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ABSTRACT (200 words) 25 

Upper limb myoelectric prostheses remain challenging to use and are often abandoned. A proficient 26 

user must be able to plan/execute arm movements while activating the residual muscle(s), accounting 27 

for delays and unpredictability in prosthesis response. There is no validated, low cost measure of skill in 28 

performing such actions. Trial-trial variability of joint angle trajectories measured during functional task 29 

performance, linearly normalised by time, shows promise. However, linear normalisation of time 30 

introduces errors, and expensive camera systems are required for joint angle measurements.  31 

This study investigated whether trial-trial variability, assessed using dynamic time warping (DTW) 32 

of limb segment acceleration measured during functional task performance, is a valid measure of user 33 

skill. Temporal and amplitude variability of forearm accelerations were determined in 1) seven 34 

myoelectric prosthesis users and six anatomically-intact controls and 2) seven anatomically-intact 35 

subjects learning to use a prosthesis simulator over repeated sessions.  36 

1: temporal variability showed clear group differences (p<0.05). 2: temporal variability 37 

considerably increased on first use of a prosthesis simulator, then declined with training (both p<0.05). 38 

Amplitude variability showed less obvious differences. Analysing forearm accelerations using DTW 39 

appears to be a valid low-cost method for quantifying movement quality of upper limb prosthesis use 40 

during goal-oriented task performance. 41 

 42 

Keywords 43 

Myoelectric prostheses, dynamic time warping, accelerations, variability, upper limb. 44 

  45 
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1. INTRODUCTION 46 

As a result of concerted efforts over recent decades, there have been significant advances in myoelectric 47 

prostheses design. The motors used have become smaller and more powerful, cosmetic covers have 48 

become more life-like, and, of most note, multi-functional hands, such as the i-Limb (Touch Bionics, 49 

Livingston, UK) and Be-Bionic (Steeper, Leeds, UK) have been developed. Yet, prosthesis users are still 50 

greatly limited by the available control modalities and lack of sensory feedback from the prosthesis [1]. 51 

Hence it is not surprising that such devices remain challenging to use and are often poorly utilized, or 52 

rejected [2, 3]. As more expensive multi-function myoelectric prostheses have become available, such as 53 

the i-limb full hand and i-limb digits (Touchbionics Inc., Livingston UK),  there is an urgent need for well-54 

validated and robust quantitative measures that allow for informed selection of a particular technology 55 

(to achieve a better match between user and device), and that have the potential to inform user 56 

training.  57 

 58 

Currently, quantifying the effectiveness of a given device, or the proficiency with which it is used, 59 

remains limited by the available outcome measures [4].Clinical tests often capture self-reported 60 

capabilities (e.g.  Orthotics and Prosthetics Users' Survey “OPUS” [5]), evaluate performance subjectively 61 

(e.g. Assessment of capacity for myoelectric control [6]), or measure speed of performance of a pre-62 

defined set of tasks (e.g. Southampton Hand Assessment Procedure “SHAP”  [7]). Research has 63 

discussed the limitations with many of these measures, such as reliance upon self-report and/or 64 

observer ratings [8-10]; self-report does not directly measure the person’s physical capabilities and can 65 

be influenced by subject bias, and observer-dependent measures are susceptible to (inter-/intra-) rater 66 

bias, which inherently reduces reliability compared to performance-based measures in which the 67 

administrator does not form part of the instrument. Previous research has also shown that whilst 68 

important [10], speed of task completion is only one of several factors which characterize skilled 69 
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prosthetic use; other measures, notably gaze and kinematics may further enhance our understanding of 70 

user performance and skill level [11].  71 

 72 

Accordingly, Major et al. recently compared the kinematics of myoelectric prosthesis users and able-73 

bodied controls without known pathology [12]. Specifically, considering that motor variability (motor 74 

variance across task repetition) has shown to decrease with skill acquisition [13, 14], and given the 75 

