

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Optimization of recurrent neural networks for time series modeling

Pedersen, Morten With; Hansen, Lars Kai; Larsen, Jan

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pedersen, M. W., Hansen, L. K., & Larsen, J. (1997). Optimization of recurrent neural networks for time series
modeling. (IMM-PHD-1997-37).

http://orbit.dtu.dk/en/publications/optimization-of-recurrent-neural-networks-for-time-series-modeling(5ed5436f-ff74-4c6b-9b86-e9988f74f077).html

Optimization of
Recurrent Neural Networks
for Time Series Modeling

Ph.D. Thesis

Morten With Pedersen

LYNGBY 1997

IMM-PHD-1997-37

IMM

IMM

DEPARTMENT OF MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Lyngby – Denmark

1997-08-25
mwp

Optimization of
Recurrent Neural Networks
for Time Series Modeling

Ph.D. Thesis

Morten With Pedersen

LYNGBY 1997

IMM-PHD-1997-37

IMM

ISSN ���������

Copyright c� ���� by Morten With Pedersen
Printed by IMM	 Technical University of Denmark

Abstract

The present thesis is about optimization of recurrent neural networks applied to time
series modeling
 In particular is considered fully recurrent networks working from only a
single external input	 one layer of nonlinear hidden units and a linear output unit applied
to prediction of discrete time series
 The overall objectives are to improve training by
application of second�order methods and to improve generalization ability by architecture
optimization accomplished by pruning
 The major topics covered in the thesis are�

� The problem of training recurrent networks is analyzed from a numerical point of
view
 Especially it is analyzed how numerical ill�conditioning of the Hessian matrix
might arise

� Training is signi
cantly improved by application of the damped Gauss�Newton meth�
od	 involving the full Hessian
 This method is found to outperform gradient descent
in terms of both quality of solution obtained as well as computation time required

� A theoretical de
nition of the generalization error for recurrent networks is provided

This de
nition justi
es a commonly adopted approach for estimating generalization
ability

� The viability of pruning recurrent networks by the Optimal Brain Damage �OBD�
and Optimal Brain Surgeon �OBS� pruning schemes is investigated
 OBD is found
to be very e�ective whereas OBS is severely in�uenced by numerical problems which
leads to pruning of important weights

� A novel operational tool for examination of the internal memory of recurrent net�
works is proposed
 The tool allows for assessment of the length of the e�ective
memory of previous inputs built up in the recurrent network during application

Time series modeling is also treated from a more general point of view	 namely mod�
eling of the joint probability distribution function of the observed series
 Two recurrent
models rooted in statistical physics are considered in this respect	 namely the �Boltz�
mann chain� and the �Boltzmann zipper� and a comprehensive tutorial on these models
is provided
 Boltzmann chains and zippers are found to bene
t as well from second�
order training and architecture optimization by pruning which is illustrated on arti
cial
problems and a small speech recognition problem

i

ii

Resum�e

N�rv�rende afhandling omhandler optimering af rekursive neurale netv�rk anvendt til
tidsseriemodellering
 Specielt betragtes fuldt rekursive netv�rk virkende fra blot et enkelt
eksternt input	 et lag af ikke�line�re skjulte enheder samt en line�r outputenhed	 der
anvendes til pr�diktion af diskrete tidsserier
 De overordnede m�al er at forbedre tr��
ningen ved anvendelse af anden�ordens metoder samt at forbedre generaliseringsevnen
ved arkitekturoptimering udf�rt ved besk�ring
 De v�sentligste emner	 som er d�kket i
afhandlingen	 er�

� Problemet med at optr�ne rekursive netv�rk er analyseret ud fra et numerisk syns�
punkt
 Specielt analyseres	 hvorledes numerisk d�arlig konditionering af Hessian ma�
tricen kan opst�a

� Optr�ningen forbedres betydeligt ved anvendelse af den d�mpede Gauss�Newton
metode	 der involverer hele Hessianen
 Denne metode
ndes helt at udkonkurrere
gradientnedstigning udtrykt i b�ade kvalitet af opn�aet l�sning samt kr�vet bereg�
ningstid

� Der gives en teoretisk de
nition af generaliseringsfejlen for rekursive netv�rk
 Denne
de
nition retf�rdigg�r en almindeligt benyttet m�ade at estimere generaliseringsevne
p�a

� Anvendeligheden af besk�ring af rekursive netv�rk med Optimal Brain Damage
�OBD� og Optimal Brain Surgeon �OBS� besk�ringsmetoderne unders�ges
 OBD

ndes at v�re meget e�ektiv	 hvorimod OBS er slemt p�avirket af numeriske proble�
mer	 hvilket f�rer til besk�ring af vigtige v�gte

� Et nyt operationelt v�rkt�j til unders�gelse af den interne hukommelse i rekursive
netv�rk foresl�as
 V�rkt�jet tillader vurdering af l�ngden af den e�ektive hukom�
melse omkring tidligere inputs	 der er bygget op i det rekursive netv�rk gennem
anvendelsen

Tidsseriemodellering behandles ogs�a ud fra en mere generel anskuelse	 nemlig model�
lering af den simultane t�thedsfunktion for de observerede serier
 To rekursive modeller
med r�dder i den statistiske fysik betragtes i denne henseende	 nemlig �Boltzmann chain�
og �Boltzmann zipper�	 og en omfattende beskrivelse gives af disse modeller
 Boltzmann
chain og zipper
ndes ligeledes at blive gavnet af andenordens optr�ning og arkitek�
turtilpasning ved besk�ring	 hvilket illustreres p�a kunstige problemer samt et mindre
talegenkendelsesproblem

iii

iv

Preface

The present thesis has been submitted in partial ful
lment of the requirements for the
Ph
D
 degree in electrical engineering
 The work documented in this thesis was carried
out at the Technical University of Denmark at Department of Mathematical Modelling	
Section for Digital Signal Processing �the former Electronics Institute� and was supervised
by assoc
 prof
 Lars Kai Hansen and assis
 prof
 Jan Larsen
 The work was initiated in
September ���� and completed in August ����

During the course of writing	 this thesis has turned out to become pagewise signi
cantly
more extensive than anticipated	 even though much of the originally intended material has
been left out �on the �y� due to time and space considerations
 Even so the pile of paper
grew quickly as the remaining material was put together
 At a late stage of writing it was
considered to expose the thesis to a novel textual pruning procedure tentatively denoted
as Optimal Thesis Damage �OTD� but unfortunately this exciting new tool for text size
optimization remained at a conceptual level of implementation

At this point I would like to thank my advisors Lars Kai Hansen and Jan Larsen for
always having their door open when I had a question �which was rather often towards
the end of this work� and for creating an enthusiastic and pleasant atmosphere at the
Section for Digital Signal Processing
 Jan Larsen is furthermore acknowledged for pleasant
company during our trips to NIPS

S�ren Riis is thanked for his valuable comments and suggestions to improvement of this
manuscript
 Unfortunately I was not able to comply with all of them as the OTD pruning
scheme was never fully implemented
 S�ren is also thanked for his pleasant company at
the o�ce during the years

I also thank the rest of the sta� and Ph
D
 students at the Section for Digital Signal
Processing for many joyful moments
 I am sure that the Tour de Ph
D
 ��� will enter the
history books at some point in time

I sincerely wish to express my gratitude to Dr
 David G
 Stork for inviting me to
work at Ricoh California Research Center from February to August ����
 It was a very
rewarding stay and turned out to be six truly unforgettable months
 The rest of CRC are
thanked as well for their great hospitality

This work was granted by the Danish Natural Science and Technical Research Coun�
cils through the Computational Neural Network Center	 CONNECT
 The Otto M�nsted
Foundation is acknowledged for
nancial support to travel activities

