerable benefit to palmprint identification 

communities worldwide. The importance of palmprint identification is recognised by 

the NPIA in the United Kingdom (Police IT Organisation, 2005) and the FBI in the 

United States, whose Next Generation Integrated Automated Fingerprint 

Identification (NGI) system includes initiatives for integrated national palmprint 

identification functionality (Federal Bureau of Investigation, 2005b). 

In biometrics, palmprint identification using palmar flexion creases, secondary 

creases, and wrinkles has shown recognition rates that are comparable with other 



 58 

methods of identification (Kong et al., 2009), such as face recognition (Zhao et al., 

2003; Kong et al., 2005) or automated fingerprint identification (Yager and Amin, 

2004a; Yager and Amin, 2004b). However, despite the advances in biometrics, little 

consideration has been given to forensic applications. Many palmprint identification 

systems are specific to one type of image, such as digital camera images in 

biometrics, and use format dependent identification metrics. This makes forensic 

identification difficult, if not impossible, as cross-format identification, such as 

developed latent prints to inked or Livescan images, is not possible. Consequently, a 

format independent identification method, using features that persist across formats, 

is required. Furthermore, palmar marks recovered from scenes of crime are often 

partial, smudged, or otherwise distorted. For this reason, a forensic palmprint 

identification system must be capable of correcting distortions, such as rotation and 

translation, and identifying palmar marks in which limited identification features are 

available. However, any new identification metric, such as palmar flexion creases, 

must first be tested to determine its robustness to orientation, translation, and 

deformation, such as that resulting from skin elasticity, before other factors, such as 

partial identification, distortions from the recipient surface, or other external factors, 

can be introduced. If these initial tests cannot be established, the usefulness of such a 

metric is limited. To this end, this chapter presents a new method of identification, 

based on palmar flexion creases, using complete palmprint images, which aims to 

establish the feasibility of palmar flexion crease identification in a forensic context. 

3.2. Materials and methods 

Given a palmprint image, the most effective method for representing the palmar 

flexion creases is by a collection of lines. To this end, one method for representing 

the palmar flexion creases, that has been used previously in automated palmprint 

identification (Zhang and Shu, 1999; Wu et al., 2002a), is by a series of connected 

straight line segments. However, since the palmar flexion creases do not typically 

follow a straight line, and manually modelling a curved line using straight line 

segments may be difficult or time consuming, an alternative method is required. To 

this end, a common method for describing curved lines, that is used extensively in 

computer graphics and computer aided design (Marsh, 2005), is by Bézier curves. 



 59 

  

(a) (b) 

Figure 31. Example of a) a Bézier curve, and b) a palmprint image (The Hong Kong University 

of Science and Technology, 2003) with the major palmar flexion creases overlaid by three Bézier 

curves. 

A Bézier curve, as shown in Figure 31(a), is a polynomial curve which is represented 

by a sequence of 1n  points, called control points, which are connected together to 

design the basic shape of the curve (Marsh, 2005). In computer graphics, the most 

common type of Bézier curves are quadratic, that is, three control point, or cubic, 

that is, four control point, which are connected together, or patched, to create larger, 

more complex curves (Kodicek, 2005). As described in Marsh (2005), given three 

control points, ),( 000 qpb , ),( 111 qpb , and ),( 222 qpb , a quadratic Bézier curve can 

be defined as: 

),(),()1(2),()1()( 22

2

0000

2 qptqpttqpttB  , for  1,0t , 

and, given four control points, 0b , 1b , 2b , and 3b , a cubic Bézier curve as: 

3

3

2

2

1

2

0

3 )1(3)1(3)1()( btbtttbtbttB  , for  1,0t . 

As shown in Figure 31(b), a collection of Bézier curves can be used to accurately 

represent the major palmar flexion creases. However, as shown in Figure 31(a) by 

the location of the control points in relation to the curve, the input system can be 

complicated for the user, as while every point influences the curve, the curve only 

passes through the end points. To this end, a more intuitive representation of the 

control points, which is commonly used in graphic design applications, is by nodes 

and anchor points. As shown in Figure 32, using nodes and anchor points, the curve 

passes through each node, 1V , 2V , and 3V , and is controlled by anchor points, 12C , 



 60 

21C , 22C , and 31C , which control the tangent and curvature of the line (Kodicek, 

2005). 

 
Figure 32. A three-node Bézier curve control by control and anchor points (Kodicek, 2005). 

Given these improvements, the curve can be controlled more intuitively by the user. 

However, due to the global nature of the Bézier curve, that is, because every point on 

a Bézier curve is the result of a calculation using all of the defining vertices, a change 

in one control point influences the entire curve (Rogers and Adams, 1990). For this 

reason, despite improvements to the control system, the lack of local curve control 

can be detrimental. To this end, for applications that require local curve control, a 

spline curve, that is, a sequence of curve segments that are connected together for 

form a single continuous curve, such as a piecewise Bézier, is often used. However, 

an alternative type of curve, that is a generalisation of the Bézier curve, and which 

exhibits non-global behaviour, is a B-spline curve. A B-spline curve with 1n  

control points, nBBB ,,, 10  , can be defined as: 





n

i

kii tNBtP
0

, )()( , 

where 11   nk ttt  and kiN ,  are the basis functions: 

1

1,1

1

1,

,

)()()()(
)(



















iki

kiki

iki

kii

ki
xx

tNtx

xx

tNxt
tN , 

and 

       otherwise

 if
  

0

1
)(

1

1,








ii

i

xtx
tN , 

where the values of ix  are elements of a vector satisfying the relation 1 ii xx . 



 61 

As each vertex is associated with a unique basis function, the B-spline curve, unlike 

the Bézier curve, exhibits non-global behaviour, such that each vertex affects the 

shape of the curve only over the range of parameter values where the basis function 

is non-zero (Rogers and Adams, 1990). Given this property, the B-spline curve is an 

ideal candidate for efficiently describing curved lines. However, for manually 

identifying palmar flexion creases, where the curvature of the line is often slight, the 

relationship between the control points and the curve is still more complex than is 

required. To this end, another method for representing the palmar flexion creases is 

by a collection of cardinal splines. 

A cardinal spline is a cubic polynomial curve that has tangent lines defined by a 

series of control points and a tension parameter. A cardinal spline guarantees smooth 

interpolated motion between control points, and ensures that each point will be 

passed, generating a seamless, continuous curve through multiple control points 

(Kochanek and Bartels, 1984). Given 1n  points, 10 ,, npp  , to be interpolated 

with n  segments, each curve has a starting point, ip , and an ending point, 1ip , with 

a starting tangent, im , and an ending tangent, 1im , defined by: 

)( 11   iii ppcm , 

where c  is a constant between 0 and 1 that modifies the length, or tension, of the 

tangent (Kochanek and Bartels, 1984). Figure 33 shows an example of a cardinal 

spline with three different tension values. 

   

(a) (b) (c) 
Figure 33. Example of a cardinal spline with three different tension values: a) 0, b) 0.5, and c) 1. 

As with a Bézier curve, using a series of manually identified control points, any 

number of line features can be represented by a collection of cardinal splines. A 

palmar flexion crease can be identified by adding a control point at the start point, 

end point, and points of interest along the flexion crease. In contrast to a Bézier 

curve, which requires anchor points to define the tangents and curvature of the line, a 

cardinal spline can be interpolated simply using control points. As shown in Figure 



 62 

34, when a series of control points are interpolated by a cardinal spline, an accurate 

representation of the palmar flexion creases is achieved. 

  

(a) (b) 

Figure 34. Example a) online palmprint image (The Hong Kong University of Science and 

Technology, 2003) with b) three cardinal splines overlaid. The tension value for all three 

cardinal splines is 0.5. 

Given the definition of cardinal splines, and to enable user interaction with the 

identification system, a suitable user interface, that allows the user to accurately and 

efficiently identify the palmar flexion creases using cardinal splines, is required. To 

this end, a number of objectives, which form the requirements user interface, can be 

defined: 

1. To be able to accurately identify the palmar flexion creases using a suitable 

control system. 

2. To be able to delete or modify existing cardinal splines to enable repeated 

identification. 

3. To be able to adjust the tension parameter of each cardinal spline to allow 

maximum user control. 

4. To save the palmar flexion crease configuration, that is, the control points and 

tension parameter, to enable palmar flexion crease matching. 

Given these objectives, a simple user interface, as shown in Figure 35, can be 

designed. The curve tension slider or curve tension text box can be used to adjust the 

tension parameter of each individual cardinal spline, while the delete and delete all 

buttons can be used remove existing cardinal splines from the palmprint image. The 



 63 

go to image text box and button, previous button, and next button can be used to 

move forwards and backwards through the image database, and the save button can 

be used to save the palmar flexion crease configuration. 

 
Figure 35. A manual palmar flexion crease identification system user interface. 

Furthermore, as shown in Figure 36, an intuitive control system for identifying the 

palmar flexion creases using cardinal splines can be designed. To identify a palmar 

flexion crease, as shown in Figure 36(a), the user clicks the left mouse button at the 

start of the palmar flexion crease to create a control point. The user then continues to 

use the left mouse button to add control points along the palmar flexion crease, as 

shown in Figure 36(b). Any number of control points can be added by the user to 

identify the palmar flexion creases. However, once the user has finished identifying a 

palmar flexion crease, the right mouse button can be clicked to finish identification. 

As shown in Figure 36(c), once identification is complete, the control points are no 

longer displayed, and the palmar flexion crease configuration is automatically saved. 

The user can then repeat the identification process for any number of line features in 

the palmprint image. 



 64 

   

(a) (b) (c) 

Figure 36. A manual palmar flexion crease identification control system: a) the user creates a 

control point to start the identification process,  then b) continues to identify the palmar flexion 

crease using additional control points, and c) completes the identification process. 

After identification, the palmar flexion creases are represented as a collection of 

control points and a tension parameter, which can be used to reconstruct the palmar 

flexion creases using cardinal splines, or in palmar flexion crease matching to 

calculate the degree of similarity between two or more sets of palmar flexion creases 

to determine if they belong to the same palm. 

To calculate the similarity between palmar flexion crease configurations from two or 

more palmprint images, the control points from each palmar flexion crease need to 

be compared. To this end, the simplest method for comparing two sets of control 

points is to compare their spatial location, that is, point by point, without any special 

processing or normalisation. Point by point comparison can be used to quickly 

identity matching palmar flexion creases, and a match percentage can be obtained. 

However, as each palmar flexion crease may be identified by a different number of 

control points, and without a reliable algorithm to determine which control points to 

compare, point by point comparison may perform poorly. Therefore, prior to palmar 

flexion crease matching, a control point normalisation algorithm can be designed. To 

this end, to ensure each palmar flexion crease is represented by an equal number of 

control points, a second group of cardinal splines, controlled by a fixed number of 

equally spaced control points, can be automatically created to match the original 

input. This automated normalisation allows any configuration of control points, 

while ensuring reliable annotation for palmar flexion crease matching. Figure 37 

shows an example of a cardinal spline before and after automated point 

normalisation. 



 65 

  

(a) (b) 

Figure 37. Example of a cardinal spline a) before, and b) after automated point normalisation. 

Furthermore, given a normalised collection of palmar flexion creases, an alternative 

method to point by point comparison for comparing two sets of control points, which 

can be used to determine the nearest control points to compare, is a nearest neighbour 

algorithm. Given a set, P , of n  points in a d -dimensional space, d , and a query 

point, dq  , a nearest neighbour algorithm can be used to find the closest point, 

that is, closest by Euclidean distance, in P  to q  (Chen and Lu, 2008). To this end, a 

number of algorithms, such as linear search, space partitioning, and locality hashing, 

can be designed to solve nearest neighbour problems, each of which will have their 

own advantages and disadvantages (Chen and Lu, 2008). However, due to the small 

number of control points and low dimensionality in each palmar flexion crease 

configuration, a simple linear nearest neighbour algorithm is sufficient. A linear 

nearest neighbour algorithm can be completed in linear time, and is solved by a 

sequential search. The algorithm calculates the distance from q  to all points in P , 

and records the distance between each query. The point in P  with the minimum 

distance from q  once all points have been processed is deemed to be the nearest 

neighbour (Sedgewick, 1983). Using this theory, the nearest control point in a palmar 

flexion crease configuration, A , to each query control point in another palmar 

flexion crease configuration, B , can be calculated, and the distance between A  and 

B  can be measured. 

However, as slight variations are present in nearly all palmprint images captured over 

time, a matching algorithm is required that allows considerations to be made for 

variations in rotation and translation. To this end, generalised Procrustes analysis 

(GPA) is a multivariate statistical method, used in shape analysis, to find the optimal 

superimposition of two or more point configurations. The algorithm consists of three 

transformations: translation, in which the centroid of each configuration is shifted to 

a common origin; rotation, in which all points are displaced by a common angle, 



 66 

keeping the distance of each point from the origin unchanged; and scaling, in which 

all points are contracted or expanded in a straight line from the origin. The optimal 

transformation is defined as the smallest sum of squared distances between 

corresponding points in the configurations (Goodall, 1991). GPA can be used, in this 

context, to minimise the distance, in terms of rotation and translation, between two 

sets of palmar flexion creases. Figure 38 shows the point configurations for two sets 

of palmar flexion creases separately derived from the same palm before and after 

GPA. 

 
 

(a) (b) 
Figure 38. Two flexion crease configurations from the same palm a) before and b) after GPA. 

Given a nearest neighbour algorithm to calculate the distance between control points, 

and GPA as a pre-processing method to correct rotation and translation, the sum of 

distances between two sets of point configurations can be calculated and used as a 

measure of similarity. Furthermore, given a threshold to separate matching and non-

matching palmar flexion crease configurations, the GAR and FAR for palmar flexion 

crease matching can be calculated. The lower the distance between two sets of 

palmar flexion crease configurations, the higher the probability they come from the 

same palm. 

The algorithms described in this chapter were implemented on Microsoft Windows 

XP using Mathworks MATLAB R2007b, and the C# programming language. The 

algorithms were tested using The Hong Kong University of Science and 

Technology’s (2003) hand image database. The source code for each algorithm is 

available in appendix A. 



 67 

3.3. Results and discussion 

To evaluate the effectiveness of palmar flexion creases as a method of identification, 

100 online palmprint images, that is, 100 images from 100 different left hand palms, 

captured during a single session, from The Hong Kong University of Science and 

Technology’s (2003) hand image database, measuring a mean of 380380  pixels at 

72 pixels per inch, were identified, then compared. The three major palmar flexion 

creases, that is, the thenar crease, the distal transverse crease, and the proximal 

transverse crease, were manually identified in each palmprint image using the 

method described in Chapter 3.2. Then, each set of manually identified palmar 

flexion creases was compared, again, using the method described in Chapter 3.2, to 

every other set of manually identified palmar flexion creases. Furthermore, as shown 

in Figure 39, during the comparison process, the extracted data was subjected to a 

variety of dynamic image alterations, 10 times each, to mimic some of the types of 

alterations that can be found in palmar marks from scenes of crime.  

    
(a) (b) (c) (d) 

Figure 39. An example flexion crease configuration a) before, and b) after rotation by 180 

degrees, c) after translation by 25 pixels, and d) after noise corruption with a boundary size of 

16 pixels or 5.6 mm. 

Mark orientation was tested by random rotation from 0 to 360 degrees; spatial 

translation was tested by random translation from -50 to 50 pixels, that is, -17.6 to 

17.6 mm; and deformation resulting from skin elasticity, degradation caused by 

smudging and slippage, or between and within user input variations, that is, 

variability of manual annotation relative to the flexion crease location, was tested by 

noise corruption, using random translation of each point along the flexion crease 

within a defined boundary size. All image alterations were applied to every palmar 

flexion crease configuration in every comparison, and the comparison process was 

repeated with 8 different noise corruption boundary sizes: 2, 4, 6, 8, 10, 12, 14, and 

16 pixels, or 0.7, 1.4, 2.1, 2.8, 3.5, 4.2, 4.9, and 5.6 mm. 



 68 

Thus, to test robustness, the comparison process was repeated 8 times, and each time, 

every palmprint image was subjected to dynamic image alterations to produce 10 

modified palmprint images. For each of the 8 repetitions, a different noise corruption 

boundary size was used, and the 10 variations of each manually identified palmar 

flexion crease configuration were compared. 1000000 comparisons were recorded in 

each repetition. Therefore, for a single palm in a single repetition, 1%, or 10000, of 

all comparisons were from the same palm, and 99%, or 990000, were not. Figure 40 

shows the upper and lower distances, that is, the sum of distances of each compared 

control point using the method described in Chapter 3.2, of correct and incorrect 

matches at each boundary size. The upper and lower distances indicate at which 

point, in terms of boundary size, incorrect matches begin to occur. As the upper 

distance between matching palms increases, and the lower distance between non-

matching palms decreases, the chance of an incorrect identification rises. As shown 

in Figure 40, when the boundary passes 8 pixels, that is, a distance of 2.8 mm, 

incorrect matches may occur. The probability of false acceptance, that is, when 

incorrect matches are identified as correct, and of false rejection, that is, when 

correct matches are identified as incorrect, increases as the boundary size expands. 

 
Figure 40. Upper and lower distances of correct and incorrect matches at each boundary size. 



 69 

Using the values from Figure 40, the optimum threshold, where distances above the 

threshold are considered matches, and distances below the threshold are considered 

non-matches, can be calculated, and the GAR, that is, the number of matching palms 

that were correctly identified, and FAR, that is, the number of non-matching palms 

that were identified as matching, at each boundary size can be determined. Figure 41 

shows the ROC curve of GAR against FAR at each boundary size. A single 

comparison is considered genuine if two conditions are met: first, if both features are 

from the same palm, and second, if the distance between those features is above a 

given threshold. All other comparisons are considered false. Again, 1000000 

comparisons were recorded in each experiment, and the threshold was calculated as 

half the difference between the upper and lower distances of correct and incorrect 

matches. 

 
Figure 41. Receiver operating characteristic curve for flexion crease identification. 

As shown in Figure 41, palmar flexion creases can be recognised with a 100% GAR, 

and 0% FAR, when identified within 6 pixels, or 2.1 mm, of their actual location. 

However, as the boundary size increases, the GAR falls and the FAR rises. Figure 42 

shows an example of the boundary for 6 (2.1 mm), 10 (3.5 mm), and 16 (5.6 mm) 

pixels. 

These results show palmar flexion creases to be a robust identification metric, which 

allows input variation, that is, allows the examiner to label the flexion creases within 



 70 

a distance of their actual location, while still producing reliable results. Using a 10 

pixel, or 3.5 mm, boundary, a 99.2% GAR can be achieved with a 0% FAR, 

providing a good compromise between input variation and false rejection. To be 

clear, when a set of palmar flexion creases are identified within 3.5 mm of their 

actual location, correct identification occurs 99.2% of the time.  

   
(a) (b) (c) 

Figure 42. Example of the boundary at a) 6 pixels (2.1 mm), b) 10 pixels (3.5 mm), and c) 16 

pixels (5.6 mm). 

However, the results presented here are for a small sample, low variation, palmprint 

database (The Hong Kong University of Science and Technology, 2003), with 

annotation by a single user. In all cases, each palmar flexion crease could be easily 

identified, and while image defects are present, they are relatively low compared to a 

real world data set, where there are often inconsistencies in image capture quality 

and palmprint coverage. Furthermore, various factors can affect the quality of a 

palmprint image, such as bruising, scars, and cuts in inked, digital, or Livescan 

images, while uncontrolled environments result in unspecified distortions in latent 

prints, based on artefacts introduced during print deposition such as slippage, 

smudging, and the nature of the recipient surface. In all cases, distortions are easily 

introduced due to the characteristics of human skin, such as elasticity and worn 

friction ridge skin (Ashbaugh, 1999a). That said, through artificial rotation, 

translation, and additive noise, as in the experiments described in this thesis, many 

image defects and user input variation can be tested. Furthermore, despite its small 

sample size, the palmprint database contains examples from each palmprint category, 

as defined by Wu et al. (2004c), in which 13800 palmprints were classified based on 

their flexion crease configurations. 

The results show cardinal spline interpolation and GPA normalisation to be effective 

methods in palmar flexion crease identification. A cardinal spline guarantees smooth 

interpolated motion between control points, and generates a seamless, continuous 



 71 

curve. In contrast with other spline interpolation methods (Boor, 2001), cardinal 

spline tangents can be computed from their corresponding control point locations, 

without the need for user defined coordinates. This ensures that each point will be 

passed, providing an efficient method of user input. Furthermore, GPA is a 

promising method of normalisation, that can be used to offset the effects of rotation, 

translation, scaling, and reflection in manually identified palmar flexion creases. 

GPA can be computed quickly and efficiently (Gower, 1975; Berge, 1977; Goodall, 

1991), and without changing the relative position of the cardinal splines, while 

maximising the agreement of corresponding point configurations. Palmprint 

identification using palmar flexion creases shows promising results as a standalone 

identification metric, or as a complement to existing identification systems. 

3.4. Summary 

This chapter described a method of manual palmprint identification and matching 

using palmar flexion creases, and presented an analysis and discussion of 

experimental results that were collected using the proposed method. Experimental 

results showed that palmar flexion creases from 100 palms, each modified 10 times 

to mimic some of the types of alterations that can be found in crime scene palmar 

marks, when labelled within 10 pixels, or 3.5 mm of the flexion crease, can be 

identified with a 99.2% genuine acceptance rate and a 0% false acceptance rate. In 

Chapter 4, a method of automated flexion crease recognition is described, that can be 

used to automatically identify palmar flexion creases in online palmprint images. 



 72 

4. Automated flexion crease recognition 

Improved methods of automated palmprint identification have the potential to reduce 

palmprint analysis and comparison times by complementing existing identification 

strategies, and through the development of new identification systems. To this end, 

this chapter describes a new method of automated flexion crease recognition, and 

presents an analysis and discussion of experimental results, in which the palmar 

flexion creases from 100 online palmprint images (The Hong Kong University of 

Science and Technology, 2003) are compared. 

4.1. Introduction 

Automated identification systems represent the single biggest advance in friction 

ridge skin identification technology (Fisher, 2004). In forensic science, automated 

identification systems allow fast identification at local, national, and international 

level, by automating slow, labour-intensive processes previously undertaken only by 

specially trained examiners (Cole, 2004). Similarly, automated identification using 

biometrics offers advances such as negative recognition, that is, the process by which 

a system determines that an individual is enrolled despite the individual denying it, 

and non-repudiation, that is, an auditing process whereby an individual cannot deny 

accessing a system they have previously accessed. Furthermore, integrated 

verification procedures, such as quality assessment by the capture sensor, allow an 

additional level of quality control that is prohibitive in manual identification 

processes (Ross et al., 2006). To this end, improved methods of automated palmprint 

identification have the potential to reduce palmprint analysis and comparison times, 

by complementing existing identification strategies, and through the development of 

new automated identification systems. 