redundant degrees of freedom (DoFs) in the upper body musculoskeletal architecture that permit 76 

various task-equivalent motor strategies, Major et al. [12] focused on studying kinematic variability of 77 

these DoFs. Their results showed that joint kinematic variability is higher in prosthesis users than 78 

controls, and was correlated with years of experience of prosthesis use.  Their findings suggest that 79 

increased compensation may be reflected in increased joint kinematic variability above able-bodied 80 

individuals. 81 

 82 

In common with almost all studies of upper limb functional task performance, in [12] joint angle 83 

trajectories were calculated as follows. Angle trajectories were first linearly normalized with respect to 84 

time, and joint level kinematic variability was defined as the variability around a kinematic profile 85 

averaged across multiple time-normalized trials. The standard deviation and coefficient of multiple 86 

determination then served as outcome measures to characterize variability and repeatability, 87 

respectively. However, non-cyclic kinematics are subject to two different aspects of trajectory 88 

variability: temporal and amplitude variability (Figure 1). Specifically, the relative duration of different 89 

phases of a given functional movement can vary from trial to trial, and linear time normalization of the 90 

entire task cannot take this into account [15]. Hence, while these traditional measures can inform on 91 

overall differences in movement variability, they remain limited in that they do not consider temporal 92 

variability separately to variations in signal amplitude, yet this has shown to be advantageous in the 93 

assessment of non-cyclic functional upper limb tasks [15,16]. 94 
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Thies et al. previously introduced a novel methodology based on dynamic time warping (DTW) for curve 95 

registration across multiple trials to calculate measures of amplitude and timing variability over entire 96 

trajectories of functional movements [15]. In their approach a chosen target signal is warped to a 97 

declared reference signal by compressing or stretching the target signal along the time-axis with respect 98 

to the reference signal in a non-uniform manner. Warp Cost reflects the amount of time-warping 99 

needed to achieve the best possible temporal match between curves and serves as a measure of 100 

temporal variability. Following the time warping of signals, RMS error then informs on amplitude 101 

variability.  Separating out temporal from amplitude variability is of particular advantage during 102 

processing of non-cyclic upper limb kinematics: we take the stand that DTW is a more appropriate 103 

method to analyse kinematic inter-trial variability of the upper limbs during functional task performance 104 

since it minimizes the mismatch of the different movement components (Figure 2). 105 

 106 

A first demonstration of the DTW method involved characterization of acceleration trajectories derived 107 

from an arm-worn accelerometer during performance of two daily-living activities in subjects with 108 

stroke and matched controls. Findings showed increased timing variability for the stroke subjects as 109 

compared to controls, and this outcome was reliably reproduced on a second test day one month later 110 

[15]. This finding of increased variability following stroke was consistent with numerous previous 111 

studies, which have generally used simpler tasks and discrete, rather than continuous, measures of 112 

variability (e.g. variability of end point error in pointing tasks [17, 18]. A more recent study used the 113 

DTW method to demonstrate differences in trajectory variability when comparing stroke survivors with 114 

right and left hemisphere lesions, as well as to healthy controls [16]. They showed increased timing 115 

variability in the paretic arm of stroke survivors with right compared with left hemisphere lesions and 116 

further confirmed previous finding [15] of increased variability following stroke compared with controls. 117 

The DTW method which assesses contributions of temporal and amplitude variability separately proved 118 

particularly suitable to identify differences between left and right hemispheric stroke survivors. 119 
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Although already demonstrated for assessment of upper limb kinematics in people with stroke, the 120 

potential and validity of this methodology to characterize upper limb movements in relation to 121 

functional performance for upper limb prosthesis users has yet to be explored.   Hence this paper 122 

reports on the characterization of functional task performance with an upper limb myoelectric 123 

prosthesis using the DTW method. The purpose of this retrospective study was to investigate whether 124 

