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Abstract 

Current face recognition systems are rife with serious challenges in uncontrolled conditions: 

e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is 

typically employed to counter many of those challenges, by incorporating the spectral 

information within different bands. Although numerous methods based on hyperspectral 

imaging have been developed for face recognition with promising results, three 

fundamental challenges remain: 1) low signal to noise ratios and low intensity values in 

the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality 

of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject 

motion during data acquisition. 

 

This dissertation concentrates mainly on addressing the aforementioned challenges in HI. 

First, to address low quality of the bands of the hyperspectral image, we utilize a custom 

light source that has more radiant power at shorter wavelengths and properly adjust camera 

exposure time corresponding to lower transmittance of the filter and lower radiant power 

of our light source. 

 

Second, the high dimensionality of spectral data imposes limitations on numerical analysis. 

As such, there is an emerging demand for robust data compression techniques with loss of 

less relevant information to manage real spectral data. To cope with these challenging 

problems, we describe a reduced-order data modeling technique based on local proper 

orthogonal decomposition in order to compute low-dimensional models by projecting high-

dimensional clusters onto subspaces spanned by local reduced-order bases. 

 

Third, we investigate 11 leading alignment approaches to address IBM correlated with 

subject motion during data acquisition. To overcome the limitations of the considered 

alignment approaches, we propose an accurate alignment approach (A3) by incorporating 

the strengths of point correspondence and a low-rank model. In addition, we develop two 

qualitative prediction models to assess the alignment quality of hyperspectral images in 

determining improved alignment among the conducted alignment approaches. Finally, we 

show that the proposed alignment approach leads to promising improvement on face 

recognition performance of a probabilistic linear discriminant analysis approach. 
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 Introduction 

 Motivation 

In recent years, biometric-based techniques have received tremendous attention as the most 

reliable methods for authenticating individuals and permitting them to access physical and 

virtual domains based on physiological characteristics (e.g., fingerprints [Yoon12], face 

[Hua11], palm [Yang07], and iris [Sun14]) or behavioral traits [Liu06] (e.g., gait and 

signature). Three problems specific to non-biometric-based security techniques: 1) 

passwords and/or personal identification number (PINs), such as those required to access 

fiscal accounts utilizing an automated teller machine (ATM) and/or to access secure 

electronic domains, are intended to be a complex combinations of letters, numbers, special 

characters and/or symbols and, as such, are often challenging to commit to memory, can 

be stolen, and are able to be predicted by external parties; 2) IDs, smart cards, tokens, and 

keys can be misdirected, forgotten, lost, stolen or duplicated; and 3) magnetic cards can 

become corrupted and unreadable. Each of these issues, individually or any combination 

thereof, renders any real or intended measure of security null and void. The examples are 

shown in Fig. 1.1. 

 

 

    
(a) (b) (c) (d) 

Figure 1.1: Examples for authenticating individuals and permitting them to access 

physical or virtual domain: (a) ID or smart cards, (b) passwords and PINs1, (c) a key2, 

and (d) a magnetic card3. 

 

 

                                                 
1 http://www.twcondemand.com/images/parentalcontrols/screen-purchase-pin-entry.jpg. 
2 http://upload.wikimedia.org/wikipedia/commons/3/3c/House_key.jpg. 
3 http://cdn.sheknows.com/articles/broken-credit-card.jpg. 

http://www.twcondemand.com/images/parentalcontrols/screen-purchase-pin-entry.jpg
http://www.twcondemand.com/images/parentalcontrols/screen-purchase-pin-entry.jpg
http://www.twcondemand.com/images/parentalcontrols/screen-purchase-pin-entry.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3c/House_key.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3c/House_key.jpg
http://upload.wikimedia.org/wikipedia/commons/3/3c/House_key.jpg
http://cdn.sheknows.com/articles/broken-credit-card.jpg
http://cdn.sheknows.com/articles/broken-credit-card.jpg
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As one of the most promising biometric modalities in Fig. 1.2, face recognition [Hua11] is, 

in brief, the process of authenticating the identity of an individual through facial imaging. 

The demand for robust face recognition techniques that successfully perform in realistic 

conditions and/or uncontrolled environments is continually growing. Due to the merits of 

its high accuracy and low intrusiveness in multiple and varied applications including, but 

not limited to, multimedia data management, digital entertainment, access control, 

financial transaction, and video surveillance, significant and extended attention has been 

given and continues to be directed towards face recognition technology. 

 

 

  
(a)                              (b) (c)                                (d) 

Figure 1.2: This figure shows examples of other biometric-based recognition 

techniques: fingerprint in (a)4 and (b)5, and iris in (c)6 and (d)7. 
 

 

 

Compared to other biometric modalities depending on the level of participant cooperation, 

such as fingerprint and retina or iris recognition, face recognition has the distinct advantage 

of being non-collaborative or unaware. In other words, the personal identification system 

based on face recognition can effectively identify a particular individual without the 

particular individual’s cooperation or knowledge. Figure 1.3 shows practical applications 

of face recognition in order to automatically identify the suspects or analyze customer’s 

behavior. In spite of such innately distinguishing characteristics of face recognition 

systems, there still exist serious challenges under uncontrolled conditions, e.g., 

unrestrained lighting, actively changing facial expressions, pose variations, accessories, etc. 

These challenges have been the motivation of face recognition research but have yet to 

reach a mature stage of contending with them under highly unpredictable and uncertain 

circumstances [Liao13]. 

 

 

                                                 
4 http://www.tiresias.org/research/guidelines/images/biometrics_fingerprint_03.jpg. 
5 http://swapnakm786.files.wordpress.com/2013/04/fingerprint-recognition-in-iphone.jpg. 
6 http://www.visasouthafrica.org/wp-content/uploads/2011/11/VISA-SOUTH-AFRICA-BLOG32.jpg. 
7 http://www.neurotechnology.com/res/verieye_not_circles.jpg. 

http://www.tiresias.org/research/guidelines/images/biometrics_fingerprint_03.jpg
http://www.tiresias.org/research/guidelines/images/biometrics_fingerprint_03.jpg
http://swapnakm786.files.wordpress.com/2013/04/fingerprint-recognition-in-iphone.jpg
http://swapnakm786.files.wordpress.com/2013/04/fingerprint-recognition-in-iphone.jpg
http://www.visasouthafrica.org/wp-content/uploads/2011/11/VISA-SOUTH-AFRICA-BLOG32.jpg
http://www.visasouthafrica.org/wp-content/uploads/2011/11/VISA-SOUTH-AFRICA-BLOG32.jpg
http://www.neurotechnology.com/res/verieye_not_circles.jpg
http://www.neurotechnology.com/res/verieye_not_circles.jpg
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(a) (b) 

Figure 1.3: Examples of practical applications of face recognition: (a) identity of Boston 

Marathon bombing suspects8 and analysis of customer’s behavior9 
 

 

1.1.1 Problem description 

The problem statement of face recognition can be formulated as follows: Given a new 

probe image and a set of labeled gallery faces of known individuals, how can it be matched 

against the gallery faces to be verified or determined as a known face or rejected? The way 

to solve the problem involves a well-designed system which can be configured as three key 

steps: 1) face detection; 2) feature detection; and, 3) feature matching. 

 

The goal of face detection, the first fundamental step in face recognition systems, is to 

determine face localization in the image containing faces. It is crucial for many potential 

applications in face processing including face recognition, tracking, pose estimation, 

expression, etc., since they rely heavily on the outcomes of face detection. Next, feature 

detection is desired to detect and define the key components or patterns of the face 

appearance in the face region of interest consisting of a 2D intensity array. It is 

comprehensively affected to distinguish the face recognition techniques. The last step as 

feature matching is also referred to as face identification. Face identification plays a role 

in determining the identity of a person by comparing a set of features from an input image 

(probe) against a whole set of features for known individuals stored in a database (gallery).  

 

The challenges intrinsically related to face recognition performances [Yang02], [Hua11] 

can be attributed to the following key factors as shown in Fig. 1.4: 

 

                                                 
8  http://cdn.arstechnica.net/wp-content/uploads/2013/05/fbiimagesapril18-640x499.png. 
9  http://www.netmechanic.co.za/assets/blog/face%20recognition%20technology.png. 

http://cdn.arstechnica.net/wp-content/uploads/2013/05/fbiimagesapril18-640x499.png
http://cdn.arstechnica.net/wp-content/uploads/2013/05/fbiimagesapril18-640x499.png
http://cdn.arstechnica.net/wp-content/uploads/2013/05/fbiimagesapril18-640x499.png
http://www.netmechanic.co.za/assets/blog/face%20recognition%20technology.png
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 Illumination variations: including, but not limited to, lighting variations and 

internal camera characteristics affect facial appearance when an image is captured. 

 

 Pose variations: this factor introduces partial or entire occlusion of facial 

components including mouth, nose, or eyes. 

 

 Facial expression:  the shape of facial features is directly determined by facial 

actions or facial movements. 

 

 Structural features: the variations in facial features including beards, mustaches, 

hair styles, and glasses influence the shape, color, and size of facial components. 

 

 Time delay: this factor essentially lies in the constantly changing face appearance 

with advancing time increments. 

 

 

 
Figure 1.4: Examples of the challenging problems in current face recognition systems. 

These images are taken from blurring10, accessory11, pose12, aging13, expression14, 

illumination15. 
 

 

 

To construct robust techniques for face recognition, numerous approaches to address the 

challenging factors specific to appearance variations have been proposed. Hence, the 

                                                 
10 http://www.bagnewsnotes.com/files/2013/08/Ilkka-Uimonen-Obama-photo-Wellford-interview.jpg. 
11 http://nimg.sulekha.com/others/original700/barack-obama-2010-1-22-21-14-15.jpg. 
12 http://wallpaperwonder.com/wp-content/uploads/2014/02/Obama-In-White-House-Wallpaper.jpg. 
13 http://www.oxy.edu/sites/default/files/assets/communcations/Obama_Occidental.jpg. 
14 http://cdn.breitbart.com/mediaserver/Breitbart/Big-

Government/2013/Barack%20and%20Michelle/obama_OMG_AP.jpg 
15 http://muslimwriters.org/wp-content/uploads/2013/04/Barack-Obama-010.jpg 

http://www.bagnewsnotes.com/files/2013/08/Ilkka-Uimonen-Obama-photo-Wellford-interview.jpg
http://www.bagnewsnotes.com/files/2013/08/Ilkka-Uimonen-Obama-photo-Wellford-interview.jpg
http://nimg.sulekha.com/others/original700/barack-obama-2010-1-22-21-14-15.jpg
http://nimg.sulekha.com/others/original700/barack-obama-2010-1-22-21-14-15.jpg
http://wallpaperwonder.com/wp-content/uploads/2014/02/Obama-In-White-House-Wallpaper.jpg
http://www.oxy.edu/sites/default/files/assets/communcations/Obama_Occidental.jpg
http://cdn.breitbart.com/mediaserver/Breitbart/Big-Government/2013/Barack%20and%20Michelle/obama_OMG_AP.jpg
http://cdn.breitbart.com/mediaserver/Breitbart/Big-Government/2013/Barack%20and%20Michelle/obama_OMG_AP.jpg
http://muslimwriters.org/wp-content/uploads/2013/04/Barack-Obama-010.jpg
http://muslimwriters.org/wp-content/uploads/2013/04/Barack-Obama-010.jpg
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preceding subsections deal with comprehensive and up-to-date reviews on existing 

techniques and critical discussions of the challenges.  

 

1.1.2 State of the art techniques 

With an aim to contribute a comprehensive and critical survey of current face recognition 

methods, we provide a detailed review of techniques to identify individuals according to 

two key steps: feature detection and feature matching. For the initial step in terms of the 

face detection, we refer the reader to the recent surveys [Yang02] [Hua11] [Samal92] 

because it is beyond the scope of this work to verify the identity of the individuals on 

specific facial images where the faces on the probe images and gallery  images in database 

are already detected and aligned.  

 

Existing techniques to detect features from a facial image can be classified into three 

categories [Samal92] [Chellappa95] [Tan06] [Abate07] [Jafri09]: 1) holistic approaches, 

2) local methods, and 3) hybrid methods. Holistic approaches use the entire face region as 

the input to a face recognition system. One of the most widely used representations of the 

face region is eigen pictures [Kirby90], which are based on principal component analysis 

(PCA) which is a fast, simple, and practical approach. In contrast with holistic approaches, 

local methods can be classified into two categories: local feature-based and local 

appearance-based. Local feature-based approaches first process the input image to extract 

local distinctive features such as lines or fiducial points, or facial features (eyes, mouth, 

nose, etc.), and then compute the geometric relationships among a set of those features. 

Finally, to identify the faces, the vectors of geometric features are matched by using the 

techniques of standard statistical pattern recognition. Local appearance approaches mainly 

involve four steps: 1) local region partition, 2) feature extraction, 3) feature selection, and 

4) classification. Compared with local feature-based approach, local appearance-based 

methods first divide a facial image into several subregions, and then, detect local features 

in the subregions. Hybrid approaches take advantage of both metrics of holistic and feature-

based methods as human visual system.  

 

Once the introduction of the holistic approach based on PCA [Kirby90] to model linear 

variation in high-dimensional data, various extended holistic methods have been proposed. 

Turk and Pentland [Turk91] proposed eigenfaces based on information theory, which 

indicate a small set of facial features spanning the significant variations among the known 

facial images. Fisherfaces based on Fisher’s linear discriminant analysis (LDA) 

[Belhum.97] was introduced to find the most discriminative projection directions in 

eigenspace. Support vector machine (SVM) method classifying two different patterns in 

eigenspace was proposed by Phillips [Phillips99]. Bartlett et al. proposed independent 

component analysis (ICA)-based approach for face representation [Bartlett98] that was 

utilized by higher order statistics and generalized in PCA while enhancing the performance 

of face recognition by employing cosine similarity measure. Yang et al. [Yang04] 
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introduced two-dimensional PCA (2DPCA) based on 2D image matrices rather than 1D 

vectors. Similar to 2DPCA, Zhang and Zhou [Zhang05] introduced the bidirectional 

2DPCA (2D2PCA). Xiaofei et al. [Xiaofei05] introduced Laplacianfaces based on locality 

preserving projections (LPP) which exploited a facial subspace to extract the essential face 

manifold structure while preserving local information. Kim et al. [Kim07] proposed linear 

discriminant function to maximize the canonical correlations of within-class sets and 

minimize the canonical correlations of between-class sets. The nonlinear approaches based 

on neural networks [Lin97] [Fleming90] in order to overcome misclassifications among 

the neighborhood classes are proposed. Moghaddam et al. [Mogh.97] proposed 

probabilistic-based method to estimate the probability of the difference between intra-

personal facial variation and extra-personal facial variation. Naseem et al. [Naseem10] 

described a linear model representation to be classified by linear regression algorithm. 

Jiang et al. [Jiang10] proposed global harmonic subspace analysis (GHSA) based on 

Laplacian eigenmap. Recently, many researchers [Wright09] [Hu12] [Meng13A] 

[Meng13B] [Lu13] [Zhang13] introduced sparse representation to handle various changes 

in illumination, expression, occlusion, pose, etc. For further studies on comprehensive 

performance evaluation of holistic approaches, we strongly refer the interested reader to 

[Ashok10] and the references therein for more details where the reference provides 

comprehensive performance evaluation of about twenty five different subspace approaches 

under several real test conditions. The major advantages of the holistic approaches are two 

folds [Tan06]: 1) it completely maintains all the detailed shape information of the facial 

appearance that is useful for distinctive faces; and 2) it can obtain more global 

characteristics of faces than local feature-based approaches. However, as mentioned in 

[Zhang09], most of the holistic approaches are severely sensitive to changes in poses and 

scales. 

 

In feature-based approaches, a set of fiducial points or facial features is only or mainly 

considered to be extracted from a limited region in the facial images. With reducing the 2D 

intensity matrices or images to a set of geometric vectors represented in templates, the 

feature-based approaches may be more suitable for saving storage cost and computational 

cost than holistic approaches. In addition, feature-based methods can have additional 

flexibility to recognize a part of facial features and incorporate the global information.  

The origin of the automated face recognition based on local features can be traced back to 

the early period in 1973 when Kanade [Kanade73] proposed simple algorithms to extract 

a vector of 16 facial parameters which were ratios of distances, areas, and angles where the 

extracted vectors stored in the databases were matched by using Euclidean distance to 

identify the probe face against gallery faces. Brunelli and Poggio [Brunelli93] illustrated 

35 geometrical features for face representation including nose width and length, mouth 

position and chin shape to be used for a template matching with a Bayes classifier. However, 

those geometric feature-based methods have two drawbacks: 1) it is hard to exactly detect 

the geometric features on real facial images with some complicated cases; and 2) the only 

considerations for geometrical features without other information such as gray-lever values 

of the images should be impertinent to fully represent distinctive faces. To overcome the 
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weakness of the purely geometrical features approaches, Manjunath et al. [Manj.92] 

proposed more powerful local feature representation based on Gabor wavelet 

decomposition, consisting of location and feature information where feature information 

containing the spatial and angular distance from neighboring feature points were connected 

to the edge with minimal distance, and then, constructed as a fixed topological graph. 

However, the fixed topological graph is criticized because it does not allow to update or 

modify the feature information once it is built. Thus, it is hard to be suitable for different 

variations in scale. To provide more flexibility to variations in illumination, translation, 

distortion, rotation, and scaling, Wiskott et al. [Wiskott97] proposed elastic bunch graph 

matching (EBGM) which was one of the most successful local feature-based approaches 

and was based on the dynamic link architecture (DLA) [Lades93] as an extension of 

classical artificial neural networks. EBGM is also called a deformable topology graph 

matching method. Whereas it is robust to changes in appearance, it requires higher 

computational cost and it does not consider the partial occlusions of key positions such as 

eyes, nose, mouse, etc.  

 

In contrast with topology graph-based approach, Gao et al. [Gao02] proposed a compact 

face feature based on line edge map (LEM) with generic line segment Hausdorff distance 

measure which was used to cope with the difficulty of changes in lighting conditions. 

However, it has need of high computational expense for face image retrieval in the database. 

Gao and Qi [Gao05] proposed a directional corner points (DCP) including directional 

information which indicated the connectivity to its neighbors by exploiting point 

correspondence. The DCP approach is low storage cost and less sensitive to variation in 

illumination. However, its performance depends heavily on the precise localization of the 

detected feature points. Thus, it may be hard to handle major changes in shape or 

appearance. Recently, Meng et al. [Meng12] proposed monogenic binary coding for 

efficiently detecting local features to be decomposed into three complementary 

components such as amplitude, orientation, and phase. For face recognition, they compute 

histogram-based similarity measure. Liao et al. [Liao13] proposed an alignment-free face 

representation method based on multi-keypoint descriptors (MKD): Gabor ternary pattern 

(GTP) and scale invariant feature transform (SIFT) [Lowe04]. They showed that MKD 

approach achieved high accuracies in partial occlusion and pose changes under synthesized 

partial faces from FRGCv2.0 database, occluded holistic faces from AR database, and 

occluded or non-frontal faces collected in unconstrained scenarios from LFW and PubFig 

database.  

 

For local appearance-based methods, we first provide the details of four steps, including 

local region partition, feature extraction, feature selection, and classification. In the first 

step of the local region partition, the facial images were divided into mostly rectangular 

windows, according to the size and shape of the local regions predefined. After the step of 

local region partition, local features were detected in the limited subregions. The feature 

detection and representation are most crucial to influence the performance of a face 

recognition system. For local features, gray-value features [Martinez02] [Chen04] [Tan05], 
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Gabor wavelet [Manj.92] [Wiskott97] [Lades93], Harr wavelet [Le04], etc., were 

commonly used for local feature descriptors. Whereas gray-value-based descriptor were 

simple yet no loss of texture information, Gabor wavelet-based descriptors is suitable for 

changes in illumination and geometric translation. For feature selection, it dealt with 

outliers or selected empirical information from a set of local features. PCA [Sirovich87] 

[Kirby90], LDA [Chen04], local statistics-based methods [Kim95] were employed to select 

coherent structures. The final step of classification applied to each component was for face 

recognition. 

 

 One of the most successful approaches based on local appearance was proposed by 

Martinez [Martinez02]. He described a local probabilistic approach to deal with partial 

occlusion and expression changes. The Mahalanobis distance defined by the Gaussian 

distributions as a solution to the localization problem was used to yield the best match. 

However, it needs high storage and computational cost under large databases. Tan et al. 

[Tan05] introduced an extension of the local probabilistic approach based on Self-

Organizing Maps (SOM) instead of the mixture of Gaussians. In LDA-based approach, 

Fisher linear discriminant analysis (FLDA) often fails to partial occlusions since 

nonexistence of the intra-class scatter. To solve the problem, Chen et al. [Chen04] extended 

FLDA to local appearance approach. More specifically, they divided face images into a set 

of sub-images with the same dimensionality and trained them. Finally, FLDA was applied 

to each of the sub-patterns for the classification. Samaria and Young [Samaria94] 

introduced the hidden markov model (HMM)-based approach as a way of automatically 

segmenting face images and detecting useful features for face recognition. However, 

HMM-based approach has one drawback according to estimating the model types and 

model parameter in training samples. Ahonen et al. [Ahonen06] extended local binary 

pattern (LBP) texture features [Ojala06] by incorporating a spatially enhanced feature 

histogram or feature vector for global information representation. Recently, Chen et al. 

[Chen10] proposed Weber local descriptor (WLD) inspired by analyzing human perception 

of a pattern. WLD involves two components: 1) differential excitation and 2) orientation. 

Differential excitation was computed as the ratio between the intensity of the current pixel 

and the relative intensity differences of a current pixel against its neighbors. The orientation 

component was computed as the gradient orientation of the current pixel. They reported 

that WLD outperformed Gabor and SIFT on the Brodatz and KTH-TIPS2-a texture 

databases. Notwithstanding the successes of local-based approaches have been shown to 

be a possible way to deal with various changes in pose, expression, illumination, occlusion, 

etc. in the last few decades, there remain a variety of challenges in uncontrolled situations. 

 

For hybrid-based approaches, they considered how to incorporate the advantages of holistic 

and local-based methods and prevent the disadvantages of them simultaneously. Kittler et 

al. [Kittler98] studied the problem of joining classifiers representing different patterns. 

While they struggled to provide various classified combination schemes with different 

assumptions and approximations, those problems are too difficult to derive the consistent 
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solutions due to local features and holistic features contain different characteristics to a 

certain degree. 

 

1.1.3 Advanced technique via hyperspectral imaging 

Despite such innately distinguishing characteristics of face recognition systems, there still 

exist serious challenges in uncontrolled conditions; e.g., unrestrained lighting, a range of 

facial expressions, pose variations, accessories, etc. Several of the major challenges are 

caused by variations in illumination conditions specific to current face recognition systems 

[Hua11]. Since the radiance utilized by face recognition system is proportional to the 

product of surface albedo and incident illumination, it is heavily dependent on illumination 

conditions. However, illumination conditions are not static and, as such, illumination 

variations are frequently occurring. Such illumination variations continually change the 

appearance of facial images and, accordingly, challenge the performance abilities of 

existing face recognition systems to produce accurate results. One viable way to resolve 

this complexity of face recognition is incorporating spectral information associated with 

hyperspectral imaging modality [Chang08], [Di10], [Pan03], [Koschan11]. 

 

Hyperspectral imaging is typically employed in response to these challenges by 

incorporating the spectral information within different sub-bands. Primarily, two factors 

contribute to this enhanced sub-band spectral information: 1) the invariance of illumination 

conditions that results from the recovery of objects’ spectral properties, and 2) the ability 

to detect distinct patterns contained in human faces where such discriminative patterns 

cannot be captured by trichromatic (RGB) color or monochromatic (gray-scale) cameras. 

Indeed, hyperspectral imaging spanning the visible range as the portion of the 

electromagnetic spectrum is directly involved in human visual systems that can recover the 

spectral properties of objects in a scene under varying light conditions [Wandell95], 

[Robles.13]. As opposed to RGB or monochromatic (gray-scale) imagery, HI consists of 

more than three spectral measurements at different wavelengths that can convey more 

information about the objects presented in a scene where the same spatial region of interest 

is captured multiple times [Koschan11]. Hence, the information included in HI as a cube 

can be used for latent applications, such as face/object recognition, scene analysis, food 

security, object tracking, etc.  

 Research contributions 

In this dissertation, our work concentrates mainly on three challenging problems in HI that 

must be resolved to improve face recognition performance: 1) low signal to noise ratios 

and low intensity values in the bands of the hyperspectral image specifically near blue 

bands, 2) high dimensionality of hyperspectral data [Gillis12], [Gillis13], [Gillis14], 
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[Nascimen.05], and 3) inter-band misalignment (IBM) when HI is applied to non-rigid 

objects [Uzair13]. The main contributions of this dissertation are shown in Fig. 1.5.  

 

First, besides new opportunities of HI for practical use of face recognition, HI produces 

new challenges specific to low quality of the bands of hyperspectral images especially at 

shorter wavelengths [Uzair15]. This is due primarily to a low transmittance characteristic 

of the LCTF and low radiant power of synthetic lights at specific wavelength regions 

(particularly at blue bands) as presented in Fig. 1.6(a) and Fig. 1.6(b), respectively. In Fig 

1.6(a), we can observe that the spectral transmittances of the LCTF decrease from long to 

short wavelength, implying that longer exposure time is a prerequisite for the short 

wavelength regions of the spectrum. In addition, it is necessary for the light source to have 

more radiant power near blue bands depicted in Fig. 1.6(b). As a result, our new database 

(IRIS-HFD-2014) was developed properly setting the camera exposure time according to 

low transmittances of the LCTF and low radiant power of a light source at the 

corresponding wavelength regions. IRIS-HFD-2014 was recently developed over multiple 

sessions in the IRIS laboratory at the University of Tennessee. IRIS-HFD-2014 contains a 

total of 19,346 facial images obtained from a participant subject base that includes 115 

males (64%) and 64 females (36%), all of diverse ethnic backgrounds and diverse physical 

appearance. Similar to the PolyU-HSFD and IRIS-M databases, we employed an LCTF to 

acquire HFIs that cover the visible spectral range from 420 nm to 700 nm in 10 nm steps 

(29 narrow-bands). However, IRIS-HFD-2014 can provide more spectral information of 

diverse faces in the visible spectrum compared to the PolyU-HSFD and IRIS-M databases. 

This is because the HFIs in IRIS-HFD-2014 were collected by appropriately tuning the 

camera exposure time and using a custom light source that has more radiant power near 

blue bands.  

 

Second, the high dimensionality of the spectral data causes limitations on physical 

experiments and detailed numerical analysis since spectral data include multiple sub-bands 

captured at each wavelength. For this reason, there is a pressing need for robust data 

compression techniques; specifically post-processing techniques, by means of extracting 

relevant basis functions from large quantities of high-dimensional spectral data. These 

techniques are crucial to analyze and represent a large set of spectral data and, finally, to 

model the processes. As mentioned in [Mittelman12], neighboring spectral samples are 

highly correlated, as the spatial resolution of the spectral data increases. In short, the 

neighboring spectral samples are more likely to involve corresponding spectral 

characteristics. These fundamental features of the spectral data should facilitate the 

potential of ROM techniques in order to address the challenges of compressing high-

dimensional data. Accordingly, ROM has attracted increasing interest in recent decades 

due to its possibilities for a wide variety of applications including machine learning 

[Duda12], data mining [Kim11], and hyperspectral imaging [Robles.13]. For example, 

singular value decomposition (SVD) [Harde.01] and principle component analysis (PCA) 

[Cohen64], [Maloney86] were proposed to reduce the dimensionality of spectral data. 
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Figure 1.5: Overview of the main contributions discussed in this dissertation. 

 

 

  
(a) (b) 

Figure 1.6: (a) Spectral transmittances of the LCTF from 400 nm to 700 nm in 10 nm 

intervals and (b) spectral power distributions (SPDs) of synthetic lights: a halogen (H), 

a LED 40W (L), a projector with a blue polarizer filter (P), and mixtures of the studied 

lights (H+P, L+P, and H+L+P). 
 

