11 research outputs found

    There are arbitrary large minimal 2-pinning configurations

    Get PDF
    International audienceWe characterize minimal configurations that pin a line in every 22-plane

    Lower Bounds for Pinning Lines by Balls

    Get PDF
    A line L is a transversal to a family F of convex objects in R^d if it intersects every member of F. In this paper we show that for every integer d>2 there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the property that every subfamily of size 2d-2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957

    Line transversals to disjoint balls

    Get PDF
    We prove that the set of directions of lines intersecting three disjoint balls in R3R^3 in a given order is a strictly convex subset of S2S^2. We then generalize this result to nn disjoint balls in RdR^d. As a consequence, we can improve upon several old and new results on line transversals to disjoint balls in arbitrary dimension, such as bounds on the number of connected components and Helly-type theorems.Comment: 21 pages, includes figure

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure

    Helly-Type Theorems for Line Transversals to Disjoint Unit Balls

    Get PDF
    International audienceWe prove Helly-type theorems for line transversals to disjoint unit balls in Rd\R^{d}. In particular, we show that a family of n≥2dn \geq 2d disjoint unit balls in Rd\R^d has a line transversal if, for some ordering ≺\prec of the balls, any subfamily of 2d2d balls admits a line transversal consistent with ≺\prec. We also prove that a family of n≥4d−1n \geq 4d-1 disjoint unit balls in Rd\R^d admits a line transversal if any subfamily of size 4d−14d-1 admits a transversal

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(⋂G)≤b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any G⊊F\mathcal G \subsetneq \mathcal F and every 0≤i≤⌈d/2⌉−10 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these ⌈d/2⌉\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C∗(K)→C∗(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Hadwiger and Helly-type theorems for disjoint unit spheres in R³

    Get PDF
    Let S be an ordered set of disjoint unit spheres in R³. We show that if every subset of at most six spheres from S admits a line transversal respecting the ordering, then the entire family has a line transversal. Without the order condition, we show that the existence of a line transversal for every subset of at most 11 spheres from S implies the existence of a line transversal for S
    corecore