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Model-based control of individual finger movements
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Abstract—Prosthetic devices for hand difference have advanced
considerably in recent years, to the point where the mechanical
dexterity of a state-of-the-art prosthetic hand approaches that
of the natural hand. Control options for users, however, have
not kept pace, meaning that the new devices are not used to
their full potential. Promising developments in control technology
reported in the literature have met with limited commercial and
clinical success. We have previously described a biomechanical
model of the hand that could be used for prosthesis control.
The goal of this study was to evaluate the feasibility of this
approach in terms of kinematic fidelity of model-predicted finger
movement and the computational performance of the model.
We show the performance of the model in replicating recorded
hand and finger kinematics and find average correlations of
0.89 between modelled and recorded motions; we show that the
computational performance of the simulations is fast enough to
achieve real-time control with a robotic hand in the loop; and
we describe the use of the model for controlling object gripping.
Despite some limitations in accessing sufficient driving signals, the
model performance shows promise as a controller for prosthetic
hands when driven with recorded EMG signals. User-in-the-loop
testing with amputees is necessary in future work to evaluate the
suitability of available driving signals, and to examine translation
of offline results to online performance.

I. INTRODUCTION

DEXTEROUS and natural finger movement, including
manipulation of objects, is an important goal for upper

limb prosthesis users [1]. Increasingly sophisticated prosthetic
devices have become available over the last few years, of-
fering individual digit movement and degrees of freedom
approaching those of the natural hand [2]. However, a lack of
sophisticated control options for users limits full exploitation
of these devices, and control is characterized by predefined
patterns of grasp and sequential actions [3].

With access to more input signals from muscles [4] or
nerves [5], the potential for natural and simultaneous control
of multiple degree-of-freedom (DOF) movement is increasing.
However, for this to become a reality, an intuitive means of
control for these sophisticated devices is needed. We have pro-
posed the use of a biomechanical hand model as a controller
for the prosthetic device whereby control signals based on
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electromyography (EMG) recorded from the user’s residual
muscles drive a dynamic simulation of hand motion [6]. The
resulting modelled digit actions, based on the biomechanics
of the natural hand, can be replicated in real time by the
prosthesis, producing natural hand movements.

The current state-of-the-art in myoelectric prosthesis control
is dominated by machine learning techniques, whereby a
decoding algorithm maps residual muscle signals to desired
actions. This approach presupposes no particular relationship
between the muscle signals and desired actions, but trains the
controller by recordings made from prosthesis users attempting
to carry out desired actions [7]. Training on data recorded
during dynamic movements, rather than being limited to static
postures, has been shown to improve the robustness of these
systems [8], [9] and users have been shown to adapt to
the dynamics of a physical device as well as controlling
kinematic signals [10]. In addition to mapping different grip
postures, recent work has also attempted to map surface EMG
signals to individual finger movement using various pattern
recognition algorithms [4], [11], [12]. In some cases, where
access to the recording sites is lost as a consequence of the
amputation, targeted muscle reinnervation may be used to
transfer residual nerves into alternative muscles. These can
then be used as recording sites for EMG sensors to produce
the control command [13].

Some commercial systems are available using this type of
nerve transfer technology, however its use requires significant
training on the part of the user. More commonly seen in clin-
ical or commercially available devices is proportional control,
where a user can modulate the degree of movement (speed,
angle, force) by controlling the amplitude of generated muscle
signals [14]. In order to achieve multiple grip patterns, these
systems require mode switching between grips, or sequential
control of single degrees of freedom.

In our approach, we take advantage of the known biome-
chanics of the limb to simulate the actions that would result
from particular muscle activation patterns if the limb were still
present. As long as the biomechanical model is a reasonable
approximation of the missing limb, the EMG-driven, simulated
movements should be a good approximation of the desired
movements. Using the biomechanics of the limb in this way
to interpret residual muscle signals means that the predicted
movements are constrained to occur in a physiologically
feasible space. Moreover, the dynamics of the limb may help to
reduce the effects of noisy measurements of muscle activation,
reducing the ambiguity of intended actions. A further benefit
of this approach is that the explicit representation of muscle
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elements in the model, in contrast to pure machine learning
approaches, allows the generation of proprioceptive signals
that can be fed back to the prosthesis user to provide truly
closed-loop control of movement [15]. Muscle length and
velocity information provided by modelled muscle spindle
output, and tendon force feedback generated by a simple
model of the Golgi Tendon Organ (GTO), could be given to
the user via peripheral nerve stimulation.