In this chapter, a new method of automated flexion crease identification is proposed 

that uses internal image seams (Avidan and Shamir, 2007) to identify palmar flexion 

creases in online palmprint images. Using the proposed approach, in the feature 

extraction stage, the importance of each pixel in a palmprint image is calculated 

using an energy function, that is, an edge detection algorithm or an image importance 

measure, and the palmar flexion creases are extracted as optimal internal image 

seams. Then, in the matching stage, a kd-tree nearest neighbour algorithm (Bentley, 



 73 

1975) is used to measure the similarity between two or more sets of palmar flexion 

creases to determine if they belong to the same palm. Using this method, any number 

of major flexion creases, secondary creases, or wrinkles, can be extracted from an 

online palmprint image. 

4.2. Materials and methods 

Given a palmprint image, and an energy function, that is, a measure of pixel 

importance or intensity, the palmar flexion creases are the lines that contain the 

highest energy values. Therefore, an optimal strategy for locating the palmar flexion 

creases would be to identify, in ascending order, the lines with the highest overall 

energy. As described in Chapter 2.4, a typical palmar flexion crease identification 

system begins with an edge detection algorithm, which is used to segment the 

palmprint image, that is, separate the line features from the background texture. To 

this end, there are numerous edge detection algorithms found in literature that could 

be used to segment a palmprint image, many of which have already been used in 

palmprint identification, and are described in detail in Chapter 2.3 and 2.4. Figure 43 

shows an example of a palmprint image that has been filtered by the author using the 

following edge detection algorithms: the Sobel operator, the LoG operator, the 

Canny edge detector, and the phase congruency operator. 

 

  

(b) (c) 

  
(a) (d) (e) 

Figure 43. A palmprint image (The Hong Kong University of Science and Technology, 2003) a) 

before, and after applying b) the Sobel operator, c) the Laplacian of Gaussian operator, d) the 

Canny edge detector, and e) the phase congruency operator. For clarity, the colours of the edge 

images have been inverted. 



 74 

When choosing an algorithm for edge detection, a number of factors need to be 

considered. For automated palmar flexion crease identification, of which the main 

objective, in this case, is to extract the lines with the highest overall energy, an 

accurate response to step and roof edges is required. The advantages and 

disadvantages of each algorithm are described in Chapter 2.4. However, for 

palmprint images, a number of specific observations can be made by examining 

Figure 43. The LoG and Canny operators only respond accurately to the strongest 

edges, while discounting many of the palmar flexion crease lines. Conversely, the 

Sobel operator responds to the major palmar flexion creases, secondary creases, and 

wrinkles, but highlights isolated points as edges, and creates false or second edges 

where only a single line exists. As shown in Figure 43(e), of the four algorithms that 

were tested, the phase congruency operator responds most accurately to palmar 

flexion creases. 

Given a palmprint image that has been processed using an edge detection algorithm, 

one method of extracting the major flexion creases, that is, extracting the lines that 

contain the highest energy values, it to use a threshold. As described in Chapter 2.4, a 

threshold is a segmentation method, which is typically used prior to binary 

morphological processing, to convert an intensity image, that is, a greyscale image, 

to a binary image. However, by defining appropriate threshold parameters, a 

threshold can be used to segment an image by separating areas of high intensity from 

areas of low intensity. To this end, a threshold can be used to extract the pixels, and 

therefore, the lines, with the highest energy values from a palmprint image. Figure 44 

shows an example of a palmprint image that has been processed by the author using 

phase congruency and then separated using two different threshold values. 

 

 



 75 

   

(a) (b) (c) 

Figure 44. A palmprint image (The Hong Kong University of Science and Technology, 2003) 

after applying a) the phase congruency operator, followed by b) a threshold using a value of 

0.126 calculated automatically with Otsu’s (1979) method, and c) a threshold using a value of 

0.25. 

As shown in Figure 44(b), when using Otsu’s (1979) method to determine the 

threshold value, that is, a threshold value automatically chosen to minimise the intra-

class variance of the black and white pixels, edge like features are extracted. 

However, a palmprint image contains many edge like features, such as major and 

minor flexion creases, secondary creases, and wrinkles, a number of which may not 

be of interest. Therefore, it can be difficult to differentiate major flexion creases from 

secondary creases and wrinkles, making feature enhancement and segmentation 

using a simple threshold complicated. This is particularly true for an extended 

sequence of images, for which a global threshold value cannot be used. For palmprint 

images, when using a simple threshold for segmentation, parameter selection 

requires a balance between missing valid edges and noise-induced false edges, as 

shown in Figure 44(c). For this reason, as the required threshold may vary for each 

palmprint image, a simple threshold is not adequate for palmar flexion crease 

identification in this instance. 

However, given the same objective, that is, to extract the lines in a palmprint image 

that contain the highest energy values, a threshold like algorithm can be used. To this 

end, in contrast to a simple threshold, which is applied to the whole image, each row 

or column can be processed individually, and the pixel with the highest energy value, 

that is, level of intensity, in each row or column can be extracted. 



 76 

   

(a) (b) (c) 

Figure 45. A palmprint image (The Hong Kong University of Science and Technology, 2003) 

after applying the phase congruency operator and then a) vertical line detection, b) horizontal 

line detection, and c) horizontal and vertical line detection. 

As shown in Figure 45(c), as created from the author’s work, when vertical line 

detection, shown in Figure 45(a), and horizontal line detection, shown in Figure 

45(b), are combined, the major palmar flexion creases can be detected while 

minimising interference from noise and without creating false edges. However, 

compared to the original palmprint image, as shown in Figure 43(a), a number of 

major line segments are incomplete. To extract complete palmar flexion creases from 

a palmprint image, an alternative method of extraction is required. 

Using the same theory as above, in which a single pixel from each row or column is 

extracted, a new palmar flexion crease identification algorithm can be defined. The 

new algorithm, instead of extracting individual pixels from each row or column, 

should extract a path of pixels, that is, a sequence of connected pixels, that contains 

the highest overall energy compared to all other paths. Using this theory, and the 

definition of internal image seams (Avidan and Shamir, 2007), an automated method 

for identifying palmar flexion creases in a palmprint image can be defined. 

4.2.1. Palmar flexion creases as internal image seams 

An internal image seam, as defined by Avidan and Shamir (2007), is an 8-connected 

path of pixels from the top of an image to the bottom, or from the left of an image to 

the right, containing one, and only one, pixel in each row or column. Figure 46 

shows an example of a horizontal image seam, a vertical image seam, and their 

structuring element, an 8-connected neighbourhood. A pixel is said to be 8-connected 

when at least one, and in this case, only one, of its neighbouring pixels to the north, 

north east, east, south east, south, south west, west, or north west are connected. To 

be clear, an 8-connected path of pixels, that is, a horizontal or vertical image seam, 



 77 

can only be connected by a single horizontal, vertical, or diagonally connected pixel, 

as shown in Figure 46(b) and Figure 46(c). 

   

(a) (b) (c) 

Figure 46. Internal image seams represented as an 8-connected path of pixels: (a) an 8-

connected neighbourhood, (b) a vertical internal image seam, and (c) a horizontal internal 

image seam. 

A palmar flexion crease can be recognised as an internal image seam that contains 

higher than expected energy compared to all possible connected seams. Given an 

energy function, the strength, and therefore validity, of a palmar flexion crease can 

be determined by the sum of its image seam energy values. Avidan and Shamir 

(2007) used internal image seams in content-aware image retargeting to find and 

remove image seams with the lowest possible intensity. However, using a modified 

internal image seams algorithm, image seams with the highest intensity, and 

therefore, the palmar flexion creases, can be effectively identified. 

Given an energy function, e , the importance of each pixel in a palmprint image can 

be identified, and the overall energy, )(sE , of a given palmar flexion crease can be 

calculated by: 





n

i

is sIeIEsE
0

))(()()( , 

and the palmar flexion crease with the highest overall energy, *s , by: 





n

i

i
ss

sIesEs
0

))((max)(max* , 

where I  is an mn  image, and s  is an image seam. 

Furthermore, the maximum energy, M , for all possible connected vertical image 

seams for each entry, ),( ji , can be calculated by traversing the image from the 

second row to the last row: 

))1,1(),,1(),1,1(max(),(),(  jiMjiMjiMjiejiM , 



 78 

and, for all possible connected horizontal image seams, from the second column to 

the last column: 

))1,1(),1,(),1,1(max(),(),(  jiMjiMjiMjiejiM . 

Using these definitions, any number of major palmar flexion creases, secondary 

creases, or wrinkles can be individually extracted from a palmprint image. Figure 

47(b) shows an example of two image seams, one horizontal and one vertical, which 

have been used to accurately identify the major palmar flexion creases. For 

comparison, a palmprint image before internal image seam detection is shown in 

Figure 47(a). 

  

(a) (b) 

Figure 47. A palmprint image (The Hong Kong University of Science and Technology, 2003) 

after applying a) the phase congruency operator, and then b) internal image seam detection. For 

clarity, the horizontal internal image seam is marked in red, while the vertical internal image 

seam is marked in green. 

However, the success of internal image seams, as a method for identifying palmar 

flexion creases, depends on the effectiveness of the energy function it receives. To 

this end, Figure 48 shows an example of two internal image seams which do not 

accurately identify the major palmar flexion creases. In Figure 48(a), a vertical image 

seam incorrectly identifies a false palmar flexion crease. This is caused by the 

writer’s palm, that is, the edge of the palm opposite the thumb, where many 

secondary creases and wrinkles are typically present. Similarly, in Figure 48(b), a 

horizontal image seam incorrectly identifies line segments from two separate palmar 

flexion creases, where ideally, two horizontal image seams would be used. 



 79 

  

(a) (b) 

Figure 48. An internal image seam which a) marked in green, follows a false palmar flexion 

crease, and b) marked in red, identifies two palmar flexion creases. 

To address the problems described above, two separate approaches can be used. In 

the first instance, to prevent the writer’s palm from interfering with the extraction 

process, a specific region of interest, which is focused on the major palmar flexion 

creases, can be extracted. As described in Chapter 2.2, a common approach to region 

of interest selection is to extract a 128128  pixel square from the centre of the palm 

(Zhang, 2004). However, to extract as much palmar flexion crease information as 

possible, the size of the region of interest must be maximised. To this end, only a 

small subset of pixels should be removed from each palmprint image. This can be 

achieved by removing, or cropping, pixels from the edge of the image. Furthermore, 

for the method to be invariant to handedness, that is, applicable to both left and right 

hand palms, the same number of pixels should be removed from the left edge as is 

removed from the right edge. For example, as shown in Figure 49, for a palmprint 

image measuring 437432  pixels at 72 dpi, or 42.1524.15   cm, 30 pixels, or 1.05 

cm, can be removed from the left and right edges to create a large region of interest, 

while removing the secondary creases and wrinkles of the writer’s palm. 



 80 

  

(a) (b) 

Figure 49. A palmprint image (The Hong Kong University of Science and Technology, 2003) a) 

before, and b) after region of interest selection. 

To address the problem recognised in Figure 48(b), where a single image seam 

identifies line segments from two separate palmar flexion creases, an alternative 

image importance measure is required. Given a palmprint image that has been 

processed using the phase congruency operator, the difference in intensity between 

the foreground pixels, that is, the palmar flexion creases, and the background pixels 

is too great. For this reason, when an image seam encounters a weak palmar flexion 

crease line segment, it fails to identify the palmar flexion crease, and instead 

identifies the nearest area of high intensity. To this end, a new image importance 

measure, that can highlight the palmar flexion creases, and remove noise and 

superficial wrinkles, while retaining features from the background texture, is 

required. Given these objectives, an effective method for identifying palmar flexion 

creases, as determined by Wu and Li (1997), that is not typically used for edge 

detection, but allows feature extraction at multiple scales, is a Laplacian pyramid 

(Burt and Adelson, 1983). A Laplacian pyramid is a sequence of error images, 

NLLL ,,, 10  , which are calculated as the difference between two levels of a 

Gaussian pyramid. First, an image is convolved with a Gaussian kernel, resulting in 

low-pass filtered version of the original image, where each pixel contains the local 

average of the corresponding pixel neighbourhood of the previous image. Then, to 

calculate the Laplacian, the difference between the original image and the low-pass 

filtered version is computed. Formally, a single level from a Laplacian pyramid can 

be defined as: 



 81 

1 lll ggL , 

where g  is a Gaussian pyramid, and l  is the desired pyramid level. Figure 50 shows 

how a series of filtered images create a stack of images to form the levels of a 

Laplacian pyramid. 

 

Figure 50. A stack of filtered images form a Laplacian pyramid. 

Using the proposed approach, by calculating the local average of each pixel using a 

Gaussian kernel, line features in a palmprint image can be successively filtered, from 

superficial wrinkles at level 1 to strong secondary creases at level 3. To this end, 

Figure 51, generated by the author, shows how a Laplacian pyramid can be used at 

higher levels to highlight major palmar flexion creases, and at lower levels to 

highlight secondary palmar flexion creases. 

    
(a) (b) (c) (d) 

Figure 51. A palmprint image represented as a Laplacian pyramid at b) level 1, c) level 2, and d) 

level 3. 

Furthermore, given the definition of a Laplacian pyramid, in combination with that 

of internal image seams, palmar flexion creases can be extracted from a palmprint 

image using the following approach: 

1. Given a palmprint region of interest, create an error image lL , where l  is the 

desired pyramid level. 

Level 0 

Level 1 

Level 2 

Level 3 



 82 

2. For n  iterations, find the optimal vertical palmar flexion crease in lL , where 

n  is the number of vertical flexion creases to extract. 

3. For n  iterations, find the optimal horizontal palmar flexion crease in lL , 

where n  is the number of horizontal flexion creases to extract. 

   

(a) (b) (c) 

Figure 52. A palmprint image (The Hong Kong University of Science and Technology, 2003) 

region of interest with b) its Laplacian pyramid representation at level 2, and c) three internal 

image seams overlaid. For clarity, the horizontal internal image seams are marked in red, and 

the vertical internal image seam is marked in green. 

After this process, the major palmar flexion creases, or secondary creases, are 

represented as internal image seams and can be used in feature matching. Figure 52 

shows an example of a palmprint region of interest, its Laplacian pyramid 

representation at level 2, and three image seams, two horizontal and one vertical, 

which are used to identify the major palmar flexion creases. 

4.2.2. Palmar flexion crease matching 

The aim of palmar flexion crease matching is to calculate the degree of similarity 

between two or more sets of palmar flexion creases, in order to determine if they 

belong to the same palm. As described in detail in Chapter 2.3.3, a number of 

matching algorithms, based on pixel-to-pixel matching, pixel-to-area matching, or 

straight line matching, have been proposed. However, many such methods, for which 

the acquisition process often captures each palmprint image with a fixed orientation, 

rely on each palmprint being relatively aligned, and simple movement beyond a few 

degrees causes the matching algorithm to perform poorly. This is a concern for 

palmar flexion crease identification as each image may exhibit varying degrees of 

rotation or translation. To this end, an approach taken by Huang et al. (2008) uses 



 83 

pixel-to-area matching, in which a small area around each palmar flexion crease is 

compared. Huang et al.’s (2008) method produces good results even in cases where 

rotation and translation are present. Therefore, for palmar flexion crease matching, a 

similar method, allowing considerations to be made for variations in rotation and 

translation by calculating whether a point is contained within the boundary space of a 

palmar flexion crease, is required. 

To this end, as described in Chapter 3, a nearest neighbour algorithm can be used. 

For manual palmprint matching, again, as described in Chapter 3, due to the small 

number of control points and low dimensionality in each palmar flexion crease 

configuration, a simple linear nearest neighbour algorithm is sufficient. However, for 

automated palmprint matching, where the palmar flexion creases contain a greater 

number of control points, a more efficient nearest neighbour algorithm is required. 

To this end, a kd-tree is a special type of binary space-partitioning tree for organising 

points in a k-dimensional space, in which every node stores an approximately 

equivalent number of objects. For low dimensions, a kd-tree structure can be used for 

nearest neighbour queries in logarithmic time and linear space, creating an ideal 

candidate for 2-dimensional nearest neighbour searches (Panigrahy, 2008). 

Therefore, to compare the flexion creases of two palmprints, A  and B , the control 

points from each palmar flexion crease in A  can be added to a 2-dimensional kd-tree 

(Bentley, 1975), to which the control points from each palmar flexion crease in B  

can be compared using a nearest neighbour algorithm. 

To find the nearest neighbour to a point, q , the kd-tree can be traversed from the root 

node downwards, and at each step the direction of q  can be determined. This process 

is repeated until the node cell, c , that contains q  is found. As c  is bordered by a 

point, p , the distance, ),( qpd , from p  to q  can be calculated, along with all cells 

that lies within a distance of ),( qpd , to determine the nearest point and its distance. 

The distance between q  and its nearest neighbour can be used to determine if q  is 

within the boundary space of a palmar flexion crease. Any points that are within a 

certain distance can be considered correct matches. Given this theory, the total 

number of points and total number of matches can be used to create a match 

percentage. 



 84 

The algorithms described in this chapter were implemented on Microsoft Windows 

XP using Mathworks MATLAB R2007b, and the Python programming language 

with the NumPy, SciPy, and the Python Imaging Library (PIL) extensions. The 

algorithms were tested using The Hong Kong University of Science and 

Technology’s (2003) hand image database. The source code for each algorithm is 

available in appendix A. 

4.3. Results and discussion 

To evaluate the effectiveness of the algorithm described in Chapter 4.2, 100 palms 

from The Hong Kong University of Science and Technology’s (2003) hand image 

database were identified using manual and automated palmar flexion crease 

recognition, then compared. 10 images from each palm, that is, 1000 palmprint 

images in total, were identified using both the manual method described in Chapter 

3, and the automated method described above. Furthermore, prior to identification, as 

shown in Figure 53(a), each palmprint image was pre-processed using the method 

described in Chapter 4.2.1, where 30 pixels, or 1.05 cm, is removed from the left and 

right edges of each image, to extract a specific region of interest. After pre-

processing, for manual palmar flexion crease identification, the three major palmar 

flexion creases, that is, the thenar, the distal transverse, and the proximal transverse, 

were manually identified using the method described in Chapter 3. As shown in 

Figure 53(b), the result is a collection of smooth paths, that gently curve through the 

palmprint image, providing an accurate representation of the palmar flexion creases. 

Similarly, for automated palmar flexion crease identification, the three major palmar 

flexion creases were identified using the automated method described in Chapter 

4.2.1. However, as a palmprint image may contain wide flexion creases, that is, 

wider than an internal image seam, the same palmar flexion crease may be identified 

multiple times by successive image seams. For this reason, three vertical image 

seams and four horizontal image seams were automatically identified in each 

palmprint image, allowing the thenar, the distal transverse, and the proximal 

transverse to be accurately identified, even in the presence of strong secondary 

creases and wrinkles. However, to avoid multiple comparisons of the same palmar 

flexion crease, when multiple image seams, or partial image seams, follow the same 

path, only one image seam is retained. Figure 53(c) shows an example of two 

palmprint images from different palms with their image seams overlaid. 



 85 

   

(a) (b) (c) 

Figure 53. Palmprint images with their flexion creases identified using b) manual and c) 

automatic methods. 

To verify the accuracy of the proposed method, every manually identified set of 

palmar flexion creases was compared to every automatically identified set of palmar 

flexion creases using the method described in Chapter 4.2.2. For 100 palms, with 10 

palmprint images from each, a total of 1000000 comparisons were recorded in each 

experiment. For a single palm, 1% of these comparisons were considered genuine, 

while 99% were considered false. The failure to enrol rate, that is, the number of 

times the algorithm failed to identify any palmar flexion creases, for all experiments 

was zero. 

 
Figure 54. Mean coverage of manually identified flexion creases by automatically identified 

image seams when the two are overlaid. 



 86 

Figure 54 shows the mean palmar flexion creases coverage, that is, the amount of 

overlap between the boundary surrounding manually identified palmar flexion 

creases and automatically identified palmar flexion creases when the two are 

overlaid, for correct and incorrect comparisons at various boundary thresholds. For 

pixel-to-pixel comparisons, that is, for a boundary threshold of 1 pixel, the mean 

palmar flexion crease coverage is 39.68% for correct matches, and 8.46% for 

incorrect matches, giving a difference of 31.22%. For pixel-to-boundary matching, 

that is, at thresholds greater than 1 pixel, the difference between correct and incorrect 

coverage rises to 63.32%. However, this difference declines as the threshold size 

increases and false matches become frequent. A compromise between false 

acceptance coverage and genuine acceptance coverage is required. 

The ROC curve of genuine acceptance rates against false acceptance rates for various 

thresholds is shown in Figure 55. A single comparison is considered genuine if two 

conditions are met: first, if both features are from the same palm, and second, if the 

palmar flexion crease coverage is above a given threshold. All other comparisons are 

considered false. As shown in Figure 55, palmar flexion creases can be identified in 

online palmprint images with a 100% GAR, and with a 0.0045% FAR, at a 2 or 3 

pixel matching boundary. This equates to 10000 correct matches, and 45 incorrect 

matches, per 1000000 comparisons. Furthermore, at a 2 pixel matching boundary, if 

the GAR is reduced to 99.9%, the FAR can be improved approximately fourfold to 

0.0011%. 

 
Figure 55. ROC curve for automatic to manual palmar flexion crease identification at different 

threshold levels. 



 87 

These results show internal image seams to be an effective method of palmar flexion 

crease recognition, by confirming that internal image seams are capable of 

identifying the actual location of palmar flexion creases in online palmprint images. 

Furthermore, internal image seams provide a number of benefits over existing palmar 

flexion crease identification methods. Non-uniform contrast and noise are filtered by 

the energy function prior to flexion crease identification, efficiently removing false 

edges, superficial secondary creases, and wrinkles. Line direction and wide flexion 

creases are identified inherently during the image seam extraction process, ensuring 

the most prominent lines, and therefore the major palmar flexion creases, are 

identified correctly. Furthermore, an alternative application of automated flexion 

crease recognition can be found in forensic science, where flexion creases can be 

identified in partial palmprint images, and in multiple image formats, such as 

developed latent palmprints recovered from scenes of crime, and inked or Livescan 

images, as collected by law enforcement agencies (Police IT Organisation, 2005). 

Consequently, the method presented here has been designed with the potential to be 

format independent, allowing palmar flexion creases to be compared across multiple 

fields, and through changing image formats. This is not true for many palmprint 

identification methods, as they are often specific to one type of image, and use 

format dependent identification metrics. However, the success of internal image 

seams as a method for identifying palmar flexion creases, in any image format, 

depends on the effectiveness of the energy function it receives. The importance of a 

pixel in an online palmprint image differs from that in an inked palmprint image, and 

therefore considerations need to be made for each image format. 

Internal image seams are an efficient method of palmar flexion crease recognition, 

that can be implemented with minimal storage requirements. As only the image 

seams are stored, the reduction in requirements, compared to a complete palmprint 

image, are substantial. This is particularly important in forensic science systems, 

where over 10 million records are routinely stored (Scottish Police Services 

Authority, 2007). Given these advantages, automated flexion crease identification 

using internal image seams shows promising results as an automated palmar flexion 

crease recognition system. 



