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Helly-Type Theorems for Line Transversals to Disjoint Unit Balls∗

Otfried Cheong† Xavier Goaoc‡ Andreas Holmsen§ Sylvain Petitjean¶

Abstract

We prove Helly-type theorems for line transversals to disjoint unit balls in R
d. In particular, we show

that a family of n > 2d disjoint unit balls in R
d has a line transversal if, for some ordering ≺ of the

balls, any subfamily of 2d balls admits a line transversal consistent with ≺. We also prove that a family

of n > 4d − 1 disjoint unit balls in R
d admits a line transversal if any subfamily of size 4d − 1 admits a

transversal.

1 Introduction

Helly’s celebrated theorem, published in 1923, states that a finite family of convex sets in R
d has non-empty

intersection if and only if any subfamily of size at most d+1 has non-empty intersection. Subsequent results
of similar flavor (that is, if every subset of size k of a set S has property P then S has property P) have
been called Helly-type theorems and the minimal such k is known as the associated Helly number. Helly-
type theorems and tight bounds on Helly numbers have been the object of active research in combinatorial
geometry. In this paper, we investigate Helly-type theorems for the existence of line transversals to a family
of objects, i.e. lines that intersect every member of the family.

History. The earliest Helly-type theorems in geometric transversal theory appeared about five decades
ago. In 1957, Hadwiger [12] showed that an ordered family S of compact convex sets in the plane admits
a line transversal if every triple admits a line transversal compatible with the ordering. (Note that a line
transversal to S may not respect the ordering on S; to prove the existence of a line transversal that respects
the ordering on S one needs the assumption that any four -tuple admits an order-respecting line transversal.)
In what follows, we shall talk about a Hadwiger-type theorem when the family of objects under consideration
is ordered.

The same year, Danzer [5] proved the following result concerning families of pairwise disjoint unit discs
in the plane: if such a family consists of at least 5 discs, and if any 5 of these discs are met by some line, then
there exists a line meeting all the discs of the family. This answered a question of Hadwiger [11], who gave
an example (5 circles, almost touching and with centers forming a regular pentagon) which shows that 5
cannot be replaced by 4. Grünbaum [8] showed that the same result holds if “unit disc” is replaced by
“unit square”, and conjectured that the result holds for families of disjoint translates of any compact convex
set in the plane. This long-standing conjecture was finally proved by Tverberg [19]. A weaker form of the
conjecture which assumed 128 instead of 5 had been established earlier by Katchalski [16].

Danzer [5] conjectured that Helly-type theorems exist for line transversals to disjoint unit balls in arbi-
trary dimension. The first positive result was obtained by Hadwiger [10] for the case of families of “thinly
distributed” balls, where the distance between any two balls is at least the sum of their radii. This result
was extended by Ambrus et al. [1] to disjoint unit balls, in arbitrary dimension, the centers of which are at
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distance at least 2
√

2 +
√

2. Danzer’s conjecture for three-dimensional disjoint unit balls, without additional
assumption on their distribution, was only settled in 2001 by Holmsen et al. [14]. It should be stressed that
in dimension three (and higher), neither Hadwiger nor Helly-type theorems exist for line transversals to
general convex objects, not even for translates of a convex compact set [15].

In his paper [5], Danzer also asked whether the Helly number for line transversals to disjoint unit balls in
R

d is a strictly increasing function of d. The only known lower bound is the planar example of Hadwiger [11].
This number was proved to be at most d2 for thinly distributed balls in R

d by Hadwiger [10], a bound
improved to 2d−1 by Grünbaum [9] using the topological Helly theorem. For disjoint unit balls in dimension
three, Holmsen et al. [14] proved bounds of respectively 12 and 46 for the Hadwiger-type and Helly-type
theorems, which were later improved to 12 and 18 by Cheong et al. [4].

We refer the reader to the recent survey by Wenger [20] for a broader discussion of geometric transversal
theory.

Our results. In this paper we complete the proof of Danzer’s conjecture. More precisely, we show that
Helly-type theorems exist for line transversals to families of pairwise-inflatable balls in R

d. A family F of
balls in R

d is called pairwise-inflatable if for every pair of balls B1, B2 ∈ F we have γ2 > 2(r2
1 + r2

2), where
ri is the radius of Bi, and γ is the distance between their centers. A family of disjoint unit balls is pairwise-
inflatable, since γ2 > 2(r2

1 + r2
2) implies γ > r1 + r2 when r1 = r2, and so is a family of balls that is “thinly

distributed” in Hadwiger’s sense. Pairwise-inflatable families of balls are not only more general than families
of disjoint congruent balls but allow to generalize most of our proofs obtained in three or four dimensions
to arbitrary dimension; the key property, which we prove in this paper, is that the set of pairwise-inflatable
families is closed under intersection with affine subspaces, unlike the set of families of disjoint congruent
balls.

An order-respecting line transversal to a subset of an ordered family is a line transversal that respects
the order induced by the family on that subset. An ordered family F of pairwise-inflatable balls is said to
have property (OR)T if it admits a (order-respecting) line transversal. If every k or fewer members of F
admit a (order-respecting) line transversal then F is said to have property (OR)T (k). Our first main result
requires that the line transversals to the subfamilies induce consistent orderings:

Theorem 1. For any ordered family of pairwise-inflatable balls in R
d, ORT (2d) implies T and ORT (2d+1)

implies ORT .

We then remove the condition on the ordering at the cost of increasing the Helly number to 4d − 1 and
restricting ourselves to disjoint unit balls:

Theorem 2. For any family of disjoint unit balls in R
d, T (4d− 1) implies T .

Our results are thus both qualitative and quantitative: we generalize Danzer’s result to arbitrary dimen-
sion and prove that the Helly number grows at most linearly with the dimension. We build on the work of
Holmsen et al. [14] who obtained results similar to Theorems 1 and 2 for disjoint unit balls in three dimen-
sions, albeit with larger bounds on Helly numbers (12 and 46 instead of 6 and 11, respectively). A previous
version of this paper, also restricted to disjoint unit balls in three dimensions, appeared in the Symposium
on Computational Geometry 2005 [3].