Technical University of Denmark	 August ����

Morten With Pedersen

v

vi

Contents

Abstract i

Resum�e iii

Preface v

� Introduction �

�
� Background

 �

�
� Objectives

 �

�
� Thesis overview

 �

� Systems modeling �

�
� A general system model

 �

�
� Takens� theorem

 �

�
� Noise

 ��

�
� Models of systems for prediction

 ��

� Model architectures ��

�
� The linear FIR
lter

 ��

�
� Feed�forward networks

 ��

�
� Recurrent neural networks

 ��

�
�
� RNN architectures considered in this work

 ��

� Training adaptive models ��

�
� De
nition of the training problem

 ��

�
� Optimization

 ��

�
� First�order methods

 ��

�
� Second�order methods

 ��

�
�
� The Newton method

 ��

�
�
� The Gauss�Newton method

 ��

�
�
� The pseudo Gauss�Newton method

 ��

�
� Stopping criteria

 ��

�
� Online training methods

 ��

�
� Computing the gradient for RNNs

 ��

�
�
� Back�Propagation Through Time

 ��

�
�
� Real�Time Recurrent Learning

 ��

�
� Computing the Hessian for RNNs

 ��

�
�
� The Gauss�Newton approximation

 ��

vii

viii CONTENTS

�
�
� Computing the second�order term

 ��

	 Generalization ��

�
� Generalization in feed�forward models

 ��

�
� Generalization error for recurrent models

 ��

�
�
� Theoretical de
nition

 ��

�
�
� Empirical estimate

 ��

�
� Analytical generalization error estimates

 ��

�
�
� The FPE�estimate

 ��

 Model complexity optimization 		

�
� Regularization

 ��

�
� Architecture optimization

 ��

�
�
� Optimal Brain Damage

 ��

�
�
� Optimal Brain Surgeon

 ��

�
�
� Nuisance parameters

 ��

�
�
� Generalization based saliencies

 ��

� Ill�conditioning in recurrent networks
�

�
� Ill�conditioning

 ��

�
� Analysis of the Jacobian

 ��

�
�
� Exact column collinearity

 ��

�
�
� Approximate column collinearity

 ��

�
�
� Column length disparity

 ��

�
� Regularization

 ��

� Illustration of ill�conditioning �	

�
� Recurrent network training� An example

 ��

�
�
� Training by damped Gauss�Newton without weight decay

 ��

�
�
� Training by damped Gauss�Newton using a small weight decay

 ��

�
�
� Training by damped Gauss�Newton using a larger weight decay

 ��

�
�
� Training by gradient descent

 ��

�
� Comparison� feed�forward vs
 recurrent networks

 ���

�
� Importance of second derivative term

 ���

� Recurrent network training experiments �
	

�
� Comparison of training methods

 ���

�
� Learning curves for recurrent networks

 ���

�
�
� RNN learning curve for the laser series

 ���

�
�
� RNN learning curve for the Mackey�Glass series

 ���

�
� Comparison of RNNs to feed�forward networks

 ���

�
�
� Feed�forward network lag space selection

 ���

�
�
� Feed�forward network learning curves

 ���

�
� Simulating the dynamics

 ���

�
�
� Laser dynamics

 ���

�
�
� Mackey�Glass dynamics

 ���

CONTENTS ix

�
 Illustration of recurrent network pruning ���

��
� Pruning by Optimal Brain Damage

 ���

��
�
� Pruning of RNNs applied to the laser series

 ���

��
�
� Pruning of RNNs applied to the Mackey�Glass series

 ���

��
� Saliency quality� OBD vs
 OBS

 ���

��
�
� OBS saliencies

 ���

��
�
� OBD saliencies

 ���

�� Recurrent network memory ��	

��
� The e�ective memory of recurrent networks

 ���

��
� Measuring the average e�ective memory

 ���

��
� Measuring the time�local e�ective memory

 ���

��
� Illustration of the memory measures

 ���

��
�
� Memory of RNNs trained on the laser series

 ���

��
�
� Memory of RNNs trained on the Mackey�Glass series

 ���

�� Boltzmann Chains � Zippers� A Tutorial �	�

��
� Introduction

 ���

��
� Stochastic modeling

 ���

��
�
� Hidden Markov Models

 ���

��
�
� �Unnormalized� HMMs

 ���

��
� Boltzmann networks

 ���

��
�
� Speeding up learning

 ���

��
�
� Architecture optimization

 ���

��
�
� The Potts model

 ���

��
� Boltzmann chains

 ���

��
�
� Exact learning in Boltzmann chains

 ���

��
�
� Link to HMMs

 ���

��
�
� Notes on training chains

 ���

��
�
� Notes on pruning chains

 ���

��
� Boltzmann zippers

 ���

��
�
� Exact learning in Boltzmann zippers

 ���

��
�
� Notes on Boltzmann zippers

 ���

��
� Experiments using Boltzmann chains

 ���

��
�
� Identi
cation of an HMM

 ���

��
�
� Speech recognition

 ���

��
� Experiments using Boltzmann zippers

 ���

��
�
� Correlated HMMs

 ���

��
�
� Speechreading

 ���

��
� Summary

 ���

�� Conclusion ���

A Data set descriptions ��	

A
� The Santa Fe laser series

 ���

A
�
� Attractor dimension for the laser series

 ���

A
� The Mackey�Glass series

 ���

A
�
� Attractor dimension for the Mackey�Glass series

 ���

x CONTENTS

B Layered vs� non�layered update of recurrent networks ���

B
� Simple example for comparison

 ���

C Iterative computation of the inverse Hessian ���

D Eigenvalue analysis in terms of the Jacobian ���

E Perturbation analysis ��	

F Conversion of Boltzmann chains to HMMs ���

G NIPS��� contribution ���

H NIPS��	 contribution �	�

I ICFMHB��
 contribution �
�

J NNSP ��
 contribution �
�

K Asilomar ��
 contribution ��	

L NNSP ��� contribution �a� ���

M NNSP ��� contribution �b� ���

N NIPS��� submission �
	

Bibliography ���

Chapter �

Introduction

This introductory chapter contains a presentation of the background and motivation for
the work documented in this thesis
 The presentation in section �
� is brief in nature
as the details of the background material are placed in subsequent chapters
 Section �
�
outlines the objectives of this work and section �
� provides an overview of the thesis

��� Background

Modeling of discrete time series is an important task within many
elds of research	 in�
cluding medicine	 economics	 communication	 meteorology	 speech processing	 mechanical
engineering	 control	 �uid dynamics and biology to name just a few
 The problem of time
series modeling is often cast in terms of prediction	 i
e
	 to provide an estimate of future
values of the series based on previously observed values
 Such an estimate may be obtained
from a mathematical model of the mechanism which generates the time series
 If there
are known underlying deterministic equations they can be solved to predict future obser�
vations based on knowledge of the initial conditions
 An example is equations describing
the planetary orbits which e
g
	 allowed for the successful landing of the Mars Path
nder
on the surface of Mars after a journey lasting for seven months

It is	 however	 very often the case that little or no physical insight about the time
series generating mechanism is available	 rendering the deductive approach to modeling
impossible
 In this case the �rules� that govern the generating mechanism must be inferred
from regularities in past observations
 These rules may be speci
ed as an assumed func�
tional relationship between previous and future values of the time series
 The functional
relationship can be implemented by use of adaptive models which provide a mapping of
previous observations onto estimates of future values
 Characteristic for adaptive models
is their �exible parametrization which allows the mapping implemented by the model to
be adjusted to the problem at hand

A nonlinear adaptive model type which has gained signi
cant popularity during the
last decade is the feed�forward arti�cial neural network	 or simply feed�forward network	
which has proved itself to be a highly �exible tool for time series modeling in many di�erent
applications
 A substantial theoretical as well as practically oriented framework for e
g
	
training	 architecture optimization and model veri
cation has been built up around this
model type
 The framework includes methods for training which are more e�cient than
the traditional gradient descent �e
g
	 second�order methods �M�l��	 N�r���� architecture
optimization by pruning �e
g
	 OBD �CDS��� and OBS �HS���� as well as an extensive

�

� Chapter �� Introduction

statistical theory for assessment of model quality �e
g
	 estimation of generalization ability
�Whi��	 GBD��	 Moo����� see e
g
	 the textbooks �HKP��	 Hay��	 Bis��	 Rip��� for a
detailed general overview of the framework for feed�forward networks

The overall aim of the continuing research in adaptive models like neural networks may
be seen as devising ever more powerful and �exible models
 Further	 to develop automatic
procedures that make these models as simple as possible to use and this way reduce or	
ultimately	 completely automate the choices and decisions that are otherwise needed to be
made by the user in connection with application
 In this respect	 a decisive choice which
needs to be made prior to the application of feed�forward networks to time series modeling
is the so�called lag space	 i
e
	 determination of the previous values of the time series on
which to base prediction
 Once the lag space has been chosen it remains
xed which limits
the �exibility of the feed�forward network

A more general model type is obtained if the connectivity of the feed�forward network
is extended to include feedback connections from the outputs of the units back to their
inputs� in this case the resulting model is denoted a recurrent network
 The most general
recurrent network is obtained if the output from every unit in the network is fed back to
the inputs of all units� these networks are denoted fully recurrent networks
 The advantage
of recurrent networks compared to feed�forward networks is due to an internal memory of
past inputs	 introduced by the feedback connections
 This internal memory of recurrent
networks is adaptive	 i
e
	 during training it may be adapted to encompass those previous
inputs which are relevant to the problem at hand
 Such adaptive memory may in fact
completely relieve the user from specifying a lag space as a fully recurrent network is able
to work entirely from its own internal memory	 created from only a single external input

Despite their advantage of being able to completely eliminate the often di�cult proce�
dure of choosing a proper lag space	 recurrent networks have not gained popularity similar
to that of feed�forward networks
 An explanation for this might be that it is generally
agreed upon in the literature that it is more di�cult to handle recurrent networks in prac�
tice than it is feed�forward networks
 In particular it has been found �Moz��	 PF��	 TB���
that training using the widely preferred gradient descent method is not su�ciently �pow�
erful� to train recurrent networks
 Slow convergence is frequently encountered and often
it might completely fail to provide an acceptable solution to the problem at hand
 The
training problem seems to be especially pronounced for fully recurrent networks
 This was
emphasized by prof
 Ah Chung Tsoi during a visit in April ���� at the former Electronics
Institute at the Technical University of Denmark
 His general advice regarding the ap�
plication of fully recurrent networks was �Don�t touch them� �
 Despite the poor results
with gradient descent training there are very few examples in the literature of attempts
to employ training methods which are signi
cantly di�erent from gradient descent

A seeming result of the limited popularity of recurrent networks is that much of the
theoretical framework for e
g
	 model validation built up around feed�forward models has
not been extended to feedback models
 It is for instance not clear how to de
ne the
generalization error for dynamic systems like recurrent networks
 Furthermore	 the the�
ory behind analytical generalization error estimates like e
g
	 the Final Prediction Error
estimate �Aka��� has not been justi
ed for recurrent networks
 In addition	 the more prac�
tically oriented framework	 e
g
	 for improving generalization ability by pruning has only
been attempted to a very limited extent for recurrent networks �GO��	 CFP���
 The OBD
and OBS pruning schemes which have been found to be very successful for feed�forward
networks have apparently not been introduced in the context of recurrent networks