 

 

SVD-based ROM is closely related to the PCA-based ROM as both are used to find the 

optimal subspace spanned by the principal directions by globally solving an optimization 
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problem. An alternative approach to solving an optimization is to conclude that the basis 

functions are fundamental for the approximation of the given function over some domain 

of interest. It will be shown that this specific approach-based ROM accurately corresponds 

to the proper orthogonal decomposition (POD) [Holmes98]. According to [Altmann13], 

the spectral reflectance could result from a non-linear function of the abundant vectors with 

respect to the spectral components. However, global solutions such as SVD, PCA, and 

POD could fail to capture the non-linear degrees of freedom, since they assume that the 

given data set belongs to a linear space [Gu08]. For this reason, we develop a local POD 

approach utilizing a standard clustering technique which can efficiently approximate the 

optimal solution of the non-linear function from local linear Euclidean distances by means 

of a few basis functions. Furthermore, the main advantage of the proposed POD lies in the 

fact that it only requires standard matrix computations in spite of its application to non-

linear problems. 

 

Third, HI with a sequential recoding scheme requires longer exposure times not only to 

acquire detailed facial tissue absorbance values over multiple narrow-bands in the visible 

spectrum and beyond but also to ensure high signal-to-noise ratio in low light conditions. 

The longer data acquisition times result in increasing the chances of subject motion that 

would otherwise nullify the benefit of hyperspectral imaging. Practically, an extended 

period of time during data acquisition produces a challenge for subject participants to 

remain motionless while staring at the camera under a bright light. In our data acquisition, 

for example, the illuminance on the target surface provided by the light source is 

approximately 1,140 lux, which is roughly equivalent to typical TV studio lighting, and the 

distance from the target to the light source is 60 cm (about 23.6 inches). 

 

In cases where HFIs are acquired with constant exposure time there is less concern about 

IBMs as subject motion is insignificant with shorter data acquisition time. However, it is 

shown without adapting the camera exposure time at each wavelength that the IRIS-M and 

PolyU-HSFD databases have an essential limitation in obtaining spectral properties of 

facial tissue at multiple narrow-bands of the visible spectrum. Nonetheless, longer data 

acquisition time predictably creates additional IBMs that must be preferentially resolved 

to improve face recognition rate. In general, the better the inter-band alignment in the HFIs 

is, the higher the accuracy of face identification will be. 

 

Towards addressing IBMs in HFIs we individually employ four alignment techniques: 1) 

conventional alignment approaches (AAs) based on selecting regions of interest, such as 

fixed bounding box-based AA (FBB) [Szeliski10] and eye coordinate-based AA (EC) 

[Denes02], [Di10], [Uzair13], 2) iterative convex optimization (ICO) processes for face 

alignment, such as RASL [Peng12] and ORIA [Wu12], 3) landmark-based AAs, such as 

DRMF [Asthana13], IPCM [Asthana14], SDM [Xiong12], CDM [Yu13], and TSPM 

[Zhu12], and 4) two popular image AAs such as Lucas-Kanade (LK) [Baker04] and 

SIFTFlow [Liu11]. The experimental determination of the promising AAs will be 

demonstrated in Chapter 5. 
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Additionally, we develop a novel framework within which to automatically predict the 

improved alignment among four selected AAs thusly addressing IBMs in our database. To 

determine the better-quality alignment among the selected AAs, we propose two different 

metrics for alignment quality assessment (AQA). We introduce a full-reference AQA based 

on a principal curvature map [Deng07], [Steger98] obtained by computing the maximum 

or minimum eigenvalues of a 2×2 Hessian matrix. By using average pooling scheme, the 

principal curvature map is used to evaluate the similarity index between reference and 

target images. To achieve high accuracy of AQA, we only utilize the maximum eigenvalues 

of the Hessian matrix as we heuristically found that the curvature map built from the 

minimum eigenvalues tends to be unpredictable where inconsistent curvature lines or edges 

result in reductions in the accuracy of AQA. 

 

A no-reference (NR) AQA based on the cumulative probability of target colors in hue, 

saturation, and value (HSV) color space [Jayaraman10] is proposed for assessing the 

alignment quality (AQ) of a single sRGB image rendered with the entire sub-bands under 

CIE D65 [Moan14]. Inspired by the analysis of the color distribution of the misaligned 

sRGB image, we observed that the color distribution of the misaligned sRGB image is 

more widely spread over the HSV color space compared to the aligned sRGB image, which 

is typically concentrated on the red color of the hue component. This is due to spectral 

distortion associated with IBMs. In other words, since the colors of an sRGB image at the 

given pixels are generally estimated by the linear combinations of all of the measured 

reflectance spectra at each wavelength, the colors of the misaligned sRGB images can be 

altered to distorted colors when a few images out of the stacked HFIs are shifted by the 

subject’s movement during data acquisition. Therefore, the distorted colors in sRGB 

images can be designed as a criterion to determine the alignment index for HFIs.  

 

According to the experimental results in this dissertation, we find that the existing 

alignment approaches are essentially limited to address IBMs on the hyperspectral image 

sets including significant subject motion in our database. To overcome the drawbacks of 

the considered alignment approaches, we tackle the challenging problem by combining the 

strengths of a Laplacian of Gaussian (LoG)-based point correspondence and a low-rank 

model. The efficacy of the proposed alignment approach is verified with extensive 

experiments on two large-scale hyperspectral face databases (UWA-HSFD and IRIS-HFD-

2014) that include a wide range of realistic IBMs. Furthermore, we show that the proposed 

alignment approach leads to better accuracies of face recognition performance by using a 

probabilistic linear discriminant analysis (PLDA) approach.  
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 Organization of the dissertation 

The remainder of this document is organized as follows: 

 

 Chapter 2 introduces fundamentals of hyperspectral imaging relevant to this 

dissertation, including hyperspectral imaging technologies and hyperspectral image 

formations.  

 

 Chapter 3 reviews five publically available hyperspectral face databases (HFDs): 

CMU, PolyU-HSFD, IRIS-M, Stanford, UWA-HSFD databases towards providing 

information on the key points of each of the considered databases. We also 

introduce substantial challenges in terms of high dimensionality of hyperspectral 

data and inter-band misalignment for more detail.  

 

 Chapter 4 introduces our new database, called IRIS-HFD-2014, in order to serve as 

a benchmark for comprehensively and statistically evaluating the performance of 

current and future algorithms for hyperspectral face alignment and recognition. 

 

 Chapter 5 describes the proposed spectral data compression method based on local 

proper orthogonal decomposition in order to account for the high dimensionality of 

hyperspectral data.  

 

 Chapter 6 presents a new framework for face alignment to address inter-band 

misalignments in hyperspectral face images resulting from subject motion during 

data acquisition. Furthermore, for experimental determination of the promising 

alignment approaches, we individually employ four alignment techniques: 1) 

conventional alignment approaches based on selecting regions of interest, such as 

fixed bounding box-based alignment approach (FBB) and eye coordinate-based 

alignment approach (EC), 2) iterative convex optimization processes for face 

alignment, such as RASL and ORIA, 3) landmark-based alignment approaches, 

such as DRMF, IPCM, SDM, CDM, and TSPM, and 4) two popular image 

alignment approaches such as Lucas-Kanade (LK) and SIFTFlow. 

 

 Chapter 7 describes the proposed qualitative assessments of alignment methods for 

predicting the most improved alignment among the selected alignment approaches: 

curvature-based alignment quality assessment (CMS) and hue-based alignment 

quality assessment (HUQA). 

 

 Chapter 8 introduces the proposed robust alignment approach to tackle the 

challenging problem specific to inter-band misalignments in HI by combining the 
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strengths of a Laplacian of Gaussian (LoG)-based point correspondence and a low-

rank model. 

 

 Chapter 9 verifies that the improved alignment leads to better accuracies of face 

recognition performance. To evaluate face recognition performance, we employ a 

technique known as probabilistic linear discriminant analysis (PLDA), which 

models intraclass and interclass variance as multidimensional Gaussian to seek 

maximum facial discriminability. 

 

 Chapter 10 provides a summary of accomplished work and future work. 
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 Fundamentals of Hyperspectral Imaging 

Hyperspectral imaging (HI) is a key tool in many applications of computer vision for art 

conservation, cultural heritage, remote sensing, scene understanding, etc. It can play a vital 

role in advanced studies on face recognition by extracting physical properties from facial 

tissue over multiple narrow bands in the visible spectrum and beyond. In recent years, 

numerous methods based on hyperspectral imaging have been developed with a significant 

improvement of the identification performance of individuals.  

 

This Chapter presents an overview of the theoretical and practical issues to exploit 

hyperspectral face images. Before getting into the hyperspectral imaging technology, we 

distinguish hyperspectral imaging from the term multispectral imaging with a small 

number of channels. Indeed, the terms “multispectral” and “hyperspectral” imaging can be 

discriminated by the number of spectral bands and how narrow/wide the bands are 

[Robles.13]. For example, multispectral sensors typically provide a few wide bands such 

as three channels (red, green, and blue) and infrared bands, while hyperspectral sensors 

measure energy in narrower and more numerous bands than multispectral sensors where 

hyperspectral images can contain as many as 200 (or more) contiguous spectral bands. 

 Hyperspectral imaging (HI) 

HI is an emerging technique that can improve face recognition performance by detecting 

and uncovering spectral signature, or reflectance spectrum, reflected by face tissue. It takes 

advantage of a rich variety of spectral information of facial tissue that cannot be resolved 

by a conventional imaging sensor. The composite images acquired in different bands for 

each spatial location of interest carry spectral reflectance information that is of particular 

relevance to illumination invariants [Westland04]. The fundamental idea of HI to recover 

the spectral properties of objects in a scene was inspired by the fact that human visual 

system would be able to recover those of objects from cone excitations [Wandell95]. 

Similar to human visual system, HI techniques incorporate conventional imaging and 

spectroscopy techniques in order to attain both spatial and spectral information 

[Hardeberg01]. For this reason, when HI is applied to face recognition systems, objects can 

be identified by the characteristics of their absorption or reflectance spectra. 
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Figure 2.1: A comparison between a traditional broad-band image captured by a RGB 

color camera and hyperspectral face images (HFIs) captured by a hyperspectral imaging 

system with liquid crystal tunable filters (LCTFs) in the visible spectrum. 
 

 

 

 

 
 

Figure 2.2: A hyperspectral face cube. 
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Compared with traditional broad-band images captured by trichromatic (RGB) color or 

monochromatic (grayscale) cameras, HI can be made up of a large number of wavelength 

indexed channels or bands [Koschan11] in Fig. 2.1. Each spectral image is referred to as 

2-dimensional intensity data obtained over each of the different spectral bands. Hence, if 

all the spectral images are stacked directionally vertical or horizontal, spectral images 

model a three dimensional cube as shown in Fig. 2.2: two spatial dimensions corresponding 

to the coordinates of pixel on the image lattice and one spectral dimension corresponding 

to the wavelength [Robles.13]. When we plot spectral values of a spatial location in 

hyperspectral data cube as a function of wavelength, the spectra for the selected pixel has 

a specified spectral shape which uniquely specify target materials as shown in Fig. 2.3. 

 

 

 
 

Figure 2.3: Examples of reflectance spectra for a single pixel in a hyperspectral face 

cube. 

 

2.1.1 Hyperspectral imaging technologies 

As mentioned above, the aims of HI are to achieve spatial and spectral information at the 

same time which are directly used for real-time applications, including face recognition, 

food security, photography, etc. Accordingly, the process of HI acquisition is much faster 

and simpler than hyperspectral imaging systems. HI technologies [Koschan11], [Robles.13] 

involve ground-based commercial systems based on a rotating wheel with various types of 

narrow or broad band filters and electronically tunable filters: liquid crystal tunable filters 

(LCTFs), acousto-optic tunable filters (AOTFs), Fabry-Perot imagers, etc. Recently, many 

researcher proposed alternative systems for HI based on multiplexed illumination [Park07], 
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optimized wide band illumination [Chi10], a prism-mask [Cao11], and hand-held devices 

[Khan13]. Detailed explanations for typical HI techniques are set forth below. 

 

For HI using a filter wheel, which is a fixed-filter system where narrow band-pass glass 

filters are placed in front of the camera lens, hyperspectral images are taken over rotating 

or swapping the spectral glass filters. However, as pointed out by Koschan et al. 

[Koschan11], there are intrinsic restrictions in fixed-filter systems: 1) limitations of 

selecting color filters and the number of filters; 2) limitation to build narrow-band filters; 

3) time delay for selecting the filters due to the fundamental problem of a mechanical 

system; and 4) occurrence of the vibrations in the imaging system. 

 

In contrast, the electronically tunable filters (ETFs) in staring array devices16 are primarily 

based on acousto-optic or liquid crystal technologies. Staring arrays can collect the full set 

of spectral band-sequential images by consecutively capturing the entire spatial resolution 

at one wavelength indexed channel or band at a time. The electronically tunable filter 

systems may be faster and more flexible for hyperspectral image acquisition due to the 

following observations: 1) the capacity to select specific bands or sequentially sweeping 

bands by an electrical controller; 2) high image quality due to very low distortions; and 3) 

light weight to allow airborne use and/or remote sensor platforms. 

 

AOTFs are electro-optical devices including a tellurium dioxide (TeO2) or quartz crystal 

bonded to a transducer which generates a high-frequency acoustic wave propagating into 

the crystal. As the incoming light reaches the crystal, concurrently a radio-frequency 

acoustic wave propagates into the crystal. During this process, the acoustic wave affects a 

variation in the refractive index, thusly performing as a transmission diffraction. The 

selection of the specific wavelength can be controlled by adjusting the frequency of the 

acoustic wave [Koschan11]. 

 

LCTF is comprised of a set of liquid crystal wave plates to tune a specific wavelength. 

LCTF offers a linear optical path by polarizing a stack of wave plates and provides the 

ability to select any wavelength in visible range or near-infrared (NIR) range. While LCTF 

is sensitive for polarization and has instinct restrictions with regard to relaxation time of 

polarizing a stack of wave plates for tuning a wavelength about 5 to 50 ms, LCTF is the 

most commonly used ETF due to the following reasons: 1) light transmission is rapidly 

and readily controlled by electrical applications with a USB interface; 2) there is no 

vibration as tuning a specific wavelength; 3) it has high flexibility to be employed in 

potential applications such as face recognition, agriculture, biomedical and chemical 

imaging, artwork, etc., with electronic CCD cameras; and 4) it provides large aperture and 

high image quality due to very low distortions. For information specific to remaining ETF 

techniques, see [Koschan11], [Robles.13] herein referenced. 

                                                 
16 The staring array devices are also called the staring focal plane arrays (FPAs) which is regarded as an 

image sensing device with a rectangular array of light-sensing pixels at the focal plane of a lens. 
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2.1.2 Hyperspectral image formation 

We shortly introduce the basic principle of image formation. Note that we will focus on 

wavelengths spanning the visible spectrum defined by the range between approximately 

400 nm and 720 nm. From Sir Isaac Newton’s experiments [Wandell95], a white light can 

be dispersed by a prism into rays of different wavelength as a foundation of understanding 

of light and color. The decomposing rays of wavelength from light are defined by Newton 

as a spectrum. When we look at the distinct spectral components, each of them has a 

different color appearance: red color corresponding to relatively long wavelengths and blue 

color corresponding to relatively short wavelengths. The spectral properties of light with 

energy emitted at each wavelength are physically characterized by its spectral power 

distribution (SPD). The SPD is the distribution of power as a function of wavelength. 

 

 

 
 

Figure 2.4: Hyperspectral imaging system using the LCTF in our experiments: (a) 

target, (b) light source, (c) LCTF, (d) Lens, (e) detector, and (f) system controller. 

 

 

 

The image formation processes can be regarded as energy transfers from light sources to 

surface areas and from surface areas to image sensors and observers. The incident light 

from the source is either absorbed or reflected by the surface. The portion of the light 

reflected by the surface for different wavelengths defines the spectral reflectance. The 

spectral reflectance is dependent upon viewing geometries, such as the angles of incident 

light and of observation and on multiple and varied physical processes acting immediate 

and concurrent, as the incident light arrives at the surface [Wandell95]. The light incident 

at a detector or an observer is denoted as spectral radiance of light that is reflected from 

the surface. Namely, the spectral radiance is proportional to the product of surface albedo 
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and incident light. Figure 2.4 illustrates a hyperspectral imaging system using LCTF in our 

experiments. 

 

The main components in terms of hyperspectral image formation as shown at the spatial 

coordinate (𝑥, 𝑦)  and the wavelength 𝜆 particularly in the visible spectrum can be 

formulated as: 

𝐸(𝑥, 𝑦, 𝜆) = 𝐼(𝑥, 𝑦, 𝜆)𝑅(𝑥, 𝑦, 𝜆)𝑆(𝑥, 𝑦, 𝜆) + 𝑂(𝑥, 𝑦, 𝜆)                          (2.1) 

where 𝐸 is the spectral radiance, 𝐼 is the spectral power distribution of the illumination, 𝑅 

is the spectral reflectance of the object surface, 𝑆  is the spectral sensitivity of the 

monochromatic CCD array, and 𝑂  is the offset including dark current and stray light 

[Pan03].  

 

The hyperspectral image acquisition systems decomposing the incident light into the full 

set of spectral band-sequential images in the visible range mostly utilize a CCD sensor to 

capture the raw image due to its high quantum efficiency. However, radiance spectra are 

intrinsically affected by low spectral power from the illuminant source or the transmission 

function of the spectral filters. Accordingly, radiance spectra require calibration to account 

for noise and bias. 

 

 

 
 

Figure 2.5: A sample sequence of ID: F009_02 in IRIS-HFD-2014-V1 using LCTFs 

ranging from 420 nm to 680 nm in 10 nm steps where only 27 bands are shown in this 

figure. Note that the total number of bands in our database is 29 bands from 420 nm to 

700 nm in 10 nm steps. 

 

 

To calibrate the radiance spectra acquired by a hyperspectral imager, we first determine 

the appropriate exposure time with white patch or white spectralon for each wavelength of 
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interest in image acquisition process. Once we determine the proper exposure time at each 

wavelength, we capture dark current images with the same exposure time at each 

wavelength by placing a cap on the front of the spectral filter. In general, hyperspectral 

imaging systems are commonly equipped with a spectral filter, an optics (or a lens), and a 

detector in this order, or an optics, a spectral filter, and a detector. In our experiments, we 

choose the former order as [Chang08], [Hardberg01], [Koschan11]. To eliminate dark 

current and bias of a sensor, the dark current images are subtracted from the raw images 

according to each wavelength. Then, reflectance images are computed as: 

𝑅(𝑥, 𝑦, 𝜆) = 𝐸(𝑥, 𝑦, 𝜆)/𝐼(𝑥, 𝑦, 𝜆) .                          (2.2) 

Figure 2.5 shows a sample sequence of our database after calibration process. In Chapter 

4, we will demonstrate hyperspectral data acquisition process for more detail. 

 

 Summary 

In this Chapter, we introduced fundamentals of hyperspectral imaging (HI) including HI 

technologies and image formation to exploit hyperspectral face data which can be used to 

resolve substantial challenges of face recognition systems particularly produced by 

variations in lighting. Hyperspectral imaging sensors measure the intensity of the energy 

reflected by a target object in different parts of the visible spectrum or beyond. The 

measured spectral information forms a hyperspectral data cube. Each pixel in the 

hyperspectral data cube has a specified spectral shape which uniquely specifies target 

materials. The derived apparent reflectance data can be used to authenticate the individuals 

in the following Chapters. 
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 Review of Existing Techniques for Major 

Challenges 

In this Chapter, we review the limitations of five publically available hyperspectral face 

databases (HFDs): CMU, PolyU-HSFD, IRIS-M, Stanford, UWA-HSFD databases. We 

also introduce substantial challenges in terms of high dimensionality of hyperspectral data 

and inter-band misalignment to deal with up-to-date reviews on reduced-order data 

modeling techniques and analysis of IBMs, respectively. 

 

 Existing face databases 

 

Table 3.1: Overview of hyperspectral face databases (HFDs) in this dissertation. 

 

 

Database # of Subjects Conditions Spectral Range 

CMU 54 
Illumination direction and 

time delay 
450 - 1100 nm 

IRIS-M 82 
Illumination conditions and 

time delay 
480 - 720 nm 

PolyU-HSFD 25 Pose and time delay 400 - 720 nm 

Stanford 45 Viewing distance 415 - 950 nm 

UWA-HSFD 79 Time delay 400 -720 nm 

 

 

The development of hyperspectral face databases (HFDs) has, to date, received minimal 

attention due to 1) the high cost of hyperspectral sensors compared to a trichromatic or 

monochromatic camera; and 2) the considerable time and effort required for building HFD. 

Based on the foregoing reasons, there are few publicly available HFDs [Zheng11] that 

comparatively evaluate face recognition algorithms. We individually analyze five 

publically available HFDs: the CMU, IRIS-M, PolyU-HSFD, Stanford, and UWA-HFD 
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databases towards providing information on the key points of each of the considered 

databases. Table 3.1 shows an overview of HFDs considered in this Chapter. In summary, 

the robustness of the developed algorithms for hyperspectral face recognition based on the 

studied databases can be verified through variations of a large number of factors: 1) face 

pose (PolyU-HSFD); 2) time delay (CMU, IRIS-M, PolyU-HSFD, and UWA-HSFD); 3) 

illumination direction (CMU), 4) illumination condition (IRIS-M), 5) viewing distance 

(Stanford), and 6) accessory (IRIS-M). For the extraction of spectral properties of facial 

tissue in both the visible and the NIR ranges, CMU and Stanford databases can be used. In 

the case constrained to the visible range, spectral measurements of facial tissue can be 

achieved on IRIS-M, PolyU-HSFD, and UWA-HSFD. 

 

3.1.1 CMU 

 

 
 

Figure 3.1: Hyperspectral imaging system of the CMU database [Denes02]: (a) target, 

(b)-(d) light sources placed at −45°, 0°, and +45° according (a), and (e) hyperspectral 

imaging sensor.  

 

 

 

First of all, The CMU database17 [Denes02], collected at the Carnegie Mellon University, 

is comprised of hyperspectral images of 54 diverse faces covering the visible and near-

infrared (NIR) ranges from 450 nm to 1100 nm in 10 nm steps (65 spectral bands). The 

hyperspectral imaging system is configured as shown in Fig. 3.1. Three light sources are 

placed at −45°  (Fig. 3.1(b)), 0°  (Fig. 3.1(c)), and +45°  (Fig. 3.1(d)) according to the 

target (Fig. 3.1(a)). Each light source, individually and in tandem, can be configured to 

                                                 
17  http://www.consortium.ri.cmu.edu/hsagree/index.cgi. 

http://www.consortium.ri.cmu.edu/hsagree/index.cgi
http://www.consortium.ri.cmu.edu/hsagree/index.cgi
http://www.consortium.ri.cmu.edu/hsagree/index.cgi
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on/off status. The light status determines the illumination direction and, accordingly, 

results in differences specific to facial appearance. The hyperspectral face database (640 ×
480 pixels) in frontal view was captured by acousto-optic tunable filters (AOTFs) under 

600W halogen lamps in a studio.  

 

 

 
(a) all light sources are turned on 

 
(b) the left light source is turned on 

 
(c) the center light source is turned on 

 
(d) the right light source is turned on 

 
 

Figure 3.2: CMU database: example of four different datasets gathered under four 

different illumination directions. The images taken from [Denes02] are sampled in the 

range of 500 nm, 700 nm, 900 nm, and 1090 nm.  

 

 

 

The CMU database, utilizing a hyperspectral sensor, considered the effects of varying 

illumination directions on facial appearance. In addition, the facial data in the CMU 

database were taken during multiple sessions over a period of several weeks 

(approximately two months). As shown in Fig. 3.2, this database provides four different 

hyperspectral face datasets per each data subject; datasets were gained under varying 

illumination directions. The noise level in this database is relatively higher (see Fig. 3.2) 

due to low radiant power of their light sources. Each of the hyperspectral face images can 

be aligned by using a 2D similarity transform (rotation, translation, and scale) (see Chapter 

6) based on the eye coordinates distributed with the CMU database. 
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3.1.2 IRIS-M 

 

 
 

 
 

Figure 3.3: Hyperspectral imaging system used to obtain the IRIS-M database 

[Chang08]. The left figure shows (a) target, (b) and (c) light sources, and (d) 

hyperspectral imaging sensor. The right figure shows (a) target, (b) natural illuminant 

(sun), and (c) hyperspectral imaging sensor.  

 

 

Chang et al. [Chang06], [Chang08] created the IRIS-M database at the University of 

Tennessee which consists of 82 data subjects reflecting different ethnicities, ages, facial 

hair characteristics, and genders; hyperspectral facial data were gathered over 10 sessions. 

The IRIS-M database was developed in two different environments (see Fig. 3.3): 1) indoor 

environment under either two halogen or two fluorescent lamps; and 2) outdoor 

environment under daylight. The spectral power distributions (SPDs) of four different 

illuminants utilized in the IRIS-M database are shown in Fig 3.4. The IRIS-M database 

(640 × 480 pixels) in frontal view was collected by a VariSpec VIS liquid crystal tunable 

filter (LCTF) in the visible spectral range from 480 nm to 720 nm in steps of 10 nm (25 

bands) and by a Raytheon Palm-IR Pro camera18 for thermal infrared images. The RGB 

images (2272 × 1704 pixels) in the IRIS-M database were captured by a Sony XC-75 

camera19.  

                                                 
18 http://www.palmir250.com/ir250pro.htm. 
19 http://www.subtechnique.com/sony/PDFs/xc-7573e.pdf. 

http://www.palmir250.com/ir250pro.htm
http://www.subtechnique.com/sony/PDFs/xc-7573e.pdf
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(a) halogen (b) fluorescent 1 

  
(c) fluorescent 2 (d) daylight 

Figure 3.4: The normalized SPDs in terms of four different light sources utilized in the 

IRIS-M database. The figures are taken from [Koschan11]. 

 

 

In the development of the IRIS-M database, the effects of variations in illuminant and time 

delay on the facial skin from hyperspectral and thermal imaging were studied. Examples 

are shown in Fig. 3.5. This database contains low intensity values in the bands of the 

hyperspectral images at lower wavelengths (see Fig. 3.5).  

 

 

 
(a) 

 
(b) 

Figure 3.5: Example samples of multispectral face images (MFIs) in IRIS-M database 

[Chang08]: (a) indoor MFIs sampled for every 40 nm steps in the range from 580 nm 

to 700 nm under halogen lamps; and (b) outdoor MFIs sampled in the range from 580 

nm to 700 nm in 40 nm steps under daylight 
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3.1.3 PolyU-HSFD 

 

 
 

Figure 3.6: Hyperspectral imaging system employed to obtain the PolyU-HSFD [Di10]: 

(a) target in three different poses, (b) light source, and (c) hyperspectral imaging sensor.  

 

 

F 

    

R 

    

L 

    
     

 

Figure 3.7: HFI sequences of PolyU-HSFD in the front (F), right (R), and left (L) views 

where HFIs are sampled for every 50 nm step in the range from 500 nm to 650 nm. 

These sample images are taken from [Di10]. 
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The Hong Kong Polytechnic University Hyperspectral Face Database (PolyU-HSFD)20 

[Di10] consists of 25 data subjects of Asian descent, ranging in age of years (21 to 38) and 

multiple genders (8 females and 17 males). It primarily considers the effects of varying 

poses on the facial appearance: frontal, right, and left view of a subject as illustrated in Fig. 

3.6. The angles of right and left views are approximately ±45 degrees with respect to the 

frontal subject, respectively. Sample sequences of the indoor PolyU-HSFD in three 

different poses are shown in Figs. 3.7. 

 

Each facial set (300 hyperspectral image cubes, 180 × 220 × 33 voxels) obtained by a 

CRI’s VariSpec LCTF under a halogen light contains a 33-channel hyperspectral image in 

10 nm steps from 400 nm and 720 nm. According to the data collection dates, the PolyU-

HSFD provides four different sets obtained at roughly one month intervals. Note that the 

first six bands (400 nm to 450 nm) and the last three bands (690 nm to 720 nm) in this 

database are rejected due to very low signal-to-noise ratios (SNR < 6db) as mentioned in 

[Di10], [Uzair13], [Uzair15]. 

 

3.1.4 Stanford 

The indoor Stanford database of 45 subjects, established by Skauli and Farrell [Skauli13] 

was acquired by a HySpex line-scan imaging spectrometers21 under studio tungsten light. 

The HySpex camera is a pushbroom sensor developed at NEO. The primary advantage of 

the pushbroom sensor [Robles.13] is that it is able to collect all of the spectra relevant to 

each individual line, employing a line-by-line imaging collection approach. Nevertheless, 

the pushbroom sensor suffers from spectral distortion and is also heavily sensitive to a 

subject’s movement, as shown in Fig. 3.8, as one line of the scene of interest is scanned at 

a time. 

 

 

 
 

Figure 3.8: Example of an artifact in Stanford database resulting from eye blinking 

during data acquisition. This sample image is taken from [Skauli13]. 

