461 research outputs found

    Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks

    Get PDF
    Upper limb myoelectric prostheses remain challenging to use and are often abandoned. A proficient user must be able to plan/execute arm movements while activating the residual muscle(s), accounting for delays and unpredictability in prosthesis response. There is no validated, low cost measure of skill in performing such actions. Trial-trial variability of joint angle trajectories measured during functional task performance, linearly normalised by time, shows promise. However, linear normalisation of time introduces errors, and expensive camera systems are required for joint angle measurements. This study investigated whether trial-trial variability, assessed using dynamic time warping (DTW)of limb segment acceleration measured during functional task performance, is a valid measure of user skill. Temporal and amplitude variability of forearm accelerations were determined in 1) seven myoelectric prosthesis users and six anatomically-intact controls and 2) seven anatomically-intact subjects learning to use a prosthesis simulator over repeated sessions. 1: temporal variability showed clear group differences (p<0.05). 2: temporal variability considerably increased on first use of a prosthesis simulator, then declined with training (both p<0.05). Amplitude variability showed less obvious differences. Analysing forearm accelerations using DTW appears to be a valid low-cost method for quantifying movement quality of upper limb prosthesis use during goal-oriented task performance

    A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    Get PDF
    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the surrounding environment, which can make development difficult without a finalized mechanical prototype. This paper presents a new framework for the development of electromyographic hand control systems, consisting of a prosthesis model based on the biomechanical structure of the human hand. The model's dynamic structure uses an ellipsoidal representation of the phalanges. Other features include underactuation in the fingers and thumb modeled with bond graphs, and a viscoelastic contact model. The model's functions are demonstrated by the execution of lateral and tripod grasps, and evaluated with regard to joint dynamics and applied forces. Finally, additions are suggested with which this model can be of use in mechanical design and patient training as well

    Model-based control of individual finger movements for prosthetic hand function

    Get PDF
    The authors gratefully acknowledge the support of the Engineering and Physical Sciences Research Council (EP/M025977/1) and the National Institutes of Health (NIH5R01EB011615) in this research.Peer reviewedPostprin

    Improving Suturing Skills for Surgical Residents and Advancing Prosthesis Control for Amputees.

    Full text link
    Proper suturing technique is one of the most important skills a surgical resident should acquire. However, current methods for teaching it rely on subjective performance evaluations. An instrumented training apparatus for abdominal closure could be used to define objective assessments that directly relate to closure quality. I identify a synthetic material that models abdominal fascia using porcine and cadaveric data and design a means to mount the material so that it mimics abdominal closure. Digital images are used to quantify material deformations and provide real-time objective measures regarding the effect of suture placement and tension in the abdominal tissue. In parallel, I develop a finite element model of abdominal fascia and its closure with suture to deduce stresses in the material and forces in the sutures. I find that despite uniform suture spacing, the forces in suture are unevenly distributed along the closure. These findings motivate the development of a surgical learning tool that objectively relays information about suture placement and tension. In a second body of work, I address the development of a novel interface between an amputee’s peripheral nervous system and a motorized prosthetic device. Conventional myoelectric control cannot produce a sufficient number of independent signals for actuation of modern computerized upper limb prostheses. A compact construct involving grafted muscle surgically prepared at the end of a transected peripheral nerve is envisioned for transducing a nervous signal with fine specificity and sensitivity. Up to 20 such constructs can be prepared in a human arm, and epimysial electrodes on each construct can be used to relay signals encoding 20 independent channels of motor intent. I develop a means of evaluating this construct in awake rats, and demonstrate that the transduced signals suffer minimal crosstalk and are correlated with gait. A decoder is able to reconstruct data produced by motion tracking, and I show that adjacent constructs placed proximal to one another provide the same signals as anatomically intact muscle-nerve antagonist-pair analogs. The correlation between the signals transduced, the walking kinematics, and analogous out of phase activation obtained from adjacent constructs indicates that this technology holds promise for human translation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147635/1/danursu_1.pd

    Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling

    Get PDF
    Objectives: Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities and restore amputees' capacity of moving and interacting with the environment. Despite recent advances in biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered by the lack of intuitive and robust man-machine interfaces. Approach: Based on authors' developments, this work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual's phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With respect to current approaches based on machine learning, our method employs explicit representations of the musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a subspace contained within the broader operational space of an individual's musculoskeletal system. Results: Our results show that this constraint makes the approach applicable to real-world scenarios and robust to movement artefacts. This stems from the fact that any control command must always exist within the musculoskeletal model operational space and be therefore physiologically plausible. The approach was effective both on intact-limbed individuals and a transradial amputee displaying robust online control of multi-functional prostheses across a large repertoire of challenging tasks. Significance: The development and translation of man-machine interfaces that account for an individual's neuromusculoskeletal system creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be restored or replaced via biomimetic wearable assistive technologies

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    Description of motor control using inverse models