Sec� ��� Objectives �

Besides the di�culties with training it is furthermore problematic to analyze recurrent
networks once they are trained
 Feed�forward networks may be examined in terms of e
g
	
a sensitivity analysis of the elements in the lag space in order to assess the importance
of individual inputs� this way	 insight may be obtained regarding the functionality of the
network
 However	 no such tools exist for recurrent networks and analysis of their func�
tionality is belived to be di�cult
 This was emphasized at the NIPS �� workshop on
dynamical recurrent networks by Lee Feldkamp from the Ford Motor Company Labora�
tories who jokingly stated that �Life is too short to understanding dynamical systems��

��� Objectives

The overall objectives of this work are to improve training of recurrent neural network
structures applied to time series modeling and to improve generalization ability by pruning

The work is primarily focused on fully recurrent networks working from only a single input	
one layer of nonlinear hidden units and a linear output unit
 This choice of network is
made despite the claim that ����the growing consensus seems to be that the architecture is

inadequate for di�cult temporal�processing and prediction tasks�� �Moz��� It is common to
attempt to overcome the seeming inadequacy of this basic recurrent network architecture
by increasing the number of hidden layers	 increasing the complexity of the feedback
connections by employing multiple time delays etc
 However	 the approach here is to
improve performance by adopting a more e�cient training algorithm than gradient descent

Training of recurrent networks is performed o�ine and is viewed as a nonlinear un�
constrained function optimization problem
 The type of training methods considered are
second�order methods which have been found to be successful for feed�forward networks

The speci
c method considered here is the damped Gauss�Newton method as it was found
in �Ped��� to completely outperform both gradient descent as well as Newton�s method
and the pseudo Gauss�Newton method when applied to multi�input recurrent networks
 In
order to make the second�order method perform optimally	 the work includes an analysis of
the training problem for recurrent networks
 The analysis is carried out from a numerical
point of view and involves investigation of factors which might lead to an ill�conditioned
Hessian matrix
 Further	 the possibilities of handling the problems of ill�conditioning by
use of regularization are investigated

In order to determine the quality of a trained recurrent network it is necessary to
determine its generalization ability
 An attempt is therefore made to provide a theoretical
de
nition of the generalization error of a dynamic system like a recurrent network
 In order
to improve generalization the applicability of the Optimal Brain Damage and Optimal
Brain Surgeon pruning schemes will be investigated in the context of recurrent networks

These pruning schemes are chosen as they are among the most successful for feed�forward
networks

In order to allow for an interpretation of recurrent networks as well as an analysis of
their functionality it is attempted to measure their memory
 A de
nition of the e	ective
memory of recurrent networks is formulated as this model type in principle has an in
�
nite memory
 The de
nition of e�ective memory leads to the proposal of an operational
approach by which to determine the memory of a recurrent network

Examples of applications of recurrent networks are provided for the Santa Fe laser
series and the Mackey�Glass series
 In particular is generated learning curves for the two
series on which all further experiments with pruning and memory measurement are based

In addition it will be examined whether the networks from the learning curves are capable

� Chapter �� Introduction

of simulating the dynamics underlying the series just as a comparison will be made to
learning curves generated by use of comparable feed�forward networks

A more general approach towards time series modeling than prediction is to model the
joint probability distribution function of the observed series
 This approach is generally
adopted within e
g
	 speech recognition and biological sequence modeling
 During a stay
at Ricoh California Research Center the opportunity arose to work with two recently
proposed recurrent network models for this task� the models	 rooted in statistical physics	
are denoted Boltzmann chains and Boltzmann zippers and are intended for modeling of
discrete valued time series
 These recurrent network models are treated in this thesis as
well and it is attempted to train these models by second�order methods and to perform
architecture optimization by pruning

��� Thesis overview

This thesis is organized into �� chapters including the present and �� appendices
 Chapters
���� constitute the main part of the thesis and is about fully recurrent neural networks
applied to time series prediction
 Chapter �� is an independent	 self�contained chapter
which describes the work on Boltzmann chains and zippers for joint p
d
f
 modeling of
discrete valued time series
 The contents of the individual chapters are as follows�

Chapter � reviews the concept of time series modeling for prediction by assuming a
mathematical model of the generating system
 Relevant feed�forward and feedback mod�
els incorporating noise are described and the statistical framework for making predictions
is reviewed

Chapter � describes various models which can be used as a guess of the structure of the
system teacher function
 The chapter contains an overview of the various ways in which
feedback may be employed in recurrent networks
 Finally	 the fully recurrent network
model considered in this work is described in detail

Chapter � de
nes the training problem and reviews the o�ine training methods which
are considered in the present work
 It is furthermore described how to compute the gra�
dient and the Hessian for recurrent networks

Chapter 	 contains an attempt to provide a theoretical de
nition of the generalization
error for dynamic system models like recurrent networks and it is discussed how to opti�
mally estimate the generalization error
 The chapter is concluded by a brief description
of Akaike�s Final Prediction Error Estimate

Chapter
 is about model complexity optimization in terms of both regularization and
pruning
 Expressions are provided for OBD and OBS in the case of a regularized cost
function
 Attention is directed to the problem of nuisance parameters and it is suggested
to de
ne saliencies in terms of the change in generalization error rather than training error

Chapter � contains an analysis of the problem of training recurrent networks	 considered
from a numerical point of view in terms of ill�conditioning of the Hessian matrix
 The
potential causes of ill�conditioning are examined and quadratic weight decay is praised for

Sec� ��� Thesis overview �

its merits in handling ill�conditioning

Chapter � illustrates experimentally on a small example that the rather speculative
causes of ill�conditioning presented in chapter � actually occur in practice
 The chapter
also contains a quantitative comparison between the numerical problems in feed�forward
and recurrent networks	 respectively	 as well as an experimental justi
cation of the Gauss�
Newton approximation to the Hessian

Chapter � quantitatively compares training by damped Gauss�Newton and gradient de�
scent
 Learning curves are generated for recurrent networks trained on the Santa Fe laser
series and the Mackey�Glass series and similar learning curves are generated for compa�
rable feed�forward networks
 Finally it is investigated whether the recurrent networks are
capable of simulating the dynamics of the chaotic time series

Chapter �
 illustrates pruning by OBD of recurrent networks chosen from the learning
curves
 The quality of the saliency estimates are investigated for both OBS and OBD and
the accuracy of the second�order approximation is illustrated for the two methods

Chapter �� introduces a novel tool for measuring the memory of a recurrent network

The suggested memory measure is de
ned in terms of both an average memory and a
time�local memory
 These quantities are then illustrated for various networks from the
learning curves

Chapter �� contains a comprehensive tutorial on Boltzmann chains and Boltzmann zip�
pers
 This work has introduced both second�order methods for training and architecture
optimization by pruning to these recent models
 Experiments are described for both arti�

cial problems as well as for the construction of a small speechreading system

Chapter �� wraps up the overall conclusions of the thesis and contains suggestions to
future work

Appendix A contains a description of the datasets which are used for prediction	 namely
the Santa Fe laser series and the Mackey�Glass series
 Furthermore the correlation dimen�
sion of the attractor is computed for each of these chaotic time series

Appendix B compares two di�erent updating schemes for the units in a recurrent net�
work	 namely a layered or asynchronous update in which the units are organized into
sequential layers and a synchronous update where all units �including output units� are
located in the same layer

Appendix C analyzes the computational complexity of using the matrix inversion lemma
for o�ine iterative computation of the inverse Hessian matrix and compares to the com�
plexity when using a standard matrix inversion

Appendix D contains a derivation of the mathematical prerequisites in order to examine
the eigenvalues of �the Gauss�Newton approximation to� the Hessian matrix in terms of
the columns of the Jacobian matrix

� Chapter �� Introduction

Appendix E reviews the perturbation theory which indicates the in�uence of the condi�
tion number on the solution to a system of linear equations in the likely case of e
g
	 small
rounding errors

Appendix F reviews Mackay�s �recipe� for conversion of a Boltzmann chain into a cor�
responding HMM

Appendices G�N contain the papers which have been authored and co�authored during
this work
 Each paper is preceeded by a small summary of the material which is presented

Chapter �

Systems modeling

This chapter reviews the concept of time series modeling for prediction by inferring a
model of the generating system from observations of the series itself
 Section �
� describes
the idea of assuming a mathematical formulation of the underlying system
 Modeling of
such a system is traditionally accomplished in terms of a functional relationship between
previous and future values of the observed time series
 This approach is formally justi
ed
by Takens� theorem described in section �
�
 Whereas Takens� theorem assumes a noise
free situation	 real�world systems are subject to noise as described in section �
� and noise
therefore has to be taken into account when formulating the model of a system
 This is
done in section �
� which describes two general model structures relevant to this work and
reviews the statistical framework for making predictions

��� A general system model

A discrete time series may be seen as discrete instances of a signal
 In order to introduce
the concept of time series modeling it is thus appropriate to abstractly de
ne the notion of
the signal from which the series is obtained
 A signal can be characterized as an observed	
measurable quantity of interest obtained from the output of an entity denoted a system
 It
is di�cult to provide an exact formal de
nition of a system that will apply universally but
we may abstractly describe a system as comprising the physical mechanisms which directly
�and possibly indirectly� in�uence the generation of the quantity which is observed as a
signal