Paper outline. To prove Theorem 1, we start with a family of balls having property ORT (2d) and
continuously shrink them until that property no longer holds, following Hadwiger’s approach [12]. Before
the set of order-respecting line transversals to a 2d-tuple of balls disappears, it first reduces to a single line
(Corollary 12) and this line is an isolated line transversal to 2d − 1 of the balls (Proposition 13). That line
has then to be a line transversal to the whole family and Theorem 1 follows; considerations on geometric
permutations yield Theorem 2.

Proving the two properties mentioned above (Corollary 12 and Proposition 13) is elementary in the
plane but requires considerably more work in higher dimension. Our proofs rely on Proposition 4, the
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cornerstone of this paper, which shows that the directions of order-respecting line transversals to a family
of pairwise-inflatable balls form a strictly convex subset of S

d−1. This directly implies Corollary 12 and
yields that order-respecting line transversals form a contractible set in line space. From there, a well-known
topological analogue of Helly’s theorem (Theorem 3) leads to a weaker version of Theorem 1 sufficient to
prove Proposition 13.

2 Preliminaries

Transversals. Let F be a finite family of disjoint compact convex sets F in R
d with a given linear order ≺F .

We will call F a sequence to stress the existence of this order. A line transversal to a sequence F is an
oriented line that intersects all the objects of F in the order prescribed by ≺F . A line transversal is strict if
it intersects the interior of each object in F .

For a sequence F , let K(F) ⊂ S
d−1 denote the set of directions of line transversals to F . That is, a

direction vector v ∈ S
d−1 is in K(F) if there is a line transversal to F with direction v. Note that the

direction vector of a line transversal determines the order in which it intersects a family of disjoint convex
objects. Thus, if sequences F1 and F2 are two distinct orderings of the same collection of objects, then
K(F1) and K(F2) are disjoint. We will call K(F) the cone of directions of F . Similarly, let K◦(F) be the
set of directions of strict line transversals to F .

Note that all our line transversals must respect a given order. Only in Section 5 will we consider line
transversals without order restriction. For clarity, let us call such a line transversal an unordered line
transversal.

We consider the natural topology over the set of oriented lines in R
d: U is a neighborhood of a line ℓ if

and only if for some δ > 0 it contains all lines ℓ′ such that the shortest distance between ℓ and ℓ′ and the
angle between their direction vectors are both less than δ. An isolated line transversal to a family of objects
F is an isolated point of the set of line transversals to F , that is, a line transversal ℓ which is a connected
component of the line transversals to F .

Given a ball A and a direction v in R
d, we denote by Pv(A) the (d − 1)-dimensional ball obtained by

projecting A orthogonally on an hyperplane with normal v. Observe that a sequence of balls F has a line
transversal with direction v if and only if the balls Pv(F) := {Pv(A) | A ∈ F} have non-empty intersection.
Similarly, F has a strict line transversal with direction v if and only if the intersection of Pv(F) has non-empty
interior.

Inflatable balls. A collection F of balls in R
d is called pairwise-inflatable if for every two balls B1, B2 ∈ F

we have γ2 > 2(r2
1 + r2

2), where ri is the radius of Bi, and γ is the distance between their centers. Note that
for balls of equal radius, this condition only enforces that they are disjoint (and so any family of disjoint
congruent balls is pairwise-inflatable). The more unequal the radius of the balls, however, the stronger the
distance constraint. At the limit, when r1 = 0, the constraint is γ >

√
2r2. Pairwise-inflatability is less

restrictive than Hadwiger’s notion of “thinly distributed” balls, which can be defined as γ2 > 4(r1 + r2)
2 for

each pair of balls.
The class of families of pairwise-inflatable balls is closed under intersection with affine subspaces (as

proved in Lemma 5). This property (which does not hold for unit-radius balls) will allow us to carry results
proved in three dimensions over to R

d.

Topological machinery. We use a few notions from topology that we now review (these can be found,
for instance, in the introductory chapter of Matoušek’s book [17]). Given a topological space A and a subset
B ⊂ A, B is a deformation retract of A if there exists a continuous map F : A × [0, 1] → A such that







F (a, 0) = a for any a ∈ A
F (b, t) = b for any b ∈ B and t ∈ [0, 1]
F (a, 1) ∈ B for any a ∈ A
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Two topological spaces A, B are homotopy equivalent if there exists a third space C such that both A and B
are deformation retracts of C. A space that is homotopy equivalent to a single point is said to be contractible.
A homology cell is a non-empty set with trivial homology, e.g. a point. Since homology is invariant under
homotopy equivalence, any contractible space is a homology cell. A generalization of Helly’s theorem based
on topology instead of convexity was originally given by Helly himself [13]. We will use a version proved by
Debrunner using modern tools (singular homology) [6], as it allows us to work with open sets.

Theorem 3 (Topological Helly Theorem [6]). Let {Xj}j∈J be a finite family of open subsets of Euclidean

d-space R
d such that the intersection Xj1 ∩ · · · ∩ Xjr

of each r sets of this family is nonempty for r 6 d + 1
and is even a homology cell for r 6 d. Then

⋂

j∈J Xj is a homology cell.

In fact, we only use a weaker version of this theorem where “homology cell” is replaced by “contractible”.