Several recent studies have shown the potential for this
model-based approach in controlling wrist and hand movement
from recorded EMG signals. Crouch & Huang [16] used a real-
time, two-DOF musculoskeletal model to control the fingertip
of a virtual hand with EMG signals from four forearm muscles.
Sartori et al. [17] included an EMG-driven musculoskeletal
model that decoded joint moments in a control scheme for
wrist movement and hand opening-closing and Kapelner et al.
[18] have attempted to improve the human-machine interface
by decomposing recorded EMG signals into the underlying
neural drive. This neuromechanical approach shows promise
for real-world applications due to the robustness of the con-
trol to movement artifacts and the physiologically-constrained
solution space for control signals.

We have previously shown stand-alone biomechanical hand
model simulations of individual finger movements that run
faster than real time [6]. In this study, we attempt to answer
three key questions that will enable translation of the theoret-
ical model approach to actual device implementation:

1) Are simulated model movements the same as those
intended by the user?

2) Can a model of realistic complexity, with hardware in
the loop, run fast enough to enable real-time control?

3) For interaction with the environment, could the model
be used to control object gripping as well as open-chain
movements?

To answer these three questions, we describe this study in
three parts: part 1 compares the kinematics of natural hand
movement against those of an EMG-driven biomechanical
model in a group of normally-limbed individuals; part 2 drives
a robotic hand with the EMG-controlled biomechanical model,
and assesses the model in terms of its computational speed;
and part 3 demonstrates the use of the model in simulated
gripping of a cup being filled with liquid.

II. METHODS

A. Biomechanical hand model

The biomechanical hand model is a modified version of the
one we have presented previously [6]. OpenSim [19] is used to
modify and visualise the structure of the model; the metacar-
pophalangeal (MCP) joints are modelled as two orthogonal
hinge joints, the proximal and distal interphalangeal (PIP, DIP)
joints are simple hinges, and the muscle lines of action are
represented by elements passing from origin to insertion via
wrapping objects to achieve the correct moment arms for the
muscles across a range of postures. The multibody dynamics
are described by the equation of motion:

M(q).q̈ +B(q, q̇) + C(q).τ = 0 (1)

Fig. 1. OpenSim visualisation of the hand model, showing muscle lines of
action and included joints (CMC, MCP, IP at the thumb, MCP, PIP and DIP
for the fingers).

where M is the mass matrix; the 2nd term accounts for
centrifugal, Coriolis and gravitational forces and the final term
includes the effects of joint moments τ via the coefficient
matrix C. τ is the summation of muscle moments and passive
joint moments. To speed up the computational performance
of the model, the muscle lengths and lines of action are
preprocessed to a polynomial representation to avoid the run-
time calculation of wrapping paths [20].

To match the structure of the robotic hand used as part
of the study (Section II-C), the model wrist was fixed, all
finger abduction/adduction degrees of freedom were removed,
and all muscles crossing only the wrist were removed. This
simplifies the model somewhat compared to the full model
published in Blana et al. [6], and makes control with surface
EMG recordings more feasible. The resulting model has 16
degrees of freedom (four at the thumb, three at each of the
fingers) and 18 muscles (see Fig. 1).

Muscle dynamics are simulated with a first order delay, and
integration of system dynamics is carried out using an implicit
formulation to allow for larger stable integration step sizes:

f(x, ẋ, u) = 0 (2)

The state vector x contains 68 variables: 16 angles q, 16
angular velocities q̇, 18 muscle contraction state variables
s, and 18 muscle active states a. The implicit formulation
of system dynamics enables faster than real time, forward-
dynamic simulation but requires explicit calculation of Jaco-
bians ∂f

∂x , ∂f
∂ẋ and ∂f

∂u . These were implemented in Autolev
and hand-coded for muscle dynamics. Real-time simulations
were run in Matlab (Mathworks, Inc., Natick, MA) with a
fixed time-step of 4ms, using the semi-implicit integrator
described in [21]. Model code and parameters can be found
at https://github.com/dasproject.

To simulate proprioceptive feedback signals, we added the
computationally efficient models of proprioception developed
by Williams & Constandinou [15]. The muscle spindle model
is based on Mileusnic et al. [22] and is composed of three
intrafusal fibre models (bag1, bag2 and chain) and two afferent
firing models, primary (Ia) and secondary (II). This generates
an output signal modulated by both muscle length and velocity.
The Golgi tendon organ is modelled as a force sensor with
three components: a saturation non-linearity, a phase-lead
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Fig. 2. EMG electrodes were placed over four key muscle areas (top image)
allowing independent control of the five postures (including rest). These were:
the lateral part of EDC, the medial part of EDC, the FDS (just distal to the
superficial wrist flexors), and the EPB. The middle row of images shows the
locations of markers for the kinematic analysis, and the bottom row shows
the four target postures presented.

filter, and a threshold [23], giving rise to an output signal
related to muscle force that is physiologically reasonable. In
this study we include these to assess their impact on model
computational performance, but they are not further used for
feedback at this time, either to the model or to the user.