 88 

4.4. Summary 

This chapter presented a method of automated palmar flexion crease identification 

for online palmprint images. In 1000 online palmprint images from 100 palms, when 

compared to manually identified palmar flexion creases, experimental results showed 

that palmar flexion creases can be identified automatically with a 100% genuine 

acceptance rate and a 0.0045% false acceptance rate. In Chapter 5, palmar flexion 

creases are automatically extracted and compared in two online palmprint image data 

sets to determine if palmar flexion creases can be used as an effective method of 

online palmprint identification. 



 89 

5. Automated palmprint identification 

The results presented in Chapter 4 showed that palmar flexion creases can be 

automatically extracted from online palmprint images with a 100% GAR, and a 

0.0045% FAR, when compared to manually identified palmar flexion creases. 

However, any method of automated palmprint identification must be capable of 

comparison between palmprint images, that is, automated to automated comparison. 

For this reason, this chapter, using the same feature extraction and matching method 

as in Chapter 4, uses two online palmprint image data sets to determine if automated 

palmar flexion crease recognition can be used as an effective method of online 

palmprint identification. 

5.1. Introduction 

An improved method of automated palmprint identification has the potential to 

simplify operating procedure, increase identification speed, and reduce database 

search times, leading to more successful identifications, and improved offender 

identification speed. To this end, the results presented in Chapter 3 established the 

feasibility of palmar flexion crease identification, by showing that palmar flexion 

creases can be used to identify palmprint images with a 99.2% GAR and a 0% FAR, 

when labelled within 10 pixels, or 3.7mm, of the palmar flexion crease. Similarly, 

the results presented in Chapter 4 showed that, using a new method of automated 

palmar flexion crease recognition, palmar flexion creases can be automatically 

extracted from online palmprint images with a 100% GAR and a 0.0045% FAR, 

when compared to manually identified palmar flexion creases. Given these results, 

the basis for an improved method of automated palmprint identification can be 

defined. However, any method of automated palmprint identification must be 

capable of comparison between palmprint images, that is, automated to automated 

comparison. For this reason, this chapter, using the same feature extraction and 

matching method as in in Chapter 4, uses two online palmprint image data sets to 

determine if automated palmar flexion crease recognition can be used as an effective 

method of online palmprint identification. 



 90 

5.2. Materials and methods 

To determine if automated palmar flexion crease recognition can be used as an 

effective method of online palmprint identification, an online palmprint image data 

set needs to be created. To this end, The Hong Kong University of Science and 

Technology’s (2003) hand image database provides 1000 online palmprint images, 

measuring a mean of 380380  pixels at 72 pixels per inch, from the left hand palm 

of 100 people, captured during a single session. Figure 56(a) shows an example of a 

palmprint image from The Hong Kong University of Science and Technology’s 

(2003) hand image database.  

  

(a) (b) 

Figure 56. An online palmprint image from a) The Hong Kong University of Science and 

Technology’s (2003) hand image database, and b) The Hong Kong Polytechnic University’s 

(2003) palmprint image database. 

However, as the database contains palmprint images from only 100 people, the 

variation in palmar flexion crease configurations is low, and inconsistencies in image 

capture quality, orientation, and palmprint coverage, as found in real world data sets, 

are few. For this reason, The Hong Kong University of Science and Technology’s 

(2003) hand image database cannot be used to provide a suitable comparison against 

other palmar flexion crease identification studies, in which larger, more variable 

online palmprint image data sets are used (Wu et al., 2004b; Wu et al., 2006; Huang 

et al., 2008; Jai et al., 2008). An alternative online palmprint image data set is 

required. 

To this end, The Hong Kong Polytechnic University’s (2003) palmprint image 

database is an online palmprint image database containing 7752 grayscale palmprint 

images corresponding to 386 different palms. Using a real time palmprint acquisition 

device (Zhang et al., 2003), approximately 20 online palmprint images, measuring 



 91 

284384  pixels at 72 pixels per inch, were collected over two sessions from each of 

the 386 palms. The mean interval between the first and second session was two 

months, and approximately 10 palmprint images were captured per palm in each 

session. Figure 56(b) shows an example of an online palmprint image from The 

Hong Kong Polytechnic University’s (2003) palmprint image database. 

The Hong Kong Polytechnic University’s (2003) palmprint image database provides 

a suitable data set for determining the efficacy of palmprint identification using 

palmar flexion creases, and provides a platform for establishing a comparison with 

existing palmar flexion crease identification methods, many of which use the same 

data set (Wu et al., 2004b; Wu et al., 2006; Huang et al., 2008; Jai et al., 2008). 

However, unlike The Hong Kong University of Science and Technology’s (2003) 

hand image database, some pre-processing of the data set is required. As shown in 

Figure 56(b), The Hong Kong Polytechnic University’s (2003) palmprint image 

database contains extraneous data from the image acquisition process, such as the 

fingers, background, and outline of the palm, that is not required for feature 

extraction and matching. To remove this data, and extract the region of interest, a 

pre-processing method must be defined. 

The aim of pre-processing is to place each image under the same coordinate system, 

so that the correct area of each palmprint can be extracted for feature extraction and 

matching (Zhang and Shu, 1999). To this end, a number of pre-processing methods, 

based on the type of acquisition device, format of the palmprint image, and desired 

region of interest, have been proposed (Han, 2003; Zhang et al., 2003; Han, (2004); 

Poon et al., (2004); Kong et al., (2009). However, as described in Chapter 2, in each 

of these methods, the same basic algorithm is employed: 

1. The palmprint image is converted to a binary image using a given threshold. 

2. The contour of the hand and/or fingers are extracted from the binary image, a 

number of key points are detected, and a coordinate system is defined. 

3. The central part sub-image is extracted. 

To this end, given an image from The Hong Kong Polytechnic University’s (2003) 

palmprint image database, and using Otsu’s (1979) method to automatically 

determine a threshold value that minimises the intra-class variance of the black and 

white pixels, the palmprint image can be converted to a binary image. Then, by 



 92 

identifying each component, that is, each 8-connected area in the image where the 

pixel value is set to logical 1, and calculating the number of pixels in each 

component, the largest object, and therefore, the palmprint image, can be isolated. 

Figure 57 shows stage one of the palmprint pre-processing method. 

   

(a) (b) (c) 
Figure 57. a) A palmprint image (The Hong Kong Polytechnic University, 2003), b) converted to 

a binary image, and c) isolated from the background. 

In stage two, to define a coordinate system, the contour of the hand must be 

determined. Given a binary image, the contour of a component can be calculated by 

traversing the Moore neighbourhood, that is, the set of pixels which share an edge or 

vertex with a given pixel (Gonzalez and Woods, 2008). Figure 58 shows the Moore 

neighbourhood of a pixel, P . 

P1 P2 P3 

P8 P P4 

P7 P6 P5 

Figure 58. The Moore neighbourhood (P1, P2, …, P8) of a pixel, P. 

Using the Moore neighbourhood, when a starting pixel, P , in a component of a 

binary image, C , is set to logical 1, the contour of C  can be determined by 

examining each pixel in a clockwise direction, advancing until a new pixel that is set 

to logical 1 is encountered. The algorithm continues pixel by pixel until it is 

terminated by Jacob’s stopping criteria, that is, when the starting pixel has been 

visited n  times, where n  is at least 2, or when the starting pixel is visited a second 

time in the same manner in which it was entered (Gonzalez and Woods, 2008). As 

shown in Figure 59(a), given the above theory, and a binary image of an online 

palmprint image, the contour of the hand can be determined. 



 93 

   
(a) (b) (c) 

Figure 59. A palmprint image (The Hong Kong Polytechnic University, 2003) with a) the 

contour of the hand outlined, b) the central part sub-image outlined, and c) the region of 

interest outlined. 

Following this, using the contour of the hand, the local minima and maxima can be 

calculated, and the spaces in between the fingers can be determined. Using these 

spaces, a coordinate system can be defined, and, as shown in Figure 59(b), the 

central part sub-image of the hand can be extracted. Finally, as shown in Figure 

59(c), the central part sub-image can be rotated, and the largest possible rectangle 

within the palmprint component can be determined and extracted. Figure 60 shows 

the largest possible rectangle, and therefore, the region of interest, from an pre-

processed online palmprint image from The Hong Kong Polytechnic University’s 

(2003) palmprint image database. 

 

Figure 60. The region of interest from an online palmprint image (The Hong Kong Polytechnic 

University, 2003). 

After pre-processing, the online palmprint image is ready for feature extraction and 

matching. In this chapter, the same feature extraction and matching methods as 

described in Chapter 4 are used, in which internal image seams (Avidan and Shamir, 

2007) extract the palmar flexion creases, and a nearest neighbour algorithm defines a 

matching score for comparison. 

The algorithms described in this chapter were implemented on Microsoft Windows 7 

using Mathworks MATLAB R2007b. The algorithms were tested using The Hong 



 94 

Kong Polytechnic University’s (2003) palmprint image database. The source code 

for each algorithm is available in appendix A. 

5.3. Results and discussion 

Given the pre-processing method described in Chapter 5.2, and The Hong Kong 

Polytechnic University’s (2003) palmprint image database, an online palmprint 

image data set, that can be used to determine if automated palmar flexion crease 

recognition is an effective method of online palmprint identification, can be created. 

However, in order to determine the effects of automated palmar flexion crease 

identification in databases of different sizes, and to compare the results for automated 

palmprint identification with those presented in Chapter 3, a comparison must first be 

performed using The Hong Kong University of Science and Technology’s (2003) 

hand image database. Therefore, in this Chapter, palmar flexion creases from two 

online palmprint image databases are extracted and compared: first, from The Hong 

Kong University of Science and Technology’s (2003) hand image database, and 

second, from The Hong Kong Polytechnic University’s (2003) palmprint image 

database. 

To compare the results for automated palmprint identification to those presented in 

Chapter 3 for manual palmprint identification, palmar flexion creases from 1000 

online palmprint images, that is, 10 images each from 100 different left hand palms, 

from The Hong Kong University of Science and Technology’s (2003) hand image 

database were pre-processed, extracted, then compared. Each palmprint image, 

measuring a mean of 380380  pixels at 72 pixels per inch, was pre-processed using 

the method described in Chapter 4, where 30 pixels, or 1.05 cm, is removed from the 

left and right edges to extract a specific region of interest. Then, the three major 

palmar flexion creases, that is, the thenar crease, the distal transverse crease, and the 

proximal transverse crease, were automatically extracted from each palmprint image, 

again, using the method described in Chapter 4. Furthermore, after feature extraction, 

each set of palmar flexion creases were compared, using the nearest neighbour 

algorithm described in Chapter 4, and the GAR and FAR were calculated. 

However, as a palmprint image may contain wide flexion creases, that is, wider than 

an internal image seam, the same palmar flexion crease may be identified multiple 

times by successive image seams. For this reason, three vertical image seams and 



 95 

four horizontal image seams were automatically identified in each palmprint image, 

allowing the thenar, the distal transverse, and the proximal transverse to be 

accurately identified, even in the presence of strong secondary creases and wrinkles. 

Furthermore, to avoid multiple comparisons of the same palmar flexion crease, when 

multiple image seams, or partial image seams, follow the same path, only one image 

seam is retained. 

Figure 61 shows the receiver operating characteristic curve for automated palmar 

flexion crease identification for online palmprint images from The Hong Kong 

University of Science and Technology’s (2003) hand image database. 

 
Figure 61. Receiver operating characteristics curve for automated palmar flexion crease 

identification for online palmprint images from The Hong Kong University of Science and 

Technology’s (2003) hand image database. 

The results presented in Figure 61, with a GAR of 98.3% and a FAR of 0%, show the 

automated palmprint identification method presented here to be comparable with the 

results shown in Chapter 3 for manual palmprint identification, when the palmar 

flexion creases are identified manually within 10–12 pixels, or 3.5–4.2 mm, of the 

actual flexion creases. Thus, the automated palmprint identification method achieves 

the same results as manual palmprint identification, when the palmar flexion creases 

are labelled within 10–12 pixels, or 3.5–4.2 mm. Furthermore, with an EER of 0.3%, 

these results are also comparable with other automated palmprint identification 

methods (Kong et al., 2009), in particular, those presented by Wu et al. (2004b), Liu 



 96 

and Zhang (2005), Wu et al. (2006), Huang et al. (2008), and Jia eta al. (2008), who 

also used the palmar flexion creases as a metric for their identification methods. 

However, as the results presented here are for a small sample, low variation 

palmprint database (The Hong Kong University of Science and Technology, 2003), 

the FAR can be expected to increase, and the GAR decrease, when the sample size 

increases. Furthermore, various factors can affect the quality of a palmprint image, 

such as bruising, scars or cuts, and worn friction ridge skin. While image defects, 

rotation, translation, and non-uniform contrast are present, they are relatively low 

compared to a real world data set, where there are often inconsistencies in image 

capture quality, orientation, and palmprint coverage (Ashbaugh, 1999a). For this 

reason, The Hong Kong University of Science and Technology’s (2003) hand image 

database does not provide a suitable platform for comparison, and, therefore, analysis 

using The Hong Kong Polytechnic University’s (2003) palmprint image database is 

required. 

Given The Hong Kong Polytechnic University’s (2003) palmprint image database, 

and the automated palmar flexion crease extraction and matching methods described 

above, palmar flexion creases from the online palmprint image data set can be 

automatically extracted and compared. However, to provide an accurate comparison 

with other automated palmprint identification methods, the same method of analysis 

should be adopted for each algorithm in the comparison. To this end, the most 

appropriate method of analysis is to compare each algorithm against the same data 

set under the same test conditions. Therefore, for this approach, each algorithm is 

required. Table 5 lists the automated palmar flexion crease identification algorithms 

suitable for comparison. 

 

 

 

 

 

 

 



 97 

Table 5. A summary of automated palmprint identification algorithms suitable for comparison. 

Method Title 

Kung et al. (1995) A neural network approach to face/palm recognition 

Rodrigues et al. (1996) Biometric identification by dermatoglyphics 

Boles and Chu (1996) Personal identification using images of the human palm 

Wu et al. (2002a) Fuzzy directional element energy feature (FDEEF) based 

palmprint identification 

Wu et al. (2004a) A novel approach of palm-line extraction 

Wu et al. (2004b) Palmprint recognition using directional line energy feature 

Liu and Zhang (2005) Palm-line detection 

Li and Leung (2006) Hierarchical identification of palmprint using line-based Hough 

transform 

Wu et al. (2006) Palm line extraction and matching for personal authentication 

Huang et al. (2008) Palmprint verification based on principal lines 

Jia et al. (2008) Palmprint verification based on robust line orientation code 

To obtain each algorithm listed in Table 5, the corresponding author was determined, 

and a communication was sent, requesting access to the algorithm. Unfortunately, in 

all cases, the request was not returned, or the algorithm was no longer available. 

Appendix B lists the requests and responses from each author. 

Given these results, an alternative method of analysis is required. Therefore, given 

the same data set, that is The Hong Kong Polytechnic University’s (2003) palmprint 

image database, as in Jia et al. (2008), Huang et al. (2008), Wu et al. (2006), and Lui 

and Zhang (2005), it was decided that the same method of analysis as presented in 

these should be used. To this end, in the first instance, each online palmprint image 

was pre-processed using the method described in Chapter 5.2, then, 3 palmprint 

images from each of the 386 palms were randomly chosen as training set to be used 

as a template for matching. A further 10 images were then chosen, again, randomly, 

as a test set, except in one instance, where only 8 images were available. The training 

set contained 1158 online palmprint images, while the test set contained 3858 online 

palmprint images from all 386 palms in The Hong Kong Polytechnic University’s 

(2003) palmprint image database. Furthermore, there was no overlap between images 

in the training set and the test set, in that no single image appeared in both sets. 

Finally, the palmar flexion creases were extracted from all images in both sets, and 

those from the test set were compared to all of those from the training set. The total 

number of comparisons over all images was 4467564, of which 11574 were 

considered correct, that is, from the same palm, and 4455990 were considered 

incorrect, that is, not from the same palm. Furthermore, as each image in the test set 



 98 

correctly matches three images in the training set, a comparison was considered 

correct if the following conditions were met: 

 if the palmprint image from the test set was from any of the three palmprint 

images from the same palm in the training set, 

if the matching score was above a given 

threshold.

 
Figure 62 shows the receiver operating characteristic curve for automated palmar 

flexion crease identification in comparison with that of Huang et al. (2008) and Jai et 

al. (2008) for online palmprint images from The Hong Kong Polytechnic 

University’s (2003) palmprint image database. 



 99 

 
Figure 62. Receiver operating characteristic curve for automated palmar flexion crease 

identification for online palmprint images from The Hong Kong Polytechnic University’s (2003) 

palmprint image database. 

As shown in Figure 62, the EER, that is, the rate at which the FAR and FRR are 

equal, of 0.415% improves on that presented by Huang et al. (2003). However, it 

does not improve on the 0.16% EER of Jia et al. (2008), who used a similar approach 

to Huang et al. (2003), but with an improved matching method. To complete the 

comparison, Table 6 shows a summary of palmar flexion creases extraction and 

matching methods and their corresponding EER. 

 

Table 6. A summary of palmar flexion crease extraction method results. 

Method Features Images Palms EER (%) 

Kung et al. (1995) Major creases 

Secondary creases 

Wrinkles 

96 32 
a 

Rodrigues and Silva (1996) Major creases 15 
a a

 

Boles and Chu (1997) Major creases 

Secondary creases 

10 3 
a 

Zhang and Shu (1999) Major creases 

Secondary creases 

200 20 
a 

Wu et al. (2002a) Major creases 

Secondary creases 

450 50 
a
 

Wu et al. (2004a) Major creases 

Secondary creases 

Wrinkles 

a
 

a
 

a
 

Wu et al. (2004b) Major creases 3200 320 2.08 



 100 

Method Features Images Palms EER (%) 

Liu and Zhang (2005) Major creases 

Secondary creases 

Wrinkles 

600 

7752 

100 

386 

1.00 

0.4 

Li and Leung (2006) Major creases 600 100 
a
 

Wu et al. (2006) Major creases 

Secondary creases 

7605 

7752 

a 

368 

0.4 

0.44 

Huang et al. (2008) Major creases 
a 

7752 

100 

368 

0.49 

0.565 

Jia et al. (2008) Major creases 7752 368 0.16 

Internal image seams Major creases 7752 368 0.415 

a
 Data not available. 

Rodrigues and Silva (1996) used a Sobel filter with morphological thinning to 

identify palmar flexion creases in 15 palmprint images, and obtained a variance of 

30.48 between palmprints from different persons, and of 0.4751 between those from 

the same person. Similarly, Wu et al. (2004a) used multiple morphological 

operations with directional structuring elements to effectively extract major palmar 

flexion creases, secondary creases, and wrinkles. However, with these approaches, 

false edges created by noise and non-uniform contrast, or strong secondary creases 

and wrinkles, can interfere with the extraction process, making explicit major palmar 

flexion crease identification difficult. Furthermore, without a two-stage process, such 

as that described in Wu et al. (2004a), missing or broken flexion creases are easily 

introduced. 

Wu et al. (2002a) and Wu et al. (2004b) used fuzzy directional element energy 

features and directional line energy features to obtain identification rates of 97.2% 

and 97.5%, respectively, the latter with a 2.08% EER. Conversely, Liu and Zhang 

(2005) presented a line detector, using an isotropic non-linear filter, with which 

directional elements were not detected, and achieved a 1.0% EER. However, as 

reported in Huang et al. (2008) line direction is an important feature that can be used 

to distinguish major palmar flexion creases from secondary creases and wrinkles. 

Furthermore, Liu and Zhang’s (2005) method often incorrectly extracts small dark 

patches as secondary creases, and may fail when the palmar flexion creases are not 

clearly visible. Wu et al. (2006) identified palmar flexion creases as roof edges, and 

extracted them using directed line detectors, to obtain a 0.4% EER. However, 

palmprint images containing wide flexion creases proved difficult to extract, 

resulting in missing or broken lines. Jia et al. (2008) remedied this by using a 



 101 

modified finite Radon transform to achieve a 0.16% EER. Also using a modified 

finite Radon transform, Huang et al. (2008) used two databases, I and II, to establish 

the efficacy of palmar flexion crease identification in data sets of different sizes. 

Database I contained palmprints from 100 palms, while database II contained 

palmprints from 386 palms. A 0.49% EER in database I and a 0.565% EER in 

database II was obtained. From these results, Huang et al. (2008) concluded that as 

the size of the data set increases, a larger percentage of palmprints will contain major 

flexion creases of a similar configuration, and false identification will increase.  

Consequently, this is true of the results presented here. As expected, the EER for 

comparisons using 100 palms from The Hong University of Science and 

Technology’s (2003) hand image database increased 0.115% from 0.3% to 0.415% 

when 386 palms from The Hong Kong Polytechnic University’s (2003) palmprint 

image database were compared. 

However, despite this increase, as shown in Table 6, the EER of the method 

described here improves on that presented by Wu et al. (2004b), and is comparable 

with those shown by Huang et al. (2008), Wu et al. (2006), and Lui and Zhang 

(2005). The results show that palmar flexion crease recognition using internal image 

seams can be used as an effective method of online palmprint identification. That 

said, the 0.16% EER presented by Jai et al. (2008) suggests that an improved method 

can be designed. As shown by the receiver operating characteristic curve in Figure 

62, the method presented here is less sensitive to changes in matching threshold, that 

is, the FAR and FRR do not improve as well as expected with changes in the 

matching threshold, which suggests that the matching method is less robust than 

other methods. However, as explained in Chapter 4, internal image seams provide a 

number of benefits over existing palmar flexion crease identification methods. Non-

uniform contrast and noise are filtered by the energy function prior to flexion crease 

identification, efficiently removing false edges, superficial secondary creases, and 

wrinkles. Furthermore, line direction and wide flexion creases are identified 

inherently during the image seam extraction process, ensuring the most prominent 

lines, and therefore the major palmar flexion creases, are correctly identified. 



 102 

5.4. Summary 

This chapter, using the same feature extraction and matching method as in Chapter 4, 

presented results for automated palmar flexion crease identification in two online 

palmprint image data sets. The 0.3% EER in a database of 100 palms from The Hong 

Kong University of Science and Technology’s (2003) hand image database, and 

0.415% in a database of 386 palms from The Hong Kong Polytechnic University’s 

(2003) palmprint image database, suggests that automated palmar flexion crease 

recognition using internal image seams can be used as an effective method of online 

palmprint identification. In Chapter 6, a summary and evaluation of the results and 

discussions from Chapters 3, 4, and 5 are presented, and an overview of the 

development of palmprint identification using palmar flexion creases, and the 

original contributions to knowledge in this thesis, are discussed. 



 103 

6. Conclusions 

As an aid to the reader, this chapter restates the research question, gives a brief 

overview of the palmprint identification methods presented in this thesis, and 

presents a summary of the experimental results collected using those methods. 