Compatible directions. Let D be a set of directions in R
d completely contained in the interior of a

hemisphere of S
d−1, and let L(D) be the set of lines with directions in D. We parametrize L(D) as a subset

of R
2d−2, using the points of intersection of a line ℓ ∈ L(D) with two parallel hyperplanes that are not

parallel to any direction in D. Our aim is to apply the Topological Helly Theorem to sets of line transversals
to pairwise-inflatable balls. Unfortunately, such sets are not necessarily homology cells, and may in fact even
be disconnected: two lines intersecting disjoint objects in different orders cannot be in the same connected
component of transversals to these objects. We overcome this difficulty by restricting the set of directions
that we allow for transversals. For a sequence F of pairwise-inflatable balls in R

d−1, let

U(F) :=
{

c(Y ) − c(X)
∣

∣ X, Y ∈ F ; X ≺F Y
}

,

where c(X) denotes the center of ball X . Let DF be the set of directions making a positive dot-product
with each u ∈ U(F). Note that DF is an open convex set on the sphere of directions S

d−1. Clearly a line
transversal ℓ ∈ L(DF ) for a subset F ′ ⊂ F respects the order on F ′. Such a line transversal is called a
transversal to F ′ compatible with F .

3 The cone of directions is strictly convex

We now establish the cornerstone of this paper, a generalization of the first lemma by Holmsen et al. [14] to
arbitrary dimension:

Proposition 4. Let F be a sequence of pairwise-inflatable balls in R
d. Then K(F) is strictly convex.

The proof of this proposition is based on Lemma 7, which shows that some well-chosen fibers over 1-
dimensional slices of the cone of directions of unit balls in R

4 are convex. We also need some properties of
families of pairwise-inflatable balls. We start by showing that this class is closed under intersection with
affine subspaces.

Lemma 5. Let F be a family of pairwise-inflatable balls in R
d, and let E be an affine subspace of dimension

k < d. Then F ′ := {B ∩ E | B ∈ F} is a family of pairwise-inflatable balls in E.

Proof. We prove the claim for k = d−1 and the lemma follows by induction. Let B1, B2 ∈ F with respective
radii r1 and r2 and centers at distance γ apart. Since F is pairwise-inflatable we have γ2 > 2(r2

1 + r2
2). For

i = 1, 2 let B′
i = Bi ∩E, ρi denote the radius of B′

i and δi be the distance between the center of Bi and that
of B′

i. First, observe that
γ2

6 ∆2 + (δ1 + δ2)
2,

where ∆ is the distance between the centers of B′
1 and B′

2. If E separates the centers of B1 and B2 the
equality holds. If E does not separate the centers, then replacing B2 by its mirror image with respect to E
increases γ while leaving all other quantities unchanged, hence the inequality. Then from (δ1 − δ2)

2 > 0 we
deduce (δ1 + δ2)

2 6 2(δ2
1 + δ2

2) and since r2
i = ρ2

i + δ2
i we finally obtain

∆2
> γ2 − (δ1 + δ2)

2 > 2(r2
1 + r2

2) − 2(δ2
1 + δ2

2) = 2(ρ2
1 + ρ2

2)
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and the claim follows.

The following lemma shows that two pairwise-inflatable balls in dimension d can always be “inflated”1

to two disjoint equal-radius balls in dimension d + 1.

Lemma 6. Let E be a d-dimensional subspace of R
d+1, and let B′

1, B
′
2 ⊂ E be pairwise-inflatable d-

dimensional balls in E. Then there exist two disjoint (d + 1)-dimensional balls B1, B2 of equal radius
in R

d+1 such that B′
1 = B1 ∩ E and B′

2 = B2 ∩ E.

Proof. Let qi and ρi be the center and radius of B′
i, for i = 1, 2. Consider the line orthogonal to E through

qi. Pick a point pi on this line at distance δi from qi, in such a way that p1 and p2 are on opposite sides
of E. Let also Bi be the ball with center pi and radius ri =

√

δ2
i + ρ2

i . Clearly B′
i = Bi ∩ E and it remains

to pick δi such that r1 = r2 and B1 and B2 are disjoint.
Let ∆ be the distance between q1 and q2. Without loss of generality, we assume ρ1 > ρ2. Since

∆2 > 2(ρ2
1 + ρ2

2), there exists σ > 0 such that

σ2 < min{∆2 − 2(ρ2
1 + ρ2

2), ρ2
1 − ρ2

2}

and we can define
δ1 = (ρ2

1 − ρ2
2 − σ2)/(2σ) and δ2 = δ1 + σ.

Now, since 2σδ1 + σ2 = ρ2
1 − ρ2

2 we have that δ2
2 = δ2

1 + ρ2
1 − ρ2

2, and it follows that B1 and B2 have equal
radius r = r1 = r2. Now, the distance γ between their centers satisfies

γ2 = ∆2 + (δ1 + δ2)
2 = (∆2 + 2δ1δ2) + δ2

1 + δ2
2 .

Since
∆2 − 2(ρ2

1 + ρ2
2) > σ2 = (δ2 − δ1)

2 = δ2
1 + δ2

2 − 2δ1δ2

it follows that
∆2 + 2δ1δ2 > δ2

1 + δ2
2 + 2(ρ2

1 + ρ2
2)

and finally
γ2 > 2(δ2

1 + ρ2
1) + 2(δ2

2 + ρ2
2) = 4r2.

This shows that B1 and B2 are disjoint.

Let now F = (O, x, y, z, w) be an orthogonal frame in four-dimensional space R
4. Let H denote the

plane (O, x, y), and let H(z, w) be the translated copy of H going through the point2 (0, 0, z, w). Given two
disjoint convex sets A and B in R

4, we denote by QF
AB ⊂ R

2 × S
1 the set of all (z, w, α) such that there is

an oriented line in H(z, w) that intersects A before B and that makes an angle α with the x-axis.

Lemma 7. If A and B are disjoint congruent balls in R
4 then QF

AB is convex for any orthogonal frame F
of R

4.

We prove this lemma by showing that QF
AB is the volume under the graph of a concave function of two

variables, which involves showing that the Hessian of this function is negative definite. We thus follow the
approach of Holmsen et al. [14, proof of Lemma 1] but the details (postponed to Appendix A) are more
involved.

We proceed to prove the convexity of K(F) (but not yet its strict convexity) for the 3-dimensional case.

Lemma 8. Let F be a sequence of pairwise-inflatable balls in R
3. Then K(F) is convex.