B. Experiment 1: Kinematic fidelity of model-simulated hand
motions

In the first experiment, the biomechanical model was driven
with surface EMG signals recorded from normally-limbed
individuals, and the simulated motions compared with those
recorded from the participants using 3D motion analysis. EMG
activity was recorded from four key muscles enabling the sim-
ulation of basic postures by the model. After giving informed
consent for participation in the study (Keele Ethics Committee
reference ERP390 and Newcastle Ethics Committee reference
17-NAZ-056), markers for motion capture and EMG recording
electrodes were attached to the hand and forearm of the
participants (shown in Fig. 2). Participants were a convenience
sample of six normally-limbed individuals with no history of
injury to the measured limb were recruited to the study to
evaluate the kinematic fidelity of modelled hand motions. The
mean age of the participants was 29.0(±6.2) years; three were
male, three were female.

For each participant, a static posture was recorded, with
all digits extended. They were then asked to repeatedly open

and close their hand at a self-selected comfortable speed
for 30 seconds. Finally, they were asked to copy the hand
movements presented to them in a demonstration video. The
postures were presented to them in a randomised order over the
course of 60 seconds, returning to a loosely closed posture in
between. Thirty postures in total were attempted. The postures
chosen were the fully open hand, pointing with the index
finger, thumbs up, and an L-shape (pointing and thumbs up
together). The resting posture was a loosely closed hand. The
other postures are shown in the bottom row in Fig. 2; all
postures maintained a neutral wrist position. These postures
were chosen as they were easy to achieve with the activation
of superficial muscles that were feasible for recording via
surface EMG. They are not intended to be a functionally
comprehensive set, simply a feasible subset that demonstrate
the performance of the real-time model as a controller for
robotic hand movement.

We recorded the motions of the participants’ hands with a
3D motion analysis system (6-camera Vicon Bonita, Oxford
Metrics Ltd), to compare the simulated motions with the
recorded motions. Retroreflective markers of 6mm diameter
were attached to the posterior surface of the palm, and the
dorsal surface of the phalanges of the thumb, index and middle
fingers. We did not include markers on the fourth and fifth
digits, as they were not needed to identify the postures and
were frequently occluded during the movements. This was a
reduced version of the marker set described by Metcalf et al.
[24]. Marker position data were captured at 100Hz.

The Datalink EMG system (Biometrics Ltd, Newport,
Wales) was used to record muscle activity, and bipolar surface
electrodes were placed over the following four muscles and
muscle areas: extensor digitorum communis (EDC) lateral,
approximately covering third, fourth and fifth digit; extensor
digitorum communis (EDC) medial, capturing extension of the
index finger; flexor digitorum superficialis (FDS) just distal
to the wrist flexor bellies, capturing flexion of the fingers;
extensor pollicis brevis (EPB), capturing extension of the
thumb. Again, this is a reduced but feasible set of muscles that
can be recorded independently with surface EMG electrodes,
allowing us to demonstrate the performance of the model.

The EMG signals were sampled at 2000Hz and then
rectified and processed with the use of a moving average filter
with a window of 150ms (described in Blana et al. [25]). EMG
amplitudes were scaled to a maximum contraction recorded for
each posture to estimate normalised muscle activation from
0 to 1. The normalised EMG signal was then mapped to a
combination of representative muscle tendon units (MTU) and
these were used as inputs to the model; the outputs were the
set of joint angles for all five digits. These mappings were
selected to best achieve the desired movement with the limited
surface EMG recordings, while keeping the control as intuitive
as possible. The EMG to MTU mapping is shown in Table I.

The trials with the static posture were used to scale the
dimensions of all the segments in the hand model to fit each
participant with the OpenSim scaling method described in
Delp et al. [19]). The dynamic trials were then used as inputs
to inverse kinematic simulations with the scaled Opensim
model. The outputs were joint angles.
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TABLE I
MAPPING OF RECORDED EMG SIGNALS TO MODEL MTUS

Source EMG Modelled MTU

Extensor Digitorum Communis (lateral) EDC (digits 3-5)

Extensor Digitorum Communis (medial) EDC (digit 2) & EI

Flexor Digitorum Superficialis FDS (digits 2-5)

Extensor Pollicis Brevis EPB & EPL

As prosthetic hands typically have a single flexion/extension
degree of freedom for each digit, we used a single joint angle
to estimate the open/close movement of each digit: the thumb
CMC joint, index finger MCP joint and middle finger MCP
joint angles. The range of the three angles was found from the
repeated open/close trial, and we used these to normalise the
angles in the randomised posture trials, from zero (digit fully
open) to one (digit fully closed).