Furthermore, a discussion of the results, and the limitations of the proposed methods, 

as well as some possible solutions, are presented. 

6.1. Summary 

The aim of this thesis was to investigate the following research question: to what 

extent can automated palmar flexion crease recognition be used to identify online 

palmprint images? 

To this end, in the first instance, that is, in Chapter 3, a new method of manual 

palmprint identification was presented, in which palmar flexion creases were 

identified using cardinal splines, subject to a variety of alterations to mimic the 

effects of rotation, displacement, and degradation, and compared using generalised 

Procrustes analysis and a sum of distances metric. The results for manual palmprint 

identification showed that palmar flexion creases from 100 palms, each modified 10 

times, when labelled within 10 pixels, or 3.5 mm of the flexion crease, can be 

identified with a 99.2% genuine acceptance rate and a 0% false acceptance rate. 

While little work has been reported on palmprint identification for forensic 

applications, these results are comparable with hand-based biometric systems, such 

as hand geometry (Rahman et al., 2008) and the natural layout of the hands (Adan et 

al., 2008). 

Furthermore, the results for manual palmprint identification show that current 

palmprint identification processes may be improved using new identification metrics, 

such as palmar flexion creases, that leverage the beneficial identification qualities of 

palmprint images. Palmar flexion crease matching can improve palmprint 

identification through integration with existing systems, and through dedicated 

palmprint identification applications. Furthermore, palmar marks, in which minutiae 

are not present, such as those that are smudged or distorted, can be identified, and 

minutiae-based matching can be improved through hierarchical identification, in 

which palmar flexion creases are used to filter potential matches. However, the 



 104 

results presented in this thesis, that is, for manual palmprint identification, are for a 

small sample, low variation, palmprint database (The Hong Kong University of 

Science and Technology, 2003). In all cases, each flexion crease could be easily 

identified, and while image defects are present, they are relatively low compared to a 

real world data set. Through imperfect user input, caused by image quality 

inconsistencies or partial marks from scenes of crime, incorrect matches may be 

introduced, for which considerations must be made. Furthermore, when a complete 

palmprint image is presented, sufficient minutiae will normally be available to 

achieve identification. To this end, the manual palmprint identification method 

presented in this thesis is not intended to be a replacement for palmprint 

identification using traditional methods. The value of palmar flexion crease 

identification comes from their use in partial palmprint images or as a fast pre-filter, 

where palmar flexion creases may be used to complement existing identification 

methods. 

Given the importance of automated identification in forensic science and biometrics, 

any new palmprint identification metric must be capable of secure, efficient, and cost 

effective automation. To this end, in Chapter 4, a method of automated flexion crease 

recognition, that can be used to automatically identify palmar flexion creases in 

online palmprint images, was presented. Using a modified internal image seams 

algorithm, a palmar flexion crease can be identified as an optimal, 8-connected path 

of pixels in a palmprint image, from top to bottom, or left to right, that contains 

higher than expected energy compared to all possible connected seams. When 

combined with an appropriate energy function, the proposed algorithm can be used to 

identify major palmar flexion creases, or secondary creases, in online palmprint 

images. The experimental results for automated palmar flexion crease recognition 

showed that in 1000 palmprint images from 100 palms, when compared to manually 

identified palmar flexion creases, a 100% genuine acceptance rate can be achieved, 

with a false acceptance rate as low as 0.0045%. These results confirm that automated 

palmar flexion crease recognition using internal image seams is capable of 

identifying the actual location of palmar flexion creases in online palmprint images. 

Furthermore, internal image seams, as a method of palmar flexion crease 

identification, provide a number of benefits over existing automated flexion crease 

identification methods. Non-uniform contrast and noise are filtered prior to flexion 



 105 

crease identification, efficiently removing false edges, superficial secondary creases, 

and wrinkles. Line direction and wide palmar flexion creases are identified 

inherently during the internal image seam extraction process, ensuring the most 

prominent lines, and therefore, the palmar flexion creases, are identified correctly. 

Internal image seams are an efficient method of palmar flexion crease identification, 

that can be implemented with minimal storage requirements. As only the internal 

image seams are stored, the reduction in requirements compared to storing a 

complete palmprint image are substantial. This is particularly important in forensic 

science systems, where over 10 million records are routinely stored (Scottish Police 

Services Authority, 2007). 

Finally, to determine if automated palmar flexion crease recognition can be used as 

an effective method of online palmprint identification, and to compare the results for 

automated palmar flexion crease identification to those presented in Chapter 3 for 

manual palmprint identification, Chapter 5 presented results for automated palmprint 

identification in two online palmprint image data sets. First, using the feature 

extraction and matching method as described in Chapter 4, the palmar flexion creases 

from 1000 online palmprint images from 100 palms (The Hong Kong University of 

Science and Technology, 2003) were extracted and compared, and an equal error rate 

of 0.3% was achieved. Then, using the same feature extraction and matching method, 

the palmar flexion creases from 7752 online palmprint images from 386 palms (The 

Hong Kong Polytechnic University, 2003) were extracted and compared, to achieve 

an equal error rate of 0.415%. These results are comparable with existing palmar 

flexion crease identification methods (Wu et al., 2004b; Liu and Zhang, 2005; Wu et 

al., 2006; Huang et al., 2008; Jia eta al., 2008), and show that palmar flexion crease 

recognition using internal image seams can be used as an effective method of online 

palmprint identification. 

Given the research question defined above, the two methods of manual and 

automated palmar flexion crease recognition presented in this thesis show that 

palmar flexion creases can be used to identify online palmprint images with a 

genuine acceptance rate and false acceptance rate comparable with other palm- and 

hand-based identification methods (Kong et al., 2009; Rahman et al., 2008;  Adan et 

al., 2008). However, because of the experimental nature of the work presented in this 

thesis, and the limited sample size of the given data sets (The Hong Kong 



 106 

Polytechnic University (2003); The Hong Kong University of Science and 

Technology, 2003), the data must be interpreted with caution. Given the observance 

of an increasing equal error rate with changes in the sample size, the results may not 

be transferrable to large scale data sets, such as those used in forensic science. That 

said, in forensic science, when a complete palmprint image is presented, sufficient 

detail will normally be available to achieve identification using established methods. 

To this end, the work presented in this thesis is not intended to be a replacement for 

palmprint identification using traditional methods. The value of palmar flexion 

crease identification comes from their use in palmprint images where minutiae are 

not present, such as those left on fabrics (Fraser et al., 2011) or in blood (Ashbaugh, 

1993), or as a fast pre-filter, where palmar flexion creases may be used to 

complement existing identification methods. 

6.2. Thesis contributions 

In this thesis, the design and implementation of two new methods of manual and 

automated palmar flexion crease identification have been used to determine the 

extent to which automated palmar flexion crease recognition can be used to identify 

online palmprint images. In answering this question, and given the aims and 

objectives specified in Chapter 1, the following original contributions have been 

identified and were investigated in this thesis: 

1. The design and implementation of a manual palmar flexion crease extraction, 

modification, and matching method, which enables the user to efficiently map 

the location of palmar flexion creases in a given palmprint image, assess the 

effects of palmar flexion crease distortions through rotation, displacement, 

and additive noise, and determine the similarity between two or more palmar 

flexion creases. 

2. The design and implementation of an automated palmar flexion crease 

extraction and matching algorithm, which is capable of automatically 

extracting palmar flexion creases from online palmprint images, and 

calculating a matching score that can be used to determine the similarity 

between two or more palmar flexion creases. 



 107 

6.3. Future work 

In recent years, significant efforts have been undertaken to integrate improved 

palmprint identification into existing automated identification systems (Federal 

Bureau of Investigation, 2005b; Police IT Organisation, 2005). Therefore, in the 

same way, it is important that efforts are made to ensure the successful integration of 

new palmprint identification methods with existing and future real-world 

applications. To this end, to aid integration with real-world applications, a number of 

recommendations can be given to expand the work in this thesis: 

1. To improve palmar flexion crease identification in a forensic context, 

investigations into the type of palmprint images that are commonly found at 

scenes of crime, and the position, quality, and frequency of palmar flexion 

creases in those images, should be undertaken. 

2. To improve palmprint identification when only small palmar flexion crease 

sections are available, additional related identification metrics, such as major 

accessory creases, should be investigated to help finger and palmprint 

examiners successfully, and confidently, identify partial palmprint 

impressions. 

3. To determine the feasibility of automated palmar flexion crease identification 

in large scale systems, such as in forensic science, further research should be 

undertaken to determine the efficacy of automated palmar flexion crease 

recognition by comparison of automatically identified palmar flexion creases 

in a large data set. 

Furthermore, given the experimental nature of the work presented in thesis, a number 

of enhancements can be recommended to improve the security, efficiency, and 

fallibility of the proposed identification algorithms: 

1. Alternative image importance measures for automated palmar flexion crease 

identification should be investigated, particularly for use with latent and 

Livescan or inked images. 

2. An algorithm should be developed to interpolate missing palmar flexion 

crease line segments in partial palmprint images to aid both manual and 

automated partial palmprint identification. 



 108 

References 

Adan, M., Adan, A., Vazquez, A.S. and Torres, R. (2008) Biometric 

verification/identification based on hands natural layout. Image and Vision Computing, 

26(4), pp.451–465. 

Ashbaugh, D.R. (1991a) Palmar flexion crease identification. Journal of Forensic 

Identification, 41(4), pp.255–273. 

Ashbaugh, D.R. (1991b) Ridgeology: modern evaluative friction ridge identification. 

Fingerprint Whorld, 17(1), pp.14–16. 

Ashbaugh, D.R. (1993) Palmar flexion crease identification. Fingerprint Whorld, 19(71), 

pp.7–15. 

Ashbaugh, D.R. (1999a) Quantitative-qualitative friction ridge skin analysis. Florida: CRC 

Press. 

Ashbaugh, D.R. (1999b) A science in transition. In The Forensic Science Service (1999b) 

Proceedings of the 1st International Conference on Forensic Human Identification in the 

Next Millenium, 24–26 October. London: The Forensic Science Service. 

Avidan, S. and Shamir, A. (2007) Seam carving for content-aware image resizing. ACM 

Transactions on Graphics, 26(3), pp.10:11–10:19. 

Babler, W.J. (1977) The prenatal origins of population differences in human 

dermatoglyphics. Ph.D. Thesis, University of Michigan. 

Babler, W.J. (1991) Embryological development of epidermal ridges and their 

configurations. Birth Defects: Original Article Series, 27(2), pp.95–112. 

Bentley, J.L. (1975) Multidimensional binary search trees used for associative searching. 

Communications of the ACM, 18(9), pp.509–517. 

Berge, J. (1977) Orthogonal Procrustes rotation of two or more matrices. Psychometrika, 

42(2), pp.267–276. 

Boles, W.W. and Chu, S.Y.T. (1997) Personal identification using images of the human 

palm. In Queensland University of Technology, School of Electrical and Electronic System 

Engineering (1997) Proceedings of the IEEE Region 10 Annual Conference on Speech and 

Image Technologies for Computing and Telecommunications, 2–4 December. Brisbane, 

Australia: IEEE, pp.295–298. 

Bolle, R.M., Ratha, N.K. and Pankanti, S. (2004) Performance evaluation in 1:1 biometric 

engines. in Li, S.Z. (ed.) Advances in Biometric Person Authentication: 5th Chinese 

Conference on Biometric Recognition, 13–14 December. Guangzhou, China: Springer,  

Boor, C.D. (2001) A practical guide to splines. New York City, New York: Springer. 

Burt, P.J. and Adelson, E.H. (1983) The Laplacian pyramid as a compact image code. IEEE 

Transactions on Communications, 31(4), pp.532–540. 

Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 8(6), pp.679–698. 



 109 

Champod, C. (2008) Fingerprint examination: towards more transparency. Law, Probability, 

and Risk, 7(2), pp.111–118. 

Champod, C., Lennard, C., Margot, P. and Stoilovic, M. (2004) Fingerprints and other ridge 

skin impressions. Boca Raton, Florida: CRC Press. 

Chen, F. and Lu, C.-T. (2008) Nearest neighbour query. in Shekhar, S. and Xiong, H. (eds.) 

Encyclopedia of GIS. New York: Springer, pp.776–787. 

Chen, J.-C. and Don, H.-S. (1992) Roof edge detection: a morphological skeleton approach. 

in Archibald, C. and Petriu, E. (eds.) Advances in machine vision: strategies and 

applications. River Edge, New Jersey: World Scientific, pp.171–192. 

Clark, J.D. (2002) ACE-V: is it scientifically reliable and accurate? Journal of Forensic 

Identification, 52(4), pp.401–408. 

Cole, S.A. (2004) History of fingerprint pattern recognition. in Ratha, N.K. and Bolle, R.M. 

(eds.) Automated fingerprint recognition systems. New York: Springer,  

Cole, S.A. (2006) Is fingerprint identification valid? Rhetorics of reliability in fingerprint 

proponents' discourse. Law and Policy, 28(1), pp.109–135. 

Davis, L.S. (1975) A survey of edge detection techniques. Computer Graphics and Image 

Processing, 4(1), pp.248–270. 

Duda, R. and Hart, P. (1973) Pattern classification and scene analysis. New York: John 

Wiley and Sons. 

Epstein, R. (2002) Fingerprints meet Daubert: the myth of fingerprint science is revealed. 

Southern California Law Review, 75(1), pp.605–657. 

Federal Bureau of Investigation (2005a) Electonic fingerprint transmission specification. 

IAFIS-DOC-01078-7.1, Clarksburg, West Virginia: Criminal Justice Information Services 

Division, Federal Bureau of Investigation. 

Federal Bureau of Investigation (2005b) Next generation integrated automated fingerprint 

identification (NGI) system. Requirements overview & analysis project, Clarksburg, West 

Virginia: Criminal Justice Information Services Division, Federal Bureau of Investigation. 

Fisher, B.A.J. (2004) Techniques of crime scene investigation. Florida: CRC Press. 

Fraser, J., Sturrock, K., Deacon, P., Bleay, S., and Bremmer, D.H. (2011) Visualisation of 

fingermarks and grab impressions on fabrics. Part 1: Gold/zinc vacuum metal deposition. 

Forensic Science Interntional, 208(1–3), pp.74–78. 

Frei, W. and Chen, C.C. (1977) Fast boundary detection: a generalization and a new 

algorithm. IEEE Transactions on Computers, 26(10), pp.988–998. 

Fuchs, E. (1999) Epidermal differentiation: the bare essentials. The Journal of Cell Biology, 

111(6), pp.2807–2814. 

Galton, F. (1892) Finger Prints. London: MacMillan and Co. 

Goa, Y. and Leung, M.K.H. (2002) Face recognition using line edge map. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 24(6), pp.764–779. 



 110 

Gonzalez, R.C. and Woods, R.E. (2008) Digital image processing. 3rd ed., Upper Saddle 

River, New Jersey: Prentice Hall. 

Goodall, C. (1991) Procrustes methods in the statistical analysis of shape. Journal of the 

Royal Statistical Society: Series B, 53(2), pp.285–339. 

Gower, J.C. (1975) Generalized Procrustes analysis. Psychometrika, 40(1), p.33—51. 

Haber, L. and Haber, R.N. (2008) Scientific validation of fingerprint evidence under 

Daubert. Law, Probability, and Risk, 7(2), pp.87–109. 

Hale, A.R. (1949) Breath of epidermal ridges in the human fetus and its relation to the 

growth of the hand and foot. The Anatomical Record, 105(4), pp.763–776. 

Hale, A.R. (1952) Morphogenesis of volar skin in the human fetus. American Journal of 

Anatomy, 91(1), pp.147–181. 

Han, C.C. (2004) A hand-based personal authentication using a coarse-to-fine strategy. 

Image and Vision Computing, 22(11), pp.909–918. 

Han, C.C., Cheng, H.L., Lin, C.L. and Fan, K.C. (2003) Personal authentication using palm-

print features. Pattern Recognition, 36(2), pp.371–381. 

Haralick, R.M. (1984) Digital step edges from zero crossing of second directional 

derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1), pp.58–

68. 

Haralick, R.M., Sternberg, S.R. and Zhuang, X. (1987) Image analysis using mathematical 

morphology. Pattern Analysis and Machine Intelligence, 9(4), pp.532–550. 

Henry, E.R. (1900) Classification and uses of finger prints. 4th ed., London: Georges 

Routledge. 

Huang, D.-S., Jia, W. and Zhang, D. (2008) Palmprint verification based on principal lines. 

Pattern Recognition, 41(4), pp.1316–1328. 

Huber, R.A. (1972) The philosophy of identification. RCMP Gazette, 34(7–8), pp.9–14. 

Interpol (2004) AFIS requirements. Model clauses for AFIS acquisition, Lyon, France: 

Interpol AFIS Expert Group. 

Jain, A. and Feng, J. (2009) Latent palmprint matching. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 31(6), pp.1032–1047. 

Jia, W., Huang, D.-S. and Zhang, D. (2008) Palmprint verification based on robust line 

orientation code. Pattern Recognition, 41(4), pp.1316–1328. 

Keegan, J.F. (1977) How can you tell if two line drawings are the same? Computer Graphics 

and Image Processing, 6(1), pp.90–92. 

Kimura, S. (1991) Embryologic development of flexion creases. Birth Defects: Original 

Article Series, 27(2), pp.113–129. 

Kimura, S. and Kitagawa, T. (1986) Embryological development of human palmar, plantar, 

and digital flexion creases. The Anatomical Record, 216(2), pp.191–197. 



 111 

Kochanek, D.H.U. and Bartels, R.H. (1984) Interpolating splines with tension, continuity, 

and bias control. Computer Graphics, 18(3), pp.33–41. 

Kodicek, D. (2005) Mathematics and physics for programmers. Hingham, Massachusetts: 

Charles River Media, Inc. 

Kong, A. and Zhang, D. (2004) Competitive coding scheme for palmprint verification. In 

International Association of Pattern Recognition (2004) Proceedings of the 17th 

International Conference on Pattern Recognition, 23–26 August. Cambridge, UK: IEEE 

Computer Society, pp.520–523. 

Kong, A., Zhang, D. and Kamel, M. (2006a) Palmprint identification using feature level 

fusion. Pattern Recognition, 39(3), pp.478–487. 

Kong, A., Zhang, D. and Kamel, M. (2009) A survey of palmprint recognition. Pattern 

Recognition, 42(7), pp.1408–1418. 

Kong, A., Zhang, D. and Lu, G. (2006b) A study of identical twins' palmprints for personal 

verification. Pattern Recognition, 39(11), pp.2149–2156. 

Kong, J., Lu, Y., Wang, S., Qi, M. and Li, H. (2008) A two-stage neural network-based 

personal identification system using handprint. Neurocomputing, 71(4–6), pp.641–647. 

Kong, S.G., Heo, J., Abidi, B.R., Paik, J. and Abidi, M.A. (2005) Recent advances in visual 

and infrared face recognition. Computer Vision and Image Understanding, 97(1), pp.103–

135. 

Kong, W. and Zhang, D. (2002) Palmprint texture analysis based on low-resolution images 

for personal authentication. In International Association of Pattern Recognition (2002) 

Proceedings of the 16th International Conference on Pattern Recognition, 11–15 August. 

Quebec, Canada: IEEE Computer Society, pp.807–810. 

Kovesi, P. (1999) Image features from phase congruency. Journal of Computer Vision 

Research, 1(3), pp.2–26. 

Kovesi, P. (2002) Edges are not just steps. In Australian Pattern Recognition Society (2002) 

Proceedings of the 5th Asian Conference on Computer Vision, 23–25 January. Melbourne, 

Australia: Australian Pattern Recognition Society, pp.822–827. 

Kovesi, P. (2003) Phase congruency detects corners and edges. In Australian Pattern 

Recognition Society (2003) Proceedings of the 7th Australian Pattern Recognition Society 

Conference in Digital Image Computing, 10–12 December. Sydney, Australia: Australian 

Pattern Recognition Society, pp.309–318. 

Kumar, A., Wong, D.C.M., Shen, H.C. and Jain, A.K. (2003) Personal verification using 

palmprint and hand geometry biometric. Lecture Notes In Computer Science, 2688(1), 

pp.668–678. 

Kung, S.Y., Lin, S.H. and Fang, M. (1995) A neural network approach to face/palm 

recognition. In Institute of Electrical and Electronic Engineers, IEEE Signal Processing 

Society (1995) Proceedings of the IEEE Workshop on Neural Networks for Signal 

Processing, 1–2 September. Cambridge, Massachusetts: IEEE Signal Processing Society, 

pp.323–332. 

Lacroix, B., Wolff-Quenot, M. and Haffen, K. (1984) Early human hand morphology: an 

estimation of fetal age. Early Human Development, 9(2), pp.127–136. 



 112 

Lee, T.S. (1996) Image representation using 2D Gabor wavelets. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 18(10), pp.959–971. 

Li, F. and Leung, M.K.H. (2006) Hierarchical identification of palmprint using line-based 

Hough transform. In International Association of Pattern Recognition (2006) Proceedings of 

the 18th International Conference on Pattern Recognition, 20–24 August. Hong Kong, 

China: IEEE Computer Society, pp.149–152. 

Li, W. (2003) Authenticating personal identities using palmprint recognition. Ph.D. Thesis, 

The Hong Kong Polytechnic University. 

Li, W., Xia, S., Zhang, D. and Xu, Z. (2003a) A new palmprint segmentation method based 

on an inscribed circle. Image Processing and Communication, 9(2), pp.63–70. 

Li, W., Zhang, D. and Xu, Z. (2003b) Image alignment based on invariant features for 

palmprint identifciation. Signal Processing: Image Communication, 18(5), pp.373–379. 

Libal, A. (2006) Fingerprints, bite marks and ear prints. Pennsylvania: Mason Crest. 

Liu, L. and Zhang, D. (2005) Palm-line detection. In Institute of Electrical and Electronic 

Engineers, IEEE Signal Processing Society (2005) Proceedings of the International 

Conference on Image Processing, 11–14 September. Genoa, Italy: IEEE Signal Processing 

Society, pp.269–272. 

Lu, G., Zhang, D. and Wang, K. (2003) Palmprint recognition using eigenpalms features. 

Pattern Recognition, 24(9–10), pp.1463–1467. 

Margot, P. and Lennard, C. (1994) Fingerprint detection techniques. 6th rev. ed., Lausanne, 

Switzerland: Institut de Police Scientifique et de Criminologie, Université de Lausanne. 

Marr, D. and Hildrith, E. (1980) The theory of edge detection. Proceedings of the Royal 

Society of London, 207(1167), pp.187–217. 

Marsh, D. (2005) Applied geometry for computer graphics and CAD. New York: Springer. 

Matolsy, A.G. (1976) Keratinization. The Journal of Investigative Dermatology, 67(1), 

pp.20–25. 

Matus, F. and Flusser, J. (1993) Image representations via a finite Radon transform. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 15(10), pp.996–1006. 