A system may generate its output exclusively from mechanisms	 or dynamics	 internal
to the system in which case we denote it an output system
 If the output is furthermore
in�uenced by externally applied input signals then the system is denoted an input!output
system
 Figure �
� provides a conceptual model of an input!output system	 where the
input to the system is denoted u�t� and the output from the system is denoted x�t�

When attempting to model a signal we are in fact trying to �imitate� the mode of
operation of the mechanisms comprising the system which generated the signal
 The
purpose of such modeling may be predictive	 i
e
	 with the aim of predicting future outputs
of the system
 The purpose may also be explanatory	 i
e
	 a means by which to obtain
knowledge of the system by investigation of the model
 In order to provide a mathematical
model of a system we must assume that the internal mechanisms of the system may be
described mathematically by either a deterministic functional expression or by a stochastic
process
 For now it will be assumed that the system under consideration is deterministic

�

	 Chapter �� Systems modeling

�Unknown
System

x�t�

Output

�u�t�

Input

Figure �
�� A conceptual model of an input!output system

in nature but we will return to stochastic modeling in section �
� and in chapter ��

The present work is focused around modeling of output systems generating a single
output signal
 A very general assumption regarding the mathematical structure of the
internal dynamics of such a system is that it may be described by a dynamic system

�PC��	 CEFG���	

s�t� " f t�s���� ��
��

where s�t� is the internal state vector of
nite dimension d at time t and f t � �d � �d is
a mapping function assumed to be a di�eomorphism� and denoted the time�t map that
takes an initial state s��� to a state s�t�
 The time variable t can be either continuous
or discrete
 Assuming that the system is noise free the observed output is related to the
internal dynamics of the system by

x�t� " h�s�t�� ��
��

where the function h � �d � � is called the measurement function �CEFG��� which is
generally assumed to be di�erentiable
 Figure �
� illustrates how an output system may
be described by a dynamical system in the absence of noise

In many applications the system output x�t� will be an analog	 continuous signal

However	 in order to process the signal using digital computers we need to sample the
output signal	 leading to the observed time series
 In the following it will be assumed that
sampling has been performed using a properly chosen sampling period � � how to properly
choose the sampling period � will not be treated here
 Sampling of linear systems is
treated in detail in e
g
	 �OS���� proper sampling of nonlinear systems is	 however	 more
involved and has to the knowledge of the author not been treated from a general point of
view
 Generally	 if � is chosen too small the resulting discrete time series will be subject
to redundancy� in this case each new sample will provide little additional information
about the system dynamics making modeling from the time series fxg di�cult
 On the
other hand	 if � is chosen too large the dynamics at one time become e�ectively causally
disconnected from the dynamics at a later time� essential information regarding the system
dynamics is lost	 making accurate modeling impossible

Assuming � has been properly chosen we observe the sequence of system outputs

� � � � x�t� ��� � x�t� �� � x�t� � x�t# �� � x�t# ��� � � � �

�A one�to�one di�erentiable function with a one�to�one di�erentiable inverse�

Sec� ��� Takens� theorem

�s�t� � f t�s���� x�t� � h�s�t��

Figure �
�� Output system described by a �noise free� dynamic system

Usually the sampling period � is not explicitly stated and we will write the observed
sequence as

� � � � x�t� �� � x�t� �� � x�t� � x�t# �� � x�t# �� � � � �

thus implying the sampling period �

When constructing a model of a system we should naturally utilize any prior knowledge

such as insight into the physical mechanisms of the system	 somehow incorporating this
knowledge into the model
 However	 often we do not have any prior knowledge about the
mechanisms of the system	 the only information available to us is the time series fxg of
measured system outputs
 From the data alone we must infer a model which is able to
account for the system dynamics� this is also referred to as black�box modeling �Lju���

An approach that apparently dates back to �Yul��� is to model an output system like the
one illustrated in Figure �
� from a lag vector x�t� de
ned as

x�t� " � x�t� x�t� �� � � � x�t� L# �� �T ��
��

where L denotes the dimensionality� x�t� is often also referred to as the delay vector or
the delay line
 If the purpose of modeling is to predict the system output one time step
into the future	 the prediction bx�t# �� of the system output at time t# � is obtained as

bx�t# �� " F �x�t�� " F � x�t� � x�t� �� � � � � � x�t� L# �� � ��
��

where F is a function chosen to represent the system dynamics
 This approach has been
empirically proven to be very e�ective� see e
g
	 �WG��� and references herein
 The ap�
proach was mathematically justi
ed by Takens �Tak��� who demonstrated that assuming
the system is noise free and measurements of the system output are performed with in
nite
precision	 it is possible to exactly recreate the internal dynamics of the system illustrated
in Figure �
� from a delay vector x�t�	 provided its dimensionality L � �d # �
 Here	 d
is the dimensionality of the state vector� in Eq
 ��
��
 This
nding is denoted Takens�

theorem

��� Takens� theorem

This section contains a heuristic derivation of Takens� theorem adopted from �CEFG���

Takens studied the delay reconstruction map � � �d � �L which maps the d�dimensional
state space of a dynamic system de
ned by Eqs
 ��
���
�� into an L�dimensional �lag�
space	

�It was later proved in �SYC��� that d may be replaced by the box counting dimension of the attractor
	refer to appendix A
 on which s moves�

�� Chapter �� Systems modeling

��s�t�� "
�
h�s�t�� � h�f�� �s�t��� � � � � � h�f��L���� �s�t���

�
��
��

" � x�t� � x�t� �� � � � � � x�t� L# �� �

" x�t�

where f�� denotes the dynamics of Eq
 ��
�� �reversed in time�
 � may be regarded as
a set of L simultaneous nonlinear equations in d variables	 mapping the internal state of
the system onto a delay vector
 If the surface of x " ��s� is smooth and contains no
self�intersections	 i
e
	 a bijective one�to�one mapping	 then there will be a unique solution
of s in terms of x
 If this solution depends smoothly on x then the map � is denoted an
embedding

It can be shown �CEFG��� that when L " d#� then the set of self�intersections of the
surface de
ned by � will be of dimension at most d� �
 E
g
	 if s is a d " � dimensional
state vector �i
e
	 orbitting in a plane� which is smoothly mapped into L " d # � " �
dimensions then the set of self�intersections of the map will be of dimension at most
L " d � � " � �e
g
	 a line�
 If L is increased by one	 the dimension of the set of self�
intersections will decrease by one	 and by induction we
nd that the map � is guaranteed
to be an embedding provided that

L � �d# � ��
��

which constitutes Takens� theorem
 Note that the map � may be an embedding with L
as small as L " d	 e
g
	 in the case of a linear system

When � is an embedding it will have a unique inverse ���
 In this case it is possible
to de
ne a smooth dynamics F on the space of delay vectors x � �L which evolves the
delay vector a period of time � into the future
 Setting � equal to unity	 the dynamics
F � �L � �L is de�ned as

F�x�t� � " � � f � � ����x�t� � ��
��

" � � f � � s�t� �
" �� s�t# �� �

" x�t# ��

In this expression ����x�t� � transforms the delay vector x�t� into the corresponding
internal state vector s�t�
 The internal state vector s�t� is advanced by f � to s�t # ��	
resulting in s�t # �� for � " �
 Finally	 the internal state vector s�t # �� is transformed
by the embedding � into the corresponding delay vector at time t#�
 From Eq
 ��
�� we
thus see that provided � is an embedding it is possible to generate dynamics which are
equivalent to the original system Eqs
 ��
���
�� from the system output x�t� alone

In Eq
 ��
�� we can now isolate the component of the vector function F which corre�
sponds to prediction	

x�t# �� " F �x�t� � ��
��

which demonstrates that it is indeed theoretically possible to predict future outputs of a
system from measurements of previous outputs provided that su�ciently many previous
values are used
 The function F � �L � � can be regarded as a teacher function which
generates the true prediction x�t#�� corresponding to a particular lag vector x�t�
 Model�
ing of a system for prediction may now be cast in terms of identifying the teacher function
F

Sec� ��� Noise ��

�Unknown
System

x�t�

Output

�u�t�

Input �

��t�

Noise

Figure �
�� A conceptual model of an input!output system in�uenced by noise

From the above heuristic derivation of Takens� theorem we learn that unobservable
dynamics internal to an output system may be captured and modeled from measurements
of the system output only
 In �Cas��� it was further argued that Takens� theorem can be
generalized to incorporate input!output systems as well	 demonstrating that the internal
dynamics of such systems may be modeled from delay vectors containing delayed values
of both the externally provided input as well as the measured output
 This way	 Takens�
theorem provides a mathematical justi
cation of the approach towards modeling that has
been traditionally adopted in various
elds

��� Noise

Takens� theorem relies on assumptions about a noise free system for which the outputs
are measured with in
nite precision
 In this case it is theoretically possible to predict the
system output for an arbitrary period of time into the future as seen from the dynamics in
Eq
 ��
��	 where � may be extended to an arbitrary time step
 In practice however	 these
assumptions are generally unrealistic
 Measurements of the system output are performed
using limited precision just as the system may be subject to disturbances of various kinds	
e
g
	 in the form of inaccessible and possibly random external in�uences
 These distur�
bances will a�ect the internal dynamics of the system in unpredictable ways	 thus limiting
the accuracy by which predictions can be made
 The noise e�ects of the disturbances
are furthermore likely to accumulate over time	 thus limiting the size of the time step by
which it is possible to make useful predictions of future outputs
 Figure �
� illustrates a
conceptual model of an input!output system under the in�uence of noise