Processed EMG data from the dynamic trials were input
to the biomechanical model. The processing of the simulated
angles was the same as the angles calculated from the Vicon
recordings: the thumb CMC, index finger MCP and middle
finger MCP model joint angles were normalised between
zero and one using the range of simulated angles from the
open/close trial.

We compared the recorded and simulated (normalised)
movements throughout the randomised posture trials using the
number of postures successfully achieved by each participant
that were accurately replicated by the model. To do this, we
assumed that if a (normalized) angle was below 0.3 the digit
was open, if above 0.7 it was closed, and a particular posture
was achieved if held for more than 0.4s. This allows for some
variation in individual joint angles for the same posture that
naturally occurs from trial to trial and between subjects, but
is close enough to identify the posture. We then quantified the
success rate as the ratio of the postures successfully adopted
by the model to the postures attempted by the participant.
Where the participant did not adopt the correct posture (or
this was not clear from the Vicon data), we excluded that
posture attempt from the success rate analysis. In addition
to this, we report Pearson’s Correlation Coefficients for all
movements, regardless of whether the posture was achieved
by participant or model, to give an indication of the similarity
of the movements made from one posture to another.

C. Experiment 2: Real-time control of a robotic hand

In the second experiment, EMG recorded from a single,
normally-limbed participant was used to drive a desktop
robotic hand, via the biomechanical model, to assess the use
of the real-time model with both robotic hardware and the
user in the loop. In this context, we define the ability of the
model to run in real time by its ability to simulate a movement
in less computational time than the integration time step. For
example, if the computational time needed to simulation one
integration step is 4ms, then an integration time-step of more
than 4ms must be used to allow real-time simulation. This is
described fully in [21] and [6].

Surface EMG signals were recorded using a Trigno EMG
system (Delsys Inc., Natick, MA) from the same four muscles
used in Experiment 1. Processed EMG signals were used to
drive a forward-dynamic simulation of hand dynamics, and
the kinematic output from the model was then passed to the
robotic hand so that the device mimicked the movements of
the user. The robotic hand posture was updated every 100ms.
The same set of movements was recorded as those used
in Experiment 1; the EMG recording and processing were
also the same, except for the addition of a minimum EMG
threshold to remove low-level EMG activity. Low-level EMG
fluctuations generate small forces in the model that cause the
robotic hand to quiver: normalised EMG values below 0.05
were therefore set to zero to prevent this.

The robotic hand used was the Prensilia IH2 Azzurra.
The hand consists of 5 degrees of freedom (thumb flex-
ion/extension, thumb rotation, and flexion/extension of the
second, third and combined fourth and fifth digits). It is
cable actuated and features a built-in PID controller that
receives input via serial commands. At each update step, a
position control command was sent to the hand in the form of
x = [x1 x2 x3 x4 x5], where xi denotes the desired position
of the ith degree of freedom.

The participant was shown a series of target postures by the
experimenter, the same postures used in Experiment 1 (shown
in Fig. 2), and asked to reproduce these with the robotic hand.
The participant was prevented from seeing the robotic hand
so that visual feedback did not influence the muscle activation
patterns produced; the robotic hand was driven by the natural
muscle activation patterns produced as a result of copying the
experimenter’s target hand postures.

The performance of the model and hardware setup was
quantified in terms of the time taken for each step in the data
acquisition and processing cycle. The fidelity of reproduced
movements were not quantified in this phase of the study; see
Section II-B for those metrics.

D. Experiment 3: Control of simulated gripping

In the final experiment, we created a simulation of object
gripping, to explore the model’s use as a controller of grip
force. In this simulation, a virtual (smooth-sided) cup was
placed in the modelled hand, and slowly filled with water.
Ideally, a user would modulate the EMG commands to the
model to maintain the grip of the object. However, since it was
not feasible to carry out such user-in-the-loop experiments, in
this study a PID controller was included in the simulation
in place of the user to maintain grip force at a sufficient
level to prevent slipping. The controller adjusted grip force
by modulating the input muscle excitation level to the model
during a forward-dynamic simulation (Fig. 3).

