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1. Introduction

The dissertation investigates three different problems, which are

connected via the underlying, intuitive geometric motivation. The

results are obtained by using geometric, combinatorial and analytic

tools. We note that all the topics discussed here originate from the

first half of the 20th century, hence they are well embedded in the

research field of discrete and convex geometry.

The dissertation is based on the following three publications.

• G. Ambrus, A. Bezdek, F. Fodor, A Helly-type transversal the-

orem for n-dimensional unit balls, Archiv der Mathematik 86

(2006), no. 5, 470–480.

• G. Ambrus, F. Fodor, A new lower bound on the surface area

of a Voronoi polyhedron, Periodica Mathematica Hungarica 53

(2006), no. 1-2., 45–58.

• G. Ambrus, K. J. Böröczky, Stability results for the volume of

random simplices. Submitted for publication, American Journal

of Mathematics. pp. 1–26.

2. Transversals of unit balls

Chapter 1 deals with the following question. Let F be a family of

sets in Rd. We say that a line ` is a transversal to F , if it intersects

every member of F . If F has a transversal, then it is said to have

property T . If every k or fewer members of F have a transversal, then

F has property T (k).
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The question is the following: how can we guarantee that property

T holds? In particular, we would like to derive the validity of T from

T (k) with some k. Such a setting is familiar from Helly’s classical

theorem, which states that if every at most d+ 1 members of a finite

family of convex sets in Rd has a common point, then all the sets in the

family intersect in a common point. Thus, such a transversal theorem

can be understood as a generalisation of Helly’s theorem.

It turns out that the above goal is too optimistic, if one considers

all families of convex bodies: there exists no such general result. Even

for families that consist of pairwise disjoint translates of an arbitrary

convex body in R3, no such result exists, as was shown by Holmsen

and Matoušek [HM04].

Our work considers the case when F consists of unit balls in Rd.

We are typically interested in large d’s. The first related result by

Hadwiger [Had56] states that for any family of thinly distributed balls

in Rd, the property T (d2) implies T , where a family of balls is thinly

distributed if the distance between the centers of any two balls is at

least twice the the sum of their radii. Prior to our result, in [HKL03]

and [CGH05] it was proved that or any family of pairwise disjoint unit

balls in R3, T (11) implies T .

We impose a condition on the pairwise distances of the centres,

which is weaker than Hadwiger’s condition, but stronger than dis-

jointness. This will be referred as the distance condition.

Theorem 1. Let d > 2, and F be a family of unit balls in Rd

with the property that the mutual distances of the centres are at least

2
q

2 +
√

2. If every at most d2 members of F have a common line

transversal, then all members do.

The methods used to prove Theorem 1 have been pushed further

since the publication of [ABF06]. After a series of results, Cheong,
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Goaoc, Holmsen and Petitjean [CGHP08] proved that for any system

of disjoint unit balls in Rd, T (4d− 1) implies T .

The proof of Theorem 1 is based on the following statement. Let

B1, . . . , Bm be disjoint unit balls in Rd. Consider the set of all directed

lines intersecting B1, . . . , Bm in this order, and denote the set of unit

direction vectors of these lines by K(B1, . . . , Bm).

Theorem 2. Let Fd = {B1, . . . , Bm} be a family of unit balls satisfy-

ing the distance condition. Then K(B1, . . . , Bm) is strictly spherically

convex.

The crucial advantage of Theorem 2 is that it reduces the original

problem to a 3-dimensional one, which can be attacked by standard

analytical tools.

After establishing the convexity of the cone of transversal direc-

tions, in Section 1.3 we prove that if a family Fd of unit balls satisfying

the distance condition has a transversal, then all the transversals of Fd

intersect the unit balls in the same order (or its reverse). This ordering

is called a geometric permutation of Fd. Thus, the distance condition

implies that there is at most one geometric permutation of Fd.

Finally, in Section 1.4, we prove Theorem 1 by using the previous

results and invoking the strong version of the Spherical Helly Theorem.

3. A new lower bound for the Strong Dodeca-

hedral Conjecture

The contents of Chapter 2 are to give an improvement on the lower

bound on the surface area of a Voronoi cell in a unit ball packing.