��� Models of systems for prediction

The literature is rich on mathematical models of system structures in the presence of
noise� see e
g
	 �Lju��	 S�r��	 N�r��� for an overview
 In the following will be described
two system structures which are relevant for the non�linear time series prediction problems
and the model architectures considered in this work
 The
rst system structure assumes
that the system under consideration generates the time series fxg according to a Non�linear

�� Chapter �� Systems modeling

F �x�t� �� �

�
x�t� L

�
x�t� �

z��

z��

z��

��� ���
��

�#

�

��t

x�t

Figure �
�� True system running in �closed�loop�	 generating data according to a NAR
process

Auto�Regressive �NAR� process	 given by

x�t� " F �x�t� ��� # ��t� � ��
��

where t is the time index	 x�t� is the scalar system output signal	 F �	� constitutes a
mapping of arbitrary complexity of the L�dimensional input vector x�t � �� " �x�t �
��� � � � � x�t� L�� containing previous system output values and ��t� is a disturbance term
representing the system noise
 The inherent system noise ��t� is assumed to be a stationary
white noise sequence with zero mean and a
nite variance
 The generating process is
illustrated in Figure �
�

Introduction of the noise term leads to a statistical framework of the system
 The
system output x�t� may now be interpreted as a random variable	 conditioned on the
lag vector x�t � �� representing the input to the system
 Assume for now that we have
knowledge of the teacher function F �	� of the �true� system model Eq
 ��
��
 Assume
further that we have observed previous system output values corresponding to the lag
vector x�t� �� " �x�t� ��� � � � � x�t�L�� and wish to predict the next system output
 The
optimal prediction bx�t� of x�t� is generally de
ned as the conditional expectation of x�t�
given x�t � �� �Lju���	 i
e
	 as the value of x�t� that will be realized �on average�	 given
the particular realization x�t � �� of the input vector� this de
nition of the prediction
is optimal in the least squares sense �Lju���
 From Eq
 ��
�� we see that the optimal
prediction of x�t� given x�t� �� is obtained as

bx�t� " E�x�t�jx�t � ��� " E�F �x�t � ��� # ��t�jx�t � ��� " F �x�t� ��� � ��
���

The prediction de
ned by Eq
 ��
��� in terms of the true system is thus the best prediction
of the next system output it is possible to make	 given observations of x�t� ��

Within the statistical framework adopted	 the most general and complete description
of the generating system de
ned by Eq
 ��
�� is in terms of the joint probability density
function P �x�t��x�t� ��� relating the model input and output
 This entity is however not
available as it requires complete knowledge of the system as well as the characteristics of
the disturbances
 When modeling a time series we therefore adopt a model which has a
structure similar to our beliefs regarding the generating system
 A general NAR model
corresponding to Eq
 ��
�� is

x�t� " g�x�t� ���w� # e�t� � ��
���

Sec� ��� Models of systems for prediction ��

g�x�t� ���w �

�
x�t� L

�
x�t� ��

z��

z��

��� ���
��

�#

�

e�t�

x�t�bx�t�w�

Figure �
�� Predictive NAR model running in �open�loop�	 generating predictions bx�t�
from known observations x�t� �� from the true system

where g�	� is a function which represents our �guess� at the true system teacher function
F �	� parametrized by w and e�t� denotes the model error
 A model of this type is also
denoted a feed�forward model as will be described in section �

When using the model ��
��� for prediction	 the prediction of x�t� given x�t � �� is
obtained as bx�t�w� " g�x�t � ���w�
 E�x�t�jx�t � ��� ��
���

The error term e�t� now denotes the prediction error	 obtained as

e�t� " x�t�� bx�t�w� � ��
���

One�step ahead predictions of the system output are obtained by conditioning on the
inputs to the model	 in this case previous outputs of the true system
 At the time we
wish to make a prediction of the next output x�t� we thus have complete knowledge of
the previous values x�t � �� which are observed from the true system� these true system
outputs may be viewed as particular	 known realizations from a stochastic process de
ned
by ��
��
 When employing our model Eq
 ��
��� for one�step ahead predictions we there�
fore operate it in �open�loop�	 as illustrated in Figure �
�
 The inputs to the model are
generated �externally� by the true system	 not by the model
 Thus	 the model de
ned by
Eq
 ��
��� on predictive form is purely feed�forward in nature

Another possible description of a system is in terms of a so�called state space model

The state space model may also be seen as a dynamic system with a noise term added	
and the models considered here are of the form

s�t� " f� s�t� ��� x�t� �� �
x�t� " h� s�t� � # ��t�

��
���

where s�t� denotes an unmeasurable d�dimensional state vector internal to the system	
x�t��� is the system output at the previous time step	 f�	� is a vector function of arbitrary
complexity generating the internal dynamics of the system and h�	� is the measurement
function generating the output of the system� ��t� is once more a disturbance term repre�
senting the system noise
 As previous the noise ��t� is assumed to be a stationary white
noise sequence with zero mean and a
nite variance
 In Figure �
� is illustrated a system
which generates its output x�t� according to the state space desription of Eq
 ��
���

It is simple to demonstrate that the dynamic system description in Eq
 ��
��� con�
tains all possible NAR descriptions de
ned by Eq
 ��
�� as a special case
 Assume

�� Chapter �� Systems modeling

f� s�t� ��� x�t � �� � h� s�t� ��
s�t�

z��

�
s�t� �

���
��
�

x�t

�

��t

z��

�
x�t� �

Figure �
�� True system running in �closed�loop�	 generating data according to a state
space model

that the teacher function F �	� works from an L�dimensional input vector x�t � �� "
�x�t���� � � � � x�t�L��
 One of the many ways in which the state space model of Eq
 ��
���
may implement such a NAR�model is by choosing the state vector s to be of dimension
d " L and specifying the update of each element of the state as

s��t� " x�t� ��

s��t� " s��t� ��

 ��
���

sL�t� " sL���t� �� �

In this implementation the dynamics of the internal state merely implements a shift regis�
ter	 or a delay line
 If the function h�	� of Eq
 ��
��� is chosen as h " F then the two system
descriptions are completely identical
 Consequently	 the dynamic system description is of
a more general type than the NAR description
 In fact	 the NARMAX model �Non�linear
AutoRegressive Moving Average model with eXogenous inputs� may be obtained from an
extension of the state space model considered here �LB���

In line with the approach adopted in �Lju��� we may generally formulate the dynamic
system description in Eq
 ��
��� equivalently as

x�t� " Ft�X
t��� # ��t� ��
���

Here	 Xt is a compact notation for a vector containing all observations generated by the
true system from the starting time t " � up to time t	 de
ned as

Xt " � x�t�� x�t� ��� � � � � x��� � ��
���

The formulation in Eq
 ��
��� explicitly states � in terms of the function Ft�	� � the
dependency of the current output of the dynamic system upon all previously generated
outputs
 The subscript t denotes the dependence on time in terms of the increasing number
of observations on which the function is based

In order to formulate a statistical framework similar to the description for the feed�
forward�type NAR process above in order to make predictions we will assume �Lju��� a
probability density function Pt for the observed sequence Xt generated by the true system	

Pt
�
Xt

�
" Pt

�
x�t��Xt��

�
��
���

Sec� ��� Models of systems for prediction ��

g�� s�t� ��� x�t � �� � g�� s�t� ��
s�t�

z��

�
s�t� �

�
��
��
�

bx�t
 x�t

�

e�t

�
x�t� ��

Figure �
�� Predictive state space model running in �open�loop�	 generating predictionsbx�t� from known observations x�t� �� from the true system

which is the most general and complete way of describing the system de
ned by Eq
 ��
���
and Eq
 ��
���
 This joint probability density function of measurements up to time t may
also be formulated as

Pt
�
Xt

�
" Pt

�
x�t� jXt��

� 	 Pt�� �Xt��
�

��
���

Given this probability density function it is	 at least conceptually �Lju���	 possible to de
ne
the optimal predictor as the conditional mean of x�t� given Xt��	 that is	

bx�t� " E�x�t� jXt��� " Ft�X
t��� � ��
���

When modeling the dynamic system in order to make predictions	 the mapping Ft�	� cor�
responding to the noise free dynamic system Eq
 ��
��� is thus the teacher function to be
identi
ed

When modeling a dynamical system believed to be of the form Eq
 ��
��� we may
employ a parametrized model with a similar structure	

s�t� " g�� s�t� ��� x�t� ���w� �
x�t� " g�� s�t��w� � # e�t�

��
���

where g��	� and g��	� parametrized by w� and w�	 respectively	 represent our �guesses� of
the corresponding functions in the true model Eq
 ��
��� and e�t� once more denotes the
model error

Just as it was done for the true system in Eq
 ��
��� we may formulate the model
de
ned by Eq
 ��
��� on a completely equivalent form as

x�t� " gt�X
t���w� # e�t� ��
���

where w " �w��w��
 When using this model for prediction	 the prediction of x�t� given
Xt�� is obtained in terms of the model as

bx�t�w� " gt�X
t���w�
 E�x�t� jXt��� ��
���

in line with Eq
 ��
���	 and the function gt� 	 �w� is thus an approximation to the true
system teacher function Ft�	� just as for the NAR�model type
 As for the NAR model
described above	 predictions are thus obtained by operating the state space model in
�open�loop�
 This is illustrated in Figure �
�
 The input x�t��� to the model on predictive