The presence of the object (a cup) was simulated by
applying a force to the tips of the fingers in the model. A
linear stiffness was assumed for the cup, allowing fingertip
forces to be calculated from their displacement as the cup was
squeezed. Fingertip forces were fed back to the model and the
grip force modulated by controlling muscle excitations of the
deep flexor muscles. Grip was maintained with the minimum
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Fig. 3. Schematic of simulated object gripping. The weight of the cup is
altered to simulate filling, and the resultant shear force, Fshear , on the finger
is used to estimate the minimum contact force, Fmin, necessary to prevent
slip. Muscle excitations, u, are input to the model and the resultant finger
displacement, x, is output, from where cup stiffness is used to estimate
fingertip contact force, Fnorm. A PID controller modulates the muscle
excitation to ensure the contact force is kept above the minimum.

force necessary to prevent slipping of the cup. The normal
force required to achieve this was calculated by monitoring
the weight of the cup and hence the shear (friction) force
on the fingers, using an assumed value of µ = 0.3 for the
coefficient of friction. The cup had a stiffness of 10KN/m,
and the weight was varied to simulate filling with water.

The weight of the cup was evenly distributed between the
four fingers on one side and the thumb on the other. The four
fingers thus equally shared 50% of the weight. We focus on the
index finger here for illustration, but the simulation involved
all the fingers. The neural excitation of the Flexor Digitorum
Profundus Indicis (FDPI) muscle was continually updated by
a PD controller with proportional gain Kp = 0.01N−1 and
derivative gain Kd = 0.0005N−1. The controller was tuned
to give a short rise time and minimal oscillation.

The results of this experiment were assessed in terms of
the computational performance of the model. In order to
acheive real-time performance, the maximum stable step size
for the forward-dynamic simulation needs to be larger than
the amount of time needed to complete the computation of
system dynamics. In addition, qualitative assessment of the
grip force modulation behaviour in relation to normal grip
was undertaken.

III. RESULTS

A. Kinematic fidelity of model-simulated hand motions

Fig. 4 shows the muscle excitation signals that are used
as inputs for the model plotted over the raw EMG signals
recorded from the corresponding muscles. The segment shown
is for the ‘thumbs up’, ‘hand open’, ‘pointing with index
finger’ and ‘L-shape’ postures.

Fig. 5 shows a comparison of the measured hand kinematics
against those estimated by the model for the same sequence of
movements. The hand angles are normalised to the minimum
and maximum values encountered during full opening and
closing of the hand.

The success rate for the model matching the postures
achieved by the participants is shown in Table II. In a few

Fig. 4. Example of the muscle excitation signals used as model inputs,
together with the raw EMG signals from which they are derived. The segment
shown includes the ‘thumbs up’, ‘hand open’, ‘pointing with index finger’ and
‘L-shape’ postures.

Fig. 5. The normalised angles for both the measured hand kinematics and
the model-predicted joint postures. These are for the same segment of data
as shown in Fig. 4, normalized using the range estimated from the repeated
open-close trial.
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cases, the participant was not able to make all 30 target
postures presented to them; the failed postures have been
excluded from the analysis as the model posture could not
be evaluated in those cases. Pearson’s Correlation Coefficient
between the recorded and model-estimated angles for all
movements was also used to estimate the fidelity of model-
predicted movements; these are shown in Table III.

TABLE II
THE SUCCESS RATE OF THE SIMULATED POSTURE MATCHING THE

RECORDED POSTURE. IN SOME CASES, THE PARTICIPANT FAILED TO
ACHIEVE THE TARGET POSTURE; THIS IS SHOWN BY THE DENOMINATOR
IN THE SUCCESS RATE CALCULATION, WHICH IS THE TOTAL NUMBER OF

TARGET POSTURES ACHIEVED BY THE PARTICIPANT. FOR EXAMPLE, EVEN
THOUGH 6 “THUMBS UP” POSTURES WERE INCLUDED IN THE

DEMONSTRATION VIDEO, PARTICIPANT S2 ONLY ACHIEVED 5. OF THOSE,
THE MODEL MATCHED 3, SO THE SUCCESS RATE WAS 3/5.

Participant Open Pointing Thumbs up “L” Success rate

S1 10 7 4 4 25/30 = 0.83

S2 10 5/5 3/5 6 24/26 = 0.92

S3 6 2 0 2 10/30 = 0.33

S4 8 0/7 5 1/3 14/26 = 0.54

S5 9/9 6/7 1/5 0/0 22/28 = 0.79

S6 10 8 1 3/4 22/29 = 0.76

Total shown 10 8 6 6 124/169 = 0.73

TABLE III
PEARSON’S CORRELATION COEFFICIENT FOR THE MODEL-PREDICTED

ANGLES FOR EACH SUBJECT AND EACH DIGIT ACROSS ALL MOVEMENTS

Participant Thumb Index Middle

S1 0.96 0.95 0.99

S2 0.96 0.96 0.99

S3 0.89 0.98 0.93

S4 0.93 0.92 0.98

S5 0.89 0.97 0.99

S6 0.96 0.91 0.99

mean±std 0.93±0.03 0.95±0.03 0.98±0.02

Finally, the addition of proprioceptive feedback in the form
of the muscle spindle model allowed us to estimate the spindle
firing rates from both primary and secondary afferents asso-
ciated with these movements. Although they were not further
used in this study, they are shown in Fig. 6 for reference.