A family B of unit balls in R3 forms a packing if no two members

of B have a common interior point. We are mostly interested in how

dense a packing of unit balls may be, where the density of a packing
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is the proportion of the space covered by the balls. We define this

as the limit of the proportion of the volume of the covered part of

a ball, where the centre of the ball is fixed and its radius tends to

infinity. According Kepler’s Conjecture [Kep66], the packing density

of unit balls in R3 is π/
√

18 ≈ 0.74078 . . . , which is attained by a

lattice packing. This result was proved recently by Hales [Hal05].

In a ball packing, the Voronoi cell of a ball B ∈ B is the set of

points x ∈ R3 with the property that x is closer to the centre of B

than to any other centre in B. It is well known that Voronoi cells are

convex polyhedra, and we may in fact assume that they are polytopes.

The Dodecahedral Conjecture, formulated by L. Fejes Tóth [FT43]

in 1943, states that the minimal volume of a Voronoi cell in a 3-

dimensional unit ball packing is at least as large as the volume of a

regular dodecahedron of inradius 1. This problem has been recently

settled in the affirmative by Hales and McLaughlin [HM]. K. Bezdek

[Bez00] phrased the following generalised version.

Conjecture (Strong Dodecahedral Conjecture). The minimum

surface area of a Voronoi cell in a unit ball packing in R3 is at least

as large as the surface area of the regular dodecahedron circumscribed

about the unit ball, that is 16.6508 . . ..

In Chapter 2, we prove the following statement [AF06].

Theorem 3. The surface area of a Voronoi cell in a unit ball packing

in R3 is at least 16.1977 . . ..

This is currently the best estimate related to the problem. Prior

to our result, the strongest bound was given by K. Bezdek and E.

Daróczy-Kiss [BDK05], who, based on Muder’s ideas ([Mud88] and

[Mud93]), established the lower bound 16.1445 . . . . Our improvement

follows these lines as well.
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In the proof, the cones suspended by the faces of the Voronoi cell are

replaced with cones of special types in such a way, that the surface

to solid angle ratio does not increase. The obtained configurations

belong to a restricted class, in which the minimiser of the surface area

is found by standard analytic methods.

In Section 2.2, the replacement steps are established. The cones

used for replacements are the following. A right circular cone (RCC)

is a cone whose base is a circular disk and its apex lies on the line

perpendicular to the disk passing through its center. A shaved circle

is the intersection of a disk and a convex polygon that contains the

center of the disk. A shaved right circular cone (SRCC) is a cone whose

base is a shaved circle and its apex lies on the line perpendicular to the

disk and passing through its center. The desired replacements with

RCC’s or SRCC’s are achieved via a series of basic replacement steps.

Then, in Section 2.3, the surface to solid angle ratio of these special

cones are further approximated.

Finally, in Section 2.4, the optimal configuration is determined us-

ing the previous approximations by a quite strenuous calculation. The

minimal configuration has 13 identical faces and one face of a smaller

solid angle. However, these faces cannot be joined to form a polytope,

which accounts for the error between our estimate and the conjectured

extremal value.

4. Stability results for the volume of random
simplices

The following question serves as the motivation for Chapter 3.

Given a convex body K in Rd, what is the expected value of the

volume of a random simplex in K? We work with two (or, rather,

three) models: in the first, all the vertices of the simplex are chosen
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uniformly and independently from K, while in the second, one vertex

is at a fixed position – in a special case, this is γ(K), the centroid of

K. We are interested in other moments as well, and also, we would

like the answer to be invariant under affine transformations.

Definition. Let K be a convex body in Rd. For any n > d + 1 and

p > 0, let

Ep
n(K) = V (K)−n−p

Z
K
. . .

Z
K
V ([x1, . . . , xn])p dx1 . . . dxn.

Further, for a fixed x ∈ Rd, let

Ep
x(K) = V (K)−d−p

Z
K
. . .

Z
K
V ([x, x1, . . . , xd])

p dx1 . . . dxd.

Specifically, we write Ep
∗(K) for Ep

x(K), when x = γ(K).

These quantities have many connections to other concepts; for ex-

ample, Sylvester’s problem, the volume of centroid bodies and intersec-

tion bodies, the volume of Legendre’s ellipsoid, Busemann’s random

simplex inequality, the Busemann-Petty centroid inequality, and so

on. These links are elucidated in Section 3.1.