�� Chapter �� Systems modeling

form is an observation from the true data generating system Eq
 ��
��� and is thus a known
quantity� e�t� represents the prediction error e�t� " x�t��bx�t�w�
 Even though the model
is operated in open�loop it still maintains a feedback of previous values of the internal
state s as seen in Figure �
�� this makes the predictive model a recurrent model as will be
described in section �
�

Note that the function gt�	� is parametrized by the same parameters w " �w��w�� as
in the state space formulation of Eq
 ��
��� and may be generated by �unfolding� the pre�
dictor model in time� refer to Figure �
� on page �� for an illustration of a time�unfolded
model structure

At this point a few comments about modeling dynamic systems will be made
 A prac�
tical problem when modeling dynamic systems is that generally one cannot expect the
model Eq
 ��
��� to start iterations at the same time t " � as the true system Eq
 ��
���
began iterations as e
g
	 observations fxg are only available from a later time t� � �
 Con�
sequently	 the model output will not be based on the same �possibly in
nite� observation
sequence Xt as the true system but rather on a limited one Xt

t� " �x�t�� x�t� ��� � � � x�t���
which will lead to a discrepancy between model and true system output even in the case
of perfect identi
cation of the teacher function
 Further	 even if all observations Xt of
the true system from the starting time t " � onwards were available we would still be
ignorant regarding the unmeasurable internal initial state of the true system	 also leading
to a discrepancy between model and true system output

In order for modeling to be possible at all it is therefore necessary to assume that the
in
uence of previous observations x�t � n�� � �n� � n � � on the true system output
x�t� will decay to zero at an appropriate rate for increasing n
 This assumption will
eventually allow the model output to converge towards the true system output after a
transient period
 Also	 in order to model a dynamic system it must be assumed that the
teacher function is time invariant	 i
e
	 invariant under a shift of absolute time in the sense
that the dynamics of the true system are not in�uenced by the iteration starting time

This requirement is equivalent to the functional mappings f�	� and h�	� in Eq
 ��
��� being

xed

In practice	 in order to conceptually handle the problems caused by lack of the com�
plete observation sequence it is customary to assume �Lju��� that the available observed
sequence is in fact complete and furthermore that the initial state of the true system is
identical to e
g
	 zero
 Thus	 modeling becomes conditioned on these assumptions

Chapter �

Model architectures

When modeling a system from a time series it is necessary to provide a guess of the
structure of the �teacher function� as was learned from the discussion in the previous
chapter
 This chapter provides a description of various model structures including an
overview of recurrent network structures
 The chapter is concluded by a description of
the speci
c recurrent network structure considered in this work

��� The linear FIR �lter

The simplest structure we might assume for the teacher function is a linear relationship
between previous and future values observed from the system
 Assuming an auto�regressive
modeling problem	 the output y�t� at time t from a linear model corresponding to the
prediction bx�t# �� of the next value in the time series is calculated as

bx�t# �� " y�t� "

L��X
k��

wk x�t� k� # wbias ��
��

where wk denotes adaptive weights applied to the L previous values of the time series
and wbias denotes an arbitrary o�set or bias of the series to be modeled
 The structure
of the model given by Eq
 ��
�� is recognized as a linear FIR �Finite Impulse Response�

lter well�known from e
g
	 the digital signal processing literature �WS��	 OS���	 and is
illustrated in Figure �
�
 The number of inputs L on which the output y is based is denoted
the �lter order

Linear models have been widely applied to systems modeling in various
elds
 Their
popularity is due to a variety of factors
 Among these are the ease with which linear
models are trained and operated
 Furthermore	 it is possible to provide an interpretation
of linear models as they can be fully characterized in terms of e
g
	 their transfer function
and impulse response
 Consequently	 an extensive theory exists regarding the properties
of linear models

Even though good results have been obtained in numerous applications of linear mod�
els	 their modeling capability is often not adequate for satisfactory approximation of the
teacher function
 Many problems are inherently nonlinear in nature	 and in this case a
linear model is likely to fail to capture essential functionality with poor performance as a
result

A possible enhancement of the modeling capabilities of the linear model which retains
the advantages of linearity is to apply a static nonlinear transformation of the inputs

��

�	 Chapter �� Model architectures

x�t�
z
��

z
�� � � � z

��

��
��
��

��
��

��
#

w�

�

x�t� ��

w�

�

x�t� ��

w�

�

x�t� L# ��

wL��

� � � � � � �y�t�

Figure �
�� Linear FIR�
lter of order L

before they enter the linear model
 An example is to approximate the teacher function by
a polynomial expansion	 in which case the output of the linear model reads

y�t� "

L��X
k��

wk x�t� k� #

L��X
k��

L��X
l��

wkl x�t� k�x�t� l� # � � � ��
��

#
L��X
k��

L��X
l��

L��X
m��

wklm x�t� k�x�t� l�x�t�m� # � � �# wbias �

Such an expansion is theoretically capable of modeling an arbitrary nonlinear continuous
function to arbitrary accuracy	 provided the expansion is of a su�ciently high order
 In
practice however	 a polynomial expansion is of limited use as the order of the expansion
is often required to be very high in order to obtain a satisfactory approximation� this
leads to an explosion in the number of parameters that needs to be adapted
 Further�
more	 the regressors resulting from the polynomial expansion tend to be highly correlated
even for relatively low expansion orders which makes the adaption problem numerically
ill�conditioned� refer to chapter � for an elaboration on ill�conditioning
 The consequence
is that even though a static nonlinearity increases the modeling capabilities of the linear
model it is often in practice still not adequate in order to obtain a satisfactory approxi�
mation of the teacher function� a general	 inherently nonlinear model structure is called
for

��� Feed�forward networks

A nonlinear model type that has gained signi
cant popularity during the last decade is the
so�called arti
cial neural network
 The history of arti
cial neural networks goes back to
�MP��� in which was presented a mathematical representation of an event in the nervous
system in terms of a nonlinear processing element denoted an arti
cial neuron	 which was
combined into networks of units inspired by the connectivity of the brain
 However	 it
was not until an e�cient learning algorithm �the famous back�propagation� in �RM��� was
distributed to a wide audience	 as well as the general availability of su�cient computing
facilities	 that large�scale research into the possibilities of this model type was initiated

Since then the neural network model type has been established as an important modeling
tool in numerous
elds due to its high �exibility and modeling capabilities

The most commonly adopted neural network structure is the feed�forward network

For a thorough introduction to feed�forward networks the reader is referred to one of
the excellent text books	 e
g
	 �HKP��	 Hay��	 Bis���� here will only be provided a short

Sec� ��� Feed�forward networks �

summary of that model type
 The term �network� refers to a collection of connected
processing units	 the term �feed�forward� refers to the connectivity between the units
which only allows information to ��ow� in one direction

The processing units of a feed�forward network are organized into one or several so�
called hidden layers as well as an output layer� the term �hidden� refers to the outputs
from these units not being externally observable	 i
e
	 they are internal to the network

Between layers	 the units are connected by adjustable parameters denoted the weights	
and the externally provided inputs to the network are connected by weights to the
rst
hidden layer of units
 In Figure �
� is illustrated a feed�forward network having a single
hidden layer of units and a single unit in the output layer� the processing units are denoted
by open circles and the adjustable weights are denoted by arrows	 indicating the direction
of information �ow

���� ����

��
��
��
��

����

+1

y(t)

s (t) s (t) s (t)1 2 Nh

.....

+1

.....

x(t-L+1)x(t) x(t-1)

Figure �
�� Feed�forward neural network

When using feed�forward networks for auto�regressive time series modeling the inputs
to the network at time t represent a lag space vector x�t� " �x�t�� � � � � x�t � L # ��� of
previously observed values
 Via the weighted connections these values enter the
rst
hidden layer of units whose outputs sj�t� are calculated as

sj�t� " f

�
L��X
k��

wjk x�t� k� # wjb

�
��
��

where wjb represents a bias weight and f�	� is a nonlinear sigmoid�shape activation func�
tion
 In the experiments in this work involving feed�forward networks the function f�x� "
tanh�x� has been used
 In the case of multiple layers of hidden units	 the layers are up�
dated consecutively by expressions similar to Eq
 ��
��	 however using the outputs of the
hidden units in the immediately preceeding hidden layer as inputs
 Finally	 the outputs
from the last hidden layer are fed into the output layer units which are updated as

y�t� "

NhX
j��

woj sj�t� # wob ��
��

�� Chapter �� Model architectures

For auto�regression problems only a single output unit is used
 This output unit has a
linear activation function in order to allow for arbitrary dynamic range of the output

Feed�forward networks may also be applied to classi
cation problems as described in e
g
	
�HMPHL��� included in appendix J� in this case the feed�forward network has several
output units	 one for each of the possible classes

As seen from Eqs
 ��
���
�� feed�forward networks provide a nonlinear mapping of an
input onto one or several outputs
 A feed�forward network may therefore be interpreted
as a regular functional expression	 the complexity of which depends on the number of
processing units and layers