DTW is a valid tool for assessing temporal and amplitude variability of upper limb prosthesis kinematics 125 

through a known-groups assessment (Study 1) and a responsiveness assessment (Study 2).  126 

 127 

2. METHODS 128 

In Study 1 we investigated the use of DTW to characterize upper limb function of myoelectric prosthesis 129 

users and anatomically intact (AI) controls and its ability to discriminate between these two groups, 130 

based on temporal and amplitude variability. In Study 2 we report on the changes in temporal and 131 

amplitude variability with practice in using a myoelectric prosthesis simulator (AI subjects), to assess if 132 

DTW can identify changes in temporal and amplitude variability resulting from practice of goal-oriented 133 

tasks. Since accelerometers are wearable, inexpensive and clinically-accessible devices, we here apply 134 

DTW to simulated accelerometer trajectories derived from position data, however, the method is 135 

applicable to a range of kinematic data, including joint angle trajectories and data from other segment-136 

mounted inertial measurement units. 137 

 138 

2.1 DTW for assessment of temporal and amplitude variability 139 

As previously described [15], the DTW method employed in these two studies utilized dynamic 140 

programming [19] to separately quantify timing and amplitude variability across multiple trials. Using 141 

custom software in Matlab (Mathworks, Natick, MA), the algorithm first time-warps a chosen target 142 

signal to a declared reference signal by compressing or stretching the target signal along the time-axis 143 

with respect to the reference signal in a non-uniform manner. Warp Cost is returned as a unitless 144 
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measure indicating the amount of time-warping needed to achieve the best possible temporal match 145 

between curves. Warp Cost is hence reported as a measure of temporal variability between trials. Figure 146 

3 stresses the need for DTW for accurate assessment of upper limb kinematic variability in an 147 

anatomically intact subject, an anatomically intact subject using a prosthesis simulator, and an actual 148 

prosthesis user. After time warping, the algorithm calculates the remaining root mean square error 149 

(RMS Error) between signals after time-warping is complete. We interpret the reported RMS Error as a 150 

measure of signal amplitude variations after temporal variations have been addressed.  151 

 152 

2.2 Study 1 (Known-groups assessment)  153 

Study 1 was carried out at Northwestern University, USA. Full details of the protocol are provided in [12]. 154 

Following ethical approval by the Northwestern University Institutional Review Board, six AI individuals (3 155 

male, 35±11 years of age) and seven myoelectric transradial prosthesis users (5 male, 49±18 years of age, 156 

20±18 years of prosthesis experience) were recruited and tested. Subjects visited the lab on one occasion 157 

and, after providing informed consent, performed five trials of three seated, goal-oriented tasks (selected 158 

from the SHAP [7]): 1) lifting a carton and emptying liquid contents into a jar using their non-dominant or 159 

prosthetic limb, 2) lifting and transferring a weighted container across a low-level barrier using their non-160 

dominant or prosthetic limb, and 3) lifting and transferring a tray across a low-level barrier using both 161 

hands. The non-dominant limb of able-bodied individuals was chosen for sensible comparison with 162 

prosthesis users whose prosthetic limb we assumed to act as the non-dominant limb [20]. The number of 163 

trials (5) was comparable with other studies concerned with assessment of prosthesis kinematics [21, 22]. 164 

Subjects were asked to perform the task as quickly as possible and the start and end of each trial was 165 

denoted by a button-push. Both groups also completed the entire SHAP protocol with their non-dominant 166 

hand to assess general upper limb functional abilities. SHAP has shown to have good reliability and validity 167 

for assessment of hand function [7], with scores of less than 100 indicating how impaired hand function 168 

is. During each task, marker position approximating location of the radial and ulnar styloid processes were 169 
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collected and used to track the virtual wrist joint centre. Three markers on the forearm (radial styloid, 170 

ulnar styloid, and medial epicondyle) were used to define the forearm local reference frame. The 3D 171 

position data were collected at 120 Hz using a twelve camera motion capture system (Motion Analysis 172 