 

                                                 
20 http://www4.comp.polyu.edu.hk/~biometrics/. 
21 http://www.neo.no/hyspex/. 

http://www4.comp.polyu.edu.hk/~biometrics/
http://www4.comp.polyu.edu.hk/~biometrics/
http://www4.comp.polyu.edu.hk/~biometrics/
http://www.neo.no/hyspex/
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(a) 1 meter viewing distance 

 
(b) 3 meter viewing distance 

 
 

Figure 3.9: Sample sRGB images in the Stanford database taken from [Skauli13]. 

 

 

  

(a) (b) 

Figure 3.10: (a) CIE 1931 XYZ-CMF and (b) spectral power distribution (SPD) of CIE 

illuminants. 

 

 

The Stanford database in frontal view contains 148 bands spanning the visible and NIR 

range from 415 nm to 950 nm in steps of 4 nm. The Stanford database considered the 

effects of the variations in scale based on the viewing distance from a face to a detector (1 
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to 3 meters) specific to hyperspectral face images. In Fig. 3.9, the samples of Stanford 

database in different viewing conditions are shown where they are displayed using sRGB 

values [Stokes98] rendered under the CIE illuminant D65. Note that those sRGB values 

can be computed by employing CIE 1931 XYZ-color matching function (CMF) and CIE 

illuminants in Fig. 3.10. The hyperspectral face data are denoted in an 𝑛 × 𝑚 × 𝑤 matrix: 

𝑛 corresponds to the number of rows in an image, 𝑚 corresponds to the number of columns 

in an image, and 𝑤 corresponds to the number of spectral bands (about 148 bands). Varying 

the number of rows and columns of an image for each subject is dependent on the scanning 

time. 

 

3.1.5 UWA-HSFD 

UWA-HSFD consisting of 79 data subjects in the frontal view taken over 4 sessions 

[Uzair13], [Uzair15] was developed by the University of Western Australia 22 . Each 

hyperspectral image was captured by the VariSpec LCTF integrated with a photon focus 

camera. Each dataset of HFIs contains 33 bands covering the visible spectral range from 

400 nm to 720 nm with 10 nm steps. Since UWA-HSFD considered the adaptation of the 

camera exposure time according to lower transmittances of the filter and lower illumination 

intensities in each band, this database contains relatively lower noise level than the PolyU-

HSFD. However, UWA-HSFD suffers from IBMs that result from slight head movements 

during data acquisition as shown in Fig. 3.11.  

 

 

 
400 nm 

 
440 nm 

 
480 nm 

 
520 nm 

 
560 nm 

 
600 nm 

 
680 nm 

 
720 nm 

Figure 3.11: Examples of inter-band misalignments in UWA-HSFD [Uzair13], 

[Uzair15]. Each of the estimated warps from a fixed bounding box-based alignment 

approach (FBB) is depicted by a rectangle in each band. As shown in the bands at 680 

nm and 720 nm, there are IBMs in this database. 

 

                                                 
22 http://www.csse.uwa.edu.au/~ajmal/.  

http://www.csse.uwa.edu.au/~ajmal/
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 High dimensionality 

The high dimensionality of the spectral data causes limitations on physical experiments 

and detailed numerical analysis since spectral data consist of not just three visible bands 

but multiple sub-bands captured at each wavelength. For this reason, there is a pressing 

need for robust data compression techniques; specifically post-processing techniques, by 

means of extracting relevant basis functions from large quantities of high-dimensional 

spectral data. These techniques are crucial to analyze and represent a large set of spectral 

data and, finally, to model the processes. As mentioned in [Mittelman12], neighboring 

spectral samples are highly correlated, as the spatial resolution of the spectral data increases. 

In other words, the neighboring spectral samples are more likely to involve corresponding 

spectral characteristics. These fundamental features of the spectral data should facilitate 

the potential of reduced-order spectral data modeling (ROM) techniques to address the 

challenges of compressing high-dimensional data. Accordingly, ROM has attracted 

increasing interest in recent decades due to its possibilities for a wide variety of 

applications, including machine learning [Duda12], data mining [Kim11], and 

hyperspectral imaging [Robles.13]. A number of different ROM approaches have been 

introduced for spectral data compression in a higher dimension of spectral space [Gillis12], 

[Gillis13], [Gillis14], [Nascimento05]. 

 

Principle component analysis (PCA)-based ROM initially proposed by Cohen [Cohen64] 

and later Maloney [Maloney86] yields a small number of linear basis functions of 

reflectance spectra. PCA has become a powerful tool for the analysis of high-dimensional 

spectral data. The basis functions to describe a particular set of reflectance spectra can be 

obtained by computing the eigenvectors. Fairman and Brill [Fairman04] estimated the 

reflectance spectra from colorimetric tristimulus values based on applying a PCA-based 

model for dimensionality reduction. In addition, local-based PCA and adaptive PCA 

models for improving the reconstruction accuracy were proposed by Zhang and Xu 

[Zhang08] and Mansouri et al. [Mansouri08], respectively. Recently, Barakzehi et al. 

[Barakzehi13] introduced nonlinear PCA (NCPCA) [Farajikhah11] based on artificial 

neural networks [Scholz08] for extracting the nonlinear patterns by training an auto-

associative neural network. 

 

Non-negative matrix factorization (NMF)-based ROM that takes into account the 

nonnegativity of spectral data and improves the interpretability of the decomposition was 

proposed by Amirshahi and Amirhahi [Amirshahi10]. Kim et al. [Kim12] adapt the fast 

NMT (FNMF) originally proposed by Kim and Park [Kim11] to the process of 

dimensionality reduction. FNMF, which is based on the block principal pivoting method 

with nonnegative constraints, iteratively explores a local minimum of the objective 

function by extracting hidden patterns from the data and eliminating the insignificant 

directions. Recently, Gillis et al. proposed a hierarchical clustering approach using convex 

geometry and rank-two nonnegative matrix factorization for high-dimensional 
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hyperspectral imaging in [Gillis15]. However, as mentioned in [Gillis13], NMF-based 

ROM cannot characteristically separate all basic functions correctly owing to the 

nonuniqueness of the solutions. A technique to overcome the constraints of NMF is to 

integrate prior information into the NMF-based ROM to account for the characteristics of 

the solutions and make the problem well-posed. Similar to PCA-based ROM, recursive 

sparse nonnegative matrix underapproximation (RSNMU)-based ROM was introduced by 

Gills and Plemmons [Gillis12]. RSNMU includes additional underapproximation 

constraints. Later, Gills et al. [Gillis14] proposed to further improve RSNMU by using 

spatial information from neighboring pixels (RSPNMU). 

 

Several different approaches based on independent component analysis (ICA) [Bianco10], 

[Hyvärinen00] and Wiener estimation [Peyvandi13], [Shimano06], such as singular value 

decomposition (SVD) suggested by Hardeberg [Harde.01], were proposed to reduce the 

dimensionality of spectral data. SVD-based ROM is closely related to the PCA-based ROM 

as both are used to find the optimal subspace spanned by the principal directions thusly 

globally solving an optimization problem. An alternative approach towards optimization 

solution is to conclude that the basis functions are fundamental for the approximation of 

the given function over some domain of interest. It will be shown that this specific 

approach-based ROM accurately corresponds to the proper orthogonal decomposition 

(POD) [Holmes98]. POD is a popular model reduction technique used to lessen the 

computational expense required for high-dimensional systems. It has been extensively 

investigated in various applications due to its capability for reduction of order which is 

simple and efficient [Djouadi08]. According to [Altmann13], the spectral reflectance could 

result from a non-linear function of the abundant vectors with respect to the spectral 

components. However, global solutions such as SVD, PCA, and POD could fail to capture 

the non-linear degrees of freedom, since they assume that the given data set belongs to a 

linear space where the Euclidean distance is adopted as the metric to minimize [Gu08]. To 

overcome the limitations of the global solutions, we develop a reduced-order spectral data 

modeling (ROM) technique based on local proper orthogonal decomposition (LPOD) as 

will be mentioned in Chapter 5. 

 Inter-band misalignments 

Although face recognition approaches based on hyperspectral imaging have shown very 

promising results, there are still several challenges. One challenge, inherent in the image 

acquisition process itself, is that the individual bands of the hyperspectral image must be 

acquired quickly and sequentially to avoid inter-band misalignment due to subject motion 

during data acquisition. However, the shorter the acquisition time the lower the quality of 

the bands of the hyperspectral image. For this reason, hyperspectral images inherently 

request longer exposure times, not only to acquire the detailed spectral properties of facial 
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tissue over the visible spectrum or beyond, but also to ensure high signal-to-noise ratio in 

low light conditions.  

 

Most of the research efforts on hyperspectral face recognition have, to date, not been put 

into devising improved alignment to reduce IBM artifacts in HFIs. Two existing, publicly 

available HFDs, such as PolyU-HSFD and IRIS-M databases were developed using liquid 

crystal tunable filters (LCTFs) with constant exposure time in order to shorten the data 

acquisition time. An extended period of time during data acquisition produces a challenge 

for subject participants to remain motionless while staring at the camera under a bright 

light. In our data acquisition, for example, the illuminance on the target surface provided 

by the light source is approximately 1,140 lux, which is roughly equivalent to typical TV 

studio lighting, and the distance from the target to the light source is 60 cm (about 23.6 

inches). 

 

 

 
 

Figure 3.12: Examples of the presence of IBM artifacts in the sRGB color space (best 

viewed in color). As illustrated in this figure, IBMs result in the problem of motion 

blurring combined with distorted colors that are caused by spectral distortion. The 

sRGB image is generated from ID: F009 02 in IRIS-HFD-2014-V1. 

 

 

In cases where HFIs are acquired with constant exposure time, there is less concern about 

IBMs because the subject’s movement is insignificant with shorter data acquisition time. 

However, it is shown without adapting the camera exposure time at each wavelength that 

the existing, publicly available HFDs introduced in [Chang08], [Di10] have an essential 

limitation in obtaining spectral properties of facial tissue at multiple narrow-bands of the 

visible spectrum. Nonetheless, longer data acquisition time predictably creates additional 

IBMs that are one of the most important challenges for practical face recognition systems 

based on hyperspectral imaging. Figure 3.12 shows an example of the noticeable artifacts 

associated with the IBMs when the misaligned HFIs are mapped to the sRGB image. As 

presented in Fig. 3.12, IBMs lead to motion blurring combined with distorted colors that 



  35 

 

 

are caused by spectral distortion. This is due to the spectral distortion associated with IBMs. 

In other words, since the linear combination of all of the measured reflectance spectra 

fundamentally estimate the colors of the sRGB image at the given pixels, the colors of the 

misaligned sRGB image are altered to distorted colors when subject motion during data 

acquisition causes a few images out of the stacked HFIs to shift.  

 

To address IBM, a fixed bounding box-based alignment approach using one manual input 

set of eye coordinates is typically employed to align hyperspectral images. However, in the 

alignment scenario of FBB, there is no guarantee that IBM artifacts are removed in 

hyperspectral images due to the presence of subject motion during data acquisition, even 

though the aligned hyperspectral images are resized to lower pixel resolutions. For this 

reason, we investigate 11 state-of-the-art alignment approaches (AAs) to overcome the 

IBM problem in Chapter 6. 

 Summary 

We provide a review of five publically available hyperspectral face databases: CMU, 

PolyU-HSFD, IRIS-M, Stanford, UWA-HSFD databases. We show that existing databases 

suffer from low signal to noise ratios and low intensity values in the bands of the 

hyperspectral image (CMU, PolyU-HSFD, and IRIS-M databases), and inter-band 

misalignment (Stanford and UWA-HSFD databases).  

 

The high dimensionality of the spectral data causes limitations on physical experiments 

and detailed numerical analysis since spectral data include multiple bands captured at each 

wavelength. For this reason, there is a need for robust data compression techniques; 

specifically post-processing techniques, by means of extracting relevant basis functions 

from large quantities of high-dimensional spectral data. These techniques are crucial to 

analyze and represent a large set of spectral data and, finally, to model the processes. 

 

Inter-band misalignments must be preferentially resolved to aid the subsequent processes, 

e.g., band selection, band fusion, and extraction of spectral features for face recognition 

within the compute vision community. To address inter-band misalignments in HI, 

conventional alignment approaches based on eye coordinates have typically been 

employed. However, it is difficult to consistently select the eye coordinates at the same 

positions by hand over a large hyperspectral face image set such as IRIS-HFD-2014. In the 

particular cases for the different profiles and structural feature (e.g., glasses), the 

conventional alignment approach should be limited due to the partial occlusion of one eye 

in the profile views and the problem of reflection on the glasses. Accordingly, it is 

necessary to develop automatic alignment approaches to deal with inter-band 

misalignments in HFIs. 
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 Development of New Face Database 

In this Chapter, we introduce a new large hyperspectral face database called IRIS-HFD-

2014 recently developed over multiple sessions in the IRIS laboratory at the University of 

Tennessee. Similar to PolyU-HSFD [Di10] and IRIS-M [Chang08] databases, we 

employed the LCTF to take the hyperspectral face images (HFI) covering the visible range 

from 420 to 700 nm in 10 nm steps (29 narrow-bands). 

 

 

(a)   

 
 

(b)   

 
 

(c)   

 
 

Figure 4.1: A comparison of three facial databases collected by the LCTF sensors where 

in each row from top to bottom, sample HFIs covering the visible range from 420 to 

690 nm in 30 nm intervals are taken from (a) PolyU-HSFD, (b) IRIS-M, and (c) IRIS-

HFD-2014, respectively. Note that two HFIs at 420 nm and 450 nm in the IRIS-M 

database are added as a visual aid. 
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However, as shown in Fig. 4.1, PolyU-HSFD and IRIS-M databases contain either low 

signal-to-noise or low intensity values in lower bands of hyperspectral images specifically 

near blue bands. Compared to PolyU-HSFD and IRIS-M databases, the noise level in IRIS-

HFD-2014 is relatively lower because we adjust appropriate exposure time in each band 

and use a custom light source that has more radiant power near blue bands. 

 

IRIS-HFD-2014 is designed to address several challenging problems in face recognition 

research, including variations in time, pose (both frontal and profile views), and structural 

features (i.e., glasses). In addition, the database contains RGB color images of 142 

participants captured by a traditional color camera under varying illuminant conditions and 

blurring in uncontrolled settings. IRIS-HFD-2014 consists of a total of 19,346 facial 

images of 115 males and 64 females of diverse ethnic backgrounds and appearance. 

 

In short, IRIS-HFD-2014 includes 1) hyperspectral images of 179 individuals for three 

different neutral poses without glasses (frontal view, 45 degree left profile, and 45 degree 

right profile), 2) hyperspectral images of 51 individuals wearing glasses, and 3) color 

images (RGB) corresponding to the scenarios mentioned in 1) and 2). 

 

 Imaging modules 

The configuration of our data acquisition systems is established as shown in Fig. 4.2 and 

each of our imaging modules are shown in Fig. 4.3. For stable alignment of the imaging 

modules over time, our imaging system was mounted on a Newport Optical Table. In the 

imaged target (Fig. 2.4(a)), an X-rite ColorChecker classic was placed to the side of the 

individuals so as to allow the calibration and analysis of facial color. For a light source 

(Fig. 2.4(b)), we used a Lumia 5.1 Reef version with 5 channel LEDs: 1) neutral white, 2) 

royal blue, 3) hyper violet, 4) deep red and turquoise, and 5) true violet and cool blue as 

shown in Fig. 4.4 to Fig. 4.8, respectively. The VariSpec VIS such as the LCTF (Fig. 2.4(c)) 

was mounted in front of a detector. As mentioned in [Chang08], the LCTF provides 

narrow-band filters with a full width at half maximum (FWHW) of 7 nm. The aperture and 

field of view of the LCTF are 35 mm and ± 7°, respectively. By continuously sweeping 

the entire visible spectrum supported by the LCTF, we can acquire a maximum of 321 

narrow-band images ranging from 400 to 720 nm in 1 nm step. Between LCTFs and the 

detector, we equipped a 25mm fixed focal length lens (Fig. 2.4(d)), supporting a wide 

aperture of f/0.95. For the detector (Fig. 2.4(e)), we utilized an 1.3 megapixel monochrome 

12 bit XIMEA xiQ USB3.0 camera supporting a resolution of 1280 × 1024 pixels. A 

controller of our light source in Fig. 4.3(c) can manually configure on/off status of each 

channel and adjust the current of each channel from 0 to 700 mA. In Fig. 4.3(d) 

EasyView30 light meter and Ocean Optics USB2000 are used to measure the illuminance 

and spectral power distributions (SPDs) of the studied illuminations, respectively. 
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(a) (b) 

Figure 4.2: An example of our data acquisition system: (a) a lateral view and (b) a rear 

view. 

 

 

  

(a) (b) 

  
(c) 

 

(d) 

 

Figure 4.3: Hyperspectral imaging modules in IRIS-HFD-2014. (a) VariSpec VIS 

mounted in front of XIMEA xiQ USB3.0 camera, (b) Lumia 5.1 Reef, (c) a controller 

for our light source, and (d) EasyView30 light meter and Ocean Optics USB2000. 
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Figure 4.4: SPD of channel 1 of Lumia 5.1 Reef as increasing the current from 50 to 700 mA. 

 

 

 
 

Figure 4.5: SPD of channel 2 of Lumia 5.1 Reef as increasing the current from 50 to 700 mA. 
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Figure 4.6: SPD of channel 3 of Lumia 5.1 Reef as increasing the current from 50 to 700 mA. 

 

 

 
 

Figure 4.7: SPD of channel 4 of Lumia 5.1 Reef as increasing the current from 50 to 700 mA. 
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Figure 4.8: SPD of channel 5 of Lumia 5.1 Reef as increasing the current from 50 to 700 mA. 

 

 

 Data acquisition and calibration 

Before invoking the adaptation of the camera exposure time, we observed the uniformity 

of light by replacing the targets with X-Rite White Balance and Grayscale cards, located 

on the left and right sides, respectively, as shown in Fig. 4.9(a).  

 

 

  

(a) (b) 

Figure 4.9: (a) Result of the measured light falloff using X-Rite White Balance and 

Grayscale cards located on the left and right sides, respectively; and (b) the pseudo-

colored result of (a) captured at 420 nm. 
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The light source did not emit uniformly in all directions, as seen in Fig. 4.9(b) where the 

measured light falloff at 420 nm is displayed with the scaled colors mapping from zero 

(blue) to one (red). To address this problem is beyond the scope of this work, because the 

aim of our work is to conceal IBM artifacts in HFIs. However, in brief, this problem can 

be solved by utilizing a local binary pattern (LBP) filter [Ahonen06] to normalize the 

illumination variations when our database is used to evaluate algorithms for hyperspectral 

face recognition. 

 

 

  
(a) (b) 

 

Figure 4.10: (a) Spectral power distribution (SPD) of Lumia 5.1 Reef and (b) tuned 

exposure times at each wavelength from 420 nm to 700 nm used in our data acquisition. 

 

 

As illustrated in Fig. 1. 6(a), the spectral transmittances of the LCTF decrease from long 

to short wavelengths. As a result, it is necessary to properly adapt the camera exposure 

time according to the spectral transmittances at each wavelength. For example, at the 

shorter wavelengths, we set longer exposure time in order to accumulate more radiant 

energy in the detector. In addition to considering low illumination intensities in our data 

acquisition, we disabled the fourth channel of the light source, deep red (660 to 665 nm) 

and turquoise (492.5 to 495 nm), to obtain more radiant power in the short wavelength 

regions of the spectrum. It is also worth noting that since our light source inherently has 

low radiant power relative to the spectral transmittances of the LCTF from 470 nm to 520 

nm and from 670 nm to 700 nm as shown in Fig. 4.10(a), we increased the camera exposure 

time at these wavelengths (see Fig. 4.10(b)). Figure 4.10(a) elucidates the SPD of the 
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Lumia 5.1 Reef when we turned off the fourth channel. Figure 4.10(b) illustrates the 

exposure time utilized in our data acquisition.  

 

 

   
420 nm 450 nm 480 nm 

   
510 nm 540 nm 570 nm 

   
600 nm 620 nm 640 nm 

   
660 nm 

 

680 nm 

 

700 nm 

 

Figure 4.11: An example of hyperspectral face images (HFIs) with ColorChecker taken 

from ID: F019_01 of IRIS-HFD-2014-V1 in the frontal view. 
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Figure 4.12: An example of hyperspectral face images (HFIs) with ColorChecker taken 

from ID: F019_01 of IRIS-HFD-2014-V1 in the left profile. 
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Figure 4.13: An example of hyperspectral face images (HFIs) with ColorChecker taken 

from ID: F019_01 of IRIS-HFD-2014-V1 in the right profile. 
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Figure 4.14: An example of hyperspectral face images (HFIs) with ColorChecker taken 

from ID: F019_01 of IRIS-HFD-2014-V1 in the structural feature, i.e., glasses. 
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To determine the exposure time for each wavelength of interest, we selected the brightest 

region as a ROI within the reference white of the Grayscale card (Fig. 4.9(a)). We set the 

size of the ROI to 100 × 100 pixels throughout our experiments. Next, we increased the 

exposure time until the average of the intensity values within the ROI reached about 86 

percent of the camera saturation value as in [Foster06]. Once we found the appropriate 

exposure time at each wavelength, we captured dark current images with the same exposure 

time corresponding to the wavelengths by placing a cap on the front of the LCTF. To 

eliminate the constant noises exhibited by CCD imagers depending on exposure duration, 

we subtracted dark current images from the radiance images. Next, we estimated the 

maximum intensity values of the radiance images at each wavelength within the ROI 

located at the same position. The reflectance images were recovered by dividing the 

radiance images by the estimated maximum values at each wavelength. 

 

 

  
(a) Frontal view 

 

(b) Glasses 

 

  
(c) Left profile 

 

(d) Right profile 

 

Figure 4.15: An example of color images taken from ID: 019_01 of IRIS-HFD-2014-

V1. 

 

 

 Figure 8 shows an example of HFIs with the ColorChecker at 420 nm, 500 nm, 600 nm, 

and 700 nm in IRIS-HFD-2014 after recovering reflectance images. Sample HFIs with the 

ColorChecker, after the process of recovering the reflectance images from the radiance 

images in each pose, are shown in Fig. 4.11 to Fig. 4.14. The images in the profile views 

were collected by asking the subjects to rotate their head ranging from −45° to +45°. 
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Samples of aligned HFIs in three different poses are shown in Fig. 4.12 to Fig. 4.14. 

Compared to the frontal view in Fig. 4.11, HFIs in both profile views shown in Figs. 4.12 

and 4.13 cover a set of pose variations ranging from approximately −45° to +45° where 

pose variations introduce partial or entire occlusion of facial components including mouth, 

nose, or eyes. Figure 4.15 shows sample color images corresponding to different poses in 

the database.  

 

For all other experiments in this dissertation, we deal only with the subject area in the target 

by specifying the ROI with a binary mask as presented in Fig. 4.16. This is because the 

main consideration of this task is to address the inter-band misalignments (IBMs) in IRIS-

HFD-2014. 

 

 

 
 

Figure 4.16: Overview of selecting the subject areas within target images where 𝐼𝑖 
indicates the 𝑖th sub-band image of an input HFI set, 𝐵 represents a binary mask, and p 

stands for pixel coordinates of 𝐼𝑖. 
 

 

 New face database (IRIS-HFD-2014) 

Practical use of hyperspectral face recognition has, to date, been limited due to database 

restrictions in the public domain due to 1) the high cost of hyperspectral sensors compared 

to a trichromatic or monochromatic camera; and 2) the considerable time and effort 

required for building HFD. Based on the foregoing reasons, there are few publicly available 

HFDs as mentioned in Chapter 3.1 that comparatively evaluate face recognition algorithms. 
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Therefore, the purpose of the new database presented in this paper is to meet the emerging 

demands for a new HFD that can serve as a benchmark for comprehensively and 

statistically evaluating the performance of current and future algorithms for hyperspectral 

face recognition.  

 

In this section, we introduce IRIS-HFD-2014, a new hyperspectral face database recently 

developed, which incorporates adjusted exposure time at each wavelength. Without 

adjusting appropriate exposure time at each wavelength, spectral information of 

hyperspectral imaging systems cannot always be sufficiently captured due to lower 

transmittances of the hyperspectral imaging sensors and lower intensities of synthetic and 

natural lights at specific wavelengths.  

 

From December 2013 to February 2014, IRIS-HFD-2014 was obtained from 115 males 

(64%) and 64 females (36%), a total of 179 data subject participants representing diverse 

ethnic backgrounds and diverse physical appearance. IRIS-HFD-2014 consists of 644 

hyperspectral cubes and contains a total of 19,346 facial images: 18,676 hyperspectral face 

images (644 cubes × 29 bands) and 670 color images. The version 1 and version 2 contain 

a total of 14,832 face images and 4514 face images, respectively. 

 

 

  

(a) Gender (b) Ethnic diversities 

Figure 4.17: A summary of gender and ethnic diversities in IRIS-HFD-2014-V1. 

 

 

4.3.1 Version 1 (IRIS-HFD-2014-V1) 

IRIS-HFD-2014-V1 was collected from 130 data subjects over multiple sessions including 

86 males (66%) and 44 females (34%), all of diverse ethnic backgrounds and diverse 

physical appearance, who represent several ethnic groups: 70 Caucasians (C), 40 Asians 

(A), 6 of African Decent (AD), 6 of Middle Eastern Decent (ME), 5 Asian Indians (AI), 2 

Hispanics (H), and 1 Native American (NA). Figure 4.16 shows the summary of gender 

and ethnic diversities in IRIS-HFD-2014-V1. The participants vary in age (18 to 74). Most 

data subjects in the version 1 perform less head movements and eye blinking during data 
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acquisition, compared to IRIS-HFD-2014-V2. Figure 4.18 and 4.19 show all the datasets 

in the frontal view of IRIS-HFD-2014-V1, which are aligned by the proposed alignment 

approach in Chapter 8. It is important to mention that for the sRGB color mappings in this 

dissertation, once the conversion from reflectance data for the visible range to CIEXYZ 

tristimuli is performed with regard to a CIE 1931 2° standard observer and a CIE illuminant 

D65 reference white, CIEXYZ tristimuli are transformed into the sRGB color space. 

 

 

 
Figure 4.18: The aligned datasets (ID: 001 to 050) of IRIS-HFD-2014-V1 in the frontal 

view where full sub-bands (420 nm to 700 nm in 10 nm steps) are displayed using the 

sRGB values rendered under a CIE illuminant D65. 

 

4.3.2 Version 2 (IRIS-HFD-2014-V2) 

IRIS-HFD-2014-V2 was collected from 49 data subjects of 29 males (59%) and 20 females 

(41%), representing several ethnic groups: 33 Caucasians (C), 11 Asians (A), 3 of African 

Decent (AD), 2 Asian Indians (AI). Figure 4.20 shows the summary of gender and ethnic 

diversities in IRIS-HFD-2014-V2. The participants vary in age (4 to 46). Most data subjects 

in the version 2 perform significant head movements and eye blinking during data 

acquisition, compared to IRIS-HFD-2014-V1. Sample HFIs with the ColorChecker, after 

the process of recovering the reflectance images from the radiance images in each pose, 

are shown in Fig. 4.21. Figure 4.22 shows sample color images corresponding to different 

poses in IRIS-HFD-2014-V2. The entire aligned datasets in this version performed as Fig. 

4.19 are presented in Fig. 4.23. 
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Figure 4.19: The aligned datasets (ID: 051 to 130) of IRIS-HFD-2014-V1 in the frontal 

view where full sub-bands (420 nm to 700 nm in 10 nm steps) are displayed using the 

sRGB values rendered under a CIE illuminant D65. 

 

 

  

(a) Gender (b) Ethnic diversities 

Figure 4.20: A summary of gender and ethnic diversities in IRIS-HFD-2014-V2. 
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450 nm 

   

550 nm 

   

650 nm 

   

700 nm 

   
 (a) frontal view (b) left profile (c) right profile 

 

Figure 4.21: Sample HFI sequences for each pose in IRIS-HFD-2014-V2, after data 

calibration. 

 

 

 Summary 

In this Chapter, we introduced the new large hyperspectral face database, named IRIS-

HFD-2014, which can serve as a benchmark for comprehensively and statistically 

evaluating the performance of current and future algorithms for hyperspectral face 

recognition. This database consists of a total of 19,157 facial images of 115 males and 64 

females (179 individuals) of diverse ethnic backgrounds and appearance. IRIS-HFD-2014 

was acquired by using the LCTF covering a range from 420 nm to 700 nm in 10 nm steps 
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over multiple sessions in four different poses (frontal view, 45 degree left and right profiles, 

and structural feature, i.e., glasses). IRIS-HFD-2014 will be publicly available. 