1Hence the name “pairwise-inflatable”.
2By abuse of notation, we use the letters z and w to label the coordinate axes and to represent the coordinates of some

specific point, the meaning being clear from the context.
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Proof. We need to show that for any pair v1, v2 ∈ K(F) the great circle arc joining them on S
2 lies in K(F)

(since K(F) is contained in an open hemisphere of S
2, there is a unique such arc of length less than π). We

thus let ℓ1, ℓ2 be line transversals to F with directions v1, v2, and pick a plane H parallel to both ℓ1 and ℓ2.
We embed the 3-dimensional space as an affine 3-space of R

4, and equip R
4 with a frame F = (O, x, y, z, w)

such that {w = 0} is our original 3-dimensional space, and such that (O, x, y) coincides with H .
For any pair of balls (B′

1, B
′
2) from F with B′

1 ≺F B′
2, Lemma 6 gives us two balls B1, B2 ⊂ R

4 of equal
radius such that B′

i = Bi ∩ {w = 0}. By Lemma 7, QF
B1B2

is convex and so QF
B′

1
B′

2

= QF
B1B2

∩ {w = 0} is

convex as well. It follows that
Q :=

⋂

A,B∈F , A≺FB

QF
AB

is a convex set.
Each point in Q corresponds to a family of parallel and coplanar lines such that each pair (A, B) in F

is intersected by at least one of them in the correct order. Helly’s theorem (in one dimension) implies that
there is a line transversal to F in this family and this transversal is trivially order-respecting. Let q1, q2 ∈ Q
be the points representing the line transversals ℓ1 and ℓ2. For any direction v on the great circle arc v1v2

there is a point q on the segment q1q2 whose associated line transversal has direction v.

We now characterize the boundary of K(F). This will allow us to show that K(F) is not only convex,
but even strictly convex. The result will then carry over rather effortlessly to arbitrary dimension. Recall
that K◦(F) is the set of directions of strict transversals to F . The next lemma shows that K◦(F) is the
interior of K(F).

Lemma 9. Let F be a sequence of disjoint balls in R
3, v ∈ S

2 and D :=
⋂

Pv(F). Then v ∈ ∂K(F) if and

only if D is a point and v ∈ int(K(F)) if and only if D has non-empty interior.

Proof. Clearly v ∈ K(F) if and only if D is non-empty. Since Pv(F) is a family of discs, D is either empty,
a point, or has non-empty interior. If D has non-empty interior, then a small perturbation of the direction
v cannot cause D to become empty, and so v ∈ int(K(F)). It remains to show that if D is a point, then
v ∈ ∂K(F).

We thus assume that D is a point. Let k > 2 be the number of discs that have this point on their
boundary, and let ℓ be the (unique) transversal of F with direction v. If k = 2 then ℓ lies in a plane
separating two balls and there are directions v′ arbitrarily close to v such that no line transversal with
direction v′ to these two balls exists (see Figure 1). Thus, v ∈ ∂K(F). If k > 3 then by Helly’s theorem in

ℓ v

v
′

Figure 1: Perturbation removing all transversals when k = 2: 3D view (left) and projections (right).

the plane there are three balls whose projections intersect in a single point. Let A denote the middle one
with respect to ≺F and let ℓ′ be the line through the center of A and its tangency point with ℓ (see Figure 2).
Consider a rotation of v by a small angle δ around ℓ′. This rotation leaves Pv(A) invariant and moves the
centers of the two other projections along lines orthogonal to Pv(ℓ′), either both away from Pv(ℓ′) or both
towards Pv(ℓ′), depending on the sign of δ. Any sufficiently small rotation that moves the centers away from

6



ℓ

v

v′

ℓ′

ℓ′

A

A

Figure 2: Perturbation removing all transversals when k = 3: 3D view (left) and projections (right).

Pv(ℓ′) turns v into a direction v′ such that no transversal to the three balls exists in the direction v′. In that
case we again have v ∈ ∂K(F).

Lemma 10. If F is a sequence of pairwise inflatable balls in R
3 then K(F) is strictly convex.

Proof. We already know that K(F) is convex. If K(F) is not strictly convex then it has to contain on its
boundary a great circle arc. By the previous lemma, if v ∈ ∂K(F) then Pv(F) is a point. This implies,
by Helly’s theorem, that the boundary of K(F) consists of (finitely many) curve arcs that are either (a)
directions of bitangent lines lying in bitangent planes or (b) directions of tritangent lines. The directions
of bitangent lines lying in bitangent planes to two balls contain a great circle arc only if the two balls are
tangent, which cannot occur in our situation.

Therefore, if K(F) is not strictly convex then it contains in its boundary a great circle arc of directions
of lines tangent to three balls. These directions, being on a great circle arc, are parallel to a given plane. In
projective geometry, parallels to a plane are recast as lines intersecting the “line at infinity” of that plane.
Thus, if K(F) is not strictly convex, F contains three balls with infinitely many common tangents that
intersect a fixed line at infinity. Such configurations were tabulated by Megyesi and Sottile [18]. Their cases
(i), (iii), and (iv) cannot arise with disjoint spheres and the fixed line at infinity. The remaining possibility
(case (ii)) is that the three spheres are tangent to a cone whose apex lies on the fixed line. In our case, that
line is at infinity so this cone is a cylinder and the spheres have equal radii and aligned centers; all common
tangents then have the same direction and cannot form a great circle arc.

We will need the generalization of Lemma 9 to arbitrary dimension.

Lemma 11. If F is a sequence of disjoint balls in R
d, then K◦(F) = int(K(F)).

