31 research outputs found

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Behaviour monitoring: investigation of local and distributed approaches

    Get PDF
    Nowadays, the widespread availability of cheap and efficient unmanned systems (either aerial, ground or surface) has led to significant opportunities in the field of remote sensing and automated monitoring. On the one hand, the definition of efficient approaches to information collection, filtering and fusion has been the focus of extremely relevant research streams over the last decades. On the other hand, far less attention has been given to the problem of ‘interpreting’ the data, thus implementing inference processes able to, e.g., spot anomalies and possible threats in the monitored scenario. It is easy to understand how the automation of the ‘target assessment’ process could bring a great impact on monitoring applications since it would allow sensibly alleviating the analysis burden for human operators. To this end, the research project proposed in this thesis addresses the problem of behaviour assessment leading to the identification of targets that exhibit features “of interest”. Firstly, this thesis has addressed the problem of distributed target assessment based on behavioural and contextual features. The assessment problem is analysed making reference to a layered structure and a possible implementation approach for the middle-layer has been proposed. An extensive analysis of the ‘feature’ concept is provided, together with considerations about the target assessment process. A case study considering a road-traffic monitoring application is then introduced, suggesting a possible implementation for a set of features related to this particular scenario. The distributed approach has been implemented employing a consensus protocol, which allows achieving agreement about high-level, non-measurable, characteristics of the monitored vehicles. Two different techniques, ‘Belief’ and ‘Average’ consensus, for distributed target assessment based on features are finally presented, enabling the comparison of consensus effects when implemented at different level of the considered conceptual hierarchy. Then, the problem of identifying targets concerning features is tackled using a different approach: a probabilistic description is adopted for the target characteristics of interest and a hypothesis testing technique is applied to the feature probability density functions. Such approach is expected to allow discerning whether a given vehicle is a target of interest or not. The assessment process introduced is also able to account for information about the context of the vehicle, i.e. the environment where it moves or is operated. In so doing the target assessment process can be effectively adapted to the contour conditions. Results from simulations involving a road monitoring scenario are presented, considering both synthetic and real-world data. Lastly, the thesis addresses the problem of manoeuvre recognition and behaviour anomalies detection for generic targets through pattern matching techniques. This problem is analysed considering motor vehicles in a multi-lane road scenario. The proposed approach, however, can be easily extended to significantly different monitoring contexts. The overall proposed solution consists in a trajectory analysis tool, which classifies the target position over time into a sequence of ‘driving modes’, and a string-matching technique. This classification allows, as result of two different approaches, detecting both a priori defined patterns of interest and general behaviours standing out from those regularly exhibited from the monitored targets. Regarding the pattern matching process, two techniques are introduced and compared: a basic approach based on simple strings and a newly proposed method based on ‘regular expressions’. About reference patterns, a technique for the automatic definition of a dictionary of regular expressions matching the commonly observed target manoeuvres is presented. Its assessment results are then compared to those of a classic multi-layered neural network. In conclusion, this thesis proposes some novel approaches, both local and distributed, for the identification of the ‘targets of interest’ within a multi-target scenario. Such assessment is solely based on the behaviour actually exhibited by a target and does not involve any specific knowledge about the targets (analytic dynamic models, previous data, signatures of any type, etc.), being thus easily applicable to different scenarios and target types. For all the novel approaches described in the thesis, numerical results from simulations are reported: these results, in all the cases, confirm the effectiveness of the proposed techniques, even if they appear to be open to interpretation because of the inherent subjectivity of the assessment process