B. Real-time control of a robotic hand

In the second experiment, EMG signals recorded in the same
way as in Section II-B were again used to drive the forward-
dynamic model, and the kinematic outputs from the model
were passed to the robotic hand (Prensilia IH2 Azzurra). This
allowed the participant to directly control the movements of a
physical, robotic hand in real time using forearm EMG signals.
A small time delay associated with the EMG-envelope calcu-
lation was observed, but otherwise robotic hand movements
mimicked those of the natural hand.

Fig. 7 shows the sequence of movements made by the
user in controlling the hand, together with the actual posture

Fig. 6. The model also simulates proprioceptive feedback. This figure shows
the muscle spindle primary and secondary afferent firing rates for the same
segment of data, alongside the normalised fibre length.

adopted by the robotic hand. A full video of this is available
in the Supplementary Material.

Table IV shows the time required for each prosthesis control
component, including the EMG acquisition and processing,
dynamic simulations with the biomechanical hand model, and
updating the robotic hand position. Out of 100ms, these
processes take 16.2ms in total. The calculation of the pro-
prioceptive feedback takes 2% of the time of the dynamic
simulations.

TABLE IV
THE COMPUTATION TIME REQUIRED FOR SPECIFIC TASKS IN THE

CONTROL OF ROBOTIC HAND HARDWARE.

Process Execution time (ms)

EMG acquisition and processing 1.6

Simulation of hand dynamics (25 timesteps) 12.3

Updating robotic hand position 2.3

Total 16.2

C. Control of simulated gripping

Fig. 8 shows the results of simulated gripping, where the
amount of liquid in the cup is steadily increased. The initial
value of 2N is the weight of the empty cup; the weight
increases as the cup fills (Panel A). Panel B shows the
activation of the FDPI muscle resulting from the changing
force feedback. The initial spike is a response to the applied
step load when the weight of the cup is placed in the hand.
There is then a slow rise in activation as the cup fills. Panel C
shows the fingertip force (solid line) maintained to just exceed
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Fig. 7. The Prensilia IH2 Azzurra robotic hand and the participant’s hand, shown in the various postures encountered during the trial. A video of the control
achieved using this hand is available in the Supplementary Material.

Fig. 8. Panel A shows weight of the cup as liquid is added. Panel B shows
activation in the FDPI muscle to ensure that the fingertip force just exceeds the
minimum necessary to prevent slipping. Panel C shows the resulting fingertip
force, Panel D the force in the finger flexor and Panel E the simulated GTO
output.

the minimum force necessary to prevent slip (dashed line).
Panel D shows the force in the FDPI tendon and Panel E the
simulated output from the Golgi Tendon Organ Model.

Table V shows the computational performance achieved
during the simulation of grip force control. The gripping task
includes the simulation of the deformation of the cup used to
estimate the fingertip contact force. Note that in ultimate use,
this would not be simulated but measured, hence the key value
in this table is the time taken to simulate the hand dynamics.
Since this is 3.3ms and the integration step size is 4ms, the
simulation is fast enough to run in real time.

IV. DISCUSSION

The aim of this study was to extend our initial work
on real-time biomechanical simulation of hand dynamics to
answer key questions regarding the feasibility of this method
for prosthesis control. We have conducted three experiments

TABLE V
THE COMPUTATION TIME REQUIRED FOR SPECIFIC TASKS IN THE

SIMULATION OF GRIP FORCE CONTROL.

Process Execution time (ms)

Simulation of hand dynamics 3.34

PD Control execution 0.009

Simulated gripping task 3.22

Total 6.57

intended to demonstrate (i) the fidelity of EMG-driven model
movements in reproducing actions produced by normally-
limbed volunteers; (ii) the computational performance of the
model and its suitability for robotic hand control with hard-
ware and the user in the loop; and (iii) the potential of the
model-based control method to produce controlled gripping
of objects in the hand.