 

 

   

   
(a) frontal view (b) left profile (c) right profile 

 

Figure 4.22: Sample color images representing each pose in IRIS-HFD-2014-V2. 

 

 

 
 

Figure 4.23: Entire aligned datasets of IRIS-HFD-2014-V2 in the frontal view where 

full sub-bands (420 nm to 700 nm in 10 nm steps) are displayed using the sRGB values 

rendered under a CIE illuminant D65. 
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 Proposed Spectral Data Compression 

Method 

Spectral imaging typically generates a large amount of high-dimensional data that are 

acquired in different bands for each spatial location of interest. The high dimensionality of 

spectral data imposes limitations on numerical analysis. As such, there is an emerging 

demand for robust data compression techniques; specifically post-processing techniques 

that can cope with real spectral data.  

 

In this Chapter, we describe a reduced-order spectral data modeling (ROM) technique 

based on local proper orthogonal decomposition (LPOD), which can be used as an efficient 

procedure to compute low-dimensional models by projecting high-dimensional clusters 

onto subspaces spanned by local reduced-order bases (LROB). Experimental results are 

reported on three public domain databases and an in-house database. Comparisons with 

three leading spectral recovery techniques, three decomposition techniques used for 

hyperspectral imaging, and two baseline techniques show that the proposed method leads 

to promising improvement on spectral and colorimetric accuracy corresponding to the 

reconstructed spectral reflectance. 

 

 Background on proper orthogonal decomposition 

Proper orthogonal decomposition (POD) is perhaps one of the most assuring techniques 

for model reduction. POD has received an increasing amount of attention due to its 

potential for optimally extracting empirical information from numerical simulations or 

experimental data. 

 

POD was first developed in the context of turbulence by Lumley in [Lumley67]. As stated 

in [Lumley07], POD can be seen as a way to replace the traditional Fourier decomposition 

in nonhomogeneous directions. POD was established by a variety of researchers according 

to [Holmes98]: Kosambi [Kosambi43], Loève [Loève55], and Obukhov [Obukhov42]. The 

procedure of POD has been used in different fields: signal analysis [Nobach07], 
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classification of human faces [Kirby90], data compression [Freund03] and, recently, 

optimal control [Djouadi08], [Camphou.05]. 

 

In various applications, POD has been used to extract coherent structures which are distinct 

patterns that are highly correlated to neighboring ensembles in space and time. Hence, POD 

plays a strong role in building low-dimensional models for a given set of computational 

data by truncating an optimal set of basis functions. In principle, the method of snapshots 

proposed by Sirovich [Sirovich87] is a procedure for extracting the POD modes without 

explicitly computing the kernel needed for the POD, where the eigenfunctions can be 

represented as the summation of snapshots. The optimality and geometric interpretation of 

POD in terms of linear n-widths of the corresponding compact operators are discussed in 

[Djouadi08]. The n-widths measure the inherent errors which are generated in the 

information-collecting stage of simulation or identification. According to [Djouadi12], 

optimal approximation without the usual POD integral and inner product constraints should 

be attained by solving a nonlinear optimization problem where the partial differential 

equation (PDE) solution is estimated by operators of a given finite rank in the respective 

trace class 2-norm. As mentioned in [Efe03], there are a variety of many powerful 

analytical techniques for solving diverse linear PDEs, particularly Galerkin projection. For 

multiple dimensional processes, the POD should be employed with the method of 

snapshots. Otherwise, for single dimensional processes, the equivalent modeling procedure 

can be followed by using the SVD technique. We refer the interested reader to [Holmes98] 

and the references therein for more detail. 

 

In this dissertation, we use POD to find a relevant set of basis functions from spectral data. 

By means of a few basis functions, we can identify a low-dimensional subspace to construct 

a fidelity model by projection of the reconstruction equation that will be shown in the next 

section. In the preceding section, we present the theory behind the canonical POD and we 

then show the close link between the singular value decomposition (SVD) and POD by 

exploring SVD with respect to POD. 

 

 Theory of proper orthogonal decomposition 

In this section, we introduce the proper orthogonal decomposition (POD) technique in the 

Euclidean space ℝ𝑚 . The fundamental purpose behind POD is to yield an optimally 

ordered, orthonormal basis for the modal decomposition of an ensemble of functions 

[Holmes98].  

 

Suppose that we have a set of the sampled data 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} ⊂ [0,1] in subspace 𝑉 

of ℝ𝑚. In finding the proper representations of vectors {𝑎𝑗}𝑗=1

𝑛
, we need to project each 𝑎𝑗 
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onto a candidate basis {𝜑𝑑} . We represent {𝑎𝑗}𝑗=1

𝑛
 as a linear combination of basis 

functions: 

𝑎𝑗 = ∑ 𝑐𝑑𝑗𝜑𝑑
𝑟
𝑑=1 , for 1 ≤ 𝑟 ≤ 𝑚.                           (5.1) 

The coefficients 𝑐𝑑𝑗 are computed as: 

𝑐𝑑𝑗 = 〈𝑎𝑗 , 𝜑𝑑〉ℝ𝑚                            (5.2) 

where 〈∙,∙〉ℝ𝑚 denotes the Euclidean inner product in ℝ𝑚. The coefficients 𝑐𝑑𝑗 correspond 

to the basis functions 𝜑𝑑. The optimal subspace for representing the data is 𝑉𝑟 ⊂ 𝑉 that is 

specified by 𝑉𝑟 = 𝑠𝑝𝑎𝑛{𝜑1, … , 𝜑𝑟}. The vectors {𝜑𝑑}𝑑=1
𝑟  are referred to as POD modes. 

To determine the orthonormal basis function {𝜑𝑑}𝑑=1
𝑟 , 𝑟 ≤ 𝑚, we arrange the data set 𝐴 in 

an 𝑚 × 𝑛 matrix 𝔸: 

𝔸 = (

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

) ,𝔸 ∈ ℝ𝑚×𝑛.                           (5.3) 

Then, we derive the orthonormal basis function {𝜑𝑑}𝑑=1
𝑟 , 𝑟 ≤ 𝑚 by truncating the SVD of 

𝔸  to the length 𝑟  because POD is closely associated with SVD. Specifically, let 𝐴 =
[𝑎1, … , 𝑎𝑛]  be a real-valued 𝑚 × 𝑛  matrix of rank 𝑑 ≤ min(𝑚, 𝑛) with columns 𝑎𝑗 ∈

ℝ𝑚, 1 ≤ 𝑗 ≤ 𝑛. Essentially, SVD guarantees the existence of real singular values 𝜎1 ≥
𝜎2 ≥ ⋯ ≥ 𝜎𝑑 ≥ 0  and orthogonal matrices 𝑈 ∈ ℝ𝑚×𝑚 with columns {𝑢𝑖}𝑖=1

𝑚  and 𝑈 ∈
ℝ𝑛×𝑛 with columns {𝑣𝑖}𝑖=1

𝑛  such that 

𝑈𝑇𝐴𝑉 = (
Σ𝑑 0
0 0

) ≜ Σ ∈ ℝ𝑚×𝑛, (5.4) 

where Σ𝑑 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑛) ∈ ℝ𝑑×𝑑 and the rank of 𝐴 equals the number of nonzero 

singular values. From SVD, we can derive that the vectors {𝑢𝑖}𝑖=1
𝑑  and {𝑣𝑖}𝑖=1

𝑑  are the 

eigenvectors for 𝐴𝐴𝑇 and 𝐴𝑇𝐴, respectively, with eigenvalues 𝜆𝑖 = 𝜎𝑖
2  on the diagonal. 

The approximation of the columns 𝑎𝑗  in 𝐴  for 𝑑 < 𝑛  can be optimized by the first 𝑑 

eigenvectors {𝑢𝑖}𝑖=1
𝑑 . Furthermore, an analogous result to the matrix 𝐴𝑇𝐴 holds. The POD 

basis of 𝐴𝑇𝐴 ∈ ℝ𝑛×𝑛  with rank 𝑟  can be achieved by solving the 𝑛 × 𝑛  eigenvalue 

problem as follows: 

𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 , for 1 ≤ 𝑖 ≤ 𝑟.                           (5.5) 

By multiplying 𝐴 on both sides in (5.5), we have the eigenvector 𝑢𝑖 of 𝐴𝐴𝑇 due to 𝑢𝑖 =
𝐴𝑣𝑖 and so we can obtain the POD basis of 𝐴𝑇𝐴 such that 

𝑢𝑖 = 
1

√𝜆𝑖
𝐴𝑣𝑖 .                           (5.6) 
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Finally, we can directly construct the approximated 𝐴̃ with a few basis functions 𝑢𝑖 from 

(5.6) that is used as the orthonormal basis functions {𝜑𝑑} in (5.1) and (5.2). 

 

In the following section, we introduce a robust reduced-order modeling (ROM) method 

which can be carried out using fewer dominant eigenvalues but significantly improves the 

performance of ROM for spectral data. 

 

 Local proper orthogonal decomposition 

This section illustrates local proper orthogonal decomposition (LPOD) based on k-means 

clustering, which is a reduced-order modeling (ROM) technique. The proposed LPOD 

broadly consists of two steps: 1) clustering a set of the given data 𝐴 and 2) constructing 

local reduced-order bases (LROB). The difference between global POD and local POD is 

illustrated in Fig. 5.1. In LPOD, 𝐴 is grouped into 𝑘 subsets (or clusters) based on a k-

means clustering method. Next, for each subset, we construct LROBs to project the full 

solution space. Finally, we find the approximated solution with the constructed LROBs. 

5.3.1 Clustering a set of the sample data 

In the problem to classify a set of 𝑘 points in ℝ𝑚 [Kanungo02], three issues should be 

considered: 1) the preferred data points to cluster, 2) the centroid of a cluster, and 3) the 

criterion of clustering. In our case, 𝐴  is what we expect to group into 𝑘  clusters; the 

centroid of a cluster is closest to the current state; and the clustering criterion is evaluated 

by assigning 𝑎𝑗  to the cluster if the relative distance between 𝑎𝑗  and the corresponding 

cluster centroid is smallest. 

 

A solution, which contains markedly different features, relies on subdividing the dataset 𝐴 

into sub-regions. Accordingly, we first group together nearby analogous snapshots to attain 

a partition of 𝐴 to construct the local reduced-order bases (LROB). In this dissertation, we 

use the k-means clustering method for grouping 𝑎𝑗 into 𝑘 clusters because of its simplicity 

and computational efficiency [Kanungo02], [Laszlo12]. In addition, k-means clustering is 

one of the most popular clustering techniques that has been significantly applied to many 

different applications and is freely available in many open libraries, including open source 

computer vision library (OpenCV) 23 . Note that whereas the k-means method plays a 

fundamental role in clustering 𝐴, alternative clustering methods could be used for LPOD 

if some modifications are considered to obtain a steady partition and a consistent selection 

procedure from the data space. 

 

                                                 
23 http://opencv.org/. 
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(a) GPOD 

 

 
(b) LPOD 

 

Figure 5.1: Comparison for overviews of (a) global POD and (b) local POD proposed 

in this dissertation. As the difference between global and local POD illustrated in (a) 

and (b), a clustering method in local POD splits 𝐴 into 𝑘 groups. For each group, the 

POD approximation is performed to construct local reduced-order bases (LROB). Then, 

we find the approximated 𝐴̃. 

 

 

 

As mentioned in several earlier papers [Aldahd.13], [Kanungo02], [Laszlo12], the 

performance of the k-means clustering is significantly dependent on the initial centroid. 

Thus, we randomly allocate 𝑘 initial locations to the cluster centroids by means of leading 

to a good set of initial centers and, then, iteratively find an optimal partition of 𝐴 into 𝜒1 ∪
𝜒2 ∪ …∪ 𝜒𝑘 so as to minimize the objective function (5.7) until either the cluster centroids 

have converged or a maximum iteration 𝑡max is reached. The objective function of the k-

means method yields the least within-cluster sum of squares (WCSS): 

argmin
𝜒

∑ ∑ 𝑑(𝑎𝑗, 𝑎𝑐
𝑖 )

2
𝑎𝑗∈𝜒𝑖

𝑘
𝑖=1 , for 𝑖 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑛],                           (5.7) 

where 𝑎𝑗 and 𝑎𝑐
𝑖  denote the given data and cluster centroids, and 𝑑(𝑎𝑗 , 𝑎𝑐

𝑖 ) is the relative 

distance between 𝑎𝑗 and 𝑎𝑐
𝑖 . The distance metric is defined as: 
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𝑑(𝑎𝑗 , 𝑎𝑐
𝑖 ) = ‖𝑎𝑗 − 𝑎𝑐

𝑖 ‖
𝑀

= √‖𝑎𝑗‖𝑀

2
− 2𝑎𝑐

𝑖 𝑇
𝑀𝑎𝑗 + ‖𝑎𝑐

𝑖 ‖
𝑀

2
                           (5.8) 

where 𝑀 ∈ ℝ𝑛×𝑛 is a symmetric positive definite matrix. In this dissertation, we consider 

𝑀 = 𝐼𝑛 to get the 2-norm, ‖∙‖2. 

 

While solving the optimization problem, if all 𝑎𝑗 has been allocated to candidate clusters, 

new cluster centroids are updated by averaging 𝑎𝑗 assigned to each cluster: 

𝑎𝑐
𝑖 =

1

|𝜒𝑖|
∑ 𝑎𝑗𝑎𝑗∈𝜒𝑖

.                           (5.9) 

As a result, each 𝑎𝑗 is assigned to the respective cluster 𝜒𝑖 that contains the same cluster 

index. For further details we refer to [Gordon99], [Jain99]. 

 

5.3.2 Construction of local reduced-order bases 

In constructing local reduced-order bases (LROB), we first build the correlation matrix 

with each of the clusters {𝜒𝑖}𝑖=1
𝑘 obtained from the previous section: 

𝑅𝑖 = 〈𝜒𝑖, 𝜒𝑖
𝑇〉, for 𝑖 ∈ [1, 𝑘],                            (5.10) 

where 𝑅𝑖 is a 𝑝 × 𝑝 positive semi-definite matrix. Next, we perform a SVD of the matrix 

𝑅𝑖 to derive LROB by truncating SVD of length 𝑑 ≤ 𝑟𝑎𝑛𝑘(𝑅𝑖) such that 

𝑅𝑖 = 𝑈𝑖
𝑑Σ𝑖𝑉𝑖

𝑑𝑇
,                            (5.11) 

where 𝑈𝑖
𝑑  and 𝑉𝑖

𝑑  are orthogonal matrices with reduced rank 𝑑  and Σ𝑖  is the diagonal 

matrix with singular values sorted in descending order. The columns of the matrix 𝑈𝑖
𝑑 then 

form a LROB which can be seen as the optimal POD basis of rank 𝑑. We then normalize 

the singular vectors of the SVD as ‖𝑈𝑖
𝑑‖

2
= 1/Σ𝑖

𝑑. The final step is to project the LROB 

onto the subspaces spanned by the empirical orthonormal basis functions. The POD basis 

functions {𝜑𝑖
𝑑}

𝑑=1

𝑟
 are computed by linearly combining the LROBs with the clusters 𝜒𝑖 as: 

𝜑𝑖
𝑑 = ∑ 𝑈𝑖,𝑙

𝑑𝑝
𝑙=1 𝜒𝑖,𝑙,                            (5.12) 

where 𝑈𝑖,𝑙
𝑑  and 𝜒𝑖,𝑙  are the 𝑙 th components 𝑈𝑖

𝑑  and 𝜒𝑖 . Once the uncorrelated POD 

coefficients 𝑐𝑖
𝑑  are derived by solving the linear system (5.2) with the corresponding 

orthonormal function {𝜑𝑖
𝑑}, every member of the given data can be reconstructed as: 
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{𝐴̃}
𝑖=1

𝑟
≈ {∑ 𝑐𝑖

𝑑𝑟
𝑑=1 𝜑𝑖

𝑑}
𝑖=1

𝑘
.                            (5.13) 

 

Note that for implementation purposes the index of the given data should be stored to 

properly recover a high-fidelity model 𝐴̃ approximated by (5.13), before and after we 

perform the k-means.  

 

5.3.3 Choice of parameter k 

In k-means clustering [Laszlo12], the number of clusters 𝑘 (NC) must be selected as an 

initial parameter before the clustering process. However, it would be rather difficult to 

determine the valid number of clusters without yielding any empty clusters. One way to 

deal with the problem of NC is to analyze the quality of clustering results with internal 

indices [Maulick02], [Arbelaitz13].  

 

The internal index is to assess the goodness of a clustering structure with objective 

information without any a priori knowledge about the data. Indeed, according to 

[Arbelaitz13], there are 30 distinct ways to confirm the cluster validity index (CVI). 

However, we are interested in the Calinski-Harabasz index (CH) [Maulick02], which was 

one of the most recommended indices and performed the best possible results to achieve 

the optimal NC with k-means clustering method in [Arbelaitz13]. The CH index aims to 

find the maximum hierarchy level (MHL) used to determine the appropriate NC in the 

preferred data. This CVI is computed as [Maulick02]: 

𝐶𝐻(𝑘) =
|𝐴|−𝑘

𝑘−1

∑ |𝜒𝑖|
𝑘
𝑖=1 𝑑(𝑎𝑐

𝑖 ,𝐴̅)

∑ ∑ 𝑑(𝑎𝑗,𝑎𝑐
𝑖 )𝑎𝑗∈𝜒𝑖

𝑘
𝑖=1

,                           (5.14) 

where 𝐴̅  is the centroid of 𝐴 . On both Munsell and NCS databases, the optimal NCs 

estimated by CH index are two as shown in Fig. 5.2. Figure 5.2 demonstrates the criterion 

scores assessed by CH index across different 𝑘 from 2 to 20 where the optimal NC is 

marked in red on each database. However, the reconstruction accuracy with optimal NC 

corresponding to the five error metrics is less discriminated than other methods in Section 

5.4.3. Hence, instead of searching the optimal NC, we construct a set of multi-scale NCs, 

𝜌 = {𝜌1, 𝜌2, 𝜌3}, with scale factors: 0.01, 0.03, and 0.05. More specifically, we increase 

NC by steps of 1 percent up to 5 percent of the spatial dimension of the input data. In the 

cases of hyperspectral imaging, we set the multi-scale NC to be proportional to the shorter 

spatial dimension. The primary consideration specific to the limitation of NC (5 percent of 

the original spatial dimension), is to avoid too large 𝑘 values as achieving a global optimum 

becomes much more difficult as NC increases [Krishna99]. 
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Figure 5.2: Results for the cluster validity indices in Calinski-Harabasz (CH) criterion 

on the Munsell and Natural color system (NCS) databases. In both databases, the 

optimal number of clusters k is two. 

 

 Experimental Results 

In this section, we test our reduced-order data modeling approach compared with eight 

leading techniques on four databases. To assess the effectiveness of the proposed method, 

five error metrics are employed. These error metrics have been commonly used for 

evaluating the performance of reconstruction of reflecting specimens. Experimental results 

on each database are reported as average and standard deviations of the outcomes of the 

testing approaches for each error metric in the following sections. 

 

5.4.1 Test databases 

For a comprehensive study on the performance of the proposed method, we test four 

databases: 1) the Munsell database [SCRG], 2) a natural color system (NCS) [Hård81] 

database measured by Peyvandi [Peyvandi11], 3) CAVE database [Yasuma10], and 4) an 

in-house database including 17 different subjects recently built. The first two databases are 

used for evaluation of the hyperspectral signal and the latter two databases are used for 

testing the compression of hyperspectral image and the reconstruction of reflecting 

specimens. 
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The Munsell database [SCRG], which is composed of 1269 color chips measured by 

spectrophotometers ranging from 380nm to 800nm with a 1 nm interval, has been used to 

test whether a certain basis function is well-suited for data compression and reconstruction. 

 

The NCS database consists of 1,950 color patches measured by a Datacolor 550TM 

Spectrophotometer ranging from 360nm to 700nm with intervals of 10 nm. The NCS color 

patches [Hård81] are intended to aid in measuring colors by visual comparison and have 

additionally been used to evaluate the performance for compression and reconstruction. 

 

In this dissertation we only consider the range of the visible spectrum from 400 to 700 nm 

with 10 nm intervals. In the case under which the dataset was measured over our preferred 

wavelength range, we rearrange the dataset to match the desired wavelength range. The 

wavelength interval is set to the maximum interval among the datasets in order to avoid 

having to use any interpolation techniques on the selected datasets that were measured in 

different ranges and intervals. Thus, we choose 𝑚 = 1269 and 𝑛 = 31 for the Munsell 

database throughout our experiments. 

 

CAVE [Yasuma10] consists of 32 static scenes that include 31-band hyperspectral images 

ranging from 400 to 700 nm at 10 nm steps. It was acquired using a cooled charge-coupled 

device (CCD) camera (Apogee Alta F260, providing a resolution of 512 × 512 pixels) 

with a VariSpec liquid crystal tunable filter (LCTF) under CIE illuminant D65. The 32 

static scenes are classified into five sections: 1) stuff, 2) skin and hair, 3) paints, 4) food 

and drinks, and 5) real and fake. It is suitable for researchers who work in hyperspectral 

imaging to estimate the effectiveness of their proposed methods broadly used for scene 

segmentation and material recognition. 

 

For the in-house database, the face images of 17 individuals were captured with the X-rite 

ColorChecker Classic that was placed to the side of the individuals to allow for color 

calibration. We utilized the LCTF covering the visible range from 420 to 700 nm in steps 

of 10 nm (29 narrow bands) under a Lumia 5.1 Reef as a light source. 

 

At this point, we remark that for hyperspectral image databases 𝑚 denotes the number of 

pixels of an image and 𝑛 indicates the number of sub-bands. As mentioned in Section 5.3.3, 

we utilize a set of multiscale NCs, 𝜌 = {𝜌1, 𝜌2, 𝜌3}, as increasing NC by steps of 1 to 5% 

of the spatial dimension of the input data. For hyperspectral images, we set the multiscale 

NC to be proportional to the shorter spatial dimension. In our experiments, we construct 

the LROBs to all of the clusters using the same number of subspace (NS) as increasing NS 

from 3 to 6. 
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5.4.2 Error metrics 

For spectral and colorimetric accuracy, the spectral data compressed by the proposed 

method are analyzed using spectral reflectance. We consider five different error metrics: 1) 

the CIE color difference [Berns00], ∆𝐸𝑎𝑏, under CIE illuminant D65 with 2-degree defined 

as CIE 1931 standard observer for colorimetric accuracy, 2) the goodness of fit coefficient 

(GFC) [García.98], [Hernadez.01], 3) the peak signal-to-noise ratio (PSNR)  [Bianco10], 

4) the root mean square (RMS) difference [Amirshahi10], [Berns05], [Drew11], and 5) an 

index of metamerism [Berns00], [Berns05], [Fairman87] between CIE illuminants A and 

D65 for spectral accuracy. 

 

CIELAB, which is the standard perceptual uniform color space, is used for the specification 

of surface colors. Computing a color difference ∆𝐸𝑎𝑏  in CIELAB space allows one to 

compare equally perceptual color differences between pairs of samples. Let 𝑜 and 𝑜̃ be the 

original and estimated reflectance, respectively. The color difference ∆𝐸𝑎𝑏  can be 

computed as in [Westland04]: 

∆𝐸𝑎𝑏 = √(∆𝐿∗)2 + (∆𝑎∗)2 + (∆𝑏∗)2,                           (5.15) 

where ∆𝐿∗ = 𝐿𝑜
∗ − 𝐿𝑜̃

∗  , ∆𝑎∗ = 𝑎𝑜
∗ − 𝑎𝑜̃

∗ , and ∆𝑏∗ = 𝑏𝑜
∗ − 𝑏𝑜̃

∗. 

 

GFC [García.98], [Hernadez.01], based on the inequality of Schwartz, is for measuring the 

likelihood between 𝑜 and 𝑜̃ that is intended to evaluate the accuracy of the mathematical 

reconstruction: 

𝐺𝐹𝐶 =
〈𝑜,𝑜̃〉

〈𝑜,𝑜〉1/2〈𝑜,𝑜̃〉1/2.                           (5.16) 

The score of GFC ranges from zero to one where one indicates a perfect reconstruction. 

 

PSNR [Bianco10] and RMS [Amirshahi10], [Berns05], [Drew11] are adopted for objective 

measures of the accuracy of spectral reconstruction, whereas ∆𝐸𝑎𝑏is for the evaluation of 

color reproducibility. MSE indicates the cumulative squared error between 𝑜  and 𝑜̃ , 

whereas PSNR is intended to estimate the peak error computed as 

𝑃𝑆𝑁𝑅 = 10 log10

𝑚𝑓
2

𝑀
,                           (5.17) 

where 𝑚𝑓
2 is the maximum fluctuation in the input data and  𝑀 denotes MSE: 

𝑀 =
1

𝑛
∑ (𝑜𝑖 − 𝑜̃𝑖)

2𝑛
𝑖=1 ,                           (5.18) 

where 𝑜𝑖  and 𝑜̃𝑖  denotes 𝑖th samples of 𝑛-dimensional 𝑜 and 𝑜̃. The root mean squared 

error (RMS) can be readily derived from (5.18) as follows: 

𝑅𝑀𝑆 = √𝑀.                           (5.19) 
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Finally, the metameric index (MI) [Berns00], [Berns05], [Fairman87] is to evaluate the 

color stability in illumination changes. In other words, HI indicates how well two samples 

match under two different illuminants. The CIE color difference ∆𝐸00  is used for 

calculating the MI such that  

𝑀𝐼 = √(
Δ𝐿

𝑠𝐿
)
2

+ (
Δ𝐶𝑎𝑏

𝑠𝐶
)
2

+ (
Δ𝐻𝑎𝑏

𝑠𝐻
)
2

,                           (5.20) 

where Δ𝐿 = 𝐿𝑜 − 𝐿𝑜̃ for the trial condition. Δ𝐶𝑎𝑏 and Δ𝐻𝑎𝑏 denote the chroma and hue di 

erences. 𝑠𝐿, 𝑠𝐶, and 𝑠𝐻 denote positional functions that correct the lack of visual uniformity 

of CIELAB for the same set of reference conditions. As mentioned in [Fairman87], the HI 

first corrects each pair of spectra to have zero color difference for a reference illuminant; 

∆𝐸00 is then calculated for a test illuminant wherein properties of test illuminant differ 

characteristically from those of test reference illuminant. As the spectral match gets poorer, 

the MI increases. In our experiments, the metameric index is calculated with CIE illuminant 

D65 as the reference and CIE illuminant A as the test illuminant, and vice versa. 

 

 

Table 5.1: Summary of the performance results MSE-GIA, MINIMAX, GMM, GPOD, 

and LPOD on the MUNSELL database. 