One is mostly interested in the the minimisers and maximisers of

the above expectations among convex bodies. The search of these

dates back to the early 20th century, see Blaschke ([Bla17] and [Bla23]).

The minimisers are known in full generality.

Theorem 4. (Blaschke [Bla23], Busemann [Bus53], Groemer[Gro74])

For any convex body K in Rd, for any p > 1, and for any n > d + 1,

we have

Ep
o(K) > Ep

o(B
d) and Ep

∗(K) > Ep
∗(B

d) and Ep
n(K) > Ep

n(Bd).

Here Ep
o(K) = Ep

o(B
d) if and only if K is an o-symmetric ellipsoid,
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and Ep
∗(K) = Ep

∗(B
d) or Ep

n(K) = Ep
n(Bd) if and only if K is an

ellipsoid.

As for the maximisers, the Simplex conjecture states that for any

convex body K in Rd, and for any p > 1 and n > d + 1, Ep
∗(K) 6

Ep
∗(T

d) and Ep
n(K) 6 Ep

n(T d), with equality if and only if K is a

simplex. This is verified only in the plane.

Theorem 5. ([Bla17],[DL91],[Gia92],[CCG99]) If K ⊂ R2 is a

convex disc, then for any n > 3 and p > 1, Ep
n(K) 6 Ep

n(T 2) and

Ep
∗(K) 6 Ep

∗(T
2), with equality if and only if K is a triangle.

The importance of the Simplex conjecture stems from the fact that

the affirmative answer to it would imply the Slicing conjecture.

In Chapter 3 of the dissertation, based on [AB], we provide the

corresponding stability estimates for Theorems 4 and 5. The results

are formulated with the use of the Banach-Mazur distance δBM(K,M)

of the convex bodies K and M , which is defined by δBM(K,M) =

min{λ > 1 : K − x ⊂ Φ(M − y) ⊂ λ(K − x)}, where Φ ∈ GLd and

x, y ∈ Rd. Our results are as follows.

Theorem 6. If K is a convex body in Rd with δBM(K,Bd) = 1 + δ

for δ > 0, then for any p > 1,

Ep
∗(K) > (1 + γpδd+3)Ep

o(B
d)

Ep
d+1(K) > (1 + γpδd+3)Ep

d+1(B
d),

where the constant γ > 0 depends on d only. Moreover, if K is cen-

trally symmetric, then the error terms can be replaced by γpδ(d+3)/2.
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Theorem 7. If K is a planar convex body with δBM(K,T 2) = 1 + δ

for some δ > 0, and p > 1, then

Ep
∗(K) 6 (1− cpδ2)Ep

∗(T
2)

Ep
3(K) 6 (1− cpδ2)Ep

3(T
2),

where c is a positive absolute constant. This estimate is asymptotically

sharp as δ tends to zero.

For the proof of Theorem 6, we first assume that K is a symmetric

convex body in John’s position, i.e. the unique ellipsoid of maximal

volume inscribed in K is the unit ball. The core lemma estimates

the change of the expectation when applying one step of Steiner sym-

metrisation in a suitable changed direction. The general result is then

obtained by invoking a recent result of Böröczky [Bör], which esti-

mates the Banach-Mazur distance between a convex body K and a

symmetric convex body which is obtained by the limit of Steiner sym-

metrisations from K. We note that the bound of Theorem 6 is almost

asymptotically sharp in terms of δ: there is an example, where the

error is of order ε(d+1)/2.

The stability version of the maximum inequality, Theorem 7 in the

plane is obtained by the method of linear shadow systems, that were

introduced by Campi, Colesanti and Gronchi [CCG99]. We assume

that the triangle inscribed in K of maximal area is an equilateral tri-

angle. With the aid of basic linear shadow systems, first we reduce the

problem to polygons with at most 6 vertices. The main difficulty lies

in the further modification of these polygons. The desired inequality

is then obtained by a technical argument.

To conclude the chapter, in Section 3.6 we derive the stability ver-

sion of the Petty projection inequality from Theorem 6.
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[BDK05] Károly Bezdek and Endre Daróczy-Kiss. Finding the best face on a Voronoi
polyhedron—the strong dodecahedral conjecture revisited. Monatsh. Math.,
145(3):191–206, 2005.
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