A justi
cation of the application of feed�forward networks to general nonlinear mod�
eling problems has been given in terms of the universal approximation theorem which has
been proved several times in the literature	 e
g
	 in �Cyb��	 Fun��	 HSW���
 The essence
of this theorem is that a function with a structure similar to that of a feed�forward network
having only one layer of hidden units with nonconstant	 bounded and monotone�increasing
continuous activation functions and a linear output is capable of approximating any con�
tinuous function on a compact set of points to any desired degree of accuray	 provided
that su�ciently many hidden units are available
 The universal approximation theorem
is an existence theorem in the sense that it states the existence of an arbitrary good ap�
proximation� it does however not specify how many units is necessary in order to obtain
a given accuracy
 From the functional expression of a feed�forward network alone it is
di�cult to visualize how superpositions of the sigmoids may lead to the approximation
of any function
 An excellent illustration of how combinations of sigmoid outputs in a
three�layer network lead to universality may be found on page ��� in �Bis���

When using feed�forward networks for e
g
	 time series prediction	 the modeler is not
only faced with the problem of determining how many hidden units are appropriate	 it is
also necessary to choose the lag space vector used as input
 It is necessary to determine
how many previous values of the time series on which to base the prediction of the next
value as well as the delay time between each of these values
 If using too few previous
values then it will not be possible to capture the dynamics of the system that generated the
data from which we are modeling	 and prediction accuracy will su�er
 If using too many
previous values on the other hand	 training the network model of the generating system
may possibly su�er due to redundancy in the inputs as well as from the increased number
of parameters to be determined from the data
 The proper number of lags to use must
therefore be determined somehow
 The literature contains several suggestions on how to
choose an appropriate lag space� these will however not be explained in detail here
 For
references	 su�ce it to mention that the methods include trial�and�error	 linear correlation
analysis �not appropriate for nonlinear problems�	 information theoretic methods �PS���
and generalization based methods �Gou���� for further references see e
g
	 the introduction
in �WG���

Various enhancements of the basic feed�forward architecture has been suggested in the
literature in order to make the network �memory� of previous inputs more �exible	 thus
relaxing the accuracy with which the dimension of the externally provided lag space vector
must be determined
 In the following section it will be described how this �exibility can
be obtained by making the networks recurrent

Sec� ��� Recurrent neural networks ��

��� Recurrent neural networks

For feed�forward networks it is necessary to determine the nature of an �optimal� lag space
beforehand as described above	 i
e
	 the number of previous observations to use as well as
the delay time between these observations
 The procedure of choosing a proper lag space
however often poses a signi
cant inconvenience for the modeler and it would therefore be
of advantage if the determination of an optimal lag space could somehow be incorporated
into the network
 What is called for is a �exible memory of previous inputs internal to
the network which can be adapted to the problem at hand

Such a memory can be obtained by making the networks recurrent	 i
e
	 by somehow
providing a feedback of data generated by the network back into the units of the network
to be used in future iterations
 Feedback of previously generated data indirectly leads
to a memory of in principle all previous inputs presented to the network
 The key idea
of this approach is then to let the network develop an �e�ective� memory of previous
inputs during adaption	 i
e
	 an internal memory which utilizes the previous inputs which
are relevant to the problem at hand
 Such an internal memory may naturally extend
beyond the externally provided lag space	 thus relaxing the requirements for the external
lag space
 An adaptive memory internal to the network may in fact completely relieve
the modeler from choosing a lag space� this will be the case if the network is able to work
entirely from its own internal memory	 created from one external input only
 Creation of
this type of internal memory is the ultimate purpose of applying feedback

The literature is rich on various ways in which to introduce feedback into neural net�
works and numerous recurrent network architectures have been proposed
 A detailed
presentation of all these speci
c architectures is beyond the scope of this presentation

Rather	 a brief overview of the principal feedback paths and the modeling capabilites of the
resulting networks will be provided
 For a more detailed description of speci
c recurrent
network architectures the reader is referred to e
g
	 �TB��� and the numerous references
therein
 Attention is also directed towards the excellent overview given in �Moz��� of the
various ways in which memory of previous inputs can be provided for neural networks
applied to temporal sequence processing like e
g
	 time series prediction

The type of feedback to be considered in the following will be from the output side of the
units in the network back to the input side	 always passing through nonlinear saturating
activation functions
 This way	 the feedback networks considered here are inherently stable
in the bounded input	 bounded output sense

One of the simplest ways of introducing feedback into neural networks is by the so�
called local feedback	 where adaptive feedback connections are provided only from each
hidden unit back to itself	 as illustrated in Figure �
�
 The resulting networks are called
locally recurrent networks and were treated by e
g
	 Frasconi	 Gori and Soda in �FGS���

Introduction of the feedback changes the nature of the network model from a static in�
put!output mapping to a dynamic system as described in section �
�
 The network now
computes its output y�t� not only from the externally provided inputs x�t� but also from
the previous values of the hidden units	 the hidden unit state vector s�t� ��
 Through the
hidden unit state vector the network output will therefore indirectly be a function of all
previously applied inputs

The advantages of applying a local feedback only is mainly related to implemental
issues
 The information necessary for computing the hidden unit outputs is local to each
unit in the sense that no information from other hidden units in the same layer is required

�� Chapter �� Model architectures

���� �� �� ���� ����

����

��

-1z -1z -1z

s (t-1) s (t-1)1 x(t)

+1

2

y(t)

s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........

+1

.....

x(t-L+1)

Figure �
�� Architecture of a local feedback recurrent network

in order to compute the output of the unit
 This property makes the necessary extensions
to algorithms for simulation and adaptation in order to handle local feedback very simple	
leaving the computational complexity equivalent to that of feed�forward networks

From a modeling point of view however	 the advantages obtained from a local feedback
are rather limited
 As the hidden units are mutually disconnected they cannot interact
and the dynamics which such a network is able to implement are rather limited in nature

E
g
	 locally recurrent networks are not capable of implementing an arbitrary NAR model
by working from only a single external input as they cannot implement a �shift register�
as described on page �� due to their inability to exchange information between the hidden
unit states
 Thus	 in order to model a time series generating system by use of a locally
recurrent network it is still necessary to provide an external lag space input	 of which the
dimension L must be chosen appropriately
 The use of this type of network rather than
purely feedforward networks therefore seems questionable

A more complex network architecture is obtained by use of global feedback	 where
adaptive feedback connections are provided between every pair of hidden units
 Global
feedback thus means that each hidden unit is fully connected to the hidden unit state
vector s�t � �� containing the previous hidden unit outputs	 as illustrated in Figure �
�

The resulting networks are called fully �or globally� recurrent networks and are sometimes
also denoted Elman networks �Elm���

Due to the higher connectivity of globally recurrent networks their modeling capabil�
ities are much richer than for the simple local feedback networks
 In fact is has been
proven that a globally recurrent network with a single layer of hidden units have the ca�
pacity to model an arbitrary	 smooth nonlinear dynamic system	 e
g
	 as illustrated in
Figure �
� and described by Eq
 ��
���
 This result has been stated in several papers but
was apparently proved for the
rst time in �SL���	 where it was shown that a globally
recurrent network model of a dynamic system can be made arbitrarily accurate over any

xed
nite length of time
 The proof is obtained as an extension of the results from e
g
	
�Cyb��	 Fun��	 HSW��� in which the universality of feed�forward networks was proved	
as described above
 In �SL��� it is shown that a globally recurrent network can perform a
mapping of arbitrary accuracy corresponding to both the �true system� output as well as

Sec� ��� Recurrent neural networks ��

���� �� �� ���� ����

����

��

-1z -1z -1z

s (t-1) s (t-1)1 x(t)

+1

2

y(t)

s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........

+1

.....

x(t-L+1)

Figure �
�� Architecture of a globally recurrent �Elman� network

the true system hidden states
 Referring to the dynamic system de
ned by Eq
 ��
���	 the
principle underlying the proof is to model the true system hidden states v generated by the
internal dynamics F by a subset of the recurrent network hidden units� refer to Figure �
�

These hidden unit outputs are combined linearly by their corresponding feedback weights
leading back to the hidden units whereby it is possible to form the true system hidden
states v according to the universal approximation theorem for feed�forward networks
 Ad�
ditional hidden units without feedback weights are assigned to form a purely feed�forward
mapping corresponding to the output h�f�s� x�� of the dynamic system	 where x represents
an arbitrary input vector
 Finally it is shown how a maximum allowed error of � after say	
T time steps can be traced back to an initially allowed maximum error of � on the hidden
state s	 which concludes the proof

The fact that fully recurrent networks can model arbitrary dynamic systems means
that this model type is capable of modeling any time series	 working from only a single
external input
 If delayed inputs are vital for the modeling they can be provided by a
subset of the hidden units implementing a shift register as described on page ��
 This way	
fully recurrent networks is a model class for which the sometimes very tedious procedure
of choosing a proper dimension of the lag space can be completely eliminated
 It is of
course still possible to provide an external lag space in order to �assist� the fully recurrent
network with memory of previous inputs as indicated in Figure �
� but it is no longer
a necessity
 The improved modeling capabilities however comes at the price of non�local
algorithms and a possibly signi
cantly increased computational burden compared to feed�
forward networks as will be described in chapter �

The fully recurrent network structure illustrated in Figure �
� can be augmented by a
feedback path from the output back to the hidden units
 This type of recurrent network
is sometimes denoted Williams�Zipser networks �TB��	 WZ���

If feedback from the output to the hidden units is maintained while eliminating the
feedback connections between the hidden units we arrive at a recurrent network structure
as illustrated in Figure �
�
 This simpli
ed network structure may generally be termed
output feedback recurrent networks
 In the literature this recurrent network structure is
sometimes denoted as Jordan networks �Jor���

�� Chapter �� Model architectures

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

-1z

x(t)

+1

y(t)

s (t) s (t) s (t)1 2 Nh

.....