Proof. As in the proof of Lemma 9 we observe that K◦(F) ⊂ int(K(F)), and it remains to prove the other
inclusion. Let v ∈ int(K(F)) and pick v1, v2 ∈ K(F) in a neighborhood of v such that v lies in the interior
of the great circle arc v1v2. Let ℓ1, ℓ2 be two line transversals to F with directions v1, v2, and let E be an
affine subspace of dimension three containing both lines (E is unique if the lines are skew). By Lemma 5,
the section of F by E is a sequence F ′ of pairwise-inflatable balls. Since v1 and v2 belong to K(F ′) and v is
interior to the great circle arc they span, Lemma 10 implies that v ∈ int(K(F ′)) = K◦(F ′) and, by Lemma 9,
there is a strict transversal to F ′ with direction v. This line is also a strict transversal to F and Lemma 9
yields that v ∈ K◦(F).

We can now finally prove the main result of this section.

Proof of Proposition 4. Let v1, v2 ∈ K(F) with v1 6= v2. Since K(F) is a closed convex set contained in an
open hemisphere of S

d−1, there is a unique great circle arc of length less than π connecting v1 and v2. We
need to show that all interior points of this great circle arc lie in the interior of K(F).

Let ℓ1, ℓ2 be two line transversals to F with directions v1 and v2. Let E be an affine subspace of dimension
three containing both transversals. The space E intersects every ball in F and, by Lemma 5, the section of
F by E is a sequence F ′ of pairwise-inflatable balls.

7



Let v be an interior point of the great circle arc v1v2. The direction v lies in E, and since K(F ′) is strictly
convex by Lemma 10, we have v ∈ int(K(F ′)) = K◦(F ′). A strict transversal to F ′ is a strict transversal to
F , and so Lemma 11 implies v ∈ K◦(F) = int(K(F)).

Proposition 4 has the following important corollary:

Corollary 12. Let F be a sequence of pairwise-inflatable balls in R
d. If K(F) has empty interior then it is

a point.

4 Pinning number of pairwise-inflatable balls

A family F of objects pins a line ℓ if ℓ is an isolated transversal to F . The pinning number of a class C
of families of objects is defined as the smallest integer k such that the following holds: if a family F ∈ C
pins a line ℓ then some subfamily F ′ ⊂ F of size at most k already pins ℓ. A key ingredient in Hadwiger’s
original proof of his theorem [12] is the fact that the pinning number of disjoint planar convex sets is 3. In
this section we show a similar result for pairwise-inflatable balls in R

d. Note that the pinning number k is
simply the Helly number for the property of “not being pinned”: if a line transversal to a family F is not
pinned by any subfamily of size k then it is not pinned by F .

Proposition 13. The pinning number of pairwise-inflatable balls in R
d is at most 2d − 1.

Our proof is based on Lemma 14, which shows that sets of compatible transversals are contractible and
therefore homology cells, and Lemma 15, which applies the Topological Helly Theorem to these sets of lines
and obtains a weak version of our Theorem 1. We state the next lemma using the notion of “compatible”
transversal introduced in Section 2:

Lemma 14. Let F be a sequence of pairwise-inflatable balls in R
d and F ′ be a subsequence of F . Then the

set L of line transversals to F ′ compatible with F is a contractible subset of R
2d−2.

Note the restriction on the direction of lines in L: there may be strict order-respecting line transversals
to F ′ that are not compatible with F .

Proof. Given a line ℓ ∈ L, let vℓ be its direction. A transversal ℓ to F ′ is barycentric if it goes through the
center of mass of the intersection of Pvℓ

(F ′). For any direction v in K(F ′) there is a unique barycentric
transversal to F ′, which we denote bF ′(v).

Let L∗ denote the set of barycentric transversals to F ′ with directions in DF . The projection of a ball
changes continuously with the direction of projection, so bF ′ is continuous. Since the direction of a line
changes continuously with the line, b−1

F ′ is also continuous. Thus, bF ′ defines a homeomorphism between L∗

and K(F ′) ∩ DF .
By Lemma 4, K(F ′) is convex and so is DF . Thus, K(F ′) ∩ DF is convex and hence contractible. It

follows that L∗ is also contractible. The map

{

L × [0, 1] → L
(ℓ, t) 7→ ℓ + t(bF ′(vℓ) − ℓ)

is continuous and shows that L∗ is a deformation retract of L. Since L∗ is contractible, so is L.

We can now apply the Topological Helly Theorem to obtain a “weak” Hadwiger-type result.

Lemma 15. Let F be a sequence of at least 2d−1 pairwise-inflatable balls in R
d. If every subfamily F ′ ⊂ F

of 2d−1 balls admits a strict line transversal with a direction in DF , then F admits a strict line transversal.
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Proof. We apply Theorem 3 on L(DF ). With the parametrization discussed above, L(DF ) ⊂ R
2d−2. For

S ∈ F let XS be the subset of L(DF ) of lines intersecting the interior of ball S. Clearly, XS is an open set
in R

2d−2. Consider now the intersection Y := XS1
∩ · · · ∩ XSr

of r such sets. The set Y consists of exactly
those lines in L(DF ) that are strict transversals of S1, . . . , Sr. The assumption of the lemma implies that
Y 6= ∅ for r 6 5. By Lemma 14, Y is contractible and hence a homology cell. Theorem 3 now implies that
⋂

S∈F
XS 6= ∅, and so there is an order-respecting strict line transversal for F .

In principle, Lemma 15 is the Hadwiger-type result we are looking for. Its drawback is that it requires
a subfamily of balls to have not only an order-respecting transversal, but one that, in a sense, respects the
order on the entire family of balls. This is nonetheless enough to prove the desired result on the pinning
number of pairwise-inflatable balls:

Proof of Proposition 13. Let F be a family of at least 2d pairwise-inflatable balls in R
d admitting an isolated

line transversal ℓ. Let ≺ be the order on F induced by ℓ. Lemma 14 implies that the set of line transversals
to F respecting ≺ is connected, and so ℓ is the only order-respecting line transversal to F .