Corporation, Santa Rosa, CA, USA).  Wrist joint three-axis accelerations were calculated in the global 173 

frame, then gravity was added to the vertical acceleration component. Finally, the acceleration vector 174 

was rotated from the global to the forearm frame [23]. These simulated accelerometer data were used to 175 

calculate inter-trial temporal (Warp Cost) and amplitude (RMS Error) variability [15]. 176 

 177 

This known-groups assessment was deemed to support validity of the methodology if the trends in the 178 

variability assessed with DTW reflected those previously observed in joint-level kinematics [12], i.e., we 179 

hypothesized that prosthesis users would demonstrate greater variability than controls. Moreover, use of 180 

DTW in this study would identify individual contributions of temporal- and amplitude-specific variability 181 

to overall movement variability. Data were statistically analysed using independent group t-tests to 182 

compare mean differences in Warp Cost, RMS Error, and SHAP score between AI and prosthesis user 183 

cohorts, and significance was evaluated based on equality of variances as estimated by the Levene’s Test. 184 

 185 

2.3 Study 2 (Responsiveness assessment) 186 

Study 2 was carried out at the University of Salford, UK. Following ethical approval by the University of 187 

Salford Research Ethics Committee, seven AI individuals (4 male, 6 right handed, 36±10 years of age) 188 

provided informed consent and were recruited to the study. AI subjects rather than novel myolecetric 189 

prosthesis users were recruited because of the very small numbers of traumatic upper limb amputees 190 

referred to limb fitting centres. For example, in 2004/5, there were just 54 new referrals of trans-radial 191 

amputees in the UK. Subjects visited the lab on 9 occasions over approximately a 2-week period; full 192 

details of the full protocol are published in [24], however, only a subset of visits is reported on here. On 193 

their first visit, subjects were asked to perform a seated task which involved reaching with their 194 
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anatomic hand for a juice carton, picking it up and pouring the liquid into a cup, before returning it to its 195 

original location, then moving their hand back to the original resting point (anatomic hand baseline). The 196 

location of the carton, cup and starting point for the hand were fixed for each subject across all trials. 197 

Subjects repeated the task 12 times. During their second functional task assessment as well as during 198 

their final functional task assessment, subjects performed the same task with the same number of 199 

repeats but with a custom-made myoelectric prosthesis simulator [24]. In between these prosthesis 200 

simulator sessions, subjects carried out the SHAP on four occasions for practicing with the prosthesis 201 

simulator. During task performance, 3D position data of a cluster of 4 reflective markers located on the 202 

forearm were collected at 100 Hz using a ten camera Vicon 612® motion capture system (Vicon Motion 203 

Systems, Los Angles, USA). The position data of their anatomic hand baseline, their first prosthesis 204 

simulator session, and their final session with the prosthesis simulator (after SHAP training) were then 205 

used to calculate the simulated output of a three-axis accelerometer [23]. Subsequently, temporal and 206 

trajectory variability within session were calculated. It was hypothesized that introduction of the 207 

prosthesis would increase variability (anatomic baseline versus initial Prosthesis simulator session), and 208 

that training through practice to use a prosthesis simulator would reduce variability. Following checks 209 

for their normal distribution, warp cost and remaining RMS error were statistically analyzed using a one-210 

way repeated measures ANOVA (SPSS General Linear Model tab) with post-hoc Bonferroni correction 211 

for Type 1 Error. 212 

 213 

For all statistical analyses, the critical α was set at 0.05 to guide interpretation of the results, and 214 

statistics were conducted using SPSS software (IBM, Armonk, New York).  215 

 216 

 217 

 218 

 219 
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3. RESULTS 220 

 221 

3.1 Study 1 (Known-groups assessment) 222 

Significant differences in temporal variability (Warp Cost) were found between prosthesis-users and 223 