 
 ∆𝑬𝒂𝒃 RMS PSNR (dB) GFC MI D65 to A MI A to D65 

Methods Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

𝑆𝑢𝑏.= 3             

MSE_GIA 0.3587 0.3214 0.0229 0.0173 34.7 5.7 0.9940 0.0115 1.1713 0.7989 1.3319 0.9640 

MINIMAX 0.3587 0.3214 0.0229 0.0173 34.7 5.7 0.9940 0.0115 1.1713 0.7989 1.3319 0.9640 
GMM 0.2482 0.2699 0.0169 0.0144 37.7 6.3 0.9952 0.0124 0.7628 0.7485 0.8586 0.8549 

GPOD 2.9954 3.3759 0.0195 0.0139 36.1 6.1 0.9949 0.0105 0.8722 0.6981 1.0046 0.8963 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 2.1568 2.7746 0.0119 0.0082 40.2 5.5 0.9976 0.0053 0.6018 0.5305 0.7102 0.6307 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 1.4273 1.5643 0.0078 0.0059 44.1 5.8 0.9992 0.0016 0.3372 0.2906 0.3741 0.3151 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 1.0916 1.2087 0.0063 0.0050 46.2 6.1 0.9995 0.0007 0.2510 0.2139 0.2790 0.2379 

𝑆𝑢𝑏.= 4             

MSE_GIA 0.3601 0.3244 0.0224 0.0174 34.7 5.3 0.9940 0.0114 1.1903 0.8340 1.3611 1.0346 
MINIMAX 0.4573 0.3731 0.0292 0.0215 33.0 6.6 0.9912 0.0142 1.4944 1.0559 1.7130 1.2314 

GMM 0.2269 0.2370 0.0156 0.0142 38.7 6.6 0.9961 0.0123 0.7379 0.6390 0.8487 0.8070 

GPOD 1.8887 2.0182 0.0136 0.0096 39.1 5.6 0.9973 0.0068 0.4018 0.4271 0.3839 0.4052 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 1.1594 1.3071 0.0073 0.0047 44.3 5.4 0.9991 0.0028 0.2770 0.2744 0.3132 0.3354 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.6519 0.7710 0.0044 0.0027 48.6 5.0 0.9997 0.0005 0.1417 0.1338 0.1661 0.1620 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.4956 0.5816 0.0033 0.0022 51.0 5.0 0.9998 0.0003 0.1053 0.0973 0.1206 0.1133 

𝑆𝑢𝑏.= 6             

MSE_GIA 0.3587 0.3224 0.0223 0.0175 34.8 5.3 0.9940 0.0116 1.1868 0.8249 1.3559 1.0148 

MINIMAX 0.4651 0.3936 0.0332 0.0245 32.0 6.7 0.9887 0.0188 1.2943 0.8897 1.3984 0.9823 

GMM 0.1991 0.2093 0.0146 0.0133 39.3 6.7 0.9966 0.0115 0.6187 0.5607 0.6982 0.6667 
GPOD 0.7438 0.6856 0.0101 0.0058 41.2 4.8 0.9987 0.0030 0.1836 0.2057 0.1999 0.1969 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 0.2980 0.2892 0.0034 0.0020 50.4 4.6 0.9998 0.0005 0.0692 0.0783 0.0726 0.0847 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.1997 0.2013 0.0021 0.0011 54.4 4.1 0.9999 0.0001 0.0387 0.0399 0.0435 0.0435 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.1483 0.1391 0.0015 0.0007 57.0 4.1 1.0000 0.0001 0.0318 0.0340 0.0350 0.0381 
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5.4.3 Test on hyperspectral signal databases 

As mentioned above, we first evaluate the proposed methods compared with global POD 

(GPOD) and the spectral recovery methods, including minimum of averaging root mean 

square error based on the generalized inverse approach model (MSE_GIA) [Peyvandi13], 

minimax of the estimation error based on GIA (MINIMAX) [Peyvandi13], and Gaussian 

mixture model (GMM) clustering [Peyvandi12] on two databases consisting of the Munsell 

and NCS. Note that the performance of LPOD without clustering the given data is the same 

as GPOD. For compression and reconstruction in all our experiments, we increase the 

number of dimensional subspaces from 3 to 6 corresponding to the length 𝑟 in (5.1). Due 

to the space limitation, we do not include the results from 5-dimensional subspace 

experiments. Furthermore, the results in terms of the compression ratio for each of the 

testing methods, including the proposed method, are not provided as there is no significant 

difference.  

 

 

Table 5.2: Summary of the performance results MSE-GIA, MINIMAX, GMM, GPOD, 

and LPOD on the NCS database. 

 
 ∆𝑬𝒂𝒃 RMS PSNR (dB) GFC MI D65 to A MI A to D65 

Methods Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

𝑆𝑢𝑏.= 3             

MSE_GIA 0.3463 0.3480 0.0244 0.0192 34.0 5.2 0.9944 0.0121 1.0244 0.9143 1.1670 1.0375 
MINIMAX 0.3463 0.3480 0.0244 0.0192 34.0 5.2 0.9944 0.0121 1.0244 0.9143 1.1670 1.0375 

GMM 0.2512 0.2613 0.0195 0.0167 36.1 5.4 0.9961 0.0105 0.6965 0.6655 0.7956 0.7447 

GPOD 3.2753 4.1828 0.0199 0.0151 35.8 5.5 0.9955 0.0116 0.6826 0.6948 0.9104 0.8794 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 2.2792 3.3205 0.0126 0.0080 39.5 5.3 0.9982 0.0048 0.4689 0.4676 0.5505 0.5296 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 1.5638 1.7583 0.0093 0.0056 42.1 5.3 0.9992 0.0017 0.3105 0.2876 0.3659 0.3197 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 1.3626 1.5375 0.0082 0.0055 43.6 6.0 0.9995 0.0008 0.2279 0.1835 0.2830 0.2302 

𝑆𝑢𝑏.= 4             

MSE_GIA 0.3426 0.3454 0.0238 0.0193 34.2 5.1 0.9944 0.0120 1.0235 0.9290 1.1783 1.0921 

MINIMAX 0.8741 0.8049 0.0542 0.0263 26.5 5.1 0.9742 0.0480 3.3029 3.7035 3.7197 4.0498 

GMM 0.2705 0.2895 0.0193 0.0155 36.2 5.7 0.9951 0.0131 0.7365 0.7949 0.8312 0.8616 
GPOD 1.0984 1.0591 0.0145 0.0101 38.3 5.1 0.9977 0.0066 0.4713 0.5947 0.4978 0.6694 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 1.0567 1.3722 0.0082 0.0048 43.1 5.1 0.9992 0.0021 0.2662 0.3222 0.3065 0.3731 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.7456 0.8100 0.0062 0.0037 45.8 5.4 0.9997 0.0007 0.1659 0.1462 0.1973 0.1957 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.6649 0.7322 0.0052 0.0033 47.3 5.8 0.9998 0.0004 0.1366 0.1187 0.1632 0.1571 

𝑆𝑢𝑏.= 6             

MSE_GIA 0.3414 0.3447 0.0237 0.0193 34.2 5.1 0.9944 0.0121 1.0198 0.9260 1.1727 1.0830 

MINIMAX 0.8042 0.7166 0.0554 0.0264 26.3 5.0 0.9728 0.0504 2.4176 2.7676 2.6473 2.9543 
GMM 0.2196 0.2249 0.0164 0.0145 37.8 5.9 0.9971 0.0104 0.6082 0.5802 0.6998 0.6824 

GPOD 0.6424 0.6605 0.0090 0.0047 42.0 4.3 0.9993 0.0011 0.0631 0.0520 0.0765 0.0558 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 0.3555 0.3804 0.0041 0.0026 49.2 5.5 0.9999 0.0003 0.0676 0.0605 0.0728 0.0655 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.2547 0.2687 0.0030 0.0019 52.2 5.6 0.9999 0.0002 0.0504 0.0501 0.0567 0.0591 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.2161 0.2294 0.0023 0.0015 54.4 5.6 1.0000 0.0001 0.0452 0.0439 0.0534 0.0573 

 

 

The summary of the performance results in terms of five error metrics are shown in Table 

5.1 and 5.2. For ∆𝐸𝑎𝑏  under CIE Illuminant D65, MSE_GIA, MINIMAX, and GMM 

perform better than GPOD and LPOD in 3 and 4 dimensional subspace. However, when 



  66 

 

 

 

the dimension of a subspace is six, 𝐿𝑃𝑂𝐷𝑘=𝜌3 becomes more accurate than three spectral 

recovery methods. For the four remaining error metrics, GPOD and LPOD should be able 

to yield not just comparable, but better results. As we increase NC, we can find that the 

accuracy of GPOD and LPOD gradually increases for each of the considered metrics since 

RIC approaches one, whereas it is noticeable that the accuracy of the spectral recovery 

methods in higher dimensional subspace slightly increases. Furthermore, as reflected in the 

results, particularly with respect to the MI, three spectral recovery methods are sensitive to 

changing illuminants. The results establish that those methods fit poorly at long 

wavelengths when altering CIE illuminants D65 to A, and at short wavelengths when 

altering CIE illuminants A to D65 as mentioned in [Berns05]. As a result, the overall 

performance of LPOD on the test databases is consistent with the results in five considered 

merits. More specifically, LPOD is little affected by the choice of the spectral signal data 

and is quite stable. 

 

 

 

Table 5.3: Summary of the performance results ICA, NMF, RSNMU, RSPNMU, GPOD, 

and LPOD on the CAVE database. 

 
 ∆𝑬𝒂𝒃 RMS PSNR (dB) GFC MI D65 to A MI A to D65 

Methods Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

𝑆𝑢𝑏.= 3             

ICA 6.4644 4.9820 0.0148 0.0121 41.0 6.5 0.9480 0.0642 1.1602 0.8478 1.1124 0.7906 
NMF 10.883 8.5361 0.0194 0.0193 38.6 6.6 0.9181 0.0861 1.2048 0.8656 1.4380 1.0257 

RSNMU 7.9239 7.0451 0.0205 0.0172 37.6 5.8 0.8959 0.1083 0.7466 0.5635 1.0163 0.7429 

RSPNMU 7.6389 6.9547 0.0213 0.0182 37.4 5.9 0.8944 0.1097 0.7479 0.5908 1.0084 0.7680 
GPOD 6.1354 4.8444 0.0117 0.0084 41.9 5.1 0.9421 0.0708 1.1933 0.8987 1.1372 0.8298 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 3.6316 3.5568 0.0062 0.0063 48.6 6.8 0.9880 0.0373 0.4765 0.4646 0.5123 0.5121 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 2.1014 2.3684 0.0042 0.0049 53.0 7.8 0.9950 0.0334 0.2760 0.3173 0.3219 0.3714 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 1.7888 2.0724 0.0036 0.0045 54.1 7.8 0.9959 0.0326 0.2342 0.2759 0.2805 0.3349 

𝑆𝑢𝑏.= 4             

ICA 3.0133 2.4445 0.0105 0.0099 44.6 7.5 0.9765 0.0442 0.7637 0.5849 0.9033 0.7216 

NMF 9.0275 7.5026 0.0158 0.0151 39.9 6.3 0.9267 0.0828 1.1019 0.8432 1.2952 0.9722 
RSNMU 6.0576 5.8707 0.0150 0.0131 40.9 6.4 0.9386 0.0806 0.6177 0.5293 0.8226 0.6942 

RSPNMU 5.9715 5.6794 0.0163 0.0137 39.8 6.1 0.9256 0.0915 0.6322 0.5441 0.8588 0.7271 

GPOD 2.9689 2.4299 0.0077 0.0062 45.8 5.7 0.9729 0.0481 0.7632 0.6254 0.8878 0.7579 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 1.7780 1.9164 0.0041 0.0044 52.2 7.1 0.9944 0.0317 0.3228 0.3318 0.3714 0.4055 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 1.2221 1.4414 0.0029 0.0034 55.5 7.4 0.9967 0.0308 0.2139 0.2550 0.2618 0.3178 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 1.0503 1.2716 0.0026 0.0031 56.4 7.3 0.9970 0.0302 0.1876 0.2308 0.2271 0.2836 

𝑆𝑢𝑏.= 6             

ICA 0.9417 0.7595 0.0059 0.0059 49.9 7.8 0.9945 0.0273 0.3510 0.2886 0.3908 0.3141 

NMF 6.0819 6.1987 0.0117 0.0115 42.8 6.6 0.9497 0.0683 0.9108 0.7847 1.0580 0.8972 

RSNMU 4.2112 4.1512 0.0100 0.0093 44.2 6.8 0.9719 0.0540 0.4673 0.4298 0.5858 0.5571 
RSPNMU 3.8262 3.7149 0.0100 0.0096 44.3 6.8 0.9728 0.0556 0.4435 0.4466 0.5670 0.5782 

GPOD 0.8392 0.7685 0.0037 0.0036 52.1 6.0 0.9943 0.0276 0.3074 0.2690 0.3469 0.2936 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 0.4663 0.5719 0.0023 0.0024 57.0 6.7 0.9974 0.0279 0.1651 0.1923 0.1920 0.2287 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.4122 0.5453 0.0018 0.0019 59.0 6.7 0.9978 0.0271 0.1209 0.1626 0.1419 0.1941 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.3894 0.5667 0.0016 0.0017 59.6 6.5 0.9979 0.0258 0.1101 0.1522 0.1302 0.1816 
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5.4.4 Test on hyperspectral image databases 

Following the quantitative validation with two hyperspectral signal datasets, in order to 

verify the usefulness of the proposed method on higher dimensional datasets, the proposed 

workflow is applied to two sets of hyperspectral image databases including CAVE and our 

in-house face database by comparing the performance with GPOD, ICA [Bianco10], 

[Hyvärinen00], NMF [Gillis14], RSNMU [Gillis13], and RSPNMU [Gillis12].  

 

 

Table 5.4: Summary of the performance results ICA, NMF, RSNMU, RSPNMU, GPOD, 

and LPOD on the in-house database. 

 
 ∆𝑬𝒂𝒃 RMS PSNR (dB) GFC MI D65 to A MI A to D65 

Methods Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

𝑆𝑢𝑏.= 3             

ICA 5.2314 5.2818 0.0195 0.0185 36.8 7.3 0.9395 0.1418 1.0971 1.0050 1.5468 1.2902 
NMF 9.3288 12.886 0.0354 0.0449 33.9 9.2 0.9148 0.1661 1.2454 1.0721 1.6029 1.3371 

RSNMU 9.6341 12.532 0.0336 0.0444 33.9 8.8 0.9306 0.1592 0.9359 0.9051 1.2152 1.2309 

RSPNMU 9.7917 12.410 0.0363 0.0471 34.1 12.8 0.9369 0.1481 0.9860 1.0193 1.2455 1.3264 
GPOD 4.3573 4.9381 0.0184 0.0172 37.3 7.2 0.9413 0.1406 1.0456 0.9495 1.3579 1.1436 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 2.6896 3.5335 0.0106 0.0091 41.1 5.8 0.9725 0.0738 0.6247 0.6481 0.7942 0.8730 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 2.3705 3.3125 0.0088 0.0073 42.5 5.6 0.9793 0.0609 0.4665 0.5362 0.5983 0.7200 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 2.1721 2.9949 0.0084 0.0068 43.0 5.9 0.9830 0.0541 0.3946 0.4838 0.5149 0.6557 

𝑆𝑢𝑏.= 4             

ICA 1.8990 2.0042 0.0142 0.0126 38.9 6.4 0.9483 0.1235 0.9220 1.1235 1.0178 1.3377 

NMF 7.7031 10.843 0.0313 0.0383 34.5 8.7 0.9207 0.1597 1.2298 1.0897 1.5782 1.3343 
RSNMU 7.4452 8.9995 0.0268 0.0306 35.0 8.0 0.9338 0.1531 0.8594 0.9098 1.1780 1.2505 

RSPNMU 7.2814 8.5673 0.0283 0.0313 35.3 12.4 0.9405 0.1483 0.9405 1.0407 1.2059 1.3552 

GPOD 1.8204 1.8930 0.0140 0.0124 39.1 6.3 0.9485 0.1286 0.9306 1.1306 1.0280 1.3544 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 1.9284 2.6498 0.0086 0.0068 42.5 5.3 0.9781 0.0633 0.4332 0.4952 0.5964 0.6985 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 1.7406 2.4828 0.0076 0.0058 43.6 5.4 0.9831 0.0528 0.3428 0.4222 0.4612 0.5878 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 1.6181 2.3292 0.0073 0.0055 44.1 6.0 0.9866 0.0453 0.2987 0.3863 0.4080 0.5438 

𝑆𝑢𝑏.= 6             

ICA 0.7652 0.8261 0.0094 0.0066 41.7 5.5 0.9751 0.0677 0.2135 0.2430 0.2386 0.2560 

NMF 7.0359 10.957 0.0248 0.0346 36.8 8.6 0.9245 0.1597 0.8674 0.9219 1.1282 1.1590 

RSNMU 5.5414 6.7945 0.0214 0.0230 36.3 7.4 0.9414 0.1414 0.6775 0.6324 0.8274 0.8014 
RSPNMU 5.2329 6.0331 0.0219 0.0228 37.3 12.7 0.9479 0.1331 0.7031 0.7665 0.8623 0.8974 

GPOD 0.7448 0.8067 0.0091 0.0063 42.0 5.4 0.9757 0.0666 0.2163 0.2445 0.2416 0.2573 

𝐿𝑃𝑂𝐷𝑘=𝜌1
 0.9100 1.4119 0.0066 0.0046 44.6 4.9 0.9841 0.0506 0.2280 0.3131 0.2867 0.4228 

𝐿𝑃𝑂𝐷𝑘=𝜌2
 0.8794 1.3388 0.0061 0.0042 45.3 5.4 0.9878 0.0421 0.1926 0.2692 0.2386 0.3472 

𝐿𝑃𝑂𝐷𝑘=𝜌3
 0.8714 1.3617 0.0060 0.0041 45.9 6.6 0.9912 0.0333 0.1843 0.2557 0.2303 0.3344 

 

 

As shown in Table 5.3 and 5.4, increasing the subspace dimension for NMF, RSNMU, and 

RSPNMU marginally affects the results of the spectral and colorimetric performances with 

regard to the reconstructed reflectance spectra. However, the results of those methods 

cannot be superior to the achievements of ICA with respect to all of five error metrics for 

each database, even when the increased subspace dimension is considered. The results 

achieved establish GPOD as a suitable approach to compress hyperspectral image 

databases as it is more accurate in terms of spectral approximation and also provides lower 

colorimetric differences when changing illuminants. Whereas GPOD and ICA in ∆𝐸𝑎𝑏 

yield sightly better results in the six dimensional subspace on in-house face database, the 
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conducted results indicate that the proposed method, 𝐿𝑃𝑂𝐷𝑘=𝜌3 , is able to reliably 

accomplish significant improvement according to the metrics considered with two real 

databases among all the testing methods. 

 Summary 

In this Chapter, we have proposed local-based proper orthogonal decomposition (LPOD) 

methods by employing the k-means clustering approach, efficiently reducing the 

dimension of the given spectral data that were highly correlated to neighboring spectral 

samples. Whereas we applied k-means clustering to the set of snapshots for achieving good 

partitions, the proposed approach is flexible enough to accommodate other clustering 

methods such as hierarchical clustering, self-organizing maps (SOM), partitioning around 

medoids (PAM), etc. Note that the main reason for using k-means clustering was its 

simplicity and computational efficacy. To avoid imposing the limitations of the choice of 

the parameter 𝑘 as a constant for each dataset, we first analyzed the quality of the clustering 

results based on the cluster validity index such as Calinski-Harabasz that can determine the 

optimal number of clusters 𝑘. However, we found that the determination of the optimal 

number of clusters by Calinski-harabasz index did not bring critical improvements on our 

scheme. Subsequently, we further devised multi-scale approach for choosing the number 

of clusters to enhance the spectral and colorimetric accuracy. 

 

For a comprehensive study on the effectiveness of our reduced-order data modeling 

approach where six leading and two conventional techniques on three public domain 

databases and one our initial database in five error metrics were established, experimental 

results showed that the proposed method achieved highly competitive accuracy in terms of 

five considered error metrics on four different database. 
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  Design of New Framework for Face 

Alignments 

Hyperspectral imaging (HI) applied to non-rigid objects introduces new challenges such as 

inter-band misalignments (IBMs) resulting from subject motion during data acquisition. 

To deal with IBMs in HFIs, we investigate four different individual techniques: 1) manual 

alignment approaches (AAs) based on selecting regions of interest, such as fixed boundary 

box-based AA (FBB) [Denes02], [Di10], [Szeliski10], [Uzair13], [Uzair15]  and eye 

coordinate-based AA (EC); 2) iterative convex optimization (ICO) processes for face 

alignment, such as RASL [Peng12] and ORIA [Wu12]; 3) landmark-based AAs, such as 

DRMF [Asthana13], IPCM [Asthana14], SDM [Xiong12], CDM [Yu13], TSPM [Zhu12]; 

and 4) two popular image AAs, such as Lucas-Kanade (LK) [Baker04] and SIFTFlow 

[Liu11]. In the following sections, we analyze those approaches on our database towards 

experimental determination of promising AAs. 

 

 Two conventional alignment approaches (FBB and EC) 

We suppose that we are given a set of HFIs 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑛} in ℝ𝑤×ℎ×𝑛 where 𝑤 and ℎ 

are width and height of HFIs, respectively. In aligning 𝑚-pixel region of interest (ROI) 

from {𝐼𝑖}𝑖=1
𝑛 , 𝑖 ∈ [1, 𝑛], we define a function of the reshaping operation (i.e., vectorization) 

𝑓:ℝ𝑤×ℎ×𝑛 → ℝ𝑚×𝑛, typically for 𝑚 ≫ 𝑛. To approximate a set of the aligned HFIs, 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑛} ∈ ℝ𝑚×𝑛 , using fixed bounding boxes (FBB) and eye coordinates (EC) 

approaches, we define the canonical frame of the ROI within 𝐼𝑖 as being 𝑤′ × ℎ′ pixels and 

the distance between the selected eye points is normalized to 𝜉  pixels. We note that 

whereas FBB [Denes02], [Di10], [Szeliski10], [Uzair13] is mostly retained to align HFDs 

by selecting the initial location of the ROI from sequential images, we adopt it for a task 

to build the ground truth in order to compare the studied metrics used to predict alignment 

quality (AQ) in Chapter 7. 

 

In this dissertation, the canonical points of FBB to select the fixed ROI in 𝐼𝑖 are initially 

obtained from the 𝜅th eye coordinate set in EC. The overview of FBB is illustrated in Fig. 
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6.1 where we choose 𝜅 = 1  in our experiments. The selection of the ROI using the 

canonical points is the same as EC approach. 

 

 

 
 

Figure 6.1: Overview of the fixed bounding box (FBB) approach where 𝜅 = 1 in our 

experiments. 

 

 

The approach using the manual selection of eye coordinates is the most straightforward 

approach to address IBMs in HFIs. However, it should be hard to consistently select two 

eye coordinates at the same positions by hand over a large HFI set such as IRIS-HFD-2014. 

As shown in Fig. 6.2, the eye coordinates 𝐸𝑖 = [𝑒1, 𝑒2]
𝑇 were manually selected to middle 

of the eyes for each 𝐼𝑖 where a point 𝑒 represents a pair of the coordinates (𝑥, 𝑦) in ℝ2. 

 

To find a set of the domain transformation {𝜏𝑖}𝑖=1
𝑛 : ℝ2 → ℝ2 in a Lie group 𝔾 [Peng12], 

we define 𝜏𝑖 ← 𝑇 and the canonical points 𝐸′ = [𝑒1
′ , 𝑒2

′ ] ∈ ℝ𝑤′×ℎ′
 where 𝑇 denotes a 3 ×

3 similarity transformation matrix [Hartley00]. The similarity transformation 𝑇 is defined 

as:  

𝑇 = [
𝑡1 𝑡2 𝑡3
𝑡4 𝑡5 𝑡6
0 0 1

]. (6.1) 

To estimate six unknown coefficients of 𝑇, we need to find one more points 𝑒3 and 𝑒3
′  for 

𝐸 and 𝐸′, respectively, which can be defined as: 
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Figure 6.2: Overview of the eye coordinates (EC) approach. 

 

 

𝑒3 = 𝑒1 + 𝛾𝑇(𝑒2 − 𝑒1), 𝑒3
′ = 𝑒1

′ + 𝛾𝑇(𝑒2
′ − 𝑒1

′) for 𝛾 = [
0 1

−1 0
]. (6.2) 

Then, we denote 𝑒 = (𝑥, 𝑦, 1) as the homogeneous coordinates of a point [Hartley00] to 

solve 𝑒ℓ
′ = 𝑇𝑒ℓ, ℓ ∈ [1,2,3] such that: 

[

𝑒ℓ,1
′

𝑒ℓ,2
′

1

] = [
𝑡1 𝑡2 𝑡3
𝑡4 𝑡5 𝑡6
0 0 1

] [

𝑒ℓ,1

𝑒ℓ,2

1
] → {

𝑒ℓ,1
′ = 𝑡1𝑒ℓ,1 + 𝑡2𝑒ℓ,2 + 𝑡3

𝑒ℓ,2
′ = 𝑡4𝑒ℓ,1 + 𝑡5𝑒ℓ,2 + 𝑡6

1

. (6.3) 

Without loss of generality, Equation (6.3) can be rewritten in block form as: 

[
 
 
 
 
 
 
𝑒1,1

′

𝑒1,2
′

𝑒2,1
′

𝑒2,2
′

𝑒3,1
′

𝑒3,2
′ ]

 
 
 
 
 
 

= [
Ω3×3 0

0 Ω3×3
]

[
 
 
 
 
 
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6]

 
 
 
 
 

, for Ω3×3 = [

𝑒1,1 𝑒1,2 1

𝑒2,1 𝑒2,2 1

𝑒3,1 𝑒3,2 1
]. (6.4) 

Finally, we can derive 𝑇 by solving (6.4) as: 
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[
 
 
 
 
 
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6]

 
 
 
 
 

= [
Ω3×3 0

0 Ω3×3
]
−1

[
 
 
 
 
 
 
𝑒1,1

′

𝑒1,2
′

𝑒2,1
′

𝑒2,2
′

𝑒3,1
′

𝑒3,2
′ ]

 
 
 
 
 
 

. (6.5) 

After finding 𝜏𝑖 from 𝑇, we can compute the aligned images as: 

𝑎𝑖 = 𝑓(𝐼𝑖 ∘ 𝜏𝑖), for 𝑖 ∈ [1, 𝑛], (6.6) 

where 𝐼𝑖 ∘ 𝜏𝑖 denotes an image warping function such that 𝐼𝑖 ∘ 𝜏𝑖(𝑥, 𝑦) ≜ 𝐼𝑖(𝜏𝑖(𝑥, 𝑦)).  

 

 

 
 

Figure 6.3: Results of FBB approach on ID: F009_02 in IRIS-HFD-2014-V1 where we 

select the canonical frame to be 140 × 160 pixels and 𝜉 = 80 pixels for the distance 

between two eye coordinates throughout this dissertation. 

 

 

 
 

Figure 6.4: Results of EC approach on ID: F009_02 in IRIS-HFD-2014-V1. 
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Figure 6.3 and 6.4 show the results of FBB and EC approaches, respectively. Note that the 

primary consideration specific to FBB approach is to establish an alignment-baseline to 

specify subject’s movement during data acquisition as mentioned above. Therefore, there 

is no improvement in the results of FBB as evidenced in Fig. 6.3. 

 

 Iterative convex optimization approaches (RASL and 

ORIA) 

 
 

Figure 6.5: Overview of RASL approach. 

 

 

 

Robust alignment by sparse and low-rank decomposition (RASL) [Peng12] and online 

robust image alignment (ORIA) [Wu12] based on iterative convex optimization (ICO) 

approach could be considered promising approaches to overcome IBMs in HFI. RASL 

seeks an optimal set of image domain transformations to minimize the rank of pairs of the 

transformed images:  

min
𝐴,𝜖,𝜏,

rank(𝐴) + 𝜒‖𝜖‖0 s. t.  𝜃 ∘ 𝜏 = 𝐴 + 𝜖,  (6.7) 

where 𝜒 > 0 represents a parameter for the rank of the solution against the sparsity of the 

error, 𝜏 indicates a set of transformations, 𝜖 is the error, and ‖∙‖0 stands for ℓ0-norm. 𝐴 is 

a matrix of stacking vectors as: 
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𝐴 ≜ [𝑓(𝐼1)|𝑓(𝐼2)|⋯ |𝑓(𝐼𝑛)] ∈ ℝ𝑚×𝑛.  (6.8) 

𝜃 ∘ 𝜏 ≜ [𝑓(𝐼1
0)|𝑓(𝐼2

0)|⋯ |𝑓(𝐼𝑛
0)] ∈ ℝ𝑚×𝑛 where 𝐼𝑖

0 = 𝐼𝑖 ∘ 𝜏𝑖 in [Peng12]. 

 

Whereas RASL achieves impressive performance with high accuracy and consistency of 

face alignment for the entire in-house database, it requires eye coordinates for each sub-

band of the input HFI set and has high computational cost and memory-demand. Thus, it 

becomes increasingly impractical for dynamically growing the total number of image sets. 

Figure 6.5 shows the overview of RASL alignment approach on a HFI set. The results of 

RASL on ID: F009_02 of IRIS-HFD-2014-V1 are shown in Fig. 6.6. 

 

 

 
 

Figure 6.6: Results of RASL approach on ID: F009_02 in IRIS-HFD-2014-V1. 

 

 

 
 

Figure 6.7: Overview of ORIA approach. 
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To address the limitations of RASL while maintaining the comparable accuracy of face 

alignment with low computational cost and memory-demand, ORIA was applied to solve 

a sequence of convex optimization to minimize an 𝑙1-norm and update previously well-

aligned images at the same time. ORIA aims to find an optimal transformation 𝜏: ℝ2 → ℝ2 

by solving the sparsely regularized alignment [Wu12]: 

 min
𝜔,𝜖,𝜏,

‖𝜖‖1 s. t.  𝑓(𝐼𝑖 ∘ 𝜏) = 𝛼𝜔 + 𝜖, for 𝑖 ∈ [1, 𝑛] (3.9) 

where  ‖⋅‖1 denotes the 𝑙1 -norm, 𝜔  stands for the reconstruction coefficients, 𝜖  is the 

reconstruction errors, and 𝛼  is initially defined as 𝛼 = 𝑓(𝐼𝜅 ∘ 𝜏𝜅) where 𝜏𝜅  is achieved 

from EC. When ORIA finds 𝜏, 𝛼 is simultaneously updated as being 𝛼 = 𝑎𝑖 such that 𝑎𝑖 =
𝑓(𝐼𝑖 ∘ 𝜏). Figure 6.7 illustrates the overview of ORIA approach on an input HFI set. 