    Get PDF
    Humans can perform complicated movements like writing or running without giving them much thought. The scientific understanding of principles guiding the generation of these movements is incomplete. How the nervous system ensures stability or compensates for injury and constraints – are among the unanswered questions today. Furthermore, only through movement can a human impose their will and interact with the world around them. Damage to a part of the motor control system can lower a person’s quality of life. Understanding how the central nervous system (CNS) forms control signals and executes them helps with the construction of devices and rehabilitation techniques. This allows the user, at least in part, to bypass the damaged area or replace its function, thereby improving their quality of life. CNS forms motor commands, for example a locomotor velocity or another movement task. These commands are thought to be processed through an internal model of the body to produce patterns of motor unit activity. An example of one such network in the spinal cord is a central pattern generator (CPG) that controls the rhythmic activation of synergistic muscle groups for overground locomotion. The descending drive from the brainstem and sensory feedback pathways initiate and modify the activity of the CPG. The interactions between its inputs and internal dynamics are still under debate in experimental and modelling studies. Even more complex neuromechanical mechanisms are responsible for some non-periodic voluntary movements. Most of the complexity stems from internalization of the body musculoskeletal (MS) system, which is comprised of hundreds of joints and muscles wrapping around each other in a sophisticated manner. Understanding their control signals requires a deep understanding of their dynamics and principles, both of which remain open problems. This dissertation is organized into three research chapters with a bottom-up investigation of motor control, plus an introduction and a discussion chapter. Each of the three research chapters are organized as stand-alone articles either published or in preparation for submission to peer-reviewed journals. Chapter two introduces a description of the MS kinematic variables of a human hand. In an effort to simulate human hand motor control, an algorithm was defined that approximated the moment arms and lengths of 33 musculotendon actuators spanning 18 degrees of freedom. The resulting model could be evaluated within 10 microseconds and required less than 100 KB of memory. The structure of the approximating functions embedded anatomical and functional features of the modelled muscles, providing a meaningful description of the system. The third chapter used the developments in musculotendon modelling to obtain muscle activity profiles controlling hand movements and postures. The agonist-antagonist coactivation mechanism was responsible for producing joint stability for most degrees of freedom, similar to experimental observations. Computed muscle excitations were used in an offline control of a myoelectric prosthesis for a single subject. To investigate the higher-order generation of control signals, the fourth chapter describes an analytical model of CPG. Its parameter space was investigated to produce forward locomotion when controlled with a desired speed. The model parameters were varied to produce asymmetric locomotion, and several control strategies were identified. Throughout the dissertation the balance between analytical, simulation, and phenomenological modelling for the description of simple and complex behavior is a recurrent theme of discussion

    A Biomimetic Approach to Controlling Restorative Robotics

    Get PDF
    Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control. Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands. Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques. Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury. Movement is the only way a person can interact with the world around them. When trauma to the neuromuscular systems disrupts the control of movement, quality of life suffers. To restore limb functionality, active robotic interventions and/or rehabilitation are required. Unfortunately, the primary obstacle in a person’s recovery is the limited robustness of the human-machine interfaces. Current systems rely on control approaches that rely on the person to learn how the system works instead of the system being more intuitive and working with the person naturally. My research goal is to design intuitive control mechanisms based on biological processes termed the biomimetic approach. I have applied this control scheme to problems with restorative robotics focused on the upper and lower limb control.Operating an advanced active prosthetic hand is a two-pronged problem of actuating a high-dimensional mechanism and controlling it with an intuitive interface. Our approach attempts to solve these problems by going from muscle activity, electromyography (EMG), to limb kinematics calculated through dynamic simulation of a musculoskeletal model. This control is more intuitive to the user because they attempt to move their hand naturally, and the prosthetic hand performs that movement. The key to this approach was validating simulated muscle paths using both experimental measurements and anatomical constraints where data is missing. After the validation, simulated muscle paths and forces are used to decipher the intended movement. After we have calculated the intended movement, we can move a prosthetic hand to match. This approach required minimal training to give an amputee the ability to control prosthetic hand movements, such as grasping. A more intuitive controller has the potential to improve how people interact and use their prosthetic hands.Similarly, the rehabilitation of the locomotor system in people with damaged motor pathways or missing limbs require appropriate interventions. The problem of decoding human motor intent in a treadmill walking task can be solved with a biomimetic approach. Estimated limb speed is essential for this approach according to the theoretical input-output computation performed by spinal central pattern generators (CPGs), which represents neural circuitry responsible for autonomous control of stepping. The system used the locomotor phases, swing and stance, to estimate leg speeds and enable self-paced walking as well as steering in virtual reality with congruent visual flow. The unique advantage of this system over the previous state-of-art is the independent leg speed control, which is required for multidirectional movement in VR. This system has the potential to contribute to VR gait rehab techniques.Creating biologically-inspired controllers has the potential to improve restorative robotics and allow people a better opportunity to recover lost functionality post-injury

    Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography.

    Get PDF
    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported
    corecore