Since ℓ is not a strict transversal, F has no strict order-respecting transversal. By Lemma 15, there is a
subfamily F ′ ⊂ F of 2d − 1 balls that has no strict order-respecting transversal with direction in DF , that
is K◦(F ′) ∩ DF = ∅. However, K(F ′) ∩ DF 6= ∅ since it contains the direction of ℓ. Since K(F ′) is convex,
by Lemma 4, and DF is open, it follows that K◦(F ′) = ∅ and F ′ has no strict order-respecting transversal
at all. Now, K(F ′) is non-empty but has empty interior, so, by Corollary 12, K(F ′) is a single direction
v. Since K(F ′) = {v}, the balls Pv(F ′) intersect in a unique point and ℓ is the only order-respecting line
transversal of F ′, and is thus isolated.

5 Hadwiger and Helly-type theorems

We can now prove the main results of this paper.

A Hadwiger-type theorem. Propositions 12 and 13 are all we need to reproduce Hadwiger’s original
proof of the 2-dimensional case.

Proof of Theorem 1. We simultaneously shrink all the balls and continue shrinking as long as every subset of
size 2d has a transversal. If all the centers are aligned then the theorem trivially holds. Otherwise, at some
point in the shrinking process a subfamily F ′ of size 2d stops having a transversal. The cone K(F ′) changes
continuously during the shrinking and must have empty interior before disappearing. Thus, by Corollary 12,
at that moment the sequence F ′ has a unique transversal ℓ.

Now, by Proposition 13, there is then a subfamily F ′′ ⊂ F ′ of at most 2d − 1 balls such that ℓ is the
unique transversal of F ′′. For any ball X ∈ F \ F ′′, the set F ′′ ∪ {X} has a line transversal ℓX . Since the
only line transversal of F ′′ is ℓ, we must have ℓX = ℓ, and ℓ intersects X . It follows that ℓ is an unordered
line transversal for F .

Similarly, if any subfamily of size 2d + 1 admits a line transversal there exists a subfamily F ′ of 2d − 1
balls having a unique line transversal ℓ. For any X, Y ∈ F with X ≺ Y , the subfamily F ′ ∪ {X, Y } admits
a line transversal that must be ℓ, and ℓ intersects X before Y . It follows that ℓ is an (order-respecting) line
transversal of F .

Removing the ordering assumption. We now generalize Theorem 1 by removing the restriction on the
ordering. However, we restrict ourselves to the case of disjoint unit balls in R

d as we build on the following
result by Cheong et al. [4].

Theorem 16 ([4]). Let F be a family of at least nine disjoint unit balls in R
d. Then F admits at most two

distinct geometric permutations, which differ only in the swapping of two adjacent balls.
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Proof of Theorem 2. We first shrink the balls simultaneously until some subfamily F4d−1 of 4d − 1 balls is
about to lose its last unordered transversal.

If F4d−1 admits more than one (unordered) line transversal (all of which vanish if the balls are shrunk
any further), each transversal must realize a different geometric permutation. Theorem 16 then implies
that F4d−1 has exactly two line transversals, ℓ1 and ℓ2, with two distinct geometric permutations. By
Proposition 13, for each ℓi there are 2d− 1 balls in F4d−1 for which ℓi is the only line transversal respecting
the ordering induced by ℓi. There is thus a subfamily F ′ of F4d−1 of exactly 4d−2 balls (we can complete F ′

using balls from F4d−1 if needed) for which ℓ1 and ℓ2 are the only line transversals respecting their respective
orders. By Theorem 16, F ′ admits at most two geometric permutations, and so ℓ1 and ℓ2 are its only line
transversals. Since any subfamily of 4d − 1 balls has a line transversal, any ball of F \ F ′ must intersect ℓ1

or ℓ2. If all the balls intersect both lines then the theorem is proved. Otherwise, there exists a ball A that
intersects, say, ℓ1 but not ℓ2. Then F ′ ∪ {A} is a family of 4d − 1 balls with a unique transversal. We are
left with a set F4d−1 of 4d − 1 balls that has a unique transversal ℓ.

Let ≺ℓ be the order on F4d−1 induced by ℓ. By Proposition 13, there is a subfamily F2d−1 ⊂ F4d−1 such
that ℓ is the unique transversal of F2d−1 respecting ≺ℓ. For each Z ∈ F4d−1 \ F2d−1, let FZ denote the set
F4d−1 \ {Z}. If one of the subsets FZ has no other transversal than ℓ then every other ball of F intersects
ℓ and the proof is complete.

We now assume that every FZ has some transversal ℓZ distinct from ℓ and obtain a contradiction. Since
FZ contains F2d−1, ℓZ realizes a geometric permutation different from that of ℓ. By Theorem 16, the order
induced by ℓZ on F4d−1 differs from ≺ℓ by the swapping of two adjacent balls X, Y . Since ℓZ realizes a
geometric permutation of F2d−1 different from ℓ, we must have X, Y ∈ F2d−1. Let Z1, Z2 ∈ F4d−1 \ F2d−1,
and consider the set F4d−1 \ {Z1, Z2}. It admits the transversals ℓ, ℓZ1

, and ℓZ2
but, by Theorem 16, at

most two geometric permutations. Since ℓ is the unique transversal respecting ≺ℓ, ℓZ1
and ℓZ2

must realize
the same geometric permutation on F4d−1 \ {Z1, Z2}. Thus the balls X, Y ∈ F do not depend on the choice
of Z. Let ≺ be the order on F4d−1 obtained from ≺ℓ by swapping X and Y . For any Z ∈ F4d−1 \ F2d−1

the subfamily FZ admits a line transversal respecting ≺. On the other hand, F4d−1 does not admit such a
transversal as ℓ is its only transversal. By (the second half of) Theorem 1, there is a subset F2d+1 ⊂ F4d−1

of at most 2d + 1 balls that does not admit a transversal respecting ≺. We must have X, Y ∈ F2d+1, as
without both X and Y , ≺ℓ and ≺ are equivalent. This implies that |F2d−1 ∪ F2d+1| 6 4d − 2. There is
therefore a Z ∈ F4d−1 \ F2d−1 such that F2d−1 ∪ F2d+1 ⊆ FZ . However, ℓZ cannot be a line transversal to
F2d+1, a contradiction.

