104 research outputs found

    A Review on Facial Expression Recognition Techniques

    Get PDF
    Facial expression is in the topic of active research over the past few decades. Recognition and extracting various emotions and validating those emotions from the facial expression become very important in human computer interaction. Interpreting such human expression remains and much of the research is required about the way they relate to human affect. Apart from H-I interfaces other applications include awareness system, medical diagnosis, surveillance, law enforcement, automated tutoring system and many more. In the recent year different technique have been put forward for developing automated facial expression recognition system. This paper present quick survey on some of the facial expression recognition techniques. A comparative study is carried out using various feature extraction techniques. We define taxonomy of the field and cover all the steps from face detection to facial expression classification

    Event Detection in Eye-Tracking Data for Use in Applications with Dynamic Stimuli

    Get PDF
    This doctoral thesis has signal processing of eye-tracking data as its main theme. An eye-tracker is a tool used for estimation of the point where one is looking. Automatic algorithms for classification of different types of eye movements, so called events, form the basis for relating the eye-tracking data to cognitive processes during, e.g., reading a text or watching a movie. The problems with the algorithms available today are that there are few algorithms that can handle detection of events during dynamic stimuli and that there is no standardized procedure for how to evaluate the algorithms. This thesis comprises an introduction and four papers describing methods for detection of the most common types of eye movements in eye-tracking data and strategies for evaluation of such methods. The most common types of eye movements are fixations, saccades, and smooth pursuit movements. In addition to these eye movements, the event post-saccadic oscillations, (PSO), is considered. The eye-tracking data in this thesis are recorded using both high- and low-speed eye-trackers. The first paper presents a method for detection of saccades and PSO. The saccades are detected using the acceleration signal and three specialized criteria based on directional information. In order to detect PSO, the interval after each saccade is modeled and the parameters of the model are used to determine whether PSO are present or not. The algorithm was evaluated by comparing the detection results to manual annotations and to the detection results of the most recent PSO detection algorithm. The results show that the algorithm is in good agreement with annotations, and has better performance than the compared algorithm. In the second paper, a method for separation of fixations and smooth pursuit movements is proposed. In the intervals between the detected saccades/PSO, the algorithm uses different spatial scales of the position signal in order to separate between the two types of eye movements. The algorithm is evaluated by computing five different performance measures, showing both general and detailed aspects of the discrimination performance. The performance of the algorithm is compared to the performance of a velocity and dispersion based algorithm, (I-VDT), to the performance of an algorithm based on principle component analysis, (I-PCA), and to manual annotations by two experts. The results show that the proposed algorithm performs considerably better than the compared algorithms. In the third paper, a method based on eye-tracking signals from both eyes is proposed for improved separation of fixations and smooth pursuit movements. The method utilizes directional clustering of the eye-tracking signals in combination with binary filters taking both temporal and spatial aspects of the eye-tracking signal into account. The performance of the method is evaluated using a novel evaluation strategy based on automatically detected moving objects in the video stimuli. The results show that the use of binocular information for separation of fixations and smooth pursuit movements is advantageous in static stimuli, without impairing the algorithm's ability to detect smooth pursuit movements in video and moving dot stimuli. The three first papers in this thesis are based on eye-tracking signals recorded using a stationary eye-tracker, while the fourth paper uses eye-tracking signals recorded using a mobile eye-tracker. In mobile eye-tracking, the user is allowed to move the head and the body, which affects the recorded data. In the fourth paper, a method for compensation of head movements using an inertial measurement unit, (IMU), combined with an event detector for lower sampling rate data is proposed. The event detection is performed by combining information from the eye-tracking signals with information about objects extracted from the scene video of the mobile eye-tracker. The results show that by introducing head movement compensation and information about detected objects in the scene video in the event detector, improved classification can be achieved. In summary, this thesis proposes an entire methodological framework for robust event detection which performs better than previous methods when analyzing eye-tracking signals recorded during dynamic stimuli, and also provides a methodology for performance evaluation of event detection algorithms

    Detection of Driver Drowsiness and Distraction Using Computer Vision and Machine Learning Approaches

    Get PDF
    Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This research study explores and investigates the applications of both conventional computer vision and deep learning approaches for the detection of drowsiness and distraction in drivers. In the first part of this MPhil research study conventional computer vision approaches was studied to develop a robust drowsiness and distraction system based on yawning detection, head pose detection and eye blinking detection. These algorithms were implemented by using existing human crafted features. Experiments were performed for the detection and classification with small image datasets to evaluate and measure the performance of system. It was observed that the use of human crafted features together with a robust classifier such as SVM gives better performance in comparison to previous approaches. Though, the results were satisfactorily, there are many drawbacks and challenges associated with conventional computer vision approaches, such as definition and extraction of human crafted features, thus making these conventional algorithms to be subjective in nature and less adaptive in practice. In contrast, deep learning approaches automates the feature selection process and can be trained to learn the most discriminative features without any input from human. In the second half of this research study, the use of deep learning approaches for the detection of distracted driving was investigated. It was observed that one of the advantages of the applied methodology and technique for distraction detection includes and illustrates the contribution of CNN enhancement to a better pattern recognition accuracy and its ability to learn features from various regions of a human body simultaneously. The comparison of the performance of four convolutional deep net architectures (AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and explored the impact of combining a support vector classifier (SVC) with a trained deep net. The images used in our experiments with the deep nets are from the State Farm Distracted Driver Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was observed that one of the advantages of deep learning approaches are their ability to learn discriminative features from various regions of a human body simultaneously. The ability has enabled deep learning approaches to reach accuracy at human level.

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Hyperspectral Data Acquisition and Its Application for Face Recognition

    Get PDF
    Current face recognition systems are rife with serious challenges in uncontrolled conditions: e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is typically employed to counter many of those challenges, by incorporating the spectral information within different bands. Although numerous methods based on hyperspectral imaging have been developed for face recognition with promising results, three fundamental challenges remain: 1) low signal to noise ratios and low intensity values in the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject motion during data acquisition. This dissertation concentrates mainly on addressing the aforementioned challenges in HI. First, to address low quality of the bands of the hyperspectral image, we utilize a custom light source that has more radiant power at shorter wavelengths and properly adjust camera exposure times corresponding to lower transmittance of the filter and lower radiant power of our light source. Second, the high dimensionality of spectral data imposes limitations on numerical analysis. As such, there is an emerging demand for robust data compression techniques with lows of less relevant information to manage real spectral data. To cope with these challenging problems, we describe a reduced-order data modeling technique based on local proper orthogonal decomposition in order to compute low-dimensional models by projecting high-dimensional clusters onto subspaces spanned by local reduced-order bases. Third, we investigate 11 leading alignment approaches to address IBM correlated with subject motion during data acquisition. To overcome the limitations of the considered alignment approaches, we propose an accurate alignment approach ( A3) by incorporating the strengths of point correspondence and a low-rank model. In addition, we develop two qualitative prediction models to assess the alignment quality of hyperspectral images in determining improved alignment among the conducted alignment approaches. Finally, we show that the proposed alignment approach leads to promising improvement on face recognition performance of a probabilistic linear discriminant analysis approach

    Optimization of recurrent neural networks for time series modeling

    Get PDF

    Proceedings of the Interdisciplinary Workshop on The Phonetics of Laughter : Saarland University, Saarbrücken, Germany, 4-5 August 2007

    Get PDF
    corecore