In the first experiment, the model-predicted movements
matched the recorded movements made by the subjects with
good fidelity (Pearson’s Correlation Coefficient greater than
0.89 for all subjects) when continuous movement is compared.
When comparing the final postures of the subjects’ actions
with those from the model, the agreement appears somewhat
less good, with the overall success rate on average being 0.70,
but dropping as low as 0.33 for one subject. In some cases, this
can be explained by the final posture falling just short of the
threshold for classification of a given movement, although the
continuous angle comparison may indicate better performance.
Although a correlation coefficient of 0.89 is considered good
and might be expected to lead to a close match between
actual and desired movements in practice, the effects of this
on actual use of a prosthetic hand will need to be assessed
in terms of the functional, rather than kinematic, performance
in future work. Related, preliminary work from our group has
shown that control is achievable with correlations in excess of
approximately 0.55.

Furthermore, for some subjects with smaller arms, it proved
difficult to separate the EMG signals into distinct functional
movements, and this is an unsurprising limitation of the
approach using discrete surface EMG recordings. It is likely
that EMG crosstalk arising from this issue is a substantial
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contributor to the occasional discrepancies between measured
and modelled movements (for example, the first second of
Figure 4, Panel B). The longer-term goal of this work is
to make use of recorded motor control signals with greater
spatial resolution by means of implanted electrodes, or even
nerve recordings, and in that case EMG cross talk will be
less of an issue. In this experiment we have focussed on a
deliberately limited subset of movements, as well as limiting
wrist motion, to demonstrate the potential of the model-based
approach, acknowledging that not all functional movements
can be completed in this way.

In the second experiment, model simulations were amply
fast, and in fact would have allowed for a much faster control
loop than the one we chose (100ms). Kinematic outputs
produced by the model were transmitted to the robotic hand
via serial communication and the postures adopted almost
instantaneously due to the robotic hand’s in-built controller.
The time taken to update the robotic hand’s position was
very small, as was the time to read and process EMG data.
As expected, most of the time was spent simulating muscu-
loskeletal dynamics. However, even this was well below what
was necessary, and allows for a significant increase in model
complexity if required, or a significant reduction in the robotic
hand update frequency. This may allow for more responsive
behaviour in real-world use, as well as allowing for faster and
more complex movements as prosthetic device hardware and
interfacing technology continues to advance.

In the final experiment, we have demonstrated the potential
of the model in modulating finger flexor force in a simulation
of closed-loop control of gripping. This shows that the model
could be used to regulate muscle activity in response to the
changing demand for grip force. The inclusion of the muscle
model, with its first order delays and elastic tendon, gives rise
to a compliant, human like grip that may lead to more natural
control. This demonstration features feedback-only control
of grip, whereas human grip features much more influence
from feedforward mechanisms, and recent work has shown
the importance of both feedforward and feedback mechanisms
for improving control of grip in upper limb prosthesis users
[26]. In our long-term vision, descending commands recorded
from the user would provide the feedforward element, and
force-related signals from simulated GTO and haptic sensors
in the fingertips of the prosthetic device would be fed back.
This means the user themselves would modulate descending
commands controlling muscle activation, and the need for the
PD controller is removed. This brings the control of slip-
prevention to the user, rather than leaving the prosthetic device
itself to autonomously control grip.

The use of a biomechanical model driven by cognate muscle
activity suggests that the movement of the robotic or prosthetic
hand should match the naturally intended movement of the
user, and indeed to some extent we have demonstrated that
to be the case. However, it should be noted that no attempt
at model customisation beyond simple scaling was made in
this case, so some degree of learning or adaptation to the
differences between the natural hand and the model may be
expected. Since our goal is to enable prosthesis control in
someone without a natural hand, this may be of secondary

importance compared to the effect of learned non-use in that
person. Indeed, supporting this, recent studies have shown
that an amputee may have more difficulty in controlling
coordinated movement than normally-limbed individuals [16],
[27]. Nonetheless, scaling to the contralateral limb could be
carried out to reduce initial differences in control signals and
minimise the learning required.

Recently published work [17] has shown the effectiveness of
a similar biomechanical model approach to prosthesis control
in user testing with amputees, albeit focusing on whole hand
movement and not individual finger control. In that study,
the simulation stopped short of full rigid-body kinematics,
but transferred joint torques directly to the prosthetic device
by controlling joint velocity. Thus the need for numerical
integration of the state dynamics was effectively replaced with
a physical model in the form of the prosthesis. This is an
elegant solution that allows robust, pragmatic control. Our
approach uses numerical simulation of prosthesis motion via a
real-time model, and therefore allows simulation of prosthesis
function also in the absence of a physical device. This may
allow user training and system optimisation to take place ahead
of fitting, minimising the learning time for the user.