    Radar target micro-doppler signature classification

    Get PDF
    This thesis reports on research into the field of Micro-Doppler Signature (μ-DS) based radar Automatic Target Recognition (ATR) with additional contributions to general radar ATR methodology. The μ-DS based part of the research contributes to three distinct areas: time domain classification; frequency domain classification; and multiperspective μ-DS classification that includes the development of a theory for the multistatic μ-DS. The contribution to general radar ATR is the proposal of a methodology to allow better evaluation of potential approaches and to allow comparison between different studies. The proposed methodology is based around a “black box” model of a radar ATR system that, critically, includes a threshold to detect inputs that are previously unknown to the system. From this model a set of five evaluation metrics are defined. The metrics increase the understanding of the classifier’s performance from the common probability of correct classification, that reports how often the classifier correctly identifies an input, to understanding how reliable it is, how capable it is of generalizing from the reference data, and how effective its unknown input detection is. Additionally, the significance of performance prediction is discussed and a preliminary method to estimate how well a classifier should perform is developed. The proposed methodology is then used to evaluate the μ-DS based radar ATR approaches considered. The time domain classification investigation is based around using Dynamic Time Warping (DTW) to identify radar targets based on their μ-DS. DTW is a speech processing technique that classifies data series by comparing them with a pre-classified reference dataset. This is comparable to the common k-Nearest Neighbour (k-NN) algorithm, so k-NN is used as a benchmark against which to evaluate DTW’s performance. The DTW approach is observed to work well. It achieved high probability of correct classification and reliability as well as being able to detect inputs of unknown class. However, the classifier’s ability to generalize from the reference data is less impressive and it performed only slightly better than a random selection from the possible output classes. Difficulties in classifying the μ-DS in the time domain are identified from the k-NN results prompting a change to the frequency domain. Processing the μ-DS in the frequency domain permitted the development of an advanced feature extraction routine to maximize the separation of the target classes and therefore reduce the effort required to classify them. The frequency domain also permitted the use of the performance prediction method developed as part of the radar ATR methodology and the introduction of a na¨ıve Bayesian approach to classification. The results for the DTW and k-NN classifiers in the frequency domain were comparable to the time domain, an unexpected result since it was anticipated that the μ-DS would be easier to classify in the frequency domain. However, the naıve Bayesian classifier produced excellent results that matched with the predicted performance suggesting it could not be bettered. With a successful classifier, that would be suitable for real-world use, developed attention turned to the possibilities offered by the multistatic μ-DS. Multiperspective radar ATR uses data collected from different target aspects simultaneously to improve classification rates. It has been demonstrated successful for some of the alternatives to μ-DS based ATR and it was therefore speculated that it might improve the performance of μ-DS ATR solutions. The multiple perspectives required for the classifier were gathered using a multistatic radar developed at University College London (UCL). The production of a dataset, and its subsequent analysis, resulted in the first reported findings in the novel field of the multistatic μ-DS theory. Unfortunately, the nature of the radar used resulted in limited micro-Doppler being observed in the collected data and this reduced its value for classification testing. An attempt to use DTW to perform multiperspective μ-DS ATR was made but the results were inconclusive. However, consideration of the improvements offered by multiperspective processing in alternative forms of ATR mean it is still expected that μ-DS based ATR would benefit from this processing

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    New Game Physics - Added Value for Transdisciplinary Teams

    Get PDF
    This study focused on game physics, an area of computer game design where physics is applied in interactive computer software. The purpose of the research was a fresh analysis of game physics in order to prove that its current usage is limited and requires advancement. The investigations presented in this dissertation establish constructive principles to advance game physics design. The main premise was that transdisciplinary approaches provide significant value. The resulting designs reflected combined goals of game developers, artists and physicists and provide novel ways to incorporate physics into games. The applicability and user impact of such new game physics across several target audiences was thoroughly examined. In order to explore the transdisciplinary nature of the premise, valid evidence was gathered using a broad range of theoretical and practical methodologies. The research established a clear definition of game physics within the context of historical, technological, practical, scientific, and artistic considerations. Game analysis, literature reviews and seminal surveys of game players, game developers and scientists were conducted. A heuristic categorization of game types was defined to create an extensive database of computer games and carry out a statistical analysis of game physics usage. Results were then combined to define core principles for the design of unconventional new game physics elements. Software implementations of several elements were developed to examine the practical feasibility of the proposed principles. This research prototype was exposed to practitioners (artists, game developers and scientists) in field studies, documented on video and subsequently analyzed to evaluate the effectiveness of the elements on the audiences. The findings from this research demonstrated that standard game physics is a common but limited design element in computer games. It was discovered that the entertainment driven design goals of game developers interfere with the needs of educators and scientists. Game reviews exemplified the exaggerated and incorrect physics present in many commercial computer games. This “pseudo physics” was shown to have potentially undesired effects on game players. Art reviews also indicated that game physics technology remains largely inaccessible to artists. The principal conclusion drawn from this study was that the proposed new game physics advances game design and creates value by expanding the choices available to game developers and designers, enabling artists to create more scientifically robust artworks, and encouraging scientists to consider games as a viable tool for education and research. The practical portion generated tangible evidence that the isolated “silos” of engineering, art and science can be bridged when game physics is designed in a transdisciplinary way. This dissertation recommends that scientific and artistic perspectives should always be considered when game physics is used in computer-based media, because significant value for a broad range of practitioners in succinctly different fields can be achieved. The study has thereby established a state of the art research into game physics, which not only offers other researchers constructive principles for future investigations, but also provides much-needed new material to address the observed discrepancies in game theory and digital media design