able-bodied controls. Specifically, prosthesis users exhibited greater temporal variability than controls, 224 

and this was so for all three tasks (Figure 4 and Table 1). Results suggested that amplitude variability 225 

was greater for prosthesis users than able-bodied across tasks, but these group differences were not 226 

statistically significant (P>0.05 for all tasks, Figure 4 and Table 1). Average SHAP Index of Function scores 227 

for able-bodied and prosthesis users were 96(±3 SD) and 53(±12 SD) (p<0.001), respectively, suggesting 228 

lower upper limb functional abilities for prosthesis users. 229 

 230 

3.2 Study 2 (Responsiveness assessment)  231 

Clear changes in temporal variability emerged throughout the study period (Figure 5 (left) and Table 2). 232 

Specifically, when AI subjects were asked to use the prosthesis simulator for the first time, their 233 

temporal variability increased as compared to their baseline performance with the anatomical hand 234 

(P=0.022), but as they learned how to use the prosthesis simulator, their variability decreased again 235 

(P=0.043) and returned to levels similar to baseline (P=0.267). Changes in amplitude variability likewise 236 

emerged, although with a direction of continuous reduction in RMS Error throughout the study period 237 

(Figure 5 (right) and Table 2). Specifically, RMS Error slightly decreased from baseline as subjects were 238 

introduced to the prosthesis simulator (P=1.000), and a further reduction in RMS Error occurred with 239 

practice to use the simulator (P=0.003), interestingly to levels much lower than baseline (P=0.043). 240 

 241 

 242 

 243 

 244 
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4. DISCUSSION 245 

The combined results from Studies 1 and 2 support the validity and usefulness of the DTW method for 246 

characterizing movement quality of task execution when using an upper limb prosthesis. Study 1 found 247 

significant differences in temporal inter-trial variability between prosthesis users and controls, but not in 248 

amplitude variability. This finding demonstrates for the first time the nature of differences in trial-to-249 

trial variability between experienced users of myoelectric prostheses and controls. Specifically, by 250 

separating out the two elements of trajectory variability, DTW revealed the primary contribution of 251 

temporal variability to overall movement quality, with less apparent contributions of amplitude 252 

variability. Moreover, that prosthesis users exhibited greater kinematic variability as compared to 253 

controls across all three tasks along with reduced function, as quantified by lower SHAP scores, is in 254 

agreement with previous findings [12], thereby supporting the validity of this method. It should be 255 

noted that one of the possible reasons for the lack of statistical significance in amplitude variability was 256 

the low statistical power due to a small sample size. Although consistent group differences in amplitude 257 

variability existed across tasks, with magnitudes greater than those found with training in Study 2, these 258 

differences were not large enough to reach significance given the within-group variability. 259 

 260 

Although not unexpected, no-one has previously demonstrated that variability reduces with practice 261 

with a prosthesis simulator. In Study 2 we investigated the extent by which temporal and amplitude 262 

variability each contribute to this outcome and demonstrated that temporal variability in a carton 263 

pouring task increased considerably on first use of a prosthesis simulator, then declined with goal-264 

oriented training (SHAP). Temporal variability hence showed to be responsive to effects of training. 265 

Consistent with the findings in Study 1, amplitude variability showed less clear changes, especially on 266 

first introduction of the prosthesis simulator. Two limitations of Study 2 are that AI subjects used a 267 

prosthesis simulator and performed only one functional task. Therefore further research involving actual 268 
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myoelectric prosthesis users and a more comprehensive task protocol is required to substantiate the 269 

findings of Study 2. 270 

 271 

Consistent with our previous study in stroke [15] temporal variability, as compared to amplitude 272 

variability, emerged as the more insightful measure.  As all of the tasks studied involved acquiring and 273 

releasing objects using the prosthetic hand, and since opening the hand to acquire or release an object 274 

is a common challenge in prosthesis control, then hesitations upon grasp and release may be one of the 275 

sources of the higher timing variability seen in prosthesis users. It is noteworthy that temporal variability 276 

varied significantly across tasks (see Table 1), each of which involved a single grasp and release, and 277 

further work is needed to interpret this finding. Furthermore, given the trends observed in Studies 1 and 278 