Our approach uses knowledge of limb biomechanics to
provide control signals for a prosthetic device via a real-time
model. In our long-term vision, recordings of descending com-
mands made either from residual muscle and nerve, or muscles
innervated through targeted reinnervation [13], will produce
the driving signals for the model. Furthermore, we have shown
the ability to include physiologically meaningful simulations
of proprioceptive output of both joint kinematics (via muscle
spindle output) and force feedback (GTO outputs) that could
be fed back to the user by peripheral nerve stimulation in
future work. This will allow truly closed-loop control of hand
function for prosthesis users, enabling state-of-the-art devices
to be used to their full potential.

V. CONCLUSIONS AND FUTURE WORK

In this study, we have demonstrated the feasibility of real-
time biomechanical simulation of hand function for prosthesis
control by showing good fidelity between model-predicted and
human measured kinematics, faster than real time computa-
tional performance, and the potential for model-based grip-
force control. A number of limitations of the model have
been identified in terms of access to driving signals, but
the potential for enabling greater dexterity as device-human
interfacing improves is clear.

Future work will involve testing the functional performance
of this approach in upper limb amputees both in simulation and
with state-of-the-art prosthetic devices. Many questions remain
regarding access to and user control of suitable signals, as
well as users’ ability to learn the complex dynamics of multi-
joint movement. We have also shown the potential to simulate
meaningful feedback signals, and future work will need to
assess the viability of delivering and interpreting these.

To facilitate shorter term translation of this work to current
devices where invasive recordings may not be desirable or
possible, further work investigating the improved extraction of
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information from surface EMG recordings should be pursued.
This could include combining the musculoskeletal modelling
approach with computational intelligence to infer information
on deeper muscles that are not amenable to surface recordings.
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[17] M. Sartori, G. Durandau, S. Došen, and D. Farina, “Robust simultaneous
myoelectric control of multiple degrees of freedom in wrist-hand pros-
theses by real-time neuromusculoskeletal modeling,” Journal of Neural
Engineering, vol. 15, no. 6, p. 066026, Dec. 2018.

[18] T. Kapelner, I. Vujaklija, N. Jiang, F. Negro, O. C. Aszmann, J. Principe,
and D. Farina, “Predicting wrist kinematics from motor unit discharge
timings for the control of active prostheses,” Journal of NeuroEngineer-
ing and Rehabilitation, vol. 16, no. 1, p. 47, Apr. 2019.

[19] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John,
E. Guendelman, and D. G. Thelen, “OpenSim: Open-Source Software
to Create and Analyze Dynamic Simulations of Movement,” IEEE
Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–
1950, Nov. 2007.

[20] E. K. Chadwick, D. Blana, R. F. Kirsch, and A. J. van den Bogert,
“Real-Time Simulation of Three-Dimensional Shoulder Girdle and Arm
Dynamics,” IEEE Transactions on Biomedical Engineering, vol. 61,
no. 7, pp. 1947–1956, Jul. 2014.

[21] A. J. van den Bogert, D. Blana, and D. Heinrich, “Implicit methods
for efficient musculoskeletal simulation and optimal control,” Procedia
IUTAM, vol. 2, pp. 297–316, 2011.

[22] M. P. Mileusnic, I. E. Brown, N. Lan, and G. E. Loeb, “Mathematical
Models of Proprioceptors. I. Control and Transduction in the Muscle
Spindle,” Journal of Neurophysiology, vol. 96, no. 4, pp. 1772–1788,
Oct. 2006.

[23] C.-C. K. Lin and P. E. Crago, “Neural and Mechanical Contributions
to the Stretch Reflex: A Model Synthesis,” Annals of Biomedical
Engineering, vol. 30, no. 1, pp. 54–67, Jan. 2002.

[24] C. Metcalf, S. Notley, P. Chappell, J. Burridge, and V. Yule, “Valida-
tion and Application of a Computational Model for Wrist and Hand
Movements Using Surface Markers,” IEEE Transactions on Biomedical
Engineering, vol. 55, no. 3, pp. 1199–1210, Mar. 2008.

[25] D. Blana, T. Kyriacou, J. M. Lambrecht, and E. K. Chadwick, “Feasibil-
ity of using combined EMG and kinematic signals for prosthesis control:
A simulation study using a virtual reality environment,” Journal of
Electromyography and Kinesiology: Official Journal of the International
Society of Electrophysiological Kinesiology, vol. 29, pp. 21–27, Aug.
2016.

[26] I. Saunders and S. Vijayakumar, “The role of feed-forward and feedback
processes for closed-loop prosthesis control,” Journal of NeuroEngineer-
ing and Rehabilitation, vol. 8, no. 1, p. 60, 2011.

[27] L. Pan, D. L. Crouch, and H. Huang, “Myoelectric Control Based on a
Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine
Interface,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 7, pp. 1435–1442, Jul. 2018.