 

 

 
 

Figure 6.8: Results of ORIA approach on ID: F009_02 in IRIS-HFD-2014-V1. 

 

 

 
 

Figure 6.9: Example of a failure of ORIA on ID: F129_01 in IRIS-HFD-2014-V1 at 600 

nm, 630 nm, 660 nm, and 690 nm. 

 

 

Although ORIA has lower computational cost than RASL and achieves better alignment 

images than FBB in most of the HFI sets in our database as shown in Fig. 6.8, it is more 

sensitive to the substantial subject motion compared to RASL. This is because ORIA only 

utilizes one EC set as the canonical points instead of using the entire EC set as RASL does. 

Furthermore, if ORIA fails to align one sub-band of an input HFI set, all other sub-bands 

are affected and, accordingly, will be misaligned. For example, on ID: F129_01 in our 
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database where it innately contains substantial subject motion from 630 nm to 700 nm, 

ORIA fails to establish correct alignment at those sub-bands shown in Fig. 6.9. 

 

 Landmark-based alignment approaches (LAs) 

 
 

Figure 6.10: A framework of landmark-based alignment approach. 

 

 

 

A viable way to deal with the complexity of aligning HFIs can be landmark-based AAs. 

Detecting and Fitting landmarks have been typically used to address the problem of 

tracking and registering deformable facial models. Landmarks are a distinguishable point 

set to represent an appearance or shape of the facial model. To perform a framework of 

detecting and localizing facial features, facial models are initially predefined by manually 

annotating landmarks throughout the entire data set. The predefined facial models are then 

trained to obtain a canonical reference frame that is typically defined by a mean shape 

[Asthana13]. Figure 6.10 illustrates an overall framework of the landmark-based alignment 

approach. 

 

Whereas face detectors in [Asthana13], [Asthana14], [Xiong12], [Yu13] widely used for 

color or gray images yield high accuracy of the performance of face detection, they yielded 
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unconvincing results for HFIs because HI introduces high variations of intensity at 

different wavelengths. This observation implies that those landmark-based alignment 

approaches are heavily sensitive to HFIs with high intensity variations. However, we 

heuristically found that tree structure part model (TSPM) [Zhu12] is capable of accurately 

detecting faces over the entire HFI sets in our database. Thus, we utilize TSPM to 

incorporate other landmark-based AAs in the initialization of the facial models. 

 

For experimental verification of fitting landmarks to align HFIs, we examine five state-of-

the-art landmark-based AAs: 1) TSPM [Zhu12], 2) supervised descent methods (SDM) 

[Xiong12], 3) cascaded deformable model (CDM) [Yu13], 4) discriminative response map 

fitting (DRMF) [Asthana13], and 5) incremental parallel cascade model (IPCM) 

[Asthana14]. The initial position of each facial models of the studied landmark-based AAs 

is determined by the estimated boundary boxes involved in the results of TSPM on our 

database. 

 

 

 
  

Figure 6.11: Sample results of TSPM [Zhu12] at 420 nm, 500 nm, 600 nm, and 700 nm 

tested on ID: F048_01 in IRIS-HFD-2014-V1. 

 

 

 

 
  

Figure 6.12: Sample results of SDM [Xiong12] at 420 nm, 500 nm, 600 nm, and 700 

nm tested on ID: F048_01 in IRIS-HFD-2014-V1. 
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Figure 6.13: Sample results of CDM [Yu13] at 420 nm, 500 nm, 600 nm, and 700 nm 

tested on ID: F048_01 in IRIS-HFD-2014-V1. 

 

 

 

 
  

Figure 6.14: Sample results of DRMF [Asthana13] at 420 nm, 500 nm, 600 nm, and 

700 nm tested on ID: F048_01 in IRIS-HFD-2014-V1. 

 

 

 

 
  

Figure 6.15: Sample results of IPCM [Asthana14] at 420 nm, 500 nm, 600 nm, and 700 

nm tested on ID: F048_01 in IRIS-HFD-2014-V1. 
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(a) TSPM 

 

(b) IPCM 

 

 
 

Figure 6.16: Examples of inaccurate localizations of landmark points: (a) the results of 

TSPM [Zhu12] and (b) the results of IPCM [Asthana14] at 600 nm and 700 nm. As 

illustrated in (a) and (b). 

 

 

 

Landmark-based AAs, which are able to offer fully automatic processes, have already 

achieved remarkable performance over color or gray images captured by traditional 

cameras in uncontrolled environments. Nevertheless, as shown in Fig. 6.11 to Fig. 6.16, 

the landmark-based AAs often failed either to update correct facial model parameters 

related to controlling the shape of the facial model particularly at short wavelengths or to 

localize consistent landmark points over the HFI sets, even though we properly assigned 

the initial locations to each facial model of the conducted landmark-based AAs as 

mentioned above. 

 

According to our observations we suspect two main reasons: 1) lack of the photon energy 

at short wavelengths near blue ranges in the visible spectrum deteriorate the performance 

of landmark-based AAs; and 2) the landmark models trained with dissimilar facial 

databases cannot be directly applied to HFIs without training them. Indeed, for annotating 

the facial models, it is generally necessary to manually and steadily select more than 30 

landmarks for each image. This becomes impractical when applied to a large HFI set. 
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 Image alignment approaches (LK and SIFTFlow) 

An alternative way to directly handle HFI alignment can be adopting general image 

alignment approaches: Lukas-Kanade (LK) [Baker04] and SIFTFlow [Liu11]. The image 

alignment techniques are frequently used for image stitching and stereo matching [Liu11]. 

The challenging problems in image alignment are typically solved using gradient decent. 

Baker and Matthew [Baker04] presented comprehensive review of LK approaches to align 

a reference image 𝐼𝑟 to an input image 𝐼𝑡 by computing optical flow. LK methods based on 

Gauss-Newton optimization aim to minimize the sum of squared error between template 

and target images which can be formulated as [Baker04]: 

∑(𝐼𝑡(𝑊(𝑝; 𝜏)) − 𝐼𝑟(𝑝))
2

𝑝

 (3.10) 

where 𝑝 denotes pixel coordinates of an image, 𝑊(𝑝; 𝜏) indicates the parameterized set of 

the warps. LK methods iteratively update the parameter 𝜏 ← 𝜏 + Δ𝜏  until 𝜏  converges. 

Figure 6.17 shows the overview of LK approach. We note that to estimate the optimal 

transformation 𝜏 in RASL and ORIA approaches was directly inspired by the primary 

consideration of LK algorithms associated with the warp update rule. 

 

 

 
 

Figure 6.17: Overview of LK approach. 

 

 

For SIFTFlow [Liu11], Liu et al. utilized scale-invariant feature transform (SIFT) to 

characterize local gradient information on reference and target images. The overview of 

SIFTFlow approach is illustrated in Fig. 6.18. Liu et al. proposed an objective function 

containing a data term, small displacement term, and smoothness term for spatial 
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regularization. The data term is to match SIFT descriptors along the flow vectors from two 

images. The small displacement term includes the flow vectors. The smoothness term is 

used to deal with matching outlier and flow discontinuities. We refer the interested reader 

to [Liu11] and the references therein for more detail. 

 

 

 
 

Figure 6.18: Overview of SIFTFlow approach. 

 

 

 
 

Figure 6.19: An example of a failure of LK approach on ID: F048_01 in IRIS-HFD-

2014-V1. 

 

 

For experimental determination of image alignment approaches, we investigate the 

accuracy of HFI alignment on our database. For the reference image, we select the first 

sub-band of the input HFI set as mentioned in the previous sections. We iteratively update 

the target images from 430 nm to 700 nm for increments to 10 nm. Figure 6.19 and 6.20 
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show the results of LK and SIFTFlow, respectively. In most of our HFI sets, both image 

alignment approaches are unsuccessful to handle alignment problems in HFI including high 

variations of intensity at different wavelengths. 

 

 

 
 

Figure 6.20: An example of a failure of SIFTFlow approaches on ID: F048_01 in IRIS-

HFD-2014-V1. 

 

 

 

Therefore, for hyperspectral face alignment approaches, we utilize two manual approaches 

and two ICO approaches corresponding to FBB, EC, RASL, and ORIA, which can deal 

with IBMs in HFI throughout this dissertation. In Fig. 6.21, we show the aligned HFIs and 

the corresponding sRGB images rendered under CIE D65 where ROIs marked in rectangles 

are magnified in the last column. To visually compare the aligned HFIs, we connected the 

left eye at 420 nm to the right eyes at 700 nm. As illustrated with the red line in Fig. 6.21 

(a), the subject tended to move toward the bottom right-hand corner during data acquisition. 

Thus, this HFI set cannot be sufficiently aligned by FBB approach due to the presence of 

the subject’s movement whereas EC, RASL, and ORIA explicitly achieved well-aligned 

results, see Fig. 6.21(b)-(d). Nevertheless, on the enlarged ROIs in the last column of Fig. 

6.21, we can observe that there are still distorted colors near the right jaw particularly in 

the result of EC. Though vital to produce visually acceptable alignment results from RASL 

and ORIA, such AAs are nevertheless imperfect. It is thus strategic to predict the better-

quality alignment using an objective score over a large HFI set as will be mentioned in 

Chapter 7. 
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(a) FBB 
 

 
 

(b) EC 
 

 
 

(c) RASL 
 

 
 

(d) ORIA 
 

 
 

Figure 6.21: Examples of the aligned HFIs at 420 nm, 500 nm, 600 nm, and 700 nm 

according to (a) FBB, (b) EC, (c) RASL, and (d) ORIA. The color images in the fifth 

column are displayed using sRGB rendered with full sub-bands under CIE D65 where 

the regions of interest (ROIs) marked with rectangles are magnified and displayed in 

the last column. 

 

 Summary 

In this Chapter, to address IBMs involved in HFI, we employed four different techniques: 

1) manual approaches based on selecting regions of interest, such as fixed bounding box-

based AA (FBB) [Szeliski10] and eye coordinate-based AA (EC) [Denes02], [Di10], 

[Uzair13]; 2) iterative convex optimization (ICO) processes for face alignment, such as 

RASL [Peng12] and ORIA [Wu12]; 3) landmark-based AAs, such as DRMF [Asthana13], 

IPCM [Asthana14], SDM [Xiong12], CDM [Yu13], TSPM [Zhu12]; and, 4) image AAs, 

such as Lucas-Kanade (LK) [Baker04] and SIFTFlow [Liu11]. For experimental 

determination of HFI alignment, we examined all of the studied techniques on our database. 

However, landmark-based AAs and image AAs were unsuccessful to align our HFIs in the 

experiments. Therefore, for hyperspectral face AAs, we employ two manual AAs and two 

ICO-based AAs corresponding to FBB, EC, RASL, and ORIA to address IBMs in HFIs 

throughout this dissertation. 
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 Proposed Qualitative Assessments of 

Alignment Methods 

In this Chapter, we propose two qualitative prediction models based on: 1) a principal 

curvature map for evaluating the similarity index between sequential target bands and a 

reference band in the HFI using average pooling as a full-reference metric; and 2) the 

cumulative probability of target colors in the HSV color space for evaluating the alignment 

index of a single sRGB image rendered using the entire bands of the HFI as a no-reference 

metric. Figure 7.1 illustrates the overview of the proposed framework. 

 

 

 
Figure 7.1: Overview of the proposed framework (best viewed in color): (a) input, (b) 

alignment, and (c) assessing improved alignment via two proposed qualitative 

prediction models. 
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 Curvature-based alignment quality assessment 

We present the proposed method for a full reference alignment quality assessment (FR-

AQA) based on principal curvature map [Deng07], [Stokes98] derived by computing the 

maximum or minimum eigenvalues of a 2 × 2 Hessian matrix where the Hessian matrix 

describes the local curvature of the image. A major difficulty for FA-AQA with HFIs is 

the existence of high intensity changes at different wavelengths. To handle varying 

intensity levels depending on the wavelength in HFIs, we adopt the basic framework of 

recently published gradient map-based image quality assessments (IQAs) [Liu12], [Xue14]. 

A primary difference in our approach compared to two existing GM-based approaches is 

that we utilize the principal curvature map as a local quality map in order to evaluate the 

pixel-wise gradient similarity index between the reference and the target images in each 

sub-band of the HFI set. The proposed method can provide more consistent and sufficient 

information for describing facial features as shown in Fig. 7.2. 

 

To obtain the principal curvature map, we first convolve an input aligned image 𝐴 at the 

point 𝑝 with a variable-scale Gaussian 𝑔(𝑝, 𝜎) as a function 𝑑(𝑝, 𝜎) = 𝑔(𝑝, 𝜎) ⊗ 𝐴(𝑝) 

where ⊗ is the convolution operation at the point 𝑝. We then form a 2 × 2 Hessian matrix 

as in [Deng07]: 

𝐻𝑀(𝑝) = [
𝐷𝑥𝑥(𝑝) 𝐷𝑥𝑦(𝑝)

𝐷𝑥𝑦(𝑝) 𝐷𝑦𝑦(𝑝)
], (7.1) 

where 𝐷𝑥𝑥, 𝐷𝑥𝑦, and 𝐷𝑦𝑦 denote the second-order derivatives of the input image at point 

𝑝. 

 

After building the Hessian matrix 𝐻𝑀(𝑝) , we compute the maximum and minimum 

eigenvalues, 𝜆1 and 𝜆2, respectively, from 𝐻𝑀(𝑝). Next, we obtain the principal curvature 

map (PCMP) of the input image as 𝑃𝐶𝑀𝑃 = |𝜆1| where |∙| refers to the absolute value. 

Finally, a curvature model (CM) can be given by normalizing 𝑃𝐶𝑀𝑃 as: 

𝐶𝑀(𝑝) =
𝑃𝐶𝑀𝑃(𝑝)

max(𝑃𝐶𝑀𝑃(𝑝))
. (7.2) 

 

Note that to achieve high accuracy of AQA, we only utilize the maximum eigenvalue 𝜆1 of 

the Hessian matrix because we heuristically found that the 𝐶𝑀 built from the minimum 

eigenvalue 𝜆2 tends to be unpredictable where inconsistent curvature lines or edges result 

in reductions in the accuracy of AQA. 
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(a) Inputs 

 

(b) GSM 

 

(c) GMS 

 

(d) CMS (proposed) 

 

 
 

Figure 7.2: A comparison of the results of (b) gradient similarity model (GSM) [Liu12], 

(c) gradient magnitude similarity (GMS) [Xue14], and (d) the proposed method based 

on curvature model similarity (called CMS) at 420 nm, 550 nm, and 700 nm on the 

results of RASL [Peng12] applied to ID: F067_01 in IRIS-HFD-2014-V1 as shown in 

(a). 
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Given 𝑛 aligned grayscale HFIs 𝐴𝑖 , 𝑖 ∈ [1, 𝑛], in an input set, we choose the first band 

image (i.e. 420 nm) as a reference image 𝐴𝑖=1 and the remaining bands as target images 

𝐴𝑗, 𝑗 ∈ [2, 𝑛]. We first compute 𝐶𝑀𝑟 for 𝐴𝑖=1 once and then iteratively compute 𝐶𝑀𝑗 for 

𝐴𝑗 until 𝑗 = 𝑛. The CM similarity (CMS) score is defined as: 

𝐶𝑀𝑆(𝑗) =
1

𝑘
∑

2 ∙ 𝐶𝑀𝑟(𝑝) ∙ 𝐶𝑀𝑗(𝑝) + 𝐶

𝐶𝑀𝑟(𝑝)2 + 𝐶𝑀𝑗(𝑝)2 + 𝐶

𝑘

𝑝=1

, (7.3) 

where 𝐶 denotes a small positive constant that supplies numerical stability by keeping the 

denominator from being zero. We set 𝐶 to 10−5 in our experiments. 𝑚 is the total number 

of pixels in the image. 

 

 

  
(a) FBB (b) EC 

  
(c) RASL (d) ORIA 

Figure 7.3: A comparison of the results of four alignment approaches with the 

corresponding sRGB images rendered under CIE D65. The HFIs are taken from ID: 

F067_01 in IRIS-HFD-2014-V1. 

 

 

 

A single overall score for the AQ in all of the bands of the input HFI set using average 

pooling is computed as: 

𝐶𝑀𝑆𝑀 =
1

𝑛 − 1
∑ 𝐶𝑀𝑆(𝑗)

𝑗

. (7.4) 

In Table 7.1, we show the scores of the proposed CMS over the aligned HFI sets produced 

by FBB, EC, RASL, and ORIA by comparing two existing approaches: 1) gradient 
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similarity model (GSM) [Liu12] and 2) gradient magnitude similarity (GMS) [Xue14]. 

Figure 7.3 shows that the AQ of RASL is visually better than FBB. The scores of CMS in 

Table 7.1 agree with the visual assessment. However, both GSM and GMS incorrectly 

indicate that the AQ of FBB is better than RASL as opposed to our observation.  

 

Accordingly, the proposed CMS offers better prediction for the AQ among the four aligned 

HFI sets. Note that higher scores indicate better AQ on an HFI set. These examples validate 

that the proposed method can accurately predict the better-quality alignment among four 

aligned HFI sets. Despite the efficacy of the proposed CMS in predicting AQ, CMS needs 

to iteratively evaluate the similarity scores over full sub-bands in the input HFI set. Thus, 

CMS has high computational cost. To improve the computational cost, we propose a no-

reference AQA based on the cumulative probability of target colors in the HSV color space 

[Jayaraman10] for an overall AQA with a single sRGB image. 

 

 

Table 7.1: A comparison of the reported scores for the sample sets in Fig. 7.2. 

 

Metrics FBB EC RASL ORIA 

GSM 0.6581 0.6870 0.6364 0.6789 

GMS 0.6171 0.6418 0.5807 0.6307 

CMS (proposed) 0.5742 0.7574 0.7672 0.7693 

 

 Hue-based alignment quality assessment 

In this section, we propose a no-reference alignment quality assessment (NR-AQA) based 

on the cumulative probability of target colors in the HSV color space in Fig. 7.4 for 

evaluating the alignment quality of a single sRGB image rendered with full sub-bands 

under CIE D65 [Moan14], instead of evaluating the sharpness or blurriness of a target 

image [Hassen13], [Liu12], [Mittal12], [Narvekar11], [Vu12].  

 

The proposed method was inspired by the presence of distorted colors caused by inter-band 

misalignments (IBMs) as illustrated in Fig. 3.12. In general, the distorted colors cannot be 

seen in natural color facial images. More specifically to analyze the effects of IBMs in 

HFIs, both of the misaligned and aligned sRGB images produced by the selected alignment 

approaches such as FBB and RASL are projected into the HSV color space [Jayaraman10]. 

As shown in Fig. 7.5, the color distribution of the misaligned image is more widely spread 

over the HSV color space compared to the aligned image, which appears to be concentrated 

on the red color of the hue component. Notice that in Fig. 7.5(d), the dark colors with low 

𝑉 values are produced by the subject’s clothes where the colors are not presented in the 
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misaligned image in Fig. 7.5(a). These observations imply that we can predict the 

alignment quality (AQ) of a single sRGB image by exploring the distribution of the 

distorted colors caused by IBMs. 

 

 

 
 

Figure 7.4: HSV color space. 

 

 

 

To convert the color space from sRGB [Stokes98] to HSV [Jayaraman10] shown in Fig. 

7.6, which is specified by three components: hue (𝐻), saturation (𝑆), value (𝑉), we first 

find the maximum and minimum component values among 𝑅, 𝐺, and 𝐵 ∈ [0, 1] as: 

𝐶𝑚𝑎𝑥 ≔ max(𝑅, 𝐺, 𝐵) , 𝐶𝑚𝑖𝑛 ≔ min(𝑅, 𝐺, 𝐵), (7.5) 

where 𝑅, 𝐺, and 𝐵 stands for the red, green, and blue components in the sRGB color space, 

respectively. Next, we compute the saturation 𝑆 as: 

𝑆 = {
∆

𝑉
𝑖𝑓 𝑉 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (7.6) 

where the value 𝑉 = 𝐶𝑚𝑎𝑥 and △≔ 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛. Note that if 𝑆 = 0, then 𝐻is undefined. 

The preliminary hue, 𝐻̃ ∈ [−1,5] is then computed as: 
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(a) FBB 

 

(e) 0° 
 

(f) 180° 
 

 

  
(d) RASL 

 

(e) 0° 
 

(f) 180° 
 

Figure 7.5: Analyses of the effects of IBMs in the HSV color space. For the misaligned 

sRGB image in (a), we can observe that the distribution of the colors is more extensively 

spread over the HSV color space as shown in (b) and (c) in different views where the 

vertical axis is the 𝑉 value, the horizontal distance from the axis is the S value, and the 

angle is the 𝐻 value. However, the color distribution of the aligned sRGB image in (d) 

is concentrated near the red color of the hue component as illustrated in (e) and (f). Note 

that the dark colors with low 𝑉 values in (d) are induced by the subject’s clothes where 

the colors do not appear in (a). 

 

 

 

𝐻̃ = {

(𝐺 − 𝐵) ∆⁄         𝑖𝑓 𝑅 = 𝐶𝑚𝑎𝑥 
(𝐵 − 𝑅) ∆⁄ + 2 𝑖𝑓 𝐺 = 𝐶𝑚𝑎𝑥  
(𝑅 − 𝐺) ∆⁄ + 4 𝑖𝑓 𝐵 = 𝐶𝑚𝑎𝑥.

 (7.7) 
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Next, the hue 𝐻 ∈ [0,1] can be given by normalizing 𝐻̃ as: 

𝐻 =
1

6
∙ {

(𝐻̃ + 6) 𝑖𝑓 𝐻̃ < 0

𝐻̃ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (7.8) 

Finally, we remove undesired hue values with excessively low and high saturation by 

assigning 𝛽 values as: 

𝐻′(𝑝) = {
𝐻(𝑝) 𝑖𝑓 𝛼 ≤ 𝑆(𝑝) < 1 − 𝛼

𝛽 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (7.9) 

where 𝛼 = 0.05 in our experiments and 𝑝 denotes pixel coordinates on an image. We set 

𝛽 = −1, which is a value out of range in 𝐻. In Fig. 7.7, we illustrate the hues on a color 

wheel that is divided into six sectors related to three primary colors (red, green, and blue) 

and three mixed color (cyan, magenta, and yellow). 

 

 

 
 

Figure 7.6: Converting the color space from sRGB to HSV. 

 

 

To assess the AQ of an sRGB image, we compute the probability of the distorted colors, 

𝜙 ∈ [2, 6] of the hue component as: 

𝑃𝜙(x) = Pr(x|
2(𝜙 − 1) − 1

12
< x ≤

2𝜙 − 1

12
), (7.10) 

where we define a random variable x as 0 ≤ x ≤ 1, x ∈ 𝐻′ in the interval [−1, 1]. Note that 

the probability of the red color of the hue component can be given as: 

𝑃𝜙=1(x) = Pr (x|
11

12
< x ∪ x ≤

1

12
 ). (7.11) 
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Figure 7.7: An illustration of 𝐻 on a color wheel divided into six sectors associated with 

three primary and three pairwise mixed colors, 𝜙, including red, yellow, green, cyan, 

blue, and magenta. 

 

 

In Fig. 7.8, we show the difference of the probability of six representative colors such as 

red, yellow, green, cyan, blue, and magenta in the hue component between the misaligned 

and aligned sRGB images. As mentioned in the observations involved in the color 

distribution of the sRGB images, the probabilities of distorted colors on the misaligned 

image in Fig. 7.8(a) are observably higher than the case of the aligned image in Fig. 7.8(d). 

These results imply that the proposed method can be used for assessing an overall single 

AQ to determine the better-aligned image among four aligned image sets formed by FBB, 

EC, RASL, and ORIA. 

 

 Evaluation of alignment quality assessment 

We demonstrate the efficacy of the proposed metrics on two cases shown in Fig. 7.9: 1) 

rigid objects such as mannequins in Fig. 7.9(b) and 2) non-rigid subjects in the frontal HFIs 

taken from the first session in our database, consisting of 3,770 HFIs collected from 86 

males and 44 females (130 individuals) of diverse ethnic backgrounds and appearance. The 

performance of the proposed methods is evaluated by prediction accuracy. Notice that the 

developed metrics are called curvature model similarity (CMS) for a FR-AQA and hue-

based alignment quality assessment (HUQA) for a NR-AQA. 
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(a) FBB 

 

 
(b) RASL 

 

Figure 7.8: A comparison of the probability of the six representative colors (red, yellow, 

green, cyan, blue, and magenta) between (a) the misaligned and (b) the aligned sRGB 

images. 
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We first explain the choice of a parameter for CMS in the following subsection. We then 

verify the correction of CMS metric on the rigid object sets shown in Fig. 7.9(b). Next, we 

further test the CMS approach on the non-rigid subject sets that include more challenging 

problems associated with IBMs in IRIS-HFD-2014-V1. The performance of CMS is 

compared with two existing gradient map-based image quality assessments (IQAs) [Liu12], 

[Xue14]. For HUQA compared with five state-of-the-art NR-IQA metrics [Hassen13], 

[Liu14], [Mittal12], [Narvekar11], [Vu12] typically used to evaluate the sharpness or 

blurriness of an input grayscale image, we repeatedly follow the same tasks as the 

verification of the CMS metric. All of our experimental results are obtained by using the 

original software provided by the competing approaches. In our experiment results, we 

note that the higher predicted scores represent better AQ throughout this Chapter and the 

lower slope coefficients (SCs) of a linear regression line indicate the higher prediction 

consistency where the predicted scores are sorted in ascending order. 

 

 

  

(a) Original images of rigid objects (b) Canonical images of rigid objects 

Figure 7.9: Examples of input HFI sets for rigid objects in (b). Note that these sRGB 

images are rendered with full sub-bands under CIE D65. 

 

7.3.1 Choice of σ for curvature model similarity 

We only have one parameter 𝜎  to define the Gaussian scale in CMS metric. For 

experimental determination of the optimal 𝜎 value on IRIS-HFD-2014-V1, we examine 

the effects of varying 𝜎  values from 1.0 to 2.0 on a task for predicting the improved 

alignment among four selected alignment approaches. As shown in Fig. 7.10, the highest 

accuracy of CMS is obtained when 𝜎 ≥ 1.4. There is no impact on further accuracy even 

when considering substantial differences in scale. Thus, for efficiency, we define the 

Gaussian scale for CMS metric as 𝜎 = 1.4, for all other experiments throughout this 

dissertation. Note that the errors are computed by counting the number of the subject IDs 

where the scores of FBB are higher than other scores of EC, RASL, or ORIA. In Fig. 7.11, 

we show the effects of varying 𝜎 values on the results of RASL. 
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(a) (b) 

Figure 7.10: (a) shows the number of errors on IRIS-HFD-2014-V1 as increasing 𝜎 

values from 1.0 to 2.0. The 𝜎 denotes the Gaussian scale and is a parameter for the 

proposed CMS metric. (b) indicates the subject IDs associated with the errors where a 

value of ‘1’ represents the error. In (a), we can observe that CMS appears not to enhance 

the accuracy of the prediction to determine the most improved alignment by which the 

𝜎 value is greater than 1.4. Note that whereas CMS obtain four errors in this experiment 

where we compare the scores of FBB with EC, RASL, and ORIA, there is no error if 

we associate the errors with only RASL and ORIA. 