2, higher prosthesis user amplitude variability and a decrease with simulator training respectively, the 279 

contribution of amplitude variability to movement quality should be explored further. Previous work has 280 

suggested that below-elbow amputees are able to generate an accurate internal model of the prosthetic 281 

limb [25] which implies self-integration of the limb to refine relationships between physiological input 282 

and performance output. For example, one explanation for the decrease in amplitude variability with 283 

practice (Figure 5) is that learning to use a prosthesis simulator with reduced DoFs may require some 284 

development of a new internal model with training to minimize limb amplitude variability. The increase 285 

(Prosthesis 1, Figure 5) and subsequent decrease (Prosthesis Final, Figure 5) in temporal variability upon 286 

introduction to the prosthesis simulator would be reflective of skill acquisition.  287 

 288 

Overall, analysing forearm accelerations using the DTW method appears to be a valid method for 289 

quantifying movement quality of upper limb prosthesis use during the execution of goal-oriented tasks.  290 

The information delivered from such assessment offers a valuable, objective outcome for monitoring 291 

rehabilitation progress that would complement other performance-based and self-report clinical 292 

outcome measures. A rich set of outcome data would aid in development of more appropriate, patient-293 
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centric training programs with the aim of maximizing functional performance and minimizing potential 294 

for device abandonment. Yet, further work is needed to understand the implications of our work for 295 

clinical training.  We have shown that in simulator users both amplitude and temporal trajectory 296 

variability decrease with practice, suggesting our metrics may be of value in assessing skill. However, 297 

research is needed to understand whether patients would benefit from training specifically targeted at 298 

reducing variability.  299 

 300 

Importantly, the studies reported here used camera based techniques to derive overall task completion 301 

time and simulated accelerometer trajectories. However, both of these parameters could be derived 302 

from a forearm-mounted accelerometer and hence the approach offers the potential for clinicians to 303 

characterise both overall task completion time and trial-trial temporal and trajectory variability using 304 

low cost instrumentation. Accelerometers have previously been used for classification of hand 305 

movements [26, 27], and this study shows their potential in assessment of kinematic variability as an 306 

aspect of movement quality. Future work should continue to explore use of wearable devices as a 307 

simple, reliable, and clinically-accessible method for assessing prosthesis-use skill. When combined with 308 

the use of low cost instrumentation, reliability of the DTW method for assessing prosthesis user 309 

movement quality should be investigated to complete an evaluation of its psychometric properties. 310 

 311 
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TABLES 394 

Table 1. Known-groups assessment (Study 1)  395 

 Group 

Carton Pouring 
Weighted Container 

Transfer 
Tray Transfer 

Mean (SD) 
P  

[95% CI] 
Mean (SD) 

P  
[95% CI] 

Mean (SD) 
P  

[95% CI] 

Warp 
Cost 

Anatomically 
Intact 

85.80 (27.14) 0.02 
[-158.55, 
-18.33] 

6.92 (2.31) 
0.004 

[-
100.63,  
-29.03] 

13.55 (9.14) 0.019 
[-73.96,    
-9.40] 

Prosthesis 
User 

174.24 (74.48) 71.75 (38.71) 55.23 (34.70) 

RMS 
Error 

[m/s2] 

Anatomically 
Intact 

0.60 (0.09) 0.07 
[-934.53, 

43.69] 

0.93 (0.28) 
0.127 

[-
750.20, 
106.65] 

1.26 (0.41) 0.164 
[-833.74, 
160.12] 

Prosthesis 
User 

1.04 (0.53) 1.25 (0.40) 1.60 (0.41) 