Misumi, Y. and Akiyoshi, T. (1984) Scanning electron microscopic structure of the finger 

print as related to the dermal surface. The Anatomical Record, 208(1), pp.49–55. 

Morrone, M.C. and Owens, R.A. (1987) Feature detection from local energy. Pattern 

Recognition Letters, 6(5), pp.303–313. 

Morrone, M.C., Ross, J.R., Burr, D.C. and Owens, R.A. (1986) Mach bands are phase 

dependent. Nature, 324(6094), pp.250–253. 

National Institute of Standards and Technology (1999) Data format for the interchange of 

fingerprint, facial, and scar mark and tattoo (SMT) information. ANSI/NIST-ITL 1-1999 

(Draft), Gaithersburg, Maryland: National Institute of Standards and Technology, U.S. 

Department of Commerce. 

Nawal, V.S. (1993) A guided tour of computer vision. Massachusetts: Addison-Wesley. 



 113 

Otsu, N. (1979) A threshold selection method from gray-level histograms. IEEE 

Transactions on Systems, Man and Cybernetics, 9(1), pp.62–66. 

Panigrahy, R. (2008) An improved algorithm finding nearest neighbor using kd-trees. In 

Pontifícia Universidade Católica do Rio de Janeiro (2008) Proceedings of the 8th 

Theoretical Informatics Latin American Symposium, 7–11 April. Búzios, Brazil: Springer, 

pp.388–398. 

Parker, C.J. (2006) Austin's automated finger and palm print system. Lone Star Forensic 

Journal, 60(3), pp.15–16. 

Penrose, I.S. and O'Hara, P.T. (1973) The development of epidermal ridges. Journal of 

Medical Genetics, 10(3), pp.201–208. 

Police IT Organisation (2005) Biometrics technology roadmap for person identification 

within the police Service. Part 1: Identification Roadmap 2005–2020, London: Police IT 

Organisation. 

Poon, C., Wong, D.C.M. and Shen, H.C. (2004) A new method in locating and segmenting 

palmprint into region-of-interest. In International Association of Pattern Recognition (2004) 

Proceedings of the 17th International Conference on Pattern Recognition, 23–26 August. 

Cambridge, UK: IEEE Computer Society, pp.533–536. 

Popich, G.A. and Smith, D.W. (1970) The genesis and significance of digital and palmar 

hand creases: preliminary report. Journal of Pediatrics, 77(6), pp.1017–1023. 

Pratt, W.K. (2007) Digital image processing. 4th ed., Hoboken, New Jersey: John Wiley & 

Sons, Inc. 

Prewitt, J. and Mendelsohn, M. (1966) The analysis of cell images. Annals of the New York 

Academy of Sciences, 128(3), pp.1035–1053. 

Qiao, Y., Li, Z., Wang, Q., Zeng, Y. and Liang, K. (2005) Identification of palm print using 

dermatoglyphics analysis and detection system. Medical Engineering & Physics, 27(3), 

pp.229–235. 

Rahman, A., Anwar, F. and Azad, S. (2008) A simple and effective technique for human 

verification with hand geometry. In IEEE Communication Society (2008) Proceedings of the 

International Conference on Computer and Communication Engineering, 13–15 May. Kuala 

Lumpur, Malaysia: IEEE Communication Society, pp.1177–1180. 

Ritter, G.X. and Wilson, J.N. (2001) Handbook of computer vision algorithms in image 

algebra. 2nd ed., Boca Raton, Florida: CRC Press. 

Roberts, L.G. (1965) Machine perception of three-dimensional solids. in Tippet, J.T. (ed.) 

Optical and Electro-Optical Information Processing. Cambridge, Massachusetts: MIT Press, 

pp.159–197. 

Rodrigues, P.A.R. and Silva, J.D.L. (1996) Biometric identification by dermatoglyphics. In 

Institute of Electrical and Electronic Engineers, IEEE Signal Processing Society (1996) 

Proceedings of the International Conference on Image Processing, 16–19 September. 

Lausanne, Switzerland: IEEE Signal Processing Society, pp.319–322. 

Rogers, D.F. and Adams, J.A. (1990) Mathematical elements for computer graphics. 2nd ed., 

New York: McGraw-Hill Publishing Company. 



 114 

Ross, A., Nandakumar, K. and Jain, A. (2006) Handbook of multibiometrics. New York: 

Springer. 

Schneider, J.K. (2007) Ultrasonic fingerprint sensors. in Ratha, N.K. and Govindaraju, V. 

(eds.) Advances in Biometrics. Berlin: Springer, pp.63–74. 

Schneider, J.K. and Gojevic, S.M. (2001) Ultrasonic imaging systems for personal 

identification. In Institute of Electrical and Electronic Engineers (2001) Proceedings of the 

IEEE Ultrasonics Symposium, 7–10 October. Atlanta, Georgia: IEEE, pp.595–601. 

Schneider, J.K. and Wobschall, D.C. (1991) Live scan fingerprint imagery using high 

resolution C-scan ultrasonography. In Institute of Electrical and Electronic Engineers (1991) 

Proceedings of the 25th Annual IEEE International Carnahan Conference on Security 

Technology, 1–3 October. Taipei, Taiwan: IEEE, pp.88–95. 

Scottish Police Services Authority (2007) IDENT-1 technical bulletin. 3, Scottish Police 

Services Authority Forensic Services. 

Sedgewick, R. (1983) Algorithms. Massachusetts: Addison-Wesley. 

Serra, J. (1986) Introduction to mathematical morphology. Computer Vision, Graphics, and 

Image Processing, 35(3), pp.283–305. 

Shang, L., Huang, D.-S., Du, J.-X. and Zheng, C.-H. (2006) Palmprint recognition using 

FastICA algorithm and radial basis probabilistic neural network. Neurocomputing, 69(13–

15), pp.1782–1786. 

Shapiro, L.G. and Stockman, G.C. (2001) Computer vision. Upper Saddle River, New 

Jersey: Prentice Hall. 

Soille, P. (2003) Morphological image analysis: principles and applications. 2nd ed., 

Secaucus, New Jersey: Springer-Verlag. 

Stevens, C.A., Carey, J.C., Shah, M. and Bagley, G.P. (1988) Development of human palmar 

and digital flexion creases. Journal of Pediatrics, 113(1), pp.128–132. 

Štruc, V. and Pavešić, N. (2009a) A palmprint verification system based on phase 

congruency features. In European Cooperation in Science and Technology (2009a) 

Proceedings of the 1st European Workshop of Biometrics and Identity Management, 7–9 

May. Roskilde, Denmark: Springer-Verlag, pp.110–119. 

Štruc, V. and Pavešić, N. (2009b) Phase congruency features for palm-print verification. IET 

Signal Processing, 3(4), pp.258–268. 

Tay, J.S.H. (1979) The genetics of palmar creases: a study in the inheritance of liability 

estimated from the incidence among relatives. Annals of Human Genetics, 42(3), pp.327–

332. 

Taylor, R. and Knapp, M. (2004) Indianapolis PD converts to full-hand scanning. Law 

Enforcement Technology, June 2004. 

The Hong Kong University of Science and Technology (2003) Hand image database 

[online]. Hong Kong: The Hong Kong University of Science and Technology. [Accessed 

August 2007]. Available at: <http://visgraph.cs.ust.hk/biometrics>. 



 115 

The Hong Kong Polytechnic University (2003) PolyU Palmprint Database [online]. Hong 

Kong: The Hong Kong Polytechnic University. [Accessed February 2011]. Available at: 

<http://www.comp.polyu.edu.hk/~biometrics>. 

Torre, V. and Poggio, T. (1986) On edge detection. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 8(2), pp.147–163. 

Townley, L. and Ede, R. (2004) Forensic practice in criminal cases. London: The Law 

Society. 

Tuthill, H. (1994) Individualization: principles and procedures in criminalistics. 

Jacksonville, Floride: Lightning Powder Company, Inc. 

Wertheim, K. and Maceo, A. (2002) Friction ridge and pattern formation during the critical 

stage. Journal of Forensic Identification, 52(1), pp.35–85. 

Wong, M., Zhang, D., Kong, W.K. and Lu, G. (2005) Real-time palmprint acquisition 

system design. IEE Proceedings: Vision, Image, and Signal Processing, 152(5), pp.527–534. 

Wu, P. and Li, M. (1997) Pyramid edge detection based on stack filter. Pattern Recognition 

Letters, 18(4), pp.239–248. 

Wu, X., Wang, K. and Zhang, D. (2002a) Fuzzy directional element energy feature (FDEEF) 

based palmprint identification. In International Association of Pattern Recognition (2002a) 

Proceedings of the 16th International Conference on Pattern Recognition, 11–15 August. 

Quebec, Canada: IEEE Computer Society, pp.95–98. 

Wu, X., Wang, K. and Zhang, D. (2002b) Line feature extraction and matching in palmprint. 

In China Society of Image and Graphics (2002b) Proceedings of the 2nd International 

Conference on Image Processing and Graphics, 16–18 August. Heifei, China: SPIE, pp.583–

590. 

Wu, X., Wang, K. and Zhang, D. (2004a) A novel approach of palm-line extraction. In China 

Society of Image and Graphics (2004a) Proceedings of the 3rd International Conference on 

Image and Graphics, 18–20 December. Hong Kong, China: IEEE Computer Society, 

pp.230–233. 

Wu, X., Wang, K. and Zhang, D. (2004b) Palmprint recognition using directional line energy 

feature. In International Association of Pattern Recognition (2004b) Proceedings of the 17th 

International Conference on Pattern Recognition, 23–26 August. Cambridge, UK: IEEE 

Computer Society, pp.475–478. 

Wu, X., Zhang, D. and Wang, B. (2004c) Palmprint classification using principal lines. 

Pattern Recognition, 37(10), pp.1987–1988. 

Wu, X., Zhang, D. and Wang, K. (2006) Palm line extraction and matching for personal 

authentication. IEEE Transactions on Systems, Man and Cybernetics, 36(5), pp.978–987. 

Yager, N. and Amin, A. (2004a) Fingerprint classification: a review. Pattern Analysis and 

Applications, 7(1), pp.77–93. 

Yager, N. and Amin, A. (2004b) Fingerprint verification based on minutiae features: a 

review. Pattern Analysis and Applications, 7(1), pp.94–113. 



 116 

Yang, J., Yang, J.-Y. and Niu, B. (2007) Globally maximizing, locally minimizing: 

unsupervised discriminant projection with applications to face and palm biometrics. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 29(4), pp.650–664. 

Yoruk, E., Konukoglu, E., Sankur, B. and Darbon, J. (2006) Shape-based hand recognition. 

IEEE Transactions on Image Processing, 15(7), pp.1803–1815. 

Zamperoni, P. (1995) Image enhancements. in Greenfield, D., Hawkes, P. and Monastyrskii, 

M. (eds.) Advances in Imaging and Electron Physics, Volume 92. New York: Academic 

Press, pp.1–77. 

Zhang, D. (2000) Automated biometrics: technologies and systems. Berlin: Springer. 

Zhang, D. (2004) Palmprint authentication. Norwell, Massachusetts: Kluwer Academic. 

Zhang, D., Kong, A., You, J. and Wong, M. (2003) Online palmprint identification. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 25(9), pp.1041–1050. 

Zhang, D. and Shu, W. (1999) Two novel characteristics in palmprint verification: datum 

point invariance and line feature matching. Pattern Recognition, 32(4), pp.691–702. 

Zhao, W., Challappa, R., Phillips, P.J. and Rosenfeld, A. (2003) Face recognition: a 

literature survey. ACM Computer Surveys, 35(4), pp.399–458. 

Zhao, Z.-Q., Huang, D.-S. and Jia, W. (2007) Palmprint recognition with 2DPCA+PCA 

based on modular neural networks. Neurocomputing, 71(1–3), pp.448–454. 

Ziou, D. and Tabbone, S. (1998) Edge detection techniques—an overview. Pattern 

Recognition and Image Analysis, 8(4), pp.537–559. 

 

 



 117 

Appendix A 

This appendix lists the source code for each algorithm, and describes the steps 

required to recreate the identification and matching process for manual, automated, 

and partial palmprint identification. 

Manual palmprint identification 

Palmar flexion crease identification 

FlexionCreaseTracing.exe is a C# application that can be compiled against the .NET 

framework using the C# compiler (csc.exe) with the command: 

csc.exe /target:winexe /unsafe 

/out:FlexionCreaseTracing.exe DisplayPanel.cs 

CardinalSpline.cs UnsafeBitmap.cs FormMain.cs Program.cs 

The source files for FlexionCreaseTracing.exe are CardinalSpline.cs, 

UnsafeBitmap.cs, FormMain.cs, and Program.cs. 

DisplayPanel.cs 

using System; 

using System.Drawing; 

using System.Drawing.Drawing2D; 

using System.Windows.Forms; 

using System.Collections; 

using System.IO; 

 

namespace FlexionCreaseTracing 

{ 

    class DisplayPanel : UserControl 

    { 

        /// <summary>  

        /// Required designer variable. 

        /// </summary> 

        private System.ComponentModel.IContainer components = null; 

 

        /// <summary>  

        /// Clean up any resources being used. 

        /// </summary> 

        /// <param name="disposing">true if managed resources should be disposed;  

        /// otherwise, false.</param> 

        protected override void Dispose(bool disposing) { 

            if (disposing && (components != null)) { 

                components.Dispose(); 

            } 

            base.Dispose(disposing); 

        } 

 

        /// <summary>  

        /// Required method for Designer support - do not modify  

        /// the contents of this method with the code editor. 

        /// </summary> 

        private void InitializeComponent() { 

            this.SuspendLayout(); 

            //  

            // DisplayPanel 

            //  

            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 



 118 

            this.BackColor = System.Drawing.SystemColors.AppWorkspace; 

            this.Cursor = System.Windows.Forms.Cursors.Cross; 

            this.Name = "DisplayPanel"; 

            this.Size = new System.Drawing.Size(84, 68); 

            this.ResumeLayout(false); 

        } 

 

        private string fileDirectory; 

        private int fileIndex; 

        private FileInfo[] imageFiles; 

        private Bitmap currentImage; 

        private ArrayList cardinalSplines; 

        private CardinalSpline currentSpline; 

         

        public int FileIndex { 

            get { return fileIndex; } 

        } 

 

        public int FileCount { 

            get { 

                if (imageFiles != null) { 

                    return imageFiles.Length; 

                } 

                return 0; 

            } 

        } 

 

        public string FileDirectory { 

            get { return fileDirectory; } 

            set { 

                fileDirectory = value; 

                OnDirectoryChanged(new EventArgs()); 

            } 

        } 

 

        public int ImageWidth { 

            get { 

                if (currentImage != null) { 

                    return currentImage.Width; 

                } 

                return 0; 

            } 

        } 

 

        public int ImageHeight { 

            get { 

                if (currentImage != null) { 

                    return currentImage.Height; 

                } 

                return 0; 

            } 

        } 

 

        public CardinalSpline CurrentSpline { 

            get { return currentSpline; } 

            set { 

                currentSpline = value; 

                OnCurrentSplineChanged(new EventArgs()); 

            } 

        } 

 

        public DisplayPanel() { 

            this.cardinalSplines = new ArrayList(); 

            InitializeComponent(); 

            SetStyle(ControlStyles.AllPaintingInWmPaint |  

                ControlStyles.ResizeRedraw | ControlStyles.OptimizedDoubleBuffer, 

                true); 

        } 

 

        public void SaveImages(string directory) { 

            if (imageFiles == null) { 

                return; 

            } 

            if (!Directory.Exists(directory)) { 

                try { 

                    Directory.CreateDirectory(directory); 

                } catch (Exception error) { 



 119 

                    MessageBox.Show(error.Message, "Error",  

                        MessageBoxButtons.OK, MessageBoxIcon.Error); 

                    return; 

                } 

            } 

            if (currentImage == null) { 

                return; 

            } 

            UnsafeBitmap labelled = new UnsafeBitmap(currentImage); 

            foreach (CardinalSpline spline in cardinalSplines) { 

                labelled.DrawPath(spline.Path); 

            } 

            labelled.Image.Save(string.Format("{0}\\{1}", directory, 

                imageFiles[fileIndex].Name)); 

        } 

 

        public void SaveSplines(string directory) { 

            if (imageFiles == null) { 

                return; 

            } 

            if (!Directory.Exists(directory)) { 

                try { 

                    Directory.CreateDirectory(directory); 

                } catch (Exception error) { 

                    MessageBox.Show(error.Message, "Error", MessageBoxButtons.OK, 

                        MessageBoxIcon.Error); 

                    return; 

                } 

            } 

            string filePath = string.Format("{0}\\{1}.txt", directory,  

                imageFiles[fileIndex].Name); 

            StreamWriter fileWriter = null; 

            try { 

                fileWriter = new StreamWriter(filePath, false); 

                fileWriter.WriteLine(imageFiles[fileIndex].Name); 

                foreach (CardinalSpline cardinalSpline in cardinalSplines) { 

                    fileWriter.WriteLine(cardinalSpline.Tension); 

                    for (int i = 0; i < cardinalSpline.ControlPoints.Length;              

                    i++) { 

                        fileWriter.WriteLine(string.Format("{0},{1}", 

                            cardinalSpline.ControlPoints[i].X, 

                            cardinalSpline.ControlPoints[i].Y) 

                        ); 

                    } 

                } 

            } catch (Exception error) { 

                MessageBox.Show(error.Message, "Error", MessageBoxButtons.OK,  

                    MessageBoxIcon.Error); 

            } finally { 

                if (fileWriter != null) { 

                    fileWriter.Close(); 

                } 

            } 

        } 

 

        public void OpenSplines(string directory) { 

            if (imageFiles == null) { 

                return; 

            } 

            string filePath = string.Format("{0}\\{1}.txt", directory,  

                imageFiles[fileIndex].Name); 

            if(!File.Exists(filePath)) { 

                return; 

            } 

            StreamReader fileReader = null; 

            CardinalSpline newSpline = null; 

            try { 

                fileReader = new StreamReader(filePath); 

                if (fileReader.ReadLine().Equals(imageFiles[fileIndex].Name)) { 

                    string nextLine; 

                    while ((nextLine = fileReader.ReadLine()) != null) { 

                        if (!nextLine.Contains(",")) { 

                            newSpline = new CardinalSpline(); 

                            newSpline.Tension = float.Parse(nextLine); 

                            cardinalSplines.Add(newSpline); 

                        } else { 

                            if (newSpline != null) { 



 120 

                                newSpline.AddControlPoint( 

                                    new Point( 

                                        int.Parse(nextLine.Substring(0,  

                                        nextLine.IndexOf(','))), 

                                        int.Parse(nextLine.Substring( 

                                        nextLine.IndexOf(',') + 1)))); 

                            } 

                        } 

                    } 

                } 

            } catch (Exception error) { 

                MessageBox.Show(error.Message, "Error", MessageBoxButtons.OK,  

                    MessageBoxIcon.Error); 

            } finally { 

                if (fileReader != null) { 

                    fileReader.Close(); 

                } 

                Refresh(); 

            } 

        } 

 

        private void SetAutoScrollSize() { 

            AutoScrollMinSize = new Size(ImageWidth, ImageHeight); 

            Refresh(); 

        } 

 

        private void ResetPanel() { 

            imageFiles = null; 

            fileIndex = -1; 

            ClearImage(); 

        } 

 

        public event ImageClickEvent ImageClick; 

        public event ImageChangedEvent ImageChanged; 

        public event DirectoryChangedEvent DirectoryChanged; 

        public event CurrentSplineChangedEvent CurrentSplineChanged; 

 

        protected virtual void OnImageClick(MouseEventArgs e) { 

            if (ImageClick != null) { 

                ImageClick(this, e); 

            } 

        } 

 

        protected virtual void OnImageChanged(EventArgs e) { 

            RemoveAllSplines(); 

            SetAutoScrollSize(); 

            if (ImageChanged != null) { 

                ImageChanged(this, e); 

            } 

        } 

 

        protected virtual void OnDirectoryChanged(EventArgs e) { 

            if (Directory.Exists(fileDirectory)) { 

                DirectoryInfo directoryInfo = new DirectoryInfo(fileDirectory); 

                imageFiles = directoryInfo.GetFiles("*.bmp"); 

                if (imageFiles.Length > 0) { 

                    fileIndex = 0; 

                    LoadImageFromFile(imageFiles[fileIndex].FullName); 

                } else { 

                    ResetPanel(); 

                } 

            } else { 

                ResetPanel(); 

            } 

            if (DirectoryChanged != null) { 

                DirectoryChanged(this, e); 

            } 

        } 

 

        protected virtual void OnCurrentSplineChanged(EventArgs e) { 

            if (CurrentSplineChanged != null) { 

                CurrentSplineChanged(this, e); 

            } 

        } 

 

        protected override void OnPaint(PaintEventArgs e) { 

            if (currentImage == null) { 



 121 

                return; 

            } 

            int X = (ClientRectangle.Width < ImageWidth) ?  

                AutoScrollPosition.X : (ClientRectangle.Width - ImageWidth) / 2; 

            int Y = (ClientRectangle.Height < ImageHeight) ?  

                AutoScrollPosition.Y : (ClientRectangle.Height - ImageHeight) / 2; 

            e.Graphics.InterpolationMode = InterpolationMode.NearestNeighbor; 

            e.Graphics.DrawImage(currentImage, X, Y, ImageWidth, ImageHeight); 

            Graphics imageGraphics = e.Graphics; 

            imageGraphics.Clip = new Region(new Rectangle(X, Y, ImageWidth, 

                ImageHeight)); 

            imageGraphics.TranslateTransform((float)X, (float)Y); 

            foreach (CardinalSpline cardinalSpline in cardinalSplines) { 

                cardinalSpline.DrawSpline(imageGraphics, 

                    (cardinalSpline == CurrentSpline) ? true : false); 

            } 

        } 

 

        protected override void OnMouseClick(MouseEventArgs Event) { 

            if (currentImage == null) { 

                return; 

            } 

            int X = (ClientRectangle.Width < ImageWidth) ? 

                AutoScrollPosition.X : (ClientRectangle.Width - ImageWidth) / 2; 

            int Y = (ClientRectangle.Height < ImageHeight) ? 