    Radar target classification by micro-Doppler contributions

    Get PDF
    This thesis studies non-cooperative automatic radar target classification. Recent developments in silicon-germanium and monolithic microwave integrated circuit technologies allows to build cheap and powerful continuous wave radars. Availability of radars opens new applications in different areas. One of these applications is security. Radars could be used for surveillance of huge areas and detect unwanted moving objects. Determination of the type of the target is essential for such systems. Microwave radars use high frequencies that reflect from objects of millimetre size. The micro-Doppler signature of a target is a time-varying frequency modulated contribution that arose in radar backscattering and caused by the relative movement of separate parts of the target. The micro-Doppler phenomenon allows to classify non-rigid moving objects by analysing their signatures. This thesis is focused on designing of automatic target classification systems based on analysis of micro-Doppler signatures. Analysis of micro-Doppler radar signatures is usually performed by second-order statistics, i.e. common energy-based power spectra and spectrogram. However, the information about phase coupling content in backscattering is totally lost in these energy-based statistics. This useful phase coupling content can be extracted by higher-order spectral techniques. We show that this content is useful for radar target classification in terms of improved robustness to various corruption factors. A problem of unmanned aerial vehicle (UAV) classification using continuous wave radar is covered in the thesis. All steps of processing required to make a decision out of the raw radar data are considered. A novel feature extraction method is introduced. It is based on eigenpairs extracted from the correlation matrix of the signature. Different classes of UAVs are successfully separated in feature space by support vector machine. Within experiments or real radar data, achieved high classification accuracy proves the efficiency of the proposed solutions. Thesis also covers several applications of the automotive radar due to very high growth in technologies for intelligent vehicle radar systems. Such radars are already build-in in the vehicle and ready for new applications. We consider two novel applications. First application is a multi-sensor fusion of video camera and radar for more efficient vehicle-to-vehicle video transmission. Second application is a frequency band invariant pedestrian classification by an automotive radar. This system allows us to use the same signal processing hardware/software for different countries where regulations vary and radars with different operating frequency are required. We consider different radar applications: ground moving target classification, aerial target classification, unmanned aerial vehicles classification, pedestrian classification. The highest priority is given to verification of proposed methods on real radar data collected with frequencies equal to 9.5, 10, 16.8, 24 and 33 GHz

    Technical, Economic and Societal Effects of Manufacturing 4.0

    Get PDF
    This open access book is among the first cross-disciplinary works about Manufacturing 4.0. It includes chapters about the technical, the economic, and the social aspects of this important phenomenon. Together the material presented allows the reader to develop a holistic picture of where the manufacturing industry and the parts of the society that depend on it may be going in the future. Manufacturing 4.0 is not only a technical change, nor is it a purely technically driven change, but it is a societal change that has the potential to disrupt the way societies are constructed both in the positive and in the negative. This book will be of interest to scholars researching manufacturing, technological innovation, innovation management and industry 4.0
    corecore