 396 

Group mean (standard deviation “SD”) and statistical t-test results for Warp Cost and RMS Error for the 397 

three functional tasks. 95%CI: 95% Confidence Interval of Mean Difference. 398 

 399 

Table 2. Responsiveness assessment (Study 2)    400 

 
Warp Cost RMS Error [m/s2] 

Mean (SD) 
P†  

[95% CI] 
Mean (SD) 

P† 
[95% CI] 

Anatomic 60.45 (17.02) 
0.022 

[-141.55; -13.07] 

0.47 (0.09) 
1.000 

[-0.15; 0.19] Prosthesis 1 
137.77 
(43.92) 

0.45 (0.07) 

Prosthesis 1 
137.77 
(43.92) 0.043 

[2.15; 125.48] 

0.45 (0.07) 
0.003 

[0.05; 0.18] Prosthesis 
Final 

73.95 (19.27) 0.33 (0.04) 

Prosthesis 
Final 

73.95 (19.27) 0.267 
[-8.38; 35.37] 

0.33 (0.04) 0.043 
[-0.26; -0.01] 

Anatomic 60.45 (17.02) 0.47 (0.09) 

†Adjustment for multiple comparisons: Bonferroni. 401 

Group mean (standard deviation “SD”) of Warp Cost and RMS Error for AI subjects at baseline (anatomic 402 

hand) and during learning to use a prosthesis simulator (myoelectric prosthesis) together with repeated 403 

measures GLM pairwise comparisons for test sessions. 95%CI: 95% Confidence Interval of Mean 404 

Difference. 405 
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FIGURE CAPTIONS  406 

Figure 1. Illustration of temporal and amplitude variability.  407 

Figure 2. Illustration of the effects of uniform time normalization as compared to DTW. Example 408 

(adapted from Thies et al. 2009): “drinking from a glass” involves a reach forward, grasp of the glass, 409 

lifting, drinking and replacing the glass onto the table top. Note that for uniform time normalization 410 

(left) trials remain inadequately aligned, as evident from the mismatch of the different movement 411 

components, thereby leading to inappropriate estimation of inter-trial variation in signal amplitude 412 

when RMS Error is calculated subsequently. This is not the case for DTW (right).   413 

Figure 3. Use of time-normalization versus non-linear time warping for assessment of upper limb 414 

kinematic variability. Example plots show distal-to-proximal forearm acceleration for an anatomically 415 

intact individual (top), an anatomically intact individual using a prosthesis simulator (middle), and an 416 

amputee (bottom), each pouring juice from a carton into a glass. Shown are original signals of 2 trials 417 

(left), the same signals after time normalization (middle) and after time warping (right). A mismatch of 418 

movement components remains after time normalization, whilst temporal alignment is optimized 419 

through use of DTW for more accurate estimation of amplitude variability. 420 

Figure 4. Known-groups assessment (Study 1). Group means and corresponding standard deviations for 421 

temporal variability (Warp Cost, left) and amplitude variability (RMS Error, right) for all functional tasks. 422 

Figure 5. Responsiveness assessment (Study 2). Group means and corresponding standard deviations 423 

for temporal variability (Warp Cost, left) and amplitude variability (RMS Error, right). Anatomic: baseline 424 

with anatomic hand; Prosthesis 1: first session with a myoelectric prosthesis simulator, Prosthesis Final: 425 

final session with a prosthesis simulator (after four SHAP training sessions). 426 

 427 
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 428 

Figure 1. 429 

  430 
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 431 

Figure 2. 432 

  433 
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 434 

Healthy subject anatomic arm “carton pouring task”: 435 

 436 

Healthy subject prosthesis simulator “carton pouring task”: 437 

 438 

Myoelectric prosthesis user “carton pouring task”: 439 

Figure 3. 440 
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 442 

 443 

Figure 4. 444 
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 447 

Figure 5. 448 