6 Conclusion and open problems

We conclude this paper with a few comments on our results followed by open problems they suggest.

• Weaker versions of Theorems 1 and 2 (with constants quadratic in d) can be obtained more easily,
using only Lemma 4 and the reasoning of Holmsen et al. [14].

• In the plane, if three disjoint convex sets {C1, . . . , C3} pin a line ℓ then they are all tangent to ℓ and
alternate: the first and the third are on the same side of ℓ, the second is on the other side. Thus, if ℓ
does not intersect a fourth convex set C4 some triple {Cx, Cy, C4} has no line transversal at all. This
explains why, in Hadwiger’s original proof the “Hadwiger number” is the same as the pinning number.
A way to reduce the bound in Theorem 1 to 2d − 1 could be to prove a similar statement: given a
sequence of pairwise inflatable balls F that pins a line ℓ and a ball C not intersecting ℓ, there is a
subsequence F ′ ⊂ F of size |F| − 1 such that F ′ ∪ {C} has no transversal respecting the ordering on
F ′. We have no idea whether such a statement actually holds.

• To apply the Topological Helly Theorem, we did not actually need that K(F) is convex, only that it
is contractible. This may be important for further generalization.

• For general convex sets, even smooth ones, the pinning number is at least 6 as the following example
using six unit-radius cylinders in R

3, due to Günter Rote, shows: the first three cylinders are parallel
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to the x-axis and their axes go through the points (0, 1, 0), (0,−1, 1) and (0, 1, 2) respectively. The last
three cylinders are parallel to the y-axis and their axes go through the points (1, 0, 10), (−1, 0, 11) and
(1, 0, 12) respectively. The six cylinders have only one transversal—the z-axis—but any five have an
infinite number of transversals.

• Lemmas 5 and 6 imply that two disjoint balls A, B ⊂ R
d are pairwise-inflatable if and only if they can

be expressed as sections of two disjoint congruent balls in some higher-dimensional space. Generalizing
this, let us call a set F of balls in R

d inflatable if F can be expressed as the intersection of a higher-
dimensional set of disjoint congruent balls with a d-dimensional affine subspace. Batog recently showed
that it is NP-hard to decide whether a given collection of balls is inflatable [2].

Problem 1. What is the maximum number of geometric permutations of pairwise-inflatable balls in R
d?

To generalize Theorem 2 to pairwise-inflatable balls, one would need to extend Theorem 16 to those
families. It is known that the number of geometric permutations of n disjoint balls in R

d is at most 3 if the
balls have equal radii and Θ(nd−1) if the ratio

largest radius

smallest radius

is not bounded independently of n [21].

Problem 2. For which classes of objects is the cone of directions K(A1, . . . , An) convex, or at least con-

tractible?

Our proof of convexity for the cone of directions of balls collapses for balls that are not pairwise-inflatable.
In fact, the set QF

AB is not necessarily convex if B is much smaller than A but very close to it.

Problem 3. For which classes of objects is the set of order-respecting line transversals always connected?

Our proof of Theorem 1 follows from (i) a bounded pinning number and (ii) the fact that as the set of
order-respecting line transversals to a sequence disappears it first reduces to a single line. For strictly convex
objects, property (ii) follows from the connectivity of the set of order-respecting transversals. Surprisingly,
it is an open question whether this set is connected for even 4 disjoint balls in R

3, whereas it is known to be
connected for any triple of disjoint convex objects [7, Lemma 74]. We conjecture that general convex sets in
R

d have a bounded pinning number. Thus, understanding how general this connectivity property is would
provide insight in how general the example of Holmsen and Matousek [15], convex sets whose translates do
not admit a Hadwiger theorem, actually is. Of course, a positive answer to Problem 2 for a particular family
of convex sets implies a positive answer to Problem 3 for that family as well.

Problem 4. Given a collection of disjoint unit balls, assume that any subset of size 2d − 1 admits a line

transversal. Does any subset of size 2d − 1 admit a compatible line transversal?

In other words, can our “weak Hadwiger theorem” (Lemma 15) be strengthened into a Hadwiger theorem
with a better constant than Theorem 1?

Problem 5. Is the pinning number of disjoint unit balls in R
d equal to 2d − 1?

Surprisingly, the only known lower bound on the Helly number is the construction done by Hadwiger
fifty years ago. Note that the bound in our Hadwiger theorem has to be higher than the pinning number of
the corresponding family and one can therefore look for a lower bound on the pinning number. Intuitively,
considerations on the dimension suggest that the pinning number in dimension d cannot be less than 2d− 1,
the dimension of the underlying line space being 2d − 2.
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[15] A. Holmsen and J. Matoušek. No Helly theorem for stabbing translates by lines in R
d. Discrete Comput.

Geom., 31:405–410, 2004.
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A Proof of Lemma 7

Proof. Let F be the frame (O, x, y, z, w). We first observe that a translation of F along the x- or y-axis
leaves QF

AB unchanged, while a translation of F along the z- or w-axis causes an equivalent translation of
QF

AB. Rotating the x- and y-axes while leaving the z- and w-axes fixed causes a translation of QF
AB along the

α-axis. Finally, scaling F causes QF
AB to be stretched along the z- and w-axes. Since convexity is invariant

under affine transformations, we can therefore assume that A and B are unit-radius balls with centers at
(0, 0, 0,−b) and (e, 0, 0, b), where b > 0, e > 0. The disjointness of A and B implies that e2 + 4b2 − 4 > 0.
Let D denote the lune-shaped region in the (z, w) plane that corresponds to the intersection of the two unit
discs with centers (0,−b) and (0, b). If (z, w) /∈ D then H(z, w) does not intersect both A and B. If b > 1
then D is empty. If b = 1 then D is reduced to z = w = 0, H(0, 0) intersects both A and B in a point, and
so QF

AB is a point. In the following we can therefore assume b < 1.
Let

R(z, w) =
√

1 − z2 − w2,

and let R+ = R(z, w + b) and R− = R(z, w− b). If (z, w) ∈ D then H(z, w)∩A is the disc with center (0, 0)
and radius R+, while H(z, w) ∩ B is the disc with center (0, e) and radius R−. Now, let

f(z, w) =
R+ + R−

e
.