                AutoScrollPosition.Y : (ClientRectangle.Height - ImageHeight) / 2; 

            if ((Event.X >= X && Event.X <= X + ImageWidth) 

            && (Event.Y >= Y && Event.Y <= Y + ImageHeight)) { 

                if (Event.Button == MouseButtons.Right) { 

                    OnImageRightClick(); 

                } else { 

                    OnImageLeftClick(new MouseEventArgs(Event.Button, Event.Clicks,  

                        Event.X - X, Event.Y - Y, Event.Delta)); 

                } 

                OnImageClick(Event); 

                Refresh(); 

            } 

        } 

 

        private void OnImageLeftClick(MouseEventArgs e) { 

            bool controlPointClicked = false; 

            if (CurrentSpline == null) { 

                foreach (CardinalSpline cardinalSpline in cardinalSplines) { 

                    if (cardinalSpline.ControlPoints.Length > 1) { 

                        if (cardinalSpline.Path.IsOutlineVisible(new Point(e.X, e.Y),  

                        new Pen(Color.Black, 10.0F))) { 

                            CurrentSpline = cardinalSpline; 

                            return; 

                        } 

                    } 

                } 

                CurrentSpline = new CardinalSpline(); 

                cardinalSplines.Add(CurrentSpline); 

            }             

            if (!controlPointClicked) { 

                CurrentSpline.AddControlPoint(new Point(e.X, e.Y)); 

            } 

        } 

 

        private void OnImageRightClick() { 

            if (CurrentSpline != null) { 

                if (CurrentSpline.ControlPoints.Length <= 1) { 

                    cardinalSplines.Remove(CurrentSpline); 

                } 

            } 

            CurrentSpline = null; 

        } 

 

        public void RemoveSpline(CardinalSpline cardinalSpline) { 

            cardinalSplines.Remove(cardinalSpline); 

            CurrentSpline = null; 

            Refresh(); 

        } 

 

        public void RemoveAllSplines() { 

            cardinalSplines.Clear(); 

            CurrentSpline = null; 



 122 

            Refresh(); 

        } 

 

        public void ShowNextImage() { 

            if (imageFiles == null) { 

                return; 

            } 

            fileIndex++; 

            if (fileIndex == FileCount) { 

                fileIndex = 0; 

            } 

            LoadImageFromFile(imageFiles[fileIndex].FullName); 

        } 

 

        public void ShowPreviousImage() { 

            if (imageFiles == null) { 

                return; 

            } 

            fileIndex--; 

            if (fileIndex < 0) { 

                fileIndex = FileCount - 1; 

            } 

            LoadImageFromFile(imageFiles[fileIndex].FullName); 

        } 

 

        private void LoadImageFromFile(string filePath) { 

            try { 

                currentImage = 

                    (Bitmap)Bitmap.FromFile(imageFiles[fileIndex].FullName); 

            } catch (Exception Error) { 

                MessageBox.Show(Error.Message, "Error", MessageBoxButtons.OK,  

                    MessageBoxIcon.Error); 

            } 

            OnImageChanged(new EventArgs()); 

            Refresh(); 

        } 

 

        private void ClearImage() { 

            currentImage = null; 

            OnImageChanged(new EventArgs()); 

            Refresh(); 

        } 

    } 

 

    public delegate void ImageClickEvent(object sender, MouseEventArgs e); 

    public delegate void ImageChangedEvent(object sender, EventArgs e); 

    public delegate void DirectoryChangedEvent(object sender, EventArgs e); 

    public delegate void CurrentSplineChangedEvent(object sender, EventArgs e); 

} 

CardinalSpline.cs 

using System; 

using System.Drawing; 

using System.Drawing.Drawing2D; 

using System.IO; 

 

namespace FlexionCreaseTracing 

{ 

    public class CardinalSpline 

    { 

        private float tension; 

        private Point[] controlPoints; 

 

        public Point[] ControlPoints { 

            get { return controlPoints; } 

        } 

 

        public float Tension { 

            get { return tension; } 

            set { tension = value; } 

        } 

 

        public GraphicsPath Path { 

            get { 

                GraphicsPath newPath = new GraphicsPath(); 



 123 

                newPath.AddCurve(controlPoints, Tension); 

                return newPath; 

            } 

        } 

 

        public CardinalSpline() { 

            this.Tension = 0.5F; 

            this.controlPoints = null; 

        } 

 

        public void AddControlPoint(Point newPoint) { 

            if (controlPoints == null) { 

                controlPoints = new Point[1]; 

            } else { 

                controlPoints = ResizeSpline(controlPoints, 

                    controlPoints.Length + 1); 

            } 

            controlPoints[controlPoints.Length - 1] = newPoint; 

        } 

 

        public void DrawSpline(Graphics graphics, bool drawControlPoints) { 

            if (drawControlPoints) { 

                foreach (Point controlPoint in controlPoints) { 

                    graphics.DrawRectangle(new Pen(Color.Black), 

                        new Rectangle(controlPoint.X - 3, 

                        controlPoint.Y - 3, 6, 6)); 

                } 

            } 

 

            if (controlPoints.Length > 1) { 

                graphics.DrawPath(new Pen(Color.Black), Path); 

            } 

        } 

 

        public static Point[] ResizeSpline(Array source, int newSize) { 

            int oldSize = source.Length; 

            Type elementType = source.GetType().GetElementType(); 

            Array newArray = Array.CreateInstance(elementType, newSize); 

            int preserveLength = Math.Min(oldSize, newSize); 

            if (preserveLength > 0) { 

                Array.Copy(source, newArray, preserveLength); 

            } 

            return (Point[])newArray; 

        } 

    } 

} 

UnsafeBitmap.cs 

using System; 

using System.Drawing; 

using System.Drawing.Drawing2D; 

using System.Drawing.Imaging; 

 

namespace FlexionCreaseTracing 

{ 

    public unsafe class UnsafeBitmap 

    { 

        public struct PixelData { 

            public byte blue; 

            public byte green; 

            public byte red; 

        } 

 

        private GraphicsUnit unit = GraphicsUnit.Pixel; 

        private BitmapData data; 

        private Bitmap image; 

 

        public Bitmap Image { 

            get { return this.image; } 

            set { this.image = value; } 

        } 

 

        public Point PixelSize { 

            get { 

                RectangleF bounds = this.image.GetBounds(ref this.unit); 



 124 

                return new Point((int)bounds.Width, (int)bounds.Height); 

            } 

        } 

 

        private int width; 

        private byte* pBase; 

 

        public UnsafeBitmap() { 

 

        } 

 

        public UnsafeBitmap(Bitmap image) { 

            this.image = new Bitmap(image); 

        } 

 

        public UnsafeBitmap(Size dimensions) { 

            this.image = new Bitmap(dimensions.Width, dimensions.Height); 

        } 

 

        public void Dispose() { 

            if (this.image != null) 

            { 

                this.image.Dispose(); 

            } 

        } 

 

        public void DrawPath(GraphicsPath path) { 

            Graphics.FromImage(this.image).DrawPath(new Pen(Color.Red), path); 

        } 

 

        private PixelData* GetPixelAt(Point location) { 

            return (PixelData*) 

                (pBase + location.Y * width + location.X * sizeof(PixelData)); 

        } 

 

        public PixelData GetPixel(Point location) { 

            return *GetPixelAt(location); 

        } 

 

        public void LockBitmap() { 

            RectangleF boundsF = this.Image.GetBounds(ref this.unit); 

            Rectangle bounds = new Rectangle((int)boundsF.X, (int)boundsF.Y, 

                (int)boundsF.Width, (int)boundsF.Height); 

            width = (int)boundsF.Width * sizeof(PixelData); 

            if (width % 4 != 0) { 

                width = 4 * (width / 4 + 1); 

            } 

            this.data = this.Image.LockBits(bounds, ImageLockMode.ReadWrite, 

                PixelFormat.Format24bppRgb); 

            this.pBase = (Byte*)this.data.Scan0.ToPointer(); 

        } 

 

        public void UnlockBitmap() { 

            if (this.data != null) { 

                this.Image.UnlockBits(this.data); 

            } 

            this.data = null; 

            this.pBase = null; 

        } 

    } 

} 

FormMain.cs 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Drawing.Drawing2D; 

using System.Text; 

using System.Windows.Forms; 

using System.IO; 

using System.Runtime.InteropServices; 

 

namespace FlexionCreaseTracing 



 125 

{ 

    class FormMain : Form 

    { 

        /// <summary> 

        /// Required designer variable. 

        /// </summary> 

        private System.ComponentModel.IContainer components = null; 

 

        /// <summary> 

        /// Clean up any resources being used. 

        /// </summary> 

        /// <param name="disposing">true if managed resources should be disposed;  

        ///     otherwise, false.</param> 

        protected override void Dispose(bool disposing) { 

            if (disposing && (components != null)) { 

                components.Dispose(); 

            } 

            base.Dispose(disposing); 

        } 

 

        /// <summary> 

        /// Required method for Designer support - do not modify 

        /// the contents of this method with the code editor. 

        /// </summary> 

        private void InitializeComponent() { 

            this.Button_Next = new System.Windows.Forms.Button(); 

            this.Button_Previous = new System.Windows.Forms.Button(); 

            this.MenuStrip_Main = new System.Windows.Forms.MenuStrip(); 

            this.MenuItem_File = new System.Windows.Forms.ToolStripMenuItem(); 

            this.MenuItem_File_Change_Directory = 

                new System.Windows.Forms.ToolStripMenuItem(); 

            this.MenuSeparator_Change_Directory_Exit = 

                new System.Windows.Forms.ToolStripSeparator(); 

            this.MenuItem_File_Exit = new System.Windows.Forms.ToolStripMenuItem(); 

            this.MenuItem_Help = new System.Windows.Forms.ToolStripMenuItem(); 

            this.MenuItem_Help_About = new System.Windows.Forms.ToolStripMenuItem(); 

            this.trackBarTension = new System.Windows.Forms.TrackBar(); 

            this.labelTension = new System.Windows.Forms.Label(); 

            this.textBoxTension = new System.Windows.Forms.TextBox(); 

            this.buttonClearAll = new System.Windows.Forms.Button(); 

            this.buttonClearSelected = new System.Windows.Forms.Button(); 

            this.buttonSave = new System.Windows.Forms.Button(); 

            this.displayPanel = new PrincipalLineTracing.DisplayPanel(); 

            this.MenuStrip_Main.SuspendLayout(); 

            ((System.ComponentModel.ISupportInitialize) 

                (this.trackBarTension)).BeginInit(); 

            this.SuspendLayout(); 

            //  

            // Button_Next 

            //  

            this.Button_Next.Anchor =  ((System.Windows.Forms.AnchorStyles) 

                ((System.Windows.Forms.AnchorStyles.Top |   

                  System.Windows.Forms.AnchorStyles.Right))); 

            this.Button_Next.FlatAppearance.BorderSize = 0; 

            this.Button_Next.Location = new System.Drawing.Point(466, 60); 

            this.Button_Next.Name = "Button_Next"; 

            this.Button_Next.Size = new System.Drawing.Size(75, 23); 

            this.Button_Next.TabIndex = 9; 

            this.Button_Next.Text = "&Next >"; 

            this.Button_Next.TextImageRelation =  

                System.Windows.Forms.TextImageRelation.ImageAboveText; 

            this.Button_Next.UseVisualStyleBackColor = true; 

            this.Button_Next.Click +=  

                new System.EventHandler(this.OnButtonNextClick); 

            //  

            // Button_Previous 

            //  

            this.Button_Previous.Anchor = ((System.Windows.Forms.AnchorStyles) 

                ((System.Windows.Forms.AnchorStyles.Top |   

                  System.Windows.Forms.AnchorStyles.Right))); 

            this.Button_Previous.FlatAppearance.BorderSize = 0; 

            this.Button_Previous.Location = new System.Drawing.Point(304, 60); 

            this.Button_Previous.Name = "Button_Previous"; 

            this.Button_Previous.Size = new System.Drawing.Size(75, 23); 

            this.Button_Previous.TabIndex = 7; 

            this.Button_Previous.Text = "< &Previous"; 

            this.Button_Previous.TextImageRelation =  



 126 

                System.Windows.Forms.TextImageRelation.ImageAboveText; 

            this.Button_Previous.UseVisualStyleBackColor = true; 

            this.Button_Previous.Click += 

                new System.EventHandler(this.OnButtonPreviousClick); 

            //  

            // MenuStrip_Main 

            //  

            this.MenuStrip_Main.Items.AddRange( 

                new System.Windows.Forms.ToolStripItem[] { 

            this.MenuItem_File, 

            this.MenuItem_Help}); 

            this.MenuStrip_Main.Location = new System.Drawing.Point(0, 0); 

            this.MenuStrip_Main.Name = "MenuStrip_Main"; 

            this.MenuStrip_Main.Size = new System.Drawing.Size(553, 24); 

            this.MenuStrip_Main.TabIndex = 1; 

            this.MenuStrip_Main.Text = "menuStrip"; 

            //  

            // MenuItem_File 

            //  

            this.MenuItem_File.DropDownItems.AddRange( 

               new System.Windows.Forms.ToolStripItem[] { 

            this.MenuItem_File_Change_Directory, 

            this.MenuSeparator_Change_Directory_Exit, 

            this.MenuItem_File_Exit}); 

            this.MenuItem_File.Name = "MenuItem_File"; 

            this.MenuItem_File.Size = new System.Drawing.Size(35, 20); 

            this.MenuItem_File.Text = "&File"; 

            //  

            // MenuItem_File_Change_Directory 

            //  

            this.MenuItem_File_Change_Directory.Name =  

                "MenuItem_File_Change_Directory"; 

            this.MenuItem_File_Change_Directory.Size = 

                new System.Drawing.Size(176, 22); 

            this.MenuItem_File_Change_Directory.Text = "&Choose Directory.."; 

            this.MenuItem_File_Change_Directory.Click += 

                new System.EventHandler(this.OnMenuItemChooseDirectoryClick); 

            //  

            // MenuSeparator_Change_Directory_Exit 

            //  

            this.MenuSeparator_Change_Directory_Exit.Name =  

                "MenuSeparator_Change_Directory_Exit"; 

            this.MenuSeparator_Change_Directory_Exit.Size = 

                new System.Drawing.Size(173, 6); 

            //  

            // MenuItem_File_Exit 

            //  

            this.MenuItem_File_Exit.Name = "MenuItem_File_Exit"; 

            this.MenuItem_File_Exit.Size = new System.Drawing.Size(176, 22); 

            this.MenuItem_File_Exit.Text = "E&xit"; 

            this.MenuItem_File_Exit.Click += 

                new System.EventHandler(this.On_MenuItem_File_Exit_Click); 

            //  

            // trackBarTension 

            //  

            this.trackBarTension.LargeChange = 2; 

            this.trackBarTension.Location = new System.Drawing.Point(12, 57); 

            this.trackBarTension.Name = "trackBarTension"; 

            this.trackBarTension.Size = new System.Drawing.Size(187, 45); 

            this.trackBarTension.TabIndex = 3; 

            this.trackBarTension.Value = 5; 

            this.trackBarTension.ValueChanged += 

                new System.EventHandler(this.OnTrackBarTensionValueChanged); 

            //  

            // labelTension 

            //  

            this.labelTension.AutoSize = true; 

            this.labelTension.Location = new System.Drawing.Point(12, 34); 

            this.labelTension.Name = "labelTension"; 

            this.labelTension.Size = new System.Drawing.Size(79, 13); 

            this.labelTension.TabIndex = 2; 

            this.labelTension.Text = "Curve Tension:"; 

            //  

            // textBoxTension 

            //  

            this.textBoxTension.Location = new System.Drawing.Point(154, 31); 

            this.textBoxTension.Name = "textBoxTension"; 



 127 

            this.textBoxTension.Size = new System.Drawing.Size(36, 20); 

            this.textBoxTension.TabIndex = 4; 

            this.textBoxTension.Text = "0.5"; 

            this.textBoxTension.KeyPress += 

                new System.Windows.Forms.KeyPressEventHandler( 

                this.OnTextBoxTensionKeyPress); 

            //  

            // buttonClearAll 

            //  

            this.buttonClearAll.Location = new System.Drawing.Point(206, 60); 

            this.buttonClearAll.Name = "buttonClearAll"; 

            this.buttonClearAll.Size = new System.Drawing.Size(75, 23); 

            this.buttonClearAll.TabIndex = 6; 

            this.buttonClearAll.Text = "Clear &All"; 

            this.buttonClearAll.UseVisualStyleBackColor = true; 

            this.buttonClearAll.Click += 

                new System.EventHandler(this.OnButtonClearAllClick); 

            //  

            // buttonClearSelected 

            //  

            this.buttonClearSelected.Location = new System.Drawing.Point(206, 31); 

            this.buttonClearSelected.Name = "buttonClearSelected"; 

            this.buttonClearSelected.Size = new System.Drawing.Size(75, 23); 

            this.buttonClearSelected.TabIndex = 5; 

            this.buttonClearSelected.Text = "&Clear"; 

            this.buttonClearSelected.UseVisualStyleBackColor = true; 

            this.buttonClearSelected.Click += 

                new System.EventHandler(this.OnButtonClearSelectedClick); 

            //  

            // buttonSave 

            //  

            this.buttonSave.Anchor = ((System.Windows.Forms.AnchorStyles) 

                ((System.Windows.Forms.AnchorStyles.Top |   

                  System.Windows.Forms.AnchorStyles.Right))); 

            this.buttonSave.Location = new System.Drawing.Point(385, 60); 

            this.buttonSave.Name = "buttonSave"; 

            this.buttonSave.Size = new System.Drawing.Size(75, 23); 

            this.buttonSave.TabIndex = 8; 

            this.buttonSave.Text = "&Save"; 

            this.buttonSave.UseVisualStyleBackColor = true; 

            this.buttonSave.Click += new System.EventHandler(this.OnButtonSaveClick); 

            //  

            // displayPanel 

            //  

            this.displayPanel.Anchor = ((System.Windows.Forms.AnchorStyles) 

                ((((System.Windows.Forms.AnchorStyles.Top |  

                    System.Windows.Forms.AnchorStyles.Bottom) | 

                    System.Windows.Forms.AnchorStyles.Left) | 

                    System.Windows.Forms.AnchorStyles.Right))); 

            this.displayPanel.BackColor = System.Drawing.SystemColors.AppWorkspace; 

            this.displayPanel.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; 

            this.displayPanel.CurrentSpline = null; 

            this.displayPanel.Cursor = System.Windows.Forms.Cursors.Arrow; 

            this.displayPanel.FileDirectory = null; 

            this.displayPanel.Location = new System.Drawing.Point(12, 92); 

            this.displayPanel.Name = "displayPanel"; 

            this.displayPanel.Size = new System.Drawing.Size(529, 540); 

            this.displayPanel.TabIndex = 0; 

            this.displayPanel.CurrentSplineChanged += 

                new PrincipalLineTracing.CurrentSplineChangedEvent( 

                this.OnDisplayPanelCurrentSplineChanged); 

            this.displayPanel.DirectoryChanged += 

                new PrincipalLineTracing.DirectoryChangedEvent( 

                this.OnDisplayPanelDirectoryChanged); 

            this.displayPanel.ImageChanged += 

                new PrincipalLineTracing.ImageChangedEvent( 

                this.OnDisplayPanelImageChanged); 

            //  

            // FormMain 

            //  

            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 

            this.ClientSize = new System.Drawing.Size(553, 644); 

            this.Controls.Add(this.buttonSave); 

            this.Controls.Add(this.buttonClearSelected); 

            this.Controls.Add(this.buttonClearAll); 

            this.Controls.Add(this.textBoxTension); 



 128 

            this.Controls.Add(this.displayPanel); 

            this.Controls.Add(this.labelTension); 

            this.Controls.Add(this.trackBarTension); 

            this.Controls.Add(this.Button_Previous); 

            this.Controls.Add(this.Button_Next); 

            this.Controls.Add(this.MenuStrip_Main); 

            this.MinimumSize = new System.Drawing.Size(463, 150); 

            this.Name = "FormMain"; 

            this.Text = "Principal Line Tracing"; 

            this.MenuStrip_Main.ResumeLayout(false); 

            this.MenuStrip_Main.PerformLayout(); 

            ((System.ComponentModel.ISupportInitialize) 

                (this.trackBarTension)).EndInit(); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

        } 

 

        private DisplayPanel displayPanel; 

        private System.Windows.Forms.Button Button_Next; 

        private System.Windows.Forms.Button Button_Previous; 

        private System.Windows.Forms.MenuStrip MenuStrip_Main; 

        private System.Windows.Forms.ToolStripMenuItem MenuItem_File; 

        private System.Windows.Forms.ToolStripMenuItem   

            MenuItem_File_Change_Directory; 

        private System.Windows.Forms.ToolStripSeparator  

            MenuSeparator_Change_Directory_Exit; 

        private System.Windows.Forms.ToolStripMenuItem MenuItem_File_Exit; 

        private System.Windows.Forms.TrackBar trackBarTension; 

        private System.Windows.Forms.Label labelTension; 

        private System.Windows.Forms.TextBox textBoxTension; 

        private System.Windows.Forms.Button buttonClearAll; 

        private System.Windows.Forms.Button buttonClearSelected; 

        private System.Windows.Forms.Button buttonSave; 

 

        private const int Max_Path = 260; 

 

        [DllImport("shlwapi", EntryPoint = "PathCompactPathEx")] 

        private static extern bool PathCompactPathEx(StringBuilder pszOut, string  

            pszSrc, int cchMax, int dwFlags); 

 

        public FormMain() { 

            InitializeComponent(); 

            displayPanel.FileDirectory = string.Format("{0}\\Images",  

                Application.StartupPath); 

        } 

 

        private void UpdateTitleBar() { 

            Text = string.Format("Principal Line Tracing - [{0}/{1}] {2}", 

                displayPanel.FileIndex + 1, displayPanel.FileCount,  

                Compact_String(displayPanel.FileDirectory, 30)); 

        } 

         

        private void ResetTension() { 

            trackBarTension.Value = 5; 

            textBoxTension.Text = string.Format("{0}", 0.5); 

        } 

 

        private void OnMenuItemChooseDirectoryClick(object sender, EventArgs e) { 

            ChooseImageDirectory(); 

        } 

 

        private void ChooseImageDirectory() { 

            FolderBrowserDialog folderDialog = new FolderBrowserDialog(); 

            folderDialog.ShowNewFolderButton = false; 

            folderDialog.SelectedPath = Application.StartupPath; 

            folderDialog.Description = "Select an image directory:"; 

            if (folderDialog.ShowDialog() == DialogResult.OK) { 

                displayPanel.FileDirectory = folderDialog.SelectedPath; 

            } 

            folderDialog.Dispose(); 

        } 

 

        private void OnTextBoxTensionKeyPress(object sender, KeyPressEventArgs e) { 

            e.Handled = true; 

        } 

 

        private void OnTrackBarTensionValueChanged(object sender, EventArgs e) { 



 129 

            if (displayPanel.CurrentSpline == null) { 

                ResetTension(); 

                return; 

            } 

            float tension = (float)trackBarTension.Value / 10.0F; 

            textBoxTension.Text = string.Format("{0}", tension); 

            displayPanel.CurrentSpline.Tension = tension; 

            displayPanel.Refresh(); 

        } 

 

        private void OnButtonClearSelectedClick(object sender, EventArgs e) { 

            if (displayPanel.CurrentSpline == null) { 

                return; 

            } 

            displayPanel.RemoveSpline(displayPanel.CurrentSpline); 

            ResetTension(); 

        } 

 

        private void OnButtonClearAllClick(object sender, EventArgs e) { 

            displayPanel.RemoveAllSplines(); 

            ResetTension(); 

        } 

         

        private void OnButtonNextClick(object sender, EventArgs e) { 

            displayPanel.SaveSplines(string.Format("{0}\\Data",  

                Application.StartupPath)); 

            displayPanel.SaveImages(string.Format("{0}\\Labelled",  

                Application.StartupPath)); 

            displayPanel.ShowNextImage(); 

        } 

 

        private void OnButtonSaveClick(object sender, EventArgs e) { 

            displayPanel.SaveSplines(string.Format("{0}\\Data",  

                Application.StartupPath)); 

        } 

 

        private void OnButtonPreviousClick(object sender, EventArgs e) { 

            displayPanel.SaveSplines(string.Format("{0}\\Data",  

                Application.StartupPath)); 

            displayPanel.ShowPreviousImage(); 

        } 

 

        private void OnDisplayPanelDirectoryChanged(object sender, EventArgs e) { 

            UpdateTitleBar(); 

        } 

 

        private void OnDisplayPanelImageChanged(object sender, EventArgs e) { 

            displayPanel.OpenSplines(string.Format("{0}\\Data",  

                Application.StartupPath)); 

            UpdateTitleBar(); 

        } 

 

        private void OnDisplayPanelCurrentSplineChanged(object sender, EventArgs e) { 

            if (displayPanel.CurrentSpline != null) { 

                trackBarTension.Value = 

                    (int)(displayPanel.CurrentSpline.Tension * 10); 

                trackBarTension.Enabled = true; 

                textBoxTension.Enabled = true; 

                buttonClearSelected.Enabled = true; 

            } else { 

                trackBarTension.Enabled = false; 

                textBoxTension.Enabled = false; 

                buttonClearSelected.Enabled = false; 

            } 

        } 

 

        public static string Compact_String(string Path, int Length) { 

            StringBuilder Buffer; 

            bool Success; 

            if (Path.Length > Max_Path) { 

                return Path; 

            } 

            if (Length > Max_Path) { 

                Length = Max_Path; 

            } 

            Buffer = new StringBuilder(Max_Path, Max_Path); 

            Success = PathCompactPathEx(Buffer, Path, Length, 0); 



 130 

            if (Success) { 

                return Buffer.ToString(); 

            } 

            return null; 

        } 

 

        private void On_MenuItem_File_Exit_Click(object sender, EventArgs e) { 

            Close(); 

        } 

    } 

} 

Program.cs 

using System; 

using System.Collections.Generic; 

using System.Windows.Forms; 

 

namespace FlexionCreaseTracing 

{ 

    static class Program 

    { 

        /// <summary> 

        /// The main entry point for the application. 