 

7.3.2 Results of CMS on rigid object sets 

On rigid object sets, we investigate the correction of CMC compared with two recent FR-

IQA approaches based on the gradient map which consist of gradient similarity model 

(GSM) [Liu12] and gradient magnitude similarity (GMS) [Xue14]. GSM uses four 5 × 5 

kernels predefined with weighting coefficients to compute gradient values according to 

two versions: 1) a block-wise version was used for image blocks 𝑥 and 𝑦; and 2) a pixel-

wise version was used for the central pixels of image blocks 𝑥 and 𝑦. GMS utilizes Prewitt 

filters along horizontal and vertical directions to obtain gradient map. Note that to properly 

examine the performance of GSM, GMS, and the proposed CMS, we define the parameter 

𝐶 to prevent the denominator from being zero in the function used for measuring gradient 

similarity in both GSM and GMS, such as 𝐶 = 10−5. We refer the interested reader to their 

papers and the references therein for more detail. For rigid objects there is no difference 

between the aligned HFI sets produced by FBB and EC because an eye coordinate set was 

selected on the first band (i.e. 420 nm) for all sub-bands. Hence, we examine only three 

alignment approaches: FBB, RASL, and ORIA. Furthermore, since there is explicitly no 

movement of object on rigid sets, the alignment quality of FBB can be better than the others. 
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(a) 𝜎 = 1.0 

 

(b) 𝜎 = 1.2 

 

(c) 𝜎 = 1.4 

 

(d) 𝜎 = 1.6 

 

(c) 𝜎 = 1.8 

 

(d) 𝜎 = 2.0 

 

 
 

Figure 7.11: Effects of varying 𝜎 values at 420 nm, 550 nm, and 700 nm on the results 

of RASL. 
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Table 7.2: Results of two FR-IQA approaches and the proposed CMS on two rigid 

object sets. 

 

Input Sets Metrics FBB RASL ORIA 

Mannequin 1 

GSM 0.8563 0.8337 0.8614 

GMS 0.8663 0.8375 0.8729 

CMS (proposed) 0.8311 0.8298 0.8296 

 GSM 0.8194 0.8085 0.8183 

Mannequin 2 GMS 0.8097 0.8007 0.8095 

 CMS (proposed) 0.8049 0.8002 0.8042 

 

 

  
(a) Mannequin 1 

 

(b) Mannequin 2 

 

Figure 7.12: Results of two FR-IQAs and the proposed CMS on rigid object sets. 

 

 

In Fig. 7.12 and Table 7.2, we show the results of two FR-IQA approaches and CMS on 

rigid object sets. Compared to GSM and GMS, the proposed CMS metric consistently 

predicts all of the scores for evaluating the AQ of the reference and target images in each 

sub-band of the rigid HFI sets created by three alignment approaches. In addition, although 

all CMS scores are relatively close in range, CMS correctly indicates the improved 

alignment such as FBB in both rigid object sets. 

 

7.3.3 Results of CMS on IRIS-HFD-2014-V1 

We further demonstrate the efficacy of the proposed CMC metric on the non-rigid subject 

sets that include more challenging problems associated with IBMs. In this task we examine 
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the prediction consistency and accuracy involved in determining the better-quality 

alignment among four selected alignment approaches: FBB, EC, RASL, and ORIA. 

 

FBB is employed as the ground truth to evaluate the performance of the considered 

assessment metrics for AQ. For example, if subject movement occurs during data 

acquisition, the AQ of FBB is typically worse than the other AAs. However, although FBB 

is not able to compete with RASL and ORIA in most cases, if there is insignificant subject 

movement during data acquisition, FBB yields better alignment results than EC as EC 

requires continual and repetitive manual data input of the eye coordinates. Therefore, under 

these experimental observations we additionally examine the scores of FBB with RASL 

and ORIA to compute the considered errors. 

 

To validate the effectiveness of the proposed CMS metric with respect to prediction 

accuracy, we compare the number of the errors on IRIS-HFD-2014-V1 where we examine 

the scores of FBB with RASL and ORIA in Fig. 7.13. For instance, GSM incorrectly 

predicts the AQ for 9 HFI sets in Fig. 7.13(a). 15 errors were found in GMS metric in Fig. 

7.13(b). However, compared to GSM and GMS metrics, the proposed CMS more precisely 

predicts the alignment quality without any error over 130 HFI sets in our database in Fig. 

7.13(c). We compute the prediction accuracy associated with the errors found in GSM, 

GMS, and CMS as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝜀/𝑁 (7.12) 

where 𝜀 denotes the number of errors and 𝑁 represents the number of the HFI sets such as 

𝑁 = 130 in IRIS-HFD-2014-V1. We report the prediction accuracies of two IQAs and the 

proposed CMS on Table 7.3 where the prediction accuracies are computed by (7.12) in two 

cases: 1) comparing FBB with EC, RASL, and ORIA; and, 2) comparing FBB with RASL 

and ORIA. 

 

 

 

Table 7.3: A comparison of prediction accuracies of two FR-IQA approaches and the 

proposed CMS on IRIS-HFD-2014-V1. 

 

Cases GSM GMS CMS  

Case 1 0.93 0.88 0.97 

Case 2 0.93 0.88 1.00 

Table 7.4: Parameters of the estimated regression lines for FBB, EC, RASL, and ORIA 

via the proposed CMS. 

 

Parameters FBB EC RASL ORIA  

Intercept 0.45 0.68 0.71 0.70 

Slope Coefficient 0.0020 0.0010 0.0009 0.0009 
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(a) GSM (b) GMS 

 
(c) The proposed CMS 

 

Figure 7.13: Errors of two FA-IQAs and the proposed CMS on IRIS-HFD-2014-V1. 

Note that the errors are computed by counting the number of the subject IDs where the 

scores of FBB are higher than either the scores of RASL or ORIA. As can be shown in 

(c), there is no error in the CMS metric compared to GSM and GMS where the number 

of errors of (a) GSM and (b) GMS is 9 and 15, respectively. 
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As shown in Table 7.3, the proposed CMS achieves highly accurate prediction in 

determining improved alignment in both cases. Next, we examine the performance of the 

selected alignment approaches using the proposed CMS metric. 

 

 

 

Figure 7.14: Scatter plots with linear regression lines corresponding to results of the 

proposed CMS on IRIS-HFD-2014-V1. 

 

 

In Fig. 7.14, we depict all of the predicted scores of the proposed CMS using scatter plots 

and regression lines according to four selected alignment approaches where the predicted 

scores are sorted in ascending order. To investigate trends in the predicted scores computed 

by the proposed CMS metric, we utilize the least-squares method [Press92] to estimate a 

linear regression. As shown in Table 7.4, the intercept of the regression line according to 

RASL is higher than other alignment approaches, implying that the alignment quality of 

RASL is better than the others. Furthermore, the estimated slope coefficients of RASL and 

ORIA are lower than that of FBB and EC, indicating that RASL and ORIA consistently 

yield well-aligned results because the trend lines have lower correlation between subjects 

and the predicted scores. Therefore, these experimental results demonstrate that RASL 

achieves highly accurate alignment with high consistency as compared to FBB, EC, and 

ORIA. 

 

7.3.4 Results of HUQA on rigid object sets 

For the experimental verification of the correction of the proposed HUQA, we examine the 

prediction accuracy of HUQA on rigid object sets. To evaluate the alignment quality of a 
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single sRGB image, we first render the entire sub-bands in the HFI set using CIE 1931 2° 
Standard Observer data under CIE D65 [Moan14]. 

 

To validate the performance of HUQA, we employ five state-of-the-art NR-IQA metrics 

that are typically used to evaluate the sharpness or blurriness of an input image. Five 

competing approaches are composed of spatial-spectral entropy-based quality index 

(SSEQ) [Liu14], local phase coherence-based sharpness index (LPC-SI) [Hassen13], 

blind/referenceless image spatial quality evaluator (BRISQUE) [Mittal12], spectral and 

spatial sharpness (S3) [Vu12], cumulative probability of blur detection (CPBD) 

[Narvekar11]. We refer to their papers for further detail.  

 

 

Table 7.5: Results of five NR-IQA approaches and the proposed HUQA on two rigid 

object sets. 

 

Input Sets Metrics FBB RASL ORIA 

Mannequin 1 

SSEQ 0.7740 0.8109 0.7441 

LPC-SI 0.8807 0.8832 0.8960 

BRISQUE 0.6771 0.6729 0.6849 

S3 0.2703 0.3290 0.2611 

CPBD 0.1211 0.1062 0.1161 

HUQU (proposed) 0.9911 0.9883 0.9909 

Mannequin 2 

SSEQ 0.7300 0.7483 0.7291 

LPC-SI 0.8848 0.8691 0.8866 

BRISQUE 0.5978 0.5771 0.5941 

S3 0.8208 0.8756 0.8004 

CPBD 0.1000 0.0996 0.0938 

HUQU (proposed) 0.9599 0.9582 0.9591 

 

 

In Fig. 7.15 and Table 7.4, we show the experimental results of five NR-IQA metrics and 

the proposed HUQA on the rigid object sets. As aforementioned in Chapter 7.3.2, we 

investigate the determination accuracy of predicting the enhanced alignment among FBB, 

RASL, and ORIA. 

In this task, HUQA and CPDB produce higher prediction accuracy of selecting the better-

quality alignment on both input sets as shown in Fig. 7.15 and Table. 7.5. Although 

BRISQUE correctly identifies that the AQ of FBB is better than the other AAs for the 

second input set, it fails in predicting the first rigid object set. SSEQ, LPC-SI, and S3 are 

unsuccessful in these experiments as shown in Table 7.5. Note that to fix a range of y-axis 

involved in the scores of the alignment quality on figures, the scores of both SSEQ and 

CPBD are rescaled by adding 0.3 and 0.5, respectively, for all of the experiments 

throughout this dissertation. 
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(a) Mannequin 1 

 

(b) Mannequin 2 

 

Figure 7.15: Results of five state-of-the-art NR-IQAs and the proposed HUQA on rigid 

object sets. Note that the scores of SSEQ and CPBD are rescaled by adding 0.3 and 0.5, 

respectively. 

 

7.3.5 Results of HUQA on IRIS-HFD-2014-V1 

For a comprehensive study on the effectiveness of the proposed HUQA, we further 

examine the prediction consistency and accuracy of the proposed HUQA on our database 

including more challenges associated with IBMs caused by subject’s movement during 

data acquisition. We notice that HUQA only requires a single sRGB image as an input, 

instead of the entire sub-bands in the HFI set. Furthermore, whereas FR-AQA metrics 

assess the AQ of the input HFI set using average pooling schemes by iteratively measuring 

the similarity between the reference and target HFIs in each sub-band, there is neither an 

iterative process nor a pooling scheme in the proposed HUQA metric. 

 

We validate the prediction accuracy of five competing IQA approaches and the proposed 

HUQA in terms of the estimation of the errors where the scores of FBB are compared with 

RASL and ORIA. HUQA achieves the highest prediction accuracy with only one error 

caused by ID: F009_01 shown in Fig. 7.16 where the predicted scores corresponding to 

FBB, EC, RASL, and ORIA are 0.9802, 0.9788, 0.9792, and 0.9793, respectively as 

illustrated in Fig. 7.17. Even though HUQA yields one error, the scores are quite close 

together. Table 7.6 shows the prediction accuracy computed by (7.12) in two cases: 1) 

comparing FBB with EC, RASL, and ORIA and 2) comparing FBB with RASL and ORIA, 

additionally. In case 1, the number of errors of SSEQ, LPC-SI, BRISQUE, S3, and CPBD 

are 30, 14, 34, 55, and 26, respectively. In case 2, those of SSEQ, LPC-SI, BRISQUE, S3, 

and CPBD are 9, 13, 15, 41, and 7, respectively. Compared to other metrics, HUQA in case 
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1 achieves only 4 errors. Therefore, HUQA yields the highest accuracy of predicting the 

better-quality alignment in both cases. 

 

 

  

(a) FBB (b) EC 

  
(c) RASL 

 

(d) ORIA 

 

Figure 7.16: One error HFI set found in HUQA. The HFI set is taken from ID: 

F_009_01 of IRIS-HFD-2014-V1. 

 

 

Table 7.6 A comparison of prediction accuracies of five NR-IQA approaches and the 

proposed HUQA on IRIS-HFD-2014-V1. 

 

Metrics SSEQ LPC-SI BRISQUE S3 CPBD HUQA 

Case 1 0.77 0.89 0.74 0.58 0.80 0.97 

Case 2 0.93 0.90 0.88 0.68 0.95 0.99 

 

 

In Fig. 7.18, the experimental results show the predicted scores in the proposed HUQA 

corresponding to the conducted alignment approaches. The intercepts and slope 

coefficients of the regression lines according to FBB, EC, RASL, and ORIA are shown in 

Table 7.7. The proposed HUQA also shows that RASL yields improved alignment with 

higher consistency compared to the competing alignment approaches as illustrated in Table 

VIII. This determination can also be visually verified by interpreting the slopes and 

intercepts of the regression lines of the conducted alignment approaches in Fig. 7.18. 
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(a) SSEQ (b) LPC-SI 

  

(c) BRISQUE (d) S3 

  
(e) CPBD 

 

(f) HUQA (Proposed) 

 

Figure 7.17: Errors of five NR-IQA approaches and the proposed HUQA. 
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Figure 7.18: Scatter plots with the regression lines corresponding to the results of the 

proposed HUQA on non-rigid subject sets in IRIS-HFD-2014-V1. 

 

 Summary 

In this Chapter, we proposed a novel framework to determine the better-quality alignment 

among four selected alignment approaches, such as fixed bounding box-based, eye 

coordinate-based, RASL, and ORIA, in order to account for inter-band misalignments in 

hyperspectral face images. As a result, the proposed framework is able to deal with 

reducing inter-band misalignment artifacts in hyperspectral face images.  

 

To evaluate the alignment quality of the input hyperspectral face image sets, we developed 

two different metrics. First, the curvature model similarity for a full-reference alignment 

quality assessment was used to investigate the alignment quality by iteratively evaluating 

the similarity index between the reference and target images in each band of an input 

hyperspectral face image set. Second, the hue-based alignment quality assessment for a no-

Table 7.7: Parameters of the estimated regression lines for FBB, EC, RASL, and ORIA 

via the proposed HUQA. 

 

Parameters FBB EC RASL ORIA  

Intercept 0.81 0.95 0.96 0.95 

Slope Coefficient 0.0015 0.0004 0.0003 0.0004 
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reference alignment quality assessment was used to evaluate the alignment quality of a 

single sRGB image that was generated using all of the bands of an input hyperspectral face 

image set. 

 

Comparisons with seven state-of-the-art image quality assessments on our new 

hyperspectral face database (called IRIS-HFD-2014-V1) showed that both the proposed 

metrics led to promising accuracy in determining the most improved alignment among four 

selected alignment approaches. Therefore, the proposed metrics can be used to verify the 

alignment quality of both current and future face alignment algorithms tested on 

hyperspectral face image sets, which particularly contain inter-band misalignments caused 

by subject motion during data acquisition. 
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 Proposed Accurate Alignment Approach 

(A3) Based on a Mixture Model 

Existing methods based on manual inputs of eye coordinates in each band have tackled 

how to align hyperspectral face images, which contain significant intensity variation over 

the visible spectrum. However, such a method relied on eye coordinates becomes 

impractical as the total number of image sets grows. In addition, eye coordinate-based 

alignment approaches are particularly limited for partial faces in profile views or structural 

features (e.g., glasses) where one of the two eyes is partially occluded. In this chapter, we 

propose an accurate alignment approach (A3) for hyperspectral face images that only 

requires one manual input of the two eyes to obtain a template image. The proposed method, 

A3, is developed by incorporating the strengths of point correspondence used to match 

representative features between image pairs and a low-rank model used to seek an optimal 

set of inter-band domain transformations.  

 Accurate alignment approach using a mixture model 

As mentioned in [Liao13], an edge-based feature detector is superior to extract many more 

keypoints on facial images than the scale invariant feature transform (SIFT), which is one 

of the most popular keypoint detector. This is because there are more edges than blobs on 

a face. Therefore, we develop a new edge-based feature detector based on the Laplacian of 

Gaussian (LoG) operator, which calculates the second spatial derivative of an image with 

pixel intensity values, 𝐼(𝑥, 𝑦). The LoG function centered on zero and with Gaussian 

standard deviation 𝜎 (also called scale factor) is given by: 

𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) = −
1

𝜋𝜎4
[1 −

𝑥2 + 𝑦2

2𝜎2
] 𝑒

−
𝑥2+𝑦2

2𝜎2 . (8.1) 

The LoG filter as 𝜎 = 2.0 is illustrated in Fig. 9.1. The LoG filter can be typically used to 

produce extrema at corners and blobs [Miao13]. Compared to existing feature detectors, 

we employ the LoG filter to detect feature edges on images. For an input image 𝐼(𝑥, 𝑦), 

the output of the LoG filter is obtained by: 
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Figure 8.1: The shape of the LoG filter as 𝜎 = 2.0. 

 

 

𝐼𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) = 𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦), (8.2) 

where ∗ is the convolution operation in 𝑥 and 𝑦. Figure 8.2 shows the response of a 1-D 

LoG filter to a step edge function.  

 

In order to extract the interest points, 𝐼𝑃 s, we find zero-crossings, 𝑦𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) , in 

𝐼𝐿𝑜𝐺(𝑥, 𝑦, 𝜎), which are stronger than a sensitivity threshold, 𝑡𝐿𝑜𝐺: 

𝐼𝑃(𝑥, 𝑦, 𝜎) = 𝑦𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) > 𝑡𝐿𝑜𝐺 . (8.3) 

where 𝑦𝐿𝑜𝐺(𝑥, 𝑦, 𝜎)  occurs in which both 𝑥  and 𝑦  gradients change signs. In our 

experiments, we empirically set 𝑡𝐿𝑜𝐺 = 0.002 and 𝜎 = 1.2. 

 

Once we detect the interest points, we represent each image with a set of feature descriptors. 

In this dissertation, we employ a speed-up robust feature descriptor (SURF) [Bay08]. The 

point correspondences can be directly established by comparing the local feature 

descriptors, such as SURF, which can provide robustness in scale changes and rotation and 

produce descriptors half the size of previous descriptors such as SIFT [Lowe04] while 

maintaining the same matching performance.  
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(a) 1-D step function (b) LoG filter with 𝜎 = 1.2 

  

 
(c) Response of the LoG filter 

 

Figure 8.2: Response of a 1-D LoG filter to a step edge function. 
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In order to achieve invariance to rotation, we first assign a dominant orientation to the 

interest point by calculating the sum of all the Haar wavelet responses in 𝑥 and 𝑦 directions 

within a sliding orientation window of a size 
𝜋

3
. Figure 8.3 shows the Haar wavelet filters 

in each of 𝑥 and 𝑦 directions.  

 

Next, a square region is split up regularly into smaller 4 × 4 square sub-regions. For each 

sub-region, we compute a few simple features at 5 × 5 regularly spaced sample points. The 

horizontal and vertical Haar wavelet responses 𝑑𝑥 and 𝑑𝑦 are calculated and summed up 

over each sub-region and form a first set of entries to the feature vector. The absolute values 

of the responses |𝑑𝑥| and |𝑑𝑦| are also calculated, and together with the sum of vector to 

form a four-dimensional descriptor. Therefore, for all 4 × 4 sub-regions, it results in a 

vector of the length 4 × 4 × 4 = 64 . Figure 8.4 illustrates how to build the SURF 

descriptor. 

 

 

  
(a) 𝑥 direction (b) 𝑦 direction 

 

Figure 8.3: Haar wavelet filters. 

 

 

 
Figure 8.4: Example of SUFT descriptor with the oriented 4 × 4 square sub-regions. 

For each sub-region, we compute the wavelet responses from 5 × 5 regularly spaced 

sample points. 
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Once we have extracted features and their descriptors from template and input images, we 

find corresponding features across two images as shown in Fig. 8.5. In our experiments, 

we utilize a sum of squared differences (SSDs) to match the set of the descriptors. The 

similarity scores between two feature descriptors is computed: 

𝑆𝑆𝐷(𝐼𝑃1, 𝐼𝑃2) = ∑(𝐼𝑃1(𝑝) − 𝐼𝑃2(𝑝))
2

𝑁−1

𝑝=1

. (8.4) 

where 𝑁  denotes the total number of interest points. After we find the corresponding 

features across two images, we estimate a similarity transformation model, 𝜏𝑖−1 as defined 

in Chapter 6.1, by using a maximum likelihood estimation sample consensus (MLESAC) 

algorithm [Torr00]. The basic scenario of estimating 𝜏 via the MLESAC is shown in Fig. 

8.6. MLESAC is referred to as a generalization of the RANSAC estimator that robustly 

estimates multiple view relations from point correspondences. Compared to RANSAC, 

MLESAC estimates the solution that maximizes the likelihood rather than just the number 

of inliers. 

 

 

 
 

Figure 8.5: Example of feature matching across two images such as the template and 

input images. 

 

 

 
 

Figure 8.6: Basic scenario of estimating a similarity transformation model,𝜏, from the 

matched features. 
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To optimize the estimated similarity transformation model 𝜏𝑖−1 , we employ ORIA as 

explained in Chapter 6.2. The process pipeline of the proposed alignment approach for HFI 

sets is shown in Fig. 8.7. 

 

 

 
Figure 8.7: Process pipeline of the proposed alignment approach. 

 

 Experimental results 

We demonstrate the effectiveness of the proposed alignment approach (𝐴3) to two cases: 

1) rigid objects such as mannequins (Fig. 8.8) and 2) non-rigid subjects such as UWA-

HSFD and IRIS-HFD-2014. We compare 𝐴3 with FBB, LoG, and ORIA approaches where 

the LoG approach is performed without the optimization process.  

8.2.1 Results on rigid object sets 

For rigid object, we verify the correctness of the alignment algorithms because the ground 

truth alignment is known. We synthetically perturb each of the input images by Euclidean 

transformation 𝑒𝑢𝑐[𝜃, 𝑡𝑟] defined as: 
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[
𝑥′

𝑦′] = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] [

𝑥
𝑦] + [

𝑡𝑟𝑥
𝑡𝑟𝑦

]. (8.5) 

 

 
 

Figure 8.8: Sample HFI sequences of rigid objects taken from 420nm, 500nm, 600nm, 

and 700nm. 

 

 

 
 

Figure 8.9: Sample artificial HFI images under controlled conditions in each row from 

top to bottom: translations, rotations, and translations and rotations, respectively. 

 

 

For example of 𝑥 and 𝑦-translations, given 𝑁 input images, 𝐼𝑖 , 𝑖 ∈ [1, 𝑁], 𝐼𝑖 is translated by 

𝑒𝑢𝑐[0, 𝑡𝑟(𝑖)] for 𝑡𝑟(𝑖) = (𝑗 − 𝑖) × Δ, 𝑗 = 𝑁, Δ ∈ {1,2,4}. For 𝜃 rotations, 𝐼𝑖  is rotated by 
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𝑒𝑢𝑐[𝜃(𝑖), 0]  for 𝜃(𝑖) = (𝑗 − 𝑖) × 𝜙, 𝜙 ∈ {1,2} . For a mixture of varying levels of 

translations and rotations, each image 𝐼𝑖 is artificially perturbed by 𝑒𝑢𝑐[𝜃(𝑖), 𝑡𝑟(𝑖)]. Figure 

8.9 shows sample artificial images under controlled conditions in order to examine the 

ability of the proposed method to deal with varying levels of misalignment.  

 

We evaluate the alignment errors as: 

𝐴𝑄 =
1

𝑁
∑‖𝐺(𝑖) − 𝐴(𝑖)‖2

𝑁

𝑖=1

, (8.6) 

where 𝐺 represent the ground truth and 𝐴 denotes the aligned image. We show the results 

of the alignment errors of LoG, ORIA, and 𝐴3 on artificially translated rigid sets (Figs. 

8.10 and Table 8.1), rotated rigid sets (Figs. 8.11 and Table 8.2), and translated and rotated 

rigid sets (Figs. 8.12 and Table 8.3) in the frontal view. Although occlusions in HFIs nullify 

the benefits of hyperspectral imaging associated with improving face identification 

performance, we examine the ability of the proposed 𝐴3 to deal with varying levels of 

misalignments. As shown in Figs. 8.12, we found that the low-rank model in ORIA is more 

sensitive to large-scale occlusions involved in Mannequins 1 and 2 compared to the 

proposed 𝐴3.  Therefore, 𝐴3 , overall, achieves slightly higher accuracies of alignment 

performance than that of ORIA as shown in Tables 8.1 to 8.3. 

 

Table 8.1: Results of averaging alignment errors of the conducted alignment approaches 

on translated rigid sets. 

 

Input Sets LoG ORIA 𝑨𝟑 

Mannequin 1 2.95 1.35 1.31 

Mannequin 2 2.35 1.51 1.51 

Mannequin 3 2.42 1.40 1.40 

 

 

 

Table 8.2: Results of averaging alignment errors of the conducted alignment approaches 

on rotated rigid sets. 

 

Input Sets LoG ORIA 𝑨𝟑 

Mannequin 1 3.49 1.37 1.37 

Mannequin 2 2.77 1.67 1.66 

Mannequin 3 2.31 1.52 1.51 
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(a) Mannequin 1 (b) Mannequin 2 (c) Mannequin 3 

Figure 8.10: Comparison of the alignment errors of LoG, ORIA, and the proposed 𝐴3 on 

the translated rigid sets where each rigid set is translated along with both 𝑥-and 𝑦-

directions in the interval ∆. 
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(a) Mannequin 1 (b) Mannequin 2 (c) Mannequin 3 

Figure 8.11: Comparison of the alignment errors of LoG, ORIA, and the proposed 𝐴3 on 

the rotated rigid sets where each rigid set is rotated as 𝜙 ∈ {1,2}. 
 

 

 

 

 

Table 8.3: Results of averaging alignment errors of the conducted alignment approaches 

on the rigid sets artificially disturbed by Δ and 𝜙. 

 

Input Sets LoG ORIA 𝑨𝟑 

Mannequin 1 3.59 2.48 1.88 

Mannequin 2 2.48 1.99 1.80 

Mannequin 3 2.78 1.51 1.50 
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(a) Mannequin 1 (b) Mannequin 2 (c) Mannequin 3 

Figure 8.12: Comparison of the alignment errors of LoG, ORIA, and the proposed 𝐴3 on 

the rigid sets disturbed by artificially disturbed by Δ and 𝜙 in the front (F), left profile 

(L), and right profile (R) views for Δ = 1 and 𝜙 = 2. 
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8.2.2 Results on UWA-HSFD 

 
 

 
 

Figure 8.13: The aligned datasets of UWA-HSFD where full sub-bands (400 to 720 nm 

in 10 nm steps) are displayed using the sRGB values rendered under a CIE illuminant 

D65. 

 

 

To further validate the alignment performance of the proposed method, we investigate the 

experimental evaluation on a large-scale hyperspectral face database, UWA-HSFD, 

including realistic inter-band misalignments. In this task, the effectiveness of the proposed 

method is compared to FBB, LoG, and ORIA which only require one manual input set of 

two eye coordinates on the last band (720 nm) in UWA-HSFD where one manual input set 

is used to crop each band in the HFIs. We employ two proposed different metrics (CMS 

and HUQA in Chapter 7) to predict the alignment quality of the HFI produced by the 

considered alignment approaches. We note that UWA-HSFD contains less inter-band 

misalignment compared to IRIS-HFD-2014. In addition, since UWA-HSFD considered the 

effects of spectral radiance for face identification, there was no effort to measure the 
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reflectance spectrum, or spectral signature. Thus, when we display the entire sub-bands 

using an sRGB image rendered under a CIE illuminant D65, an imaged subject seems to 

be yellowish and oversaturated as shown in Fig. 8.13. Table 8.4 demonstrates the results 

of averaging alignment errors of the considered alignment approaches on UWA-HSFD, 

which are estimated by the CMS and HUQA metrics.  

 

 

Table 8.4: Results of averaging alignment errors of the conducted alignment approaches 

on UWA-HSFD. 

 

Input Sets Metrics FBB LoG ORIA 𝑨𝟑 

Session 1 
CMS 0.1857 0.1326 0.1324 0.1323 

HUQA 0.1076 0.1031 0.1017 0.1016 

Session 2 
CMS 0.1934 0.1320 0.1319 0.1318 

HUQA 0.1409 0.1319 0.1280 0.1283 

 

 

  
(a) Session 1 (b) Session 2 

Figure 8.14: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the CMS metric on UWA-HSFD. 

 

 

We note that the predicted scores are sorted in ascending order. From the results of FBB in 

Table 8.4 and Fig. 14, we can observe that there are IBMs in UWA-HSFD. ORIA and 𝐴3 

yield better-quality alignment compared to FBB and LoG methods. As shown in Fig. 8.15, 

the estimated scores of HUQA corresponding to FBB, LoG, ORIA, and 𝐴3 are quite close 

together because the HFIs in UWA-HSFD are yellowish and oversaturated as mentioned 
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before. Therefore, we found that the highest prediction accuracy of HUQA should be 

achieved on the recovered reflectance images.  

 

 

  
(a) Session 1 (b) Session 2 

Figure 8.15: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the HUQA metric on UWA-HSFD. 