Since A and B are disjoint, the discs H(z, w)∩A and H(z, w)∩B are disjoint, implying that R+ + R− < e,
and so 0 6 f(z, w) < 1. Consider

G(z, w) = arcsin(f(z, w)).

Since (z, w, α) ∈ QF
AB if and only if (z, w) ∈ D and −G(z, w) 6 α 6 G(z, w), it suffices to show that G

is a concave function. A sufficient condition for this is that its Hessian H(G) be negative definite, which
we endeavor to prove now. By symmetry with respect to the z- and w-axes, we need to prove negative
definiteness only for z, w > 0.

In what follows, subscripts are used to denote partial derivatives. Also, reference to z, w as arguments of
functions is dropped when no confusion can arise.

The Hessian of G is

H(G) =

(

Gzz Gzw

Gzw Gww

)

=
(1 − f2)H(f) + f(∇f)(∇f)T

(1 − f2)3/2

where H(f) is the Hessian of f and ∇f = (fz, fw)T is its gradient. The Hessian of G is negative definite if
and only if

(i) Gzz < 0 and (ii) detH(G) = GzzGww − G2
zw > 0.

We prove these two inequalities in turn. For this, we need the following derivatives:

Rz =
−z

R
, Rw =

−w

R
, Rzz =

w2 − 1

R3
, Rzw =

−zw

R3
, Rww =

z2 − 1

R3
, Rzzz =

3(w2 − 1)z

R5

(i). The first inequality is simple to check. We have

Gzz =
(1 − f2)fzz + f f2

z

(1 − f2)3/2
.
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Since the denominator is strictly positive for all z and w, the sign of Gzz is determined by its numerator
which we denote by g(z, w). The derivative of g with respect to z is:

gz = (1 − f2)fzzz + f3
z .

For z > 0, we have Rz < 0 and Rzzz < 0, so fz < 0 and fzzz < 0 implying that gz < 0. It follows that the
function z 7→ g(z, w) is decreasing for z > 0. Since g(0, w) < 0 it follows that g(z, w) < 0 for z, w > 0, so
Gzz < 0.

(ii). The second inequality is considerably more challenging. Let us introduce the following notations:

γ+ = R2
+, γ− = R2

−, γ = 1 − z2 − w2 + b2,

P = γ+γ−, S = γ+ + γ−.

γ+, γ− and γ satisfy the following constraints:

0 < γ+ 6 1 − b2 < 1, 0 < γ− 6 4b(1 − b) < 1 and 0 < 2b2
6 γ < 1 + b2 < 2.

Expanding detH(G) gives detH(G) = (1 − f2)∆, where

∆ = (1 − f2)∆1 + f∆2,

∆1 = detH(f) = fzzfww − f2
zw, ∆2 = f2

wfzz + f2
z fww − 2fzfwfzw.

We first find that

∆1 =
1

e2P 2
(µ1 + µ2

√
P ),

where
µ1 = S2 − 2P = γ2

− + γ2
+ > 0 and µ2 = P + γ(2 − γ) > 0.

Also,

∆2 =
1

e3P
3

2

(λ−

√
γ− + λ+

√
γ+),

where
λ− = γ(γ − 2) + 2γ+(γ − 1) + P and λ+ = γ(γ − 2) + 2γ−(γ − 1) + P.

Note that since λ−(z, 0) = λ+(z, 0) = 4z2(z2 − 1) 6 0, we can’t conclude yet and have to go further along.
Putting everything together, we get

∆ =
χ

e4P 2
,

where

χ = χ1 + χ2

√
P ,

χ1 = µ1(e
2 − S) + P (λ+ + λ− − 2µ2), χ2 = µ2(e

2 − S) − 2µ1 + λ−γ− + λ+γ+.

We want to prove that χ > 0, implying ∆ > 0. Let δ = e2+4b2−4. Noting that S+4−2γ = γ++γ−+4−2γ =
4 − 4b2, we get that e2 − S = δ + 4 − 2γ. So we have:

χ1 = µ1δ + χ∗
1, χ2 = µ2δ + χ∗

2,

where

χ∗
1 = 2µ1(2 − γ) + P (λ+ + λ− − 2µ2),

χ∗
2 = −2µ1 + 2µ2(2 − γ) + λ−γ− + λ+γ+.
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Let χ∗ = χ∗
1 + χ∗

2

√
P . Then

χ = (µ1 + µ2

√
P )δ + χ∗ > χ∗,

since µ1 > 0, µ2 > 0, δ > 0.
Let us prove that χ∗ > 0. Let

θ1 = 2S2 − 4P − SP − 2Pγ, θ2 = 2(2 − γ) − S.

We can rewrite χ∗
1 and χ∗

2 in terms of θ1 and θ2:

χ∗
1 = (2 − γ)θ1 − Pγθ2, χ∗

2 = −θ1 + γ(2 − γ)θ2.

Now observe that χ∗ factors:

χ∗ = χ∗
1 + χ∗

2

√
P = (2 − γ −

√
P )(θ1 + θ2γ

√
P ).

Noting that θ2 = 4(w2 + z2) > 0 and

θ1 = 2S2 − 8P + P (2(2 − γ) − S) = 2(γ+ − γ−)2 + Pθ2 > 0,

we see that the second factor of χ∗ is positive. It remains to observe that 2 − γ +
√

P > 0 and that

(2 − γ)2 − P = 4(z2(1 − b2) + w2) > 0,

to conclude that 2− γ −
√

P > 0 and χ∗ > 0. Overall, χ > 0, ∆ > 0 and detH(G) > 0, which concludes the
proof.
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