        /// </summary> 

        [STAThread] 

        static void Main() { 

            Application.EnableVisualStyles(); 

            Application.SetCompatibleTextRenderingDefault(false); 

            Application.Run(new FormMain()); 

        } 

    } 

} 

Converting cardinal splines to points 

CardinalSplinesToPoints.exe is a C# application that can be compiled against the 

.NET framework using the C# compiler (csc.exe) with the command: 

csc.exe /target:exe /unsafe 

/out:CardinalSplinesToPoints.exe Line.cs LineList.cs 

UnsafeBitmap.cs Program.cs 

The source files for CardinalSplinesToPoints.exe are Line.cs, LineList.cs, 

UnsafeBitmap.cs, and Program.cs. 

Line.cs 

using System; 

using System.Drawing; 

using System.Drawing.Drawing2D; 

 

namespace CardinalSplinesToPoints 

{ 

    public class Line 

    { 

        private Point[] controlPoints; 

 

        public Point[] ControlPoints { 

            get { return this.controlPoints; } 

        } 

 

        public GraphicsPath Path { 

            get { 

                GraphicsPath graphicsPath = new GraphicsPath(); 

                if (this.ControlPoints.Length > 1) { 



 131 

                    graphicsPath.AddCurve(this.ControlPoints, 0.5f); 

                } 

                return graphicsPath; 

            } 

        } 

 

        public Line() { 

        } 

 

        public void AddControlPoint(Point point) { 

            if (this.controlPoints == null) { 

                this.controlPoints = new Point[1]; 

            } else { 

                this.controlPoints = ResizeArray(this.controlPoints, 

                    this.controlPoints.Length + 1); 

            } 

            this.controlPoints[this.controlPoints.Length - 1] = point; 

        } 

 

        public static Point[] ResizeArray(Array source, int size) { 

            Type elementType = source.GetType().GetElementType(); 

            Array newArray = Array.CreateInstance(elementType, size); 

            int preserveLength = Math.Min(source.Length, size); 

            if (preserveLength > 0) { 

                Array.Copy(source, newArray, preserveLength); 

            } 

            return newArray as Point[]; 

        } 

    } 

} 

LineList.cs 

using System; 

using System.Collections.Generic; 

using System.Drawing; 

using System.IO; 

 

namespace CardinalSplinesToPoints 

{ 

    class LineList 

    { 

        private string listName; 

 

        public string ListName { 

            get { return this.listName; } 

            set { this.listName = value; } 

        } 

 

        public List<Line> Lines { 

            get { return this.lines; } 

        } 

        private List<Line> lines; 

 

        public LineList() { 

            this.lines = new List<Line>(); 

        } 

 

        public LineList(string listName) : this() { 

            this.ListName = listName; 

        } 

 

        public void ToFile(string filePath) { 

            try { 

                using (StreamWriter writer = File.CreateText(filePath)) { 

                    writer.WriteLine(this.ListName); 

                    foreach (Line line in this.Lines) { 

                        writer.WriteLine("Line"); 

                        if (line.ControlPoints != null) { 

                            foreach (Point point in line.ControlPoints) { 

                                writer.WriteLine("{0},{1}", point.X, point.Y); 

                            } 

                        } 

                    } 

                } 

            } catch (PathTooLongException error) { 



 132 

                throw (error); 

            } catch (DirectoryNotFoundException error) { 

                throw (error); 

            } catch (IOException error) { 

                throw (error); 

            } 

        } 

    } 

} 

Program.cs 

using System; 

using System.IO; 

using System.Drawing; 

 

namespace CardinalSplinesToPoints 

{ 

    class Program 

    { 

        static void Main(string[] args) { 

            if (args.Length < 3) { 

                Console.WriteLine("Converts cardinal splines to " + 

                    "a series of points."); 

                Console.WriteLine("Usage: CardinalSplinesToPoints <images>" +  

                    "<splines> <output>"); 

                return; 

            } 

            FileInfo[] images; 

            if (!GetImageFiles(args[0], out images)) { 

                return; 

            } 

            foreach (FileInfo file in images) { 

                Size size = GetImageSize(file.FullName); 

                if (size.Equals(Size.Empty)) { 

                    return; 

                } 

                LineList splines = null; 

                if (!ReadLines(string.Format("{0}\\{1}.txt", args[1], 

                    file.Name), out splines)) { 

                    return; 

                } 

                LineList lines = new LineList(file.Name); 

                foreach (Line spline in splines.Lines) { 

                    UnsafeBitmap image = new UnsafeBitmap(size); 

                    image.DrawPath(spline.Path); 

                    image.LockBitmap(); 

                    Line line = new Line(); 

                    for (int x = 0; x < image.PixelSize.X; x++) { 

                        for (int y = 0; y < image.PixelSize.Y; y++) { 

                            UnsafeBitmap.PixelData data =  

                                image.GetPixel(new Point(x, y)); 

                            if (data.red > 0) { 

                                line.AddControlPoint(new Point(x, y)); 

                            } 

                        } 

                    } 

                    lines.Lines.Add(line); 

                    image.UnlockBitmap(); 

                } 

                if (Directory.Exists(args[2])) { 

                    lines.ToFile(string.Format("{0}\\{1}.txt", args[2],  

                        file.Name)); 

                } 

            } 

        } 

 

        private static bool ReadLines(string path, out LineList lines) { 

            lines = new LineList(); 

            if (!File.Exists(path)) { 

                return false; 

            } 

            Console.Write("Reading {0}.. ", Path.GetFileName(path)); 

            try { 

                Line line = null; 

                using (StreamReader stream = new StreamReader(path)) { 



 133 

                    string fileLine = lines.ListName = stream.ReadLine(); 

                    while ((fileLine = stream.ReadLine()) != null) { 

                        if (!fileLine.Contains(",")) { 

                            lines.Lines.Add((line = new Line())); 

                        } else { 

                            if (line != null) { 

                                try { 

                                    int x = int.Parse(fileLine.Substring(0, 

                                        fileLine.IndexOf(','))); 

                                    int y = int.Parse(fileLine.Substring( 

                                        fileLine.IndexOf(',') + 1)); 

                                    line.AddControlPoint(new Point(x, y)); 

                                } catch (FormatException) { 

                                    Console.WriteLine("skipping '{0}'", line); 

                                    Console.Write("Reading {0}.. ", 

                                        Path.GetFileName(path)); 

                                } catch (OverflowException) { 

                                    Console.WriteLine("skipping '{0}'", line); 

                                    Console.Write("Reading {0}.. ", 

                                        Path.GetFileName(path)); 

                                } 

                            } 

                        } 

                    } 

                } 

            } 

            catch (IOException) { 

                Console.WriteLine("failed (unexpected io error)"); 

                return false; 

            } 

            Console.WriteLine("done"); 

            return true; 

        } 

 

        private static Size GetImageSize(string path) { 

            Console.Write("Reading image.. "); 

            Try { 

                using (Bitmap image = (Bitmap)Bitmap.FromFile(path)) { 

                    return new Size(image.Width, image.Height); 

                } 

            } catch (OutOfMemoryException) { 

                Console.WriteLine("failed (out of memory)"); 

            } catch (FileNotFoundException) { 

                Console.WriteLine("failed (file not found)"); 

            } catch (IOException) { 

                Console.WriteLine("failed (unexpected io error)"); 

            } 

            return Size.Empty; 

        } 

 

        private static bool GetImageFiles(string path, out FileInfo[] files) { 

            Console.Write("Reading images.. "); 

            files = null; 

            if (!Directory.Exists(path)) { 

                Console.WriteLine("failed (the directory does not exist)"); 

                return false; 

            } 

            try { 

                DirectoryInfo info = new DirectoryInfo(path); 

                try { 

                    files = info.GetFiles("*.bmp"); 

                } catch (DirectoryNotFoundException) { 

                    Console.WriteLine("failed (the directory does not exist)"); 

                    return false; 

                } 

            } 

            catch (PathTooLongException) { 

                Console.WriteLine("failed (the directory is too long)"); 

                return false; 

            } 

            Console.WriteLine("done"); 

            return true; 

        } 

    } 

} 



 134 

Normalising palmar flexion creases 

ConvLines.m 

function convlines( in, out, samples ) 

%CONVLINES Convert lines 

%   Convert lines using linspacearc to even spaced samples 

    files = dir(in); 

    for i = 1:numel(files) 

        if files(i).isdir ~= true 

            lx = []; ly = []; 

            [file, lines] = importlines([in, files(i).name]); 

            for j = 1:numel(lines) 

                source = lines{j}; 

                [x, y] = linspacearc(source(:, 1), source(:, 2), samples); 

                lx = [lx, x]; %#ok<*AGROW> 

                ly = [ly, y]; 

            end 

            fprintf('writing %s\n', [out, file, '.txt']); 

            output = fopen([out, file, '.txt'], 'w'); 

            fprintf(output, '%G,%G\r\n', [lx; ly]); 

            fclose(output);             

        end 

    end 

end 

LinSpaceArc.m 

function [x2,y2] = linspacearc(x,y,n) 

    m = length(x); 

    t = linspace(0,1,m); 

    ppx = spline(t,x); 

    ppy = spline(t,y); 

    dppx = pp_deriv(ppx); 

    dppy = pp_deriv(ppy); 

    integrand = @(tt) sqrt(ppval(dppx,tt).^2 + ppval(dppy,tt).^2); 

    arc_length = quadgk(integrand,0,1); 

    s = linspace(0,arc_length,n); 

    inv_arc_len = @(arc,est) fzero(@(u)(quadgk(integrand,0,u)) - arc,est);  

    t2 = zeros(1,n); 

    t2(1) = inv_arc_len(s(1),0); 

    for i = 2:n 

        t2(i) = inv_arc_len(s(i),t2(i-1)); 

    end 

    x2 = ppval(ppx,t2); 

    y2 = ppval(ppy,t2); 

  

function dpp = pp_deriv(pp) 

    % pp_deriv: derivative of piecewise polynomial (pp) 

    dpp = pp; 

    n = pp.order; 

    dpp.coefs = bsxfun(@times,n-1:-1:1,pp.coefs(:,1:n-1)); 

    dpp.order = n - 1; 

Modifying and comparing palmar flexion creases 

ModLine.m 

function [ line ] = modline( source, noise ) 

%MODLINE Modifies the line specified by SOURCE with random 

%   rotation, translation, and noise. The amount of noise (independent 

%   variation of each point in SOURCE) is specified by NOISE. 

    angle = randint(1, 1, [0 360]); % random angle 0 to 360 

    linex = source(:, 1) .* cos(angle) - source(:, 2) .* sin(angle); 

    liney = source(:, 1) .* sin(angle) + source(:, 2) .* cos(angle); 

    % random translation (of all points) -50 to 50 

    xtran = randint(1, 1, [-50 50]); 

    ytran = randint(1, 1, [-50 50]); 

    linex = linex + xtran; 

    liney = liney + ytran; 

    % add random translation to each point 

    for t = 1:numel(linex) 



 135 

       xtran = randint(1, 1, [-noise noise]); 

       ytran = randint(1, 1, [-noise noise]); 

       linex(t) = linex(t) + xtran; 

       liney(t) = liney(t) + ytran; 

    end 

    line = [linex liney]; 

end 

CmpLines.m 

function [ distance ] = cmplines( A, B ) 

%CMPLINES Compare two lines A and B 

%   Find the Euclidean distance between two sets of points 

%   after they have been normalised using Procrustes analysis. 

%   DISTANCE is the sum of Euclidean distances between each nearest 

%   point in A and B. 

    [ssm BT] = procrustes(A, B, 'reflection', false, ... 

        'scaling', false); 

    clear ssm; 

    A = A'; B = B'; BT = BT'; 

    % get the distance between A and BT 

    index = nearestneighbour(A, BT); 

    abt = A - BT(:, index); 

    abt = abt .* abt; 

    abt = sqrt(abt(1, :) + abt(2, :)); 

    abt = sum(abt); 

    % get the distance between A and B 

    index = nearestneighbour(A, B); 

    ab = A - B(:, index); 

    ab = ab .* ab; 

    ab = sqrt(ab(1, :) + ab(2, :)); 

    ab = sum(ab); 

    % find the least distance 

    distance = min(abt, ab); 

end 

GetDist.m 

tic; 

directory = ['..\Normalised']; 

verbose = 1; 

transformations = 5; % the number of times to transform B 

mindistance = Inf; % the minimum distance between incorrect palms 

maxdistance = 0; % the maximum distance between correct palms 

avgcdistance = 0; % the average distance between correct palms 

avgidistance = 0; % the average distance between incorrect palms 

avgcsum = 0; avgisum = 0; ccp = 0; icp = 0; 

% get file list 

files = dir(fullfile(directory, '*.txt')); 

% for each file 

for i = 1:numel(files) 

    % read A 

    A = importdata(fullfile(directory, files(i).name)); 

    % for each file 

    for j = 1:numel(files) 

        % read B 

        B = importdata(fullfile(directory, files(j).name)); 

        % for 1 to nr of transformations 

        for k = 1:transformations 

            % modify A 

            AR = modline(A, 8); 

            for v = 1:transformations 

                % modify B 

                BR = modline(B, 8); 

                % compare A to transformed B 

                distance = cmplines(AR, BR); 

                if strncmpi(files(i).name, files(j).name, 7) == 1 

                    % from the same palm 

                    ccp = ccp + 1; 

                    avgcsum = avgcsum + distance; 

                    avgcdistance = avgcsum / ccp; 

                    if distance > maxdistance 

                        % record the maximum distance 

                        maxdistance = distance; 



 136 

                        if verbose > 0 

                            fprintf('Distances: %.2f / %.2f c: %.2f\n', ... 

                                maxdistance, mindistance, avgcdistance); 

                        end 

                    end 

                else 

                    icp = icp + 1; 

                    avgisum = avgisum + distance; 

                    avgidistance = avgisum / icp; 

                    % from different palms 

                    if distance < mindistance 

                        % record the minimum distance 

                        mindistance = distance; 

                        if verbose > 0 

                            fprintf('Distances: %.2f / %.2f i: %.2f\n', ... 

                                maxdistance, mindistance, avgidistance); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

clear i j A B index distance directory files; 

clear xtran ytran k bry brx angle AR BR t verbose; 

clear avgisum avgcsum; 

toc; 

CmpDb.m 

tic; 

directory = ['..\Normalised']; 

verbose = 1; 

threshold = 0; % distance threshold 

transformations = 5; % the number of transforms 

cp = 0; % number of comparisons 

ga = 0; % genuine acceptance rate 

fa = 0; % false acceptance rate 

fr = 0; % false negative rate 

% get file list 

files = dir(fullfile(directory, '*.txt')); 

% for each file 

for i = 1:numel(files) 

    % read A 

    A = importdata(fullfile(directory, files(i).name)); 

    % for each file 

    for j = 1:numel(files) 

        % read B 

        B = importdata(fullfile(directory, files(j).name)); 

        % for 1 to nr of transformations 

        for k = 1:transformations 

            % modify A 

            AR = modline(A, 8); 

            for v = 1:transformations 

                cp = cp + 1; 

                % modify B 

                BR = modline(B, 8); 

                % compare A to transformed B 

                distance = cmplines(AR, BR); 

                % get ga, fa, or fn rate 

                if distance <= threshold 

                    % distance is below threshold 

                    if strncmpi(files(i).name, files(j).name, 7) == 1 

                        % and from the same palm: genunine acceptance 

                        ga = ga + 1; 

                        if verbose > 1 

                            fprintf(['Genuine acceptance: ', ... 

                                '%.2f (%s to %s)\n'], distance, ... 

                                files(i).name, files(j).name); 

                        end 

                    else 

                        % and from two different palms: false acceptance 

                        fa = fa + 1; 

                        if verbose > 0 

                            fprintf(['False acceptance: ', ... 

                                '%.2f (%s to %s)\n'], distance, ... 



 137 

                                files(i).name, files(j).name); 

                        end 

                    end 

                else 

                    % distance is above threshold 

                    if strncmpi(files(i).name, files(j).name, 7) == 1 

                        % and from the same palm: false rejection 

                        fr = fr + 1; 

                        if verbose > 0 

                            fprintf(['False rejection: ', ... 

                                '%.2f (%s to %s)\n'], distance, ... 

                                files(i).name, files(j).name); 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

clear i j A B index distance directory files; 

clear xtran ytran k bry brx angle BR t verbose; 

toc; 

Automated palmprint identification 

Palmprint pre-processing 

PeakDet.m 

maxtab = []; 

mintab = []; 

v = v(:); 

mn = Inf; mx = -Inf; 

mnpos = NaN; mxpos = NaN; 

lookformax = 1; 

for i=1:length(v) 

  this = v(i); 

  if this > mx, mx = this; mxpos = i; end 

  if this < mn, mn = this; mnpos = i; end 

  if lookformax 

    if this < mx-delta 

      maxtab = [maxtab ; mxpos mx]; 

      mn = this; mnpos = i; 

      lookformax = 0; 

    end   

  else 

    if this > mn+delta 

      mintab = [mintab ; mnpos mn]; 

      mx = this; mxpos = i; 

      lookformax = 1; 

    end 

  end 

end 

FindLargestRectanges.m 

if (nargin<2) 

  crit = [1 1 0]; 

end 

if (nargin<3) 

  minSize = [1 1]; 

end 

p = crit; 

[nR nC] = size(I); 

if (minSize(1)<1), minSize(1)= floor(minSize(1)*nR); end 

if (minSize(2)<1), minSize(2)= floor(minSize(2)*nC); end 

if (max(I(:)) - min(I(:))==1), 

  S = FindLargestSquares(I); 

else 

  S = I; 

end 

n = max(S(:)); 



 138 

W = S; 

H = S; 

C = ((p(1)+p(2)) + p(3)*S) .* S; 

d = round((3*n)/4); 

minH = max(min(minSize(1), d),1); 

minW = max(min(minSize(2), d),1); 

hight2width = zeros(n+1,1); 

for r = 1 : nR 

  hight2width(:) = 0; 

  for c = nC: -1 : 1 

    s = S(r,c); 

    if (s>0 

      MaxCrit = C(r,c 

      for hight = s:-1: 

        width = hight2width(hight 

        width = max(width+1,s); 

        hight2width(hight) = width; 

        Crit = p(1)*hight + p(2)*width + p(3)*width*hight; 

        if (Crit>MaxCrit), 

          MaxCrit = Crit; 

          W(r,c)  = width; 

          H(r,c)  = hight; 

        end 

      end 

      C(r,c)  = MaxCrit; 

    end 

    hight2width((s+1):end) = 0; 

  end 

end 

clear hight2width 

width2hight = zeros(n+1,1); 

for c = 1 : nC 

  width2hight(:) = 0; 

  for r = nR: -1 : 1 

    s = S(r,c); 

    if (s>0) 

      MaxCrit = C(r,c); 

      for width = s:-1:1 

        hight = width2hight(width); 

        hight = max(hight+1,s); 

        width2hight(width) = hight; 

        Crit = p(1)*hight + p(2)*width + p(3)*width*hight; 

        if (Crit>MaxCrit), 

          MaxCrit = Crit; 

          W(r,c)  = width; 

          H(r,c)  = hight; 

        end 

      end 

      C(r,c)  = MaxCrit; 

    end 

    width2hight((s+1):end) = 0; 

  end 

end 

CC = C; 

CC( H<minH | W<minW ) = 0; 

[tmp pos] = max(CC(:)); 

if (isempty(pos)), [tmp pos] = max(C(:)); end 

[r c] = ind2sub(size(C), pos); 

M = false(size(C)); 

M( r:(r+H(r,c)-1), c:(c+W(r,c)-1) ) = 1; 

FindLargestSquares.m 

[nr nc] = size(I); 

S = double(I); 

for r=(nr-1):-1:1 

  for c=(nc-1):-1:1 

    if (S(r,c)) 

      a = S(r  ,c+1); 

      b = S(r+1,c  ); 

      d = S(r+1,c+1); 

      S(r,c) = min([a b d]) + 1; 

    end 

  end 

end 

 



 139 

PreProcess.m 

%Load image 

image = imread(filePath); 

level = graythresh(image); 

binary = im2bw(image,level); 

%Preprocess the image. 

label = bwlabel(binary); 

regions = regionprops(label, 'Area', 'BoundingBox', 'FilledImage'); 

[area, index] = max([regions.Area]); 

image = imcrop(image, regions(index).BoundingBox); 

binary = regions(index).FilledImage; 

boundary = bwboundaries(binary, 'noholes'); 

boundary = boundary{1}; 