 

 

8.2.3 Results on IRIS-HFD-2014 

We further demonstrate the effectiveness of the proposed alignment method on IRIS-HFD-

2014 that contains more significant IBMs in HFIs compared to UWA-HSFD. Specifically, 

IRIS-HFD-2014-V2 is rife with serious IBMs as shown in Fig. 8.16 because of the 

participants in age (4 to 15). Tables 8.5 to 8.7 summarize the results of alignment quality 

of the conducted alignment approaches on IRIS-HFD-2014 including a total of 644 

hyperspectral face cubes.  

 

In this experiment, we evaluate a comprehensive study on the performance of varying 

levels of practical misalignments in the HFIs. As we demonstrated previous experiments, 

if there is insignificant subject motion, the performances of ORIA and 𝐴3 are quite close 

together. However, as shown in Table 8.7, we observed that ORIA is sensitive to align the 

HFIs including large-scale subject motion in each band. Compared to ORIA, the proposed 

method, 𝐴3, can handle significant subject motion by combining the strengths of LoG-

based point correspondence and the low-rank model of ORIA. In addition, as shown in 

Figs. 17 to 22, HUQA yields highly consistent prediction accuracy on the reflectance 

images in IRIS-HFD-2014 compared to the prediction performance of HUQA on UWA-
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HSFD. Therefore, Comparisons of FBB, LoG, and ORIA validate that 𝐴3 is superior to 

reducing IBM artifacts by aligning HFIs including large-scale subject motion. 

 

 

Table 8.5: Results of averaging alignment errors of the conducted alignment approaches 

on IRIS-HFD-2014-V1 in session 1. 

 

Input Sets Metrics FBB LoG ORIA 𝑨𝟑 

Front view 
CMS 0.2750 0.1569 0.1480 0.1461 

HUQA 0.0737 0.0222 0.0184 0.0176 

Glass view 
CMS 0.2811 0.1957 0.1781 0.1778 

HUQA 0.1010 0.0540 0.0498 0.0491 

Left profile 
CMS 0.2744 0.1656 0.1590 0.1584 

HUQA 0.0589 0.0184 0.0172 0.0165 

Right profile 
CMS 0.2719 0.1657 0.1618 0.1606 

HUQA 0.0575 0.0172 0.0163 0.0147 

 

 

 
 

Figure 8.16: Examples of IBMs in IRIS-HFD-2014-V2. Each of the estimated warps 

from the FBB approach is depicted by a rectangle in each band. 

 

 

Table 8.6: Results of averaging alignment errors of the conducted alignment approaches 

on IRIS-HFD-2014-V1 in sessions 2 and 3. 

 

Input Sets Metrics FBB LoG ORIA 𝑨𝟑 

Session 1 
CMS 0.2948 0.1626 0.1578 0.1532 

HUQA 0.0826 0.0224 0.0186 0.0185 

Session 2 
CMS 0.2841 0.1560 0.1438 0.1437 

HUQA 0.0661 0.0148 0.0122 0.0121 
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(a) Front view (b) Glass view 

  

(c) Left profile view (d) Right profile view 

Figure 8.17: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the CMS metric on IRIS-HFD-2014-V1 in session 1. 
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(a) Front view (b) Glass view 

  

(c) Left profile view (d) Right profile view 

Figure 8.18: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the HUQA metric on IRIS-HFD-2014-V1 in session 1. 
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(a) Front view in Session 2 (b) Front view in Session 3 

Figure 8.19: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 the CMS metric on IRIS-HFD-2014-V1. 

 

 

  
(a) Front view in Session 2 (b) Front view in Session 3 

Figure 8.20: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the HUQA metric on IRIS-HFD-2014-V1. 
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(a) Front view (b) Glass view 

  

(c) Left profile view (d) Right profile view 

Figure 8.21: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the CMS metric on IRIS-HFD-2014-V2. 
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(a) Front view (b) Glass view 

  

(c) Left profile view (d) Right profile view 

Figure 8.22: Comparison of the alignment quality of FBB, LoG, ORIA, and the proposed 

𝐴3 via the HUQA metric on IRIS-HFD-2014-V2. 
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Table 8.7: Results of averaging alignment errors of the conducted alignment approaches 

on IRIS-HFD-2014-V2. 

 

Input Sets Metrics FBB LoG ORIA 𝑨𝟑 

Front view 
CMS 0.3355 0.1965 0.1951 0.1850 

HUQA 0.1074 0.0386 0.0388 0.0323 

Glass view 
CMS 0.3343 0.1980 0.1879 0.1861 

HUQA 0.0856 0.0584 0.0519 0.0517 

Left profile 
CMS 0.3258 0.2066 0.2059 0.2026 

HUQA 0.0913 0.0367 0.0380 0.0322 

Right profile 
CMS 0.3222 0.1923 0.2046 0.1911 

HUQA 0.0762 0.0306 0.0278 0.0241 

 

 Summary 

We proposed a mixture model combining the strengths of a Laplacian of Gaussian (LoG)-

based point correspondence to handle large-scale subject motion during data acquisition 

and a low-rank model to optimize image domain transformations. In the experiment results, 

we employed two proposed metrics (CMS and HUQA introduced in Chapter 7) to evaluate 

the alignment quality of the HFIs produced by FBB, LoG, ORIA, and the proposed 

alignment method. The efficacy of the proposed alignment approach is verified with 

extensive experiments including two large-scale hyperspectral face databases (UWA-

HSFD and IRIS-HFD-2014) where two databases contain a wide range of realistic inter-

band misalignments. 
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 Evaluation of Face Recognition 

In this Chapter, we demonstrate that the improved alignment leads to better accuracies of 

face recognition performance. To verify the improvements to face recognition performance, 

we employ a technique known as probabilistic linear discriminant analysis (PLDA) 

[Prince07] , [Li12], which models intraclass and interclass variance as multidimensional 

Gaussian to seek maximum facial discriminability. As mentioned in [Shafey13], PLDA 

has achieved the state-of-the-art performance in face and speaker recognition fields. 

 

 Probabilistic linear discriminant analysis (PLDA) 

As described in [Shafey13], the PLDA model introduced by Prince and Elder [Prince07] 

has been shown to achieve state-of-the-art performance for both face and speaker 

recognition. The PLDA model assumes that the 𝑗th image of the 𝑖th individual can be 

described as: 

𝑥𝑖,𝑗 = 𝜇 + 𝐹ℎ𝑖 + 𝐺𝑤𝑖,𝑗 + 𝜖𝑖,𝑗. (9.1) 

In this process, the input signal 𝑥𝑖,𝑗, of dimensionality 𝐷𝑥, is considered: 1) the identity part 

given by 𝜇 + 𝐹ℎ𝑖 and 2) the noise component given by 𝐺𝑤𝑖,𝑗 + 𝜖𝑖,𝑗. The matrices 𝐹 and 𝐺 

are subspaces that represent the bases for the between-class variation and within-class 

variation, respectively. ℎ𝑖 and 𝑤𝑖,𝑗 indicate the position in these subspaces for 𝑥𝑖,𝑗 and are 

of size 𝐷𝐹 and 𝐷𝐺 , respectively. As a final point, the term 𝜖𝑖,𝑗 denotes a stochastic noise 

term to be Gaussian with zero mean and diagonal covariance Σ . Figure 9.1 shows a 

graphical representation of the latent identity model.  

 

 

 



  129 

 

 

 

 
 

Figure 9.1: Graphical model of the PLDA: the 𝑗th image of the 𝑖th individual, 𝑥𝑖𝑗, is 

modeled using a linear latent model with identities ℎ𝑖, noise variables 𝑤𝑖,𝑗, and parameter 

𝛩. 

 

 

We can describe the process above in terms of a conditional probability: 

Pr(𝑥𝑖,𝑗|ℎ𝑖 , 𝑤𝑖,𝑗, Θ ) = 𝒩[𝜇 + 𝐹ℎ𝑖 + 𝐺𝑤𝑖,𝑗, Σ ], (9.2) 

and prior probabilities: 

Pr(ℎ𝑖) = 𝒩[0, 𝐼 ], (9.3) 

Pr(𝑤𝑖,𝑗) = 𝒩[0, 𝐼 ], (9.4) 

where 𝐼 denotes the identity matrix and the parameters of the model are 𝛩 = [𝜇, 𝐹, 𝐺, Σ].  
 

In (9.3) and (9.4), we can define simple priors on the latent variables, ℎ𝑖 and 𝑤𝑖,𝑗, to be 

Gaussian. The equations above can be written in a compact form by redefining 𝐴 = [𝐹, 𝐺]: 

𝑦𝑖,𝑗 = [ℎ𝑖
𝑇 , 𝑤𝑖,𝑗

𝑇 ]
𝑇
. (9.5) 

We can rewrite the process as: 

𝑥𝑖,𝑗 = 𝜇 + 𝐴𝑦𝑖,𝑗 + 𝜖𝑖,𝑗, (9.6) 

and the compound model in terms of probabilities as: 

Pr(𝑥𝑖,𝑗|𝑦𝑖,𝑗, Θ ) = 𝒩[𝜇 + 𝐴𝑦𝑖,𝑗, Σ ], (9.7) 

Pr(𝑦𝑖,𝑗) = 𝒩[0, 𝐼 ]. (9.8) 
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For example, given that 𝐽𝑖 = 2 observations for identity 𝑖, we would have 

𝐴̃ = [
𝐹 𝐺 0
𝐹 0 𝐺

]. (9.9) 

Accordingly, we would set that 𝑥̃𝑖 = [𝑥̅𝑖,1
𝑇 , 𝑥̅𝑖,2

𝑇 ]
𝑇
, 𝜖𝑖̃ = [𝜖𝑖,1

𝑇 , 𝜖𝑖,2
𝑇 ]

𝑇
, 𝑤̃𝑖 = [𝑤𝑖,1

𝑇 , 𝑤𝑖,2
𝑇 ]

𝑇
,  𝑦̃𝑖 =

[𝑦𝑖,1
𝑇 , 𝑦𝑖,2

𝑇 ]
𝑇
, 

Σ̃ = [
Σ 0
0 Σ

], (9.10) 

where 

𝑥̅𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝜇 (9.11) 

and the symbol ‘~’ denotes that the size of a variable depends on the number of samples 𝐽𝑖 
for 𝑖 individuals. 

For the general case of a class 𝑖 with 𝐽𝑖 samples, the model could be defined as: 

𝑥̃𝑖 = 𝐴̃𝑦̃𝑖 + 𝜖𝑖̃. (9.12) 

There are two main tasks to estimate the probabilistic model: 1) training the model by using 

an expectation-maximization (EM) algorithm and 2) using the trained model to perform 

recognition by calculating the likelihood that a set of observations, [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐽𝑖
], share 

the same latent identity variable ℎ𝑖. 

 

To train the PLDA model, we employ an EM algorithm. All of the M-Steps are performed 

on a per sample basis once the latent variables have been estimated. In the E-Step, we need 

to calculate the first-order and second-order moments of the latent variables, we reproduce 

the equations as follows: 

𝐸[𝑦̃𝑖|𝑥̃𝑖, Θ] = (𝐼 + 𝐴̃𝑇Σ̃−1𝐴̃)
−1

𝐴̃𝑇Σ̃−1(𝑥̃𝑖), (9.13) 

𝐸[𝑦̃𝑖𝑦̃𝑖
𝑇|𝑥̃𝑖, Θ] = (𝐼 + 𝐴̃𝑇Σ̃−1𝐴̃)

−1
+ 𝐸[𝑦̃𝑖|𝑥̃𝑖, Θ]𝐸[𝑦̃𝑖|𝑥̃𝑖, Θ]𝑇 . (9.14) 
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From (9.13) and (9.14), we can observe that the E-Step is how to deal with the matrix 

(𝐼 + 𝐴̃𝑇Σ̃−1𝐴̃)
−1

 efficiently as it should be recomputed for each iteration of EM.  

 

The likelihood for the PLDA is to solve several problems for face identification and 

authentication. To calculate the likelihood that a set of samples, 𝑥̃𝑖, we share the same latent 

identity variable. This can be performed on a probabilistic way by integrating out over all 

the latent variables. Therefore, we tie together the latent identity variable, ℎ𝑖, of the samples 

to have the same identity and we then consider each observation, 𝑥𝑖,𝑗, to have a separate 

latent session variable, 𝑤𝑖,𝑗. Next, we integrate over ℎ𝑖 and all of the individual 𝑤𝑖,𝑗s. For 

the case of 𝐽𝑖 = 2 we define this as follows: 

Pr(𝑥𝑖,1, 𝑥𝑖,2)

= ∫ [∫Pr(𝑥𝑖,1|ℎ𝑖 , 𝑤𝑖,1) Pr(𝑤𝑖,1) d𝑤𝑖,1 ∫Pr(𝑥𝑖,2|ℎ𝑖 , 𝑤𝑖,2) Pr(𝑤𝑖,2) d𝑤𝑖,2] Pr(ℎ𝑖) dℎ𝑖 , 
(9.15) 

where for simplicity we have dropped the reference to Θ. This problem can be rewritten as: 

Pr(𝑥̃𝑖|Θ ) = 𝒩[0, Σ̃ + 𝐴̃𝐴̃𝑇 ]. (9.16) 

Equivalently, we can estimate the log-likelihood as: 

ln[Pr(𝑥̃𝑖|Θ )] = −
𝐽𝑖𝐷𝑥

2
ln[2𝜋] −

1

2
ln[det(Σ̃ + 𝐴̃𝐴̃𝑇)] −

1

2
𝑥̃𝑖

𝑇(Σ̃ + 𝐴̃𝐴̃𝑇)
−1

𝑥̃𝑖 . (9.17) 

We refer the interested reader to the respective papers [Li12], [Shafey13] for efficient 

calculation methods of the likelihood for the PLDA model to reduce the complexity of the 

computational cost.  

 

 

 
(a) Mean, μ  

 
(b) Noise, Σ 

Figure 9.2: PLDA model of IRIS-HFD-2014: (a) mean face and (b) noise covariance 

sRGB images. 

 

Figure 9.2 shows the mean face and noise covariance images of the PLDA model trained 

from IRIS-HFD-2014. Figure 9.3 presents examples of the sRGB images reconstructed by 

the PLDA model once performing the training stage. 
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Figure 9.3: Examples of the reconstructed sRGB images by the PLDA model trained 

from IRIS-HFD-2014. 

 

 Experimental Results 

In Chapter 8, the proposed alignment approach, called accurate alignment approach (𝐴3) 

consistently and accurately yielded the most improved alignment on the considered 

experiments, compared to the selected alignment approaches (AAs): fixed bounding box-

based AA (FBB), Laplacian of Gaussian-based AA (LoG), online robust image alignment 

(ORIA) . In this section, we validate how the alignment accuracies affect the performance 

of face recognition of the PLDA on two large-scale databases such as UWA-HSFD and 

IRIS-HFD-2014.  

9.2.1 Results on UWA-HSFD 

The UWA-HSFD contains a total of 142 hyperspectral face cubes of 79 data subjects in 

the frontal view. For the verification of the effect of face recognition performance, we 

select each cube from the UWA-HSFD. For the training set, we use 105 cubes of 72 

subjects over 4 sessions. The gallery set in the testing set is constructed by choosing 30 

cubes from the training set and 30 cubes as the probe set are selected from the remaining 

cubes over 4 sessions, but not included in the training stage. For computational efficiency, 
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the face cubes are resized to 40 × 35 × 33. Figure 9.6 shows the identification result of 20 

iterations of training from HFIs as an increase in the signal and noise subspace size from 

16 to 48 dimension with a step of 8.  

 

 

 
Figure 9.4: Result of the first rank identification rate of PLDA versus the signal and 

noise subspace size on UWA-HSFD. 

 

As seen in Fig. 9.4, the optimal subspace dimension of PLDA on the aligned HFIs of the 

proposed 𝐴3 is 48. Therefore, PLDA based on 48 factors using the aligned HFIs produced 

by LoG, ORIA, 𝐴3 achieves better accuracies of face recognition than the misaligned HFIs 

of FBB, which are 10 percentage points higher than those of the misaligned HFIs as 

summarized in Table 9.1.  

 

 

 
 

Figure 9.5: HFI sequences of UWA-HSFD ranging from 400 to 720 nm with 10 nm 

steps. 
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Table 9.1 Comparison of the first rank identification rate based on 48 factors of PLDA 

on UWA-HSFD. 

 

Input sets FBB LoG ORIA 
𝐴3  

(Proposed) 

UWA-HSFD (%) 87 97 97 97 

 

 

 
Figure 9.6: Result of the first rank identification rate of PLDA versus the signal and 

noise subspace size on UWA-HSFD once resizing the face cubes to 30 × 30 × 24 

ranging from 490 to 720 nm. 

 

 

Table 9.2 Comparison of the first rank identification rate based on 40 factors of PLDA 

on UWA-HSFD once resizing the face cubes to 30 × 30 × 24 ranging from 490 to 720 

nm. 

 

Input sets FBB LoG ORIA 
𝐴3  

(Proposed) 

UWA-HSFD (%) 90 100 97 100 

 

 

As shown in Fig. 9.5, we observed that lower bands ranging from 400 to 480 nm in UWA-

HSFD are considerably blurred. Thus, once we reject the blurred bands in the input sets 

resized to 30 × 30 × 24, we further investigate the performance of PLDA for the same 

experimental protocol as in Fig. 9.4. 

 

Figure 9.6 shows the improved face recognition performance by removing the blurred 

bands in UWA-HSFD. When the subspace of PLDA is 40, the highest accuracies of PLDA 

on the aligned HFIs of LoG and 𝐴3 are equivalently achieved as illustrated in Fig. 9.6. With 
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better quality alignments of LoG and 𝐴3, PLDA improves the accuracy of identification by 

3 percentage points for ORIA and 10 percentage points for FBB as shown in Table 9.2. 

 

9.2.2 Results on IRIS-HFD-2014 

We further verify the improvements to face recognition performance on IRIS-HFD-2014, 

which contains more significant subject motion than the UWA-HSFD. For the training set, 

we select 290 hyperspectral face cubes over the entire datasets including the glass view in 

the version 1 and the profile views in the version 2. Each of 47 cubes for the gallery and 

probe set are chosen from the frontal view in the version 1. Note that since there is no 

overlap between the training and testing sets (gallery and probe sets) the probabilistic 

model generalizes from the training set to new data subjects. For computational efficiency, 

the hyperspectral face cubes are resized to 40 × 35 × 29.  

 

 

 
Figure 9.7: Result of the first rank identification rate of PLDA versus the signal and 

noise subspace size on IRIS-HFD-2014. 

 

 

Figure 9.9 shows the identification results of the PLDA for different subspace size from 16 

to 128 dimension once 20 iterations of training from HFIs derived from FBB, LoG, ORIA, 

and 𝐴3. The optimal subspace dimension of PLDA on the aligned HFIs of the proposed 𝐴3 

is 64. As shown in Table 9.3, the PLDA with 64 factors improves the accuracy of 

identification by 23 percentage points for FBB as the misaligned HFIs. Therefore, 

experimental results in Fig. 9.8 and Table 9.3 demonstrate that the proposed alignment 

approach 𝐴3 achieves superior performance for face recognition compared to four studied 

alignment approaches.  
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Table 9.3 Comparison of the first rank identification rate based on 64 factors of PLDA 

on IRIS-HFD-2014. 

 

Input sets FBB LoG ORIA 
𝐴3 

(Proposed) 

IRIS-HFD-2014 (%) 77 91 98 100 

 

 Summary 

In this Chapter, we demonstrated the efficacy of the proposed alignment approach (𝐴3) on 

two large-scale public hyperspectral face databases such as UWA-HSFD and IRIS-HFD-

2014. To verify the improvements to face recognition performance, we employed the state-

of-the-art face recognition approach known as probabilistic linear discriminant analysis 

(PLDA). Experimental results showed highly competitive abilities of the proposed 

alignment method to improve hyperspectral face recognition. 
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 Conclusion 

This dissertation was motivated by a need of consistent and robust algorithms for current 

face recognition system. Current face recognition systems were rife with multiple, varied, 

and significant challenges. Hyperspectral imaging (HI) was typically employed to counter 

many of these challenges, by incorporating the spectral information within different sub-

bands. Primarily, two factors contribute to this enhanced sub-band spectral information: 1) 

the invariance of changes in illumination conditions resulting from the recovery of spectral 

properties of objects; and 2) the ability to detect distinct patterns contained in human faces 

where such discriminative patterns cannot be captured by trichromatic (RGB) color or 

monochromatic (grayscale) cameras. Although numerous methods based on hyperspectral 

imaging have been developed for face recognition with promising results, there are three 

challenges specific to HI for practical use of hyperspectral face recognition: 1) low signal 

to noise ratios and low intensity values in the bands of the hyperspectral image specifically 

near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band 

misalignments when hyperspectral imaging is applied to non-rigid objects. Our work 

concentrated mainly on those challenges in this dissertation. 

 

In Chapter 2, we introduced fundamentals of HI relevant to this dissertation, including HI 

technologies and hyperspectral image formations. We presented an overview of the 

theoretical and practical issues to exploit hyperspectral face images. 

 

In Chapter 3, we reviewed three challenges in HI towards providing information on the key 

points of each of the challenges for practical use of hyperspectral face recognition. First, 

we provided a review in terms of five publicly available hyperspectral face databases 

(HFDs): CMU, IRIS-M, PolyU-HSFD, Stanford, and UWA-HSFD. Second, we offered 

the historical review of data compression techniques to address the high dimensionality of 

the spectral data. Third, we presented a study of inter-band misalignments through an 

extensive analysis of hyperspectral face images collected by the liquid crystal tunable filter 

in our experiments. 

 

In Chapter 4, we introduced herein a new large HFD, IRIS-HFD-2014, which can serve as 

a benchmark for comprehensively and statistically evaluating the performance of current 

and future algorithms for hyperspectral face alignment and recognition. IRIS-HFD-2014 

was captured by adjusting appropriate exposure time in each band. IRIS-HFD-2014 is 

designed to address several challenging problems in face recognition research, including 
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variations in time, pose (both frontal and profile views), and structural features (i.e., 

glasses). In addition, the database contains RGB color images of 142 participants captured 

by a traditional color camera under varying illuminant conditions and blurring in 

uncontrolled settings. IRIS-HFD-2014 consists of a total of 19,346 facial images of 115 

males and 64 females of diverse ethnic backgrounds and appearance. 

 

In Chapter 5, we proposed local proper orthogonal decomposition (LPOD) method to 

address the dimensionality of hyperspectral data by employing the k-means clustering 

approach efficiently reducing the dimension of the given spectral data that were highly 

correlated to neighboring spectral samples. Whereas we applied k-means clustering to the 

set of snapshots for achieving good partitions, the proposed approach is flexible enough to 

accommodate other clustering methods, e.g., hierarchical clustering, self-organizing maps 

(SOM), partitioning around medoids (PAM), and so on. For a comprehensive study on the 

effectiveness of our reduced-order data modeling approach, six leading and two 

conventional techniques on three public domain databases and one in-house hyperspectral 

face database in five error metrics were established. Experimental results showed that the 

proposed method achieved highly competitive accuracy in terms of five considered error 

metrics on four different databases. 

 

In Chapter 6, we introduced the new framework to reduce inter-band misalignment artifacts 

in hyperspectral face images (HFIs). Towards addressing IBMs we individually employed 

four different alignment techniques: 1) two conventional alignment approaches (AAs) 

based on manually selecting the region of interest (ROI) such as fixed bounding box-based 

(FBB) and eye coordinate-based (EC); 2) two iterative convex optimization (ICO) 

approaches such as RASL and ORIA; 3) five state-of-the-art landmark-based AAs 

including DRMF, IPCM, SDM, CDM, and TSPM; and, 4) two popular image AAs such as 

LK and SIFTFlow. 

 

In Chapter 7, we developed two different metrics to automatically predict the improved 

alignment among the selected alignment approaches to address inter-band misalignments 

in HFIs. We proposed 1) a full-reference alignment quality assessment based on principal 

curvature map for evaluating the alignment quality of each sub-band in the HFI set; and 2) 

a no-reference alignment quality assessment based on the cumulative probability of target 

colors in the HSV color space for evaluating the alignment quality of a single sRGB image 

generated by the entire sub-bands in the HFI set. Experimental results were reported on 

IRIS-HFD-2014 compared with two recent full-reference approaches based on the gradient 

map and five state-of-the-art no-reference approaches. For experimental verifications, we 

examined the proposed metrics in two aspects: prediction consistency and prediction 

accuracy on rigid object sets and non-rigid subject sets. Comparisons with 7 state-of-the-

art IQA metrics showed that both the proposed metrics led to promising accuracy of 

determination of the improved alignment among FBB, EC, RASL, and ORIA. 
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In Chapter 8, we proposed a mixture model combining the strengths of a Laplacian of 

Gaussian (LoG)-based point correspondence to handle significant subject motion and a 

low-rank model to optimize image domain transformations. The efficacy of the proposed 

alignment approach is verified with extensive experiments on two large-scale hyperspectral 

face databases (UWA-HSFD and IRIS-HFD-2014) that include a wide range of realistic 

inter-band misalignments. 

 

In Chapter 9, we employed the probabilistic linear discriminant analysis technique to 

investigate how the alignment accuracy affects face recognition performance. The 

experimental results on two large-scale hyperspectral face databases (UWA-HSFD and 

IRIS-HFD-2014) demonstrated that the proposed alignment approach led to better 

accuracies of face recognition performance of the probabilistic linear discriminant analysis, 

compared to three existing alignment approaches. 

 

 Directions for future research 

In this dissertation, our new database mainly considered how variations in pose, accessory, 

and time delay in indoor environments affect facial appearance via the LCTF. However, in 

practical use of hyperspectral imaging for face recognition, a future database should be 

developed in two different environments: 1) indoor environment under several custom light 

sources that have relatively more radiant power at short wavelengths; and 2) outdoor 

environments in the consideration of the state of the atmosphere such as temperature, wind, 

cloud, and rain. To acquire the hyperspectral images in two environments, it is necessary 

to design a new hyperspectral imaging system mounted on a mobile platform. In addition, 

a new large-scale face database including hyperspectral image cubes (HICs) obtained from 

more than 1000 participants puts into devising a benchmark for more comprehensively and 

statistically evaluating the performance of current and future algorithms for hyperspectral 

face recognition. 

 

In evaluation of the identification performance, we further investigate performance of 

PLDA with the sRGB images instead of selecting maximally discriminative bands of the 

visible spectrum. For example, we select 117 cubes of 99 individuals from the first and 

third sessions for the training set and we test with 31 individuals, using the two cubes from 

the first and second sessions as the gallery and probe sets, respectively. Next, for 

computational efficiency, the face cubes are resized to 30 × 30 × 29 . Table 10.1 

demonstrates the identification results of 20 iterations of training from HICs. The optimal 

subspace dimension of PLDA on the aligned HICs of RASL is 20. Therefore, PLDA based 

on 20 factors using the aligned HICs achieves higher accuracies of face recognition 

performance than the misaligned HICs, which are 26 percentage points higher than those 

of the misaligned HICs as shown in Table 10.1. We test performance of PLDA for the same 
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experimental protocol on the results of FBB and RASL with the corresponding sRGB 

images. The sRGB images are resized to 30 × 30 × 3. When the subspace dimension of 

PLDA is 20, the highest accuracy of PLDA on the sRGB images of RASL is achieved. 

Using the aligned sRGB images, PLDA improves the accuracy of identification by 20 

percentage points compared to the misaligned images. Therefore, the recognition rates on 

the HICs of RASL are increased by 6 percentage points compared to the aligned sRGB 

images as shown in Table 10.1, but it is unwise to draw a strong conclusion because of the 

difference in the number of used bands. We believe that a technique for band selection to 

seek maximally discriminative bands of the visible spectrum for face recognition can 

accomplish a similar recognition performance while we only use fewer bands by 

developing a robust band selection technique based on cross-validatory procedures for face 

recognition. The cross-validation is one of the simplest ways to seek interesting patterns 

and then to reduce data redundancy. 

 

 

Table 10.1 Comparison of the identification rate of PLDA based on 20 factors using 

misaligned and aligned sets on IRIS-HFD-2014-V1. 

 

Input sets RASL (aligned) FBB (misaligned) 

IRIS-HFD-2014-V1 (%) 100 74 

sRGB (%) 94 74 

 

 

In this dissertation, although we mainly focused on demonstrating how alignment accuracy 

affects the face identification rate of PLDA, we can further consider face verification 

performance using receiver operating characteristics (ROC) curves that plot the 

verification rate against the false accept rate where the false accept rate provides the 

performance when a probe face is not of a face in the gallery.  
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