[maxPeaks, minPeaks] = peakdet(boundary(:, 2), preProcessingPeakSize); 

[imageHeight, imageWidth] = size(image); 

peaks = boundary(maxPeaks(:, 1), 2);     

maxPeak = max(peaks(peaks < 200)); 

regionOfInterest = [maxPeak 1 (imageWidth - maxPeak - 20) imageHeight]; 

image = imcrop(image, regionOfInterest);     

image = imrotate(image, -90); 

binary = image > preProcessingThreshold; 

[S H W] = FindLargestRectangles(binary, [0 0 1]); 

[tmp pos] = max(S(:)); 

[r c] = ind2sub(size(S), pos); 

image = imcrop(image, [c, r, W(r, c), H(r, c)]); 

Palmar flexion crease identification 

FindCreases.py 

#!/usr/bin/python 

 

try: 

    import pygtk 

    pygtk.require('2.0') 

except: 

    pass 

 

try: 

    import gobject 

    import gtk 

    import gtk.glade 

except: 

    print 'Error: GTK is not installed' 

    sys.exit(1) 

 

import os 

import sys 

import glob 

import Image 

import numpy 

import scipy.signal.signaltools 

 

class Viewer(object): 

    def __init__(self, image_path): 

        self.window = gtk.Window(gtk.WINDOW_TOPLEVEL) 

        self.window.connect("destroy", self.destroy_event) 

        self.window.set_border_width(10) 

        self.button = gtk.Button() 

        self.button.connect_object("clicked", gtk.Widget.destroy, self.window) 

        self.image = gtk.Image() 

        self.image.set_from_file(image_path) 

        self.image.show() 

        self.button.add(self.image) 

        self.window.add(self.button) 

        self.button.show() 

        self.window.show() 

 

    def destroy_event(self, widget, data=None): 

        gtk.main_quit() 

 

    def main(self): 

        gtk.main() 



 140 

 

def array_to_image(data): 

    """Convert an image array to an Image.Image object.""" 

    cmin = data.min() 

    cmax = data.max() 

    scale = 255 * 1.0 / (cmax - cmin or 1) 

    bytedata = ((data * 1.0 - cmin) 

                * scale + 0.4999).astype(numpy.uint8) 

    bytedata = bytedata + numpy.cast[numpy.uint8](0) 

    return Image.fromarray(bytedata) 

 

def image_to_array(im): 

    """Convert a Image.Image object to a float image array.""" 

    if im.mode == 'RGB': 

        imr, img, imb = im.split() 

        im = numpy.asarray(imb, numpy.float) 

    elif im.mode == 'L': 

        im = numpy.asarray(im, numpy.float) 

    im = im / 256 

    return im 

 

def get_binomial_coefficients(size): 

    """Returns a vector of binomial coefficients of order 

    (size - 1).""" 

    if size < 2: 

        print "Size must be larger than 1." 

    kernel = numpy.array([0.5, 0.5]) 

    for n in range(0, size - 2): 

        kernel = numpy.convolve(numpy.array([0.5, 0.5]), kernel) 

    return kernel.reshape(-1, 1) 

 

def convolve(large, small): 

    """Convolution of two matrices, with boundaries handled via 

    reflection about the edge pixels. Result will be of size of the 

    large matrix. The origin of the small matrix is assumed to be its 

    center. """ 

    ly = large.shape[0] 

    lx = large.shape[1] 

    sy = small.shape[0] 

    sx = small.shape[1] 

    sy2 = numpy.floor((sy + 0 - 1) / 2) 

    sx2 = numpy.floor((sx + 0 - 1) / 2) 

    clarge1 = numpy.concatenate((numpy.concatenate( 

              (large[(sy-sy2)-1:0:-1,(sx-sx2)-1:0:-1], 

              large[(sy-sy2)-1:0:-1,:]), axis=1), 

              large[(sy-sy2)-1:0:-1,lx-2:(lx-sx2)-2:-1]), axis=1) 

    clarge2 = numpy.concatenate((numpy.concatenate( 

              (large[:,(sx-sx2)-1:0:-1], large), axis=1), 

              large[:,lx-2:(lx-sx2)-2:-1]), axis=1) 

    clarge3 = numpy.concatenate((numpy.concatenate( 

              (large[ly-2:(ly-sy2)-2:-1,(sx-sx2)-1:0:-1], 

              large[ly-2:(ly-sy2)-2:-1,:]), axis=1), 

              large[ly-2:(ly-sy2)-2:-1,lx-2:(lx-sx2)-2:-1]), axis=1) 

    clarge = numpy.concatenate((numpy.concatenate( 

             (clarge1, clarge2), axis=0), clarge3), axis=0) 

    return scipy.signal.signaltools.convolve2d(clarge, small, 

                                               mode='valid') 

 

def correlate(im, filt, step): 

    """Compute correlation of matrices im with filt followed by 

    downsampling. These arguments should be 1d or 2d matrices, and im 

    must be larger (in both dimensions) than filt. Downsampling 

    factors are determined by step.""" 

    start = numpy.array([1, 1]) 

    stop = numpy.array(im.shape) 

    tmp = convolve(im, filt) 

    return tmp[start[0]-1:stop[0]:step[0],start[1]-1:stop[1]:step[1]] 

 

def blur_and_downsample(im, levels=1): 

    """Blur and down sample an image IM. The blurring is done with a 

    symmetric quadrature mirror filter (QMF9) kernel. The downsampling 

    is always by 2 in each direction.""" 

    filt = numpy.array([0.02807382, -0.060944743, -0.073386624, 

                        0.41472545, 0.7973934,0.41472545, -0.073386624, 

                        -0.060944743, 0.02807382]).reshape(-1,1) 

    filt = filt / filt.sum(axis=0) 

    res = correlate(im, filt, numpy.array([2, 1])) 



 141 

    return correlate(res, filt.reshape(1, -1), numpy.array([1, 2])) 

 

def find_vertical_path(im): 

    height, width = im.shape 

    cost = numpy.zeros((width, height), numpy.float) 

    for y in range(1, height): 

        for x in range(0, width): 

            costUp = cost[x, y - 1] 

            if x > 0: 

                costUpLeft = cost[x - 1, y - 1] 

            else: 

                costUpLeft = 1000 

            if x < width - 1: 

                costUpRight = cost[x + 1, y - 1] 

            else: 

                costUpRight = 1000 

            cost[x, y] = min(costUp, min(costUpLeft, costUpRight)) \ 

            + im[y, x] 

    vpath = [(0, 0) for i in range(height)] 

    best = 1000 

    y = height - 1 

    for x in range(0, width): 

        if cost[x, y] < best: 

            vpath[y] = (x, y) 

            best = cost[x, y] 

    x = vpath[y][0] 

    for y in range(height - 1, -1, -1): 

        vpath[y] = (x, y) 

        best = cost[x, y] 

        if x > 1 and cost[x - 1, y] <= best: 

            vpath[y] = (x - 1, y) 

            best = cost[x - 1, y] 

        if x < width - 1 and cost[x + 1, y] <= best: 

            vpath[y] = (x + 1, y) 

            best = cost[x + 1, y] 

        x = vpath[y][0] 

    return vpath 

 

def find_horizontal_path(im): 

    height, width = im.shape 

    cost = numpy.zeros((width, height), numpy.float) 

    for x in range(1, width): 

        for y in range(0, height): 

            costRight = cost[x - 1, y] 

            if y > 0: 

                costRightUp = cost[x - 1, y - 1] 

            else: 

                costRightUp = 1000 

            if y < height - 1: 

                costRightDown = cost[x - 1, y + 1] 

            else: 

                costRightDown = 1000 

            cost[x, y] = min(costRight, min(costRightUp, costRightDown)) \ 

            + im[y, x] 

    hpath = [(0, 0) for i in range(width)] 

    best = 1000 

    x = width - 1 

    for y in range(0, height): 

        if cost[x, y] < best: 

            hpath[x] = (x, y) 

            best = cost[x, y] 

    y = hpath[x][1] 

    for x in range(width - 1, -1, -1): 

        hpath[x] = (x, y) 

        best = cost[x, y] 

        if y > 1 and cost[x, y - 1] <= best: 

            hpath[x] = (x, y - 1) 

            best = cost[x, y - 1] 

        if y < height - 1 and cost[x, y + 1] <= best: 

            hpath[x] = (x, y + 1) 

            best = cost[x, y + 1] 

        y = hpath[x][1] 

    return hpath 

 

def remove_path(array, points, axis=0): 

    """Removes points from array across axis (0 for horizontal, 1 

    for vertical). If the number of points is incorrect, the array 



 142 

    is returned unchanged.""" 

    h, w = array.shape 

    if len(points) <> (axis and w or h): 

        return array 

    array = array.reshape(1, h * w, order=(axis and 'FORTRAN' or 'C')) 

    for p in reversed(points): 

        if p[1] >= h: p = (p[0], h - 1) 

        if p[0] >= w: p = (w - 1, p[1]) 

        array = numpy.delete(array, 

                (axis and p[1] + (p[0] * h) or (p[1] * w) + p[0])) 

    h, w = (axis and (h - 1, w) or (h, w - 1)) 

    return array.reshape(h, w, order=(axis and 'FORTRAN' or 'C')) 

 

def crop(array, margin): 

    """Cut a margin (top, bottom, left, right) from array.""" 

    h, w = array.shape 

    return array[margin[0]:h - margin[1], margin[2]:w - margin[3]] 

 

def get_files(pattern, search_path, path_sep=os.pathsep): 

    """Given a search path, yield all files matching pattern.""" 

    for path in search_path.split(path_sep): 

        for match in glob.glob(os.path.join(path, pattern)): 

            yield match 

 

def display_image(image): 

    """Show the image in a new GTK window.""" 

    if not isinstance(image, Image.Image): 

        image = array_to_image(image) 

    image.save('/tmp/file.bmp') 

    Viewer('/tmp/file.bmp').main() 

 

def create_path_image(im, hpath=None, vpath=None, hcolour=(255, 0, 0), \ 

vcolour=(0, 255, 0)): 

    import ImageDraw 

    ''' Draw HPATH and VPATH on IM. ''' 

    if hpath is None and vpath is None: 

        return im 

    if im.mode != 'RGB': 

        im = im.convert('RGB') 

    draw = ImageDraw.Draw(im) 

    if hpath is not None: 

        draw.point(hpath, fill=hcolour) 

    if vpath is not None: 

        draw.point(vpath, fill=vcolour) 

    del draw 

    return im 

 

def find_and_remove_vertical_path(image, cuts, reslice_limit=5): 

    paths = [] 

    cut = 0 

    while cut < cuts: 

        path = find_vertical_path(image) 

        if(check_path_overlap(paths, path, overlap_limit)): 

            image = remove_path(image, path, axis=0) 

            paths.append(path) 

            cut = cut + 1 

    return (image, paths) 

 

def find_and_remove_horizontal_path(image, slices, overlap_limit=5): 

    paths = [] 

    cut = 0 

    while cut < cuts: 

        path = find_horizontal_path(image) 

        if(check_path_overlap(paths, path, overlap_limit)): 

            image = remove_path(image, path, axis=1) 

            paths.append(path) 

            cut = cut + 1 

    return (image, paths) 

 

def main(image): 

    filter = get_binomial_coefficients(5) 

    filter = filter * filter.reshape(1, -1) 

    image = image_to_array(image) 

    image = blur_and_downsample(image) 

    image = image - convolve(image, filter) 

    image = convolve(image, filter) 

    image = crop(image, get_crop_size(image)) 



 143 

    image, vertical_lines = find_and_remove_vertical_path(image, 3) 

    image, horizontal_lines = find_and_remove_horizontal_path(image, 4) 

    return [horizontal_lines, vertical_lines] 

 

def get_image(filename): 

    image = None 

    try: 

        image = Image.open(filename) 

    except IOError: 

        sys.exit(1) 

    return image 

 

def print_data(filename, data): 

    sys.stdout = open('%s' % filename, 'w') 

    print os.path.basename(filename) 

    for orientations in data: 

        for lines in orientations: 

            for points in lines: 

                print '%s,%s' % (points[0], points[1]) 

    sys.stdout = sys.__stdout__ 

 

if __name__ == '__main__': 

    files = get_files('*.bmp', '../images') 

    for f in sorted(files): 

        print_data('%s.txt' % f, main(get_image(f)) 

Palmar flexion crease matching 

KdTree.py 

import sys 

import os 

import glob 

import math 

import csv 

 

class kdtree: 

    def __init__(self,dim=2,index=0): 

        self.dim = dim 

        self.index = index 

        self.split = None 

 

    def add_point(self, p): 

        if self.split is None: 

            self.split = p 

            self.left = kdtree(self.dim, (self.index + 1) % self.dim) 

            self.right = kdtree(self.dim, (self.index + 1) % self.dim) 

        elif self.split[self.index] < p[self.index]: 

            self.left.addPoint(p) 

        else: 

            self.right.addPoint(p) 

 

    def nearest_neighbor(self, q, maxdist): 

        """Find pair (d, p) where p is nearest neighbor and d is squared 

        distance to p.""" 

        solution = (maxdist, None) 

        if self.split is not None: 

            solution = min(solution, (dist2(self.split, q), self.split)) 

            d2split = (self.split[self.index] - q[self.index]) ** 2 

            if self.split[self.index] < q[self.index]: 

                solution = min(solution, 

                    self.left.nearest_neighbor(q, solution[0])) 

                if d2split < solution[0]: 

                    solution = min(solution, 

                        self.right.nearest_neighbor(q, solution[0])) 

            else: 

                solution = min(solution, 

                    self.right.nearest_neighbor(q, solution[0])) 

                if d2split < solution[0]: 

                    solution = min(solution, 

                        self.left.nearest_neighbor(q, solution[0])) 

        return solution 

 

def dist2(p,q): 

    """Return the squared distance between p and q.""" 



 144 

    d = 0 

    for i in range(len(p)): 

        d += (p[i] - q[i]) ** 2 

    return d 

 

def get_files(pattern, search_path, path_sep=os.pathsep): 

    """Given a search path, yield all files matching pattern.""" 

    for path in search_path.split(path_sep): 

        for match in glob.glob(os.path.join(path, pattern)): 

            yield match 

 

def get_points(file_path): 

    """Given a csv file, yield all rows where field is above limit.""" 

    file = open(file_path, 'rb') 

    reader = csv.reader(file, delimiter=',', quoting=csv.QUOTE_NONE) 

    try: 

        for row in reader: 

            if len(row) >= 2: 

                yield (int(row[0]), int(row[1])) 

    finally: 

        file.close() 

 

def write_comparison_data(file_path, data): 

    """Write comparison data to file.""" 

    file = open(file_path, 'a') 

    try: 

        file.write(data) 

    finally: 

        file.close() 

 

def compare_data(points1, points2, distance): 

    """Return a match percentage for two data sets.""" 

    tree = kdtree() 

    for point in points1: 

        tree.add_point(point) 

    total_points = 0 

    matched_points = 0 

    for point in points2: 

        d, q = tree.nearest_neighbor(point, 1000) 

        if math.sqrt(d) < distance: 

            matched_points += 1 

        total_points += 1 

    return (matched_points / total_points) * 100 

 

if __name__ == '__main__': 

    input1 = '../automatic' 

    input2 = '../manual' 

    output = '../output' 

    for file1 in sorted(get_files('*.txt', input1)): 

        head, file1_tail = os.path.split(file1) 

        points1 = list(get_points(file1)) 

        sys.stdout = open('%s/%s' % (output, os.path.basename(file1)), 'w') 

        for file2 in sorted(get_files('*.txt', input2)): 

            head, file2_tail = os.path.split(file2) 

            rating = compare_data(points1, list(get_points(file2))) 

            print '%s,%s,%s' % (file1_tail, file2_tail, rating) 

        sys.stdout = sys.__stdout__""" 



 145 

Appendix B 

This appendix shows the correspondence with authors of existing palmar flexion 

crease recognition methods, who were contacted regarding access to their algorithms. 

The table below lists the methods that are suitable for comparison, and the request 

and response details. 

Method Request Request Response Follow Up 

Request 

Follow Up 

Response 

Kung et al. (1995) 
a
 

Rodrigues et al. (1996) 
a
 

Boles and Chu (1996) 23/07/2011 Yes, but the algorithm 

is no longer available. 

  

Wu et al. (2002a) 23/07/2011 Delivery failed. Email 

quota exceeded. 

21/08/2011 None 

Wu et al. (2004a) 23/07/2011 Delivery failed. Email 

quota exceeded. 

21/08/2011 None 

Wu et al. (2004b) 23/07/2011 Delivery failed. Email 

quote exceeded. 

21/08/2011 None 

Liu and Zhang (2005) 23/07/2011 Delivery failed. 

Unknown user. 

21/08/2011 None 

Li and Leung (2006) 23/07/2011 None 21/08/2011 None 

Wu et al. (2006) 23/07/2011 Delivery failed. Email 

quota exceeded. 

21/08/2011 None 

Huang et al. (2008) 23/07/2011 None 21/08/2011 None 

Jia et al. (2008) 23/07/2011 None 21/08/2011 None 

a
 Contact details not available. 

Correspondence with Professor Boles 

RE: Flexion crease algorithm comparison 

Wageeh Boles [w.boles@qut.edu.au] 
Sent: 25 July 2011 00:17 
To: Cook, Tom 

 
Dear Tom, 
  
Thanks for your message. Unfortunately, I no longer have the code. 
All the best for your research. 
  
Regards, 
Wageeh 
  
From: Cook, Tom [mailto:t.cook@wlv.ac.uk]  
Sent: 23 July 2011 11:18 PM 

To: Wageeh Boles 
Subject: Flexion crease algorithm comparison 
  



 146 

Dear Professor Boles 
 
I am a research student from the University of Wolverhampton, United Kingdom, and would 
like to perform a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

 
Following your publication, 'personal identification using images of the human palm' in 
Proceedings of the IEEE Region 10 Annual Conference on Speech and Image Technologies 
for Computing and Telecommunications, I would like to include your work in my comparison, 
and would be grateful if you could allow me access to the source code of your algorithms for 
this purpose. 

 
The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

 
I look forward to your response 

 
Yours sincerely 

 
Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

Correspondence with Professor Wu 

Flexion crease algorithm comparison 

Cook, Tom 
Sent: 23 July 2011 14:18 
To: xqwu@hit.edu.cn 

Dear Professor Wu 

I am a research student from the University of Wolverhampton, United Kingdom, and would 
like to perform a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publications: 

 Fuzzy directional element energy feature (FDEEF) based palmprint identification 

 A novel approach of palm-line extraction 

 Palmprint recognition using directional line energy feature 

 Palm line extraction and matching for personal authentication 

I would like to include your work in my comparison, and would be grateful if you could allow 
me access to the source code of your algorithms for this purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 



 147 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 
 

RE: Flexion crease algorithm comparison 

Cook, Tom 
Sent: 21 August 2011 21:17 

To: xqwu@hit.edu.cn 

    
Dear Professor Wu 
  
I am writing to enquire whether you have received my previous email requesting your help in 
performing a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 
 
Following your publications: 

 Fuzzy directional element energy feature (FDEEF) based palmprint identification 

 A novel approach of palm-line extraction 

 Palmprint recognition using directional line energy feature 

 Palm line extraction and matching for personal authentication 

I would like to include your work in my comparison, and would be grateful if you could allow 
me access to the source code of your algorithms for this purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Regards, 
  
Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

Correspondence with Professor Lui 

Flexion crease algorithm comparison 

Cook, Tom 



 148 

Sent: 23 July 2011 14:18 
To: csliliu@comp.polyu.edu.hk 

Dear Professor Lui 

I am a research student from the University of Wolverhampton, United Kingdom, and would 
like to perform a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publication, 'Palm-line detection' in Proceedings of the International 
Conference on Image Processing, I would like to include your work in my comparison, and 
would be grateful if you could allow me access to the source code of your algorithms for this 
purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 
 

RE: Flexion crease algorithm comparison 

Cook, Tom 
Sent: 21 August 2011 21:17 

To: csliliu@comp.polyu.edu.hk 
 
Dear Professor Lui 

I am writing to enquire whether you have received my previous email requesting your help in 
performing a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publication, 'Palm-line detection' in Proceedings of the International 
Conference on Image Processing, I would like to include your work in my comparison, and 
would be grateful if you could allow me access to the source code of your algorithms for this 
purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 



 149 

  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

Correspondence with Professor Li 

Flexion crease algorithm comparison 

Cook, Tom 
Sent: 23 July 2011 14:18 

To: asfli@ntu.edu.sg 

Dear Professor Li 

I am a research student from the University of Wolverhampton, United Kingdom, and would 
like to perform a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publication, 'Hierarchical identification of palmprint using line-based Hough 
transform' in Proceedings of the 18th International Conference on Pattern Recognition, I 
would like to include your work in my comparison, and would be grateful if you could allow 
me access to the source code of your algorithms for this purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 
 

RE: Flexion crease algorithm comparison 

Cook, Tom 
Sent: 21 August 2011 21:17 

To: asfli@ntu.edu.sg 
 
Dear Professor Li 

I am writing to enquire whether you have received my previous email requesting your help in 
performing a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publication, 'Hierarchical identification of palmprint using line-based Hough 
transform' in Proceedings of the 18th International Conference on Pattern Recognition, I 
would like to include your work in my comparison, and would be grateful if you could allow 
me access to the source code of your algorithms for this purpose. 



 150 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

Correspondence with Professor Huang 

Flexion crease algorithm comparison 

Cook, Tom 
Sent: 23 July 2011 14:18 
To: dshaung@iim.ac.cn 

Dear Professor Huang 

I am a research student from the University of Wolverhampton, United Kingdom, and would 
like to perform a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publications, 'Palmprint verification based on principal lines' and 'Palmprint 
verification based on robust line orientation code' in Pattern Recognition, I would like to 
include your work in my comparison, and would be grateful if you could allow me access to 
the source code of your algorithms for this purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

 

RE: Flexion crease algorithm comparison 

Cook, Tom 
Sent: 21 August 2011 21:17 

To: dshaung@iim.ac.cn 



 151 

 
Dear Professor Huang 

I am writing to enquire whether you have received my previous email requesting your help in 
performing a comparison of palmar flexion crease identification algorithms for my PhD 
thesis. 

Following your publications, 'Palmprint verification based on principal lines' and 'Palmprint 
verification based on robust line orientation code' in Pattern Recognition, I would like to 
include your work in my comparison, and would be grateful if you could allow me access to 
the source code of your algorithms for this purpose. 

The source code will only be used to compare the performance characteristics of your 
algorithm with our own, for which you will be acknowledged in any resulting publications. The 
source code, or any part of it, will not be modified, distributed, reproduced, or adapted in any 
form. 

I look forward to your response 

Yours sincerely 

Tom Cook 
  
Research Student 
Research Centre in Applied Sciences 
University of Wolverhampton 
Wulfruna Street 
Wolverhampton 
WV1 1SB 

 