+1

.....

y(t-1) x(t-L+1)

Figure �
�� Architecture of an output feedback!output error recurrent network

Referring to the system identi
cation literature	 a model which contains feedback of
its own previous outputs only is denoted an output error model �Lju��	 Sj$o��	 N�r���

Apparently there seems to be a slight misunderstanding in the neural network literature
regarding the model structure terminology	 as output feedback recurrent networks are
often erroneously denoted NARX networks �Nonlinear Auto Regressive with eXogenous
inputs� �LHTG��	 SHG��	 GLH��	 LHG��	 LGHK���
 However	 NARX models do not

contain internal feedback	 they are purely feedforward in nature as it is mentioned in e
g
	
�NRRU���	 Sj$o���
 The inputs to a NARX model is the exogenous inputs to the system to
be modeled along with observations of the true system output� refer to Figure �
�
 On the
other hand	 an output error model as illustrated in Figure �
� works from the exogenous
inputs along with estimates of the true system output	 corresponding to the model output

The misunderstanding thus seems to have arised due to a confusion of observed system
outputs with estimated system outputs

Whereas local feedback networks are not capable of modeling an arbitrary dynamic
system	 it has been proved that output feedback networks indeed have the same modeling
capabilities as fully recurrent networks
 In �SHG��� it was shown how to construct an
output feedback network having N # � hidden units and a feedback of the previous �N
network output values	 capable of simulating a fully recurrent network having N hidden
units� both network types are assumed to work from a single external input only
 The
output feedback model however su�ers from what in �SHG��� is denoted linear slowdown	
i
e
	 in order to simulate one time step of the fully recurrent network having N hidden
units the output feedback network needs to be iterated N # � times with the external
input kept constant
 Nevertheless	 as any fully recurrent network can be simulated by an
output feedback network	 output feedback networks are in principle capable of modeling
arbitrary dynamic systems	 as is the case for fully recurrent networks

The basic feedback paths have been described above for networks having only a single
layer of hidden units
 It is of course possible to extend the network structures to multiple
layers of hidden units as well
 The literature contains numerous suggestions to �novel�
recurrent network architectures which are obtained by combining multiple layers of hidden

Sec� ��� Recurrent neural networks ��

units	 each layer possibly having a di�erent feedback type �local	 fully connected�	 as
well as various forms of connectivity between layers
 In addition	 the simple delays and
connections used in the illustrations above may be replaced by arbitrary �lters
 E
g
	
linear FIR
lters were suggested in �Wan��	 BT��	 Wan���	 linear IIR �In
nite Impulse
Response�
lters were suggested in �BT��� and a
lter type denoted gamma memory was
suggested in �dVP���
 In the case of replacing feedback connections with linear FIR
lters
of order D	 D is sometimes referred to as the memory order
 This way	 the number of
possible combinations of feedback types and connection types leading to di�erent recurrent
network architectures seems inexhaustible

The motivation for increasing e
g
	 the number of hidden layers and the memory order
is to somehow assist the basic recurrent network architectures outlined above in modeling
the problem at hand	 even though fully recurrent networks with simple delays and a single
layer of hidden units are theoretically capable of modeling an arbitrary dynamic system

Increasing the memory order will lead to a direct access to information relating several
steps back in time	 thus relieving the network of implicitly creating this memory in the
hidden units
 Furthermore	 increasing the number of hidden layers tends to increase the
complexity of the mappings it is possible to implement	 compared to a single layer network
containing the same number of parameters
 Even so	 deviating from the basic recurrent
network architectures leads to a variety of additional choices that need to be addressed by
the modeler in terms of e
g
	 memory order	 number of hidden layers	 number of units in
each layer etc
 The Cartesian product of the spaces of all possible choices might easily lead
to an explosion in the number of possible architectures to explore	 making it di�cult to
determine an �optimal� architecture for the problem at hand
 It therefore seems reasonable
to initially explore the possibilities of recurrent network architectures utilized to their full
and involving the least number of choices to be made	 before moving on to consider more
complicated network constructions

����� RNN architectures considered in this work

The recurrent network architectures initially considered in this work are fully recurrent
networks inspired from �WZ��� as illustrated in Figure �
�
 During this work this general
architecture has however been slightly �trimmed� as will be described in more detail at
the end of the section
 The full architecture is described for completeness of presentation

The motivation for choosing this particular recurrent network structure has been that
it is theoretically capable of modeling an arbitrary dynamic system working from only a
single externally provided input	 thus making it possible to completely eliminate the need
for an externally provided lag space as stated above
 Consequently	 for a fully recurrent
network the only choice necessary to make by the modeler is the number of hidden units
to use in the network
 As mentioned above	 output feedback networks are capable of
modeling arbitrary dynamic systems as well	 but for this network type it is still necessary
to provide an estimate of the memory order to use for the output feedback	 thus in e�ect
converting the choice of a proper input dimension into the choice of a proper memory
order
 Therefore the single hidden layer fully recurrent network structure considered in
this work seems to be the basic recurrent network architecture which provides maximum
modeling ability while requiring the fewest possible number of choices to be made by the
modeler

The speci
c update formulas for the units of the recurrent networks considered are
provided in the following� refer to Figure �
�
 Let x�t� denote a vector containing the L

�� Chapter �� Model architectures

�� �� �� �� ��

��

���� ����

-1z -1z -1z

s (t-1) s (t-1)1

+1

2

y(t)

s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........z-1

y(t-1) +1

.....

x (t)Lx (t)1

Figure �
�� RNN architecture initially considered in this work

external inputs at time t	 let s�t� denote a vector containing the Nh hidden unit outputs at
time t and let y�t� denote the output unit output
 For convenience in the weight labeling
we collect the combined inputs to the hidden units at time t in a state vector zh�t� whose
kth element is de
ned as

zhk �t� "

�	

xk�t� � k � I
sk�t� �� � k � H
y�t� �� � k " o

��
��

where we have arranged the indices on x	 s and y so that I denotes the set of L indices
for which zhk is an input	 H denotes the set of Nh indices for which zhk is the output of
a hidden unit and o denotes the element corresponding to the output unit output
 The
activation of the kth hidden unit is now calculated according to

sk�t� " f �vk�t�� � k � H ��
��

" f

�� X
j�I�H�o

wkjz
h
j �t� # wkb

�
" f

��X
j�I

wkjxj�t� #
X
j�H

wkjsj�t� �� # wkoy�t� �� # wkb

�
where vk�t� denotes the weighted input to hidden unit k	 f�	� is the nonlinear activation
function set to f�x� " tanh�x� in this work	 and wkb is the bias weight
 The hidden unit
outputs are then forwarded to the output unit which sees the input vector zo�t�	

zok�t� " sk�t� � k � H ��
��

The output y�t� of the recurrent networks considered here is linear in order to allow for
arbitrary dynamic range� this is furthermore required in order for the universal approxi�
mation theorem to apply
 The network output is thus updated according to

y�t� "
X
j�H

wojz
o
j �t� #wob ��
��

"
X
j�H

wojsj�t� # wob

Sec� ��� Recurrent neural networks ��

where wob is the output unit bias
 Note that the output unit does not have feedback of its
own previous value as feedback in a linear unit is very likely to result in stability problems
�Ped���

When performing the
rst iteration at time	 say	 t " � it is customary �WZ��� to set
the values of the hidden and output unit outputs in the previous time step to zero	 i
e
	

sk��� " � � k � H ��
��

y��� " � � ��
���

Setting the initial previous outputs to zero means that these values will not in�uence
the network output in the
rst iteration	 and the recurrent networks considered here will
therefore perform a purely feed�forward mapping in the
rst iteration

The feed�forward mapping in the
rst iteration is due to the layered update of the units
in the recurrent network	 i
e
	 the hidden unit outputs are updated prior to the update of
the output unit	 just as for feed�forward networks
 This layered update should be opposed
to the synchronous update described in e
g
	 �WZ��� where all units in the network are
updated simultaneously
 In �Ped��	 PH��� it was shown that when using fully recurrent
networks for time series prediction	 layered update is preferable as a synchronous update
of the units e�ectively results in a two�step ahead predictor
 A demonstration of this e�ect
is provided in appendix B

In the beginning of this section it was stated that the network illustrated in Figure �
�
was the initially considered architecture
 During this work it has however been recognized
that the feedback from the linear output unit is completely super�uous in a fully recurrent
network for which reason it should never be included in the network architecture� this will
be demonstrated in section �
�
�
 Furthermore	 a lag space of external inputs was initially
employed but later on discarded as it was recognized that this is indeed unnecessary for
fully recurrent networks
 The ultimate resulting recurrent network architecture with which
the experiments in the following have been performed is illustrated in Figure �
�

���� �� �� ���� ����

����

-1z -1z -1z

s (t-1) s (t-1)1 x(t) +1

+1

2

y(t)

s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........

Figure �
�� Ultimate RNN architecture considered in this work

�	

Chapter �

Training adaptive models

Once the model structure has been selected the parameters must be adapted to the problem
at hand� this problem is also called �learning� or �training� in the neural network litera�
ture
 For recurrent networks the most commonly adopted approach towards training is by
gradient descent�like procedures
 This is so even though it is generally acknowledged that
such methods are highly ine�ective for recurrent network training �Moz��	 PF��	 TB���
due to long training times and lack of ability to
nd a good solution

Many successful applications of gradient descent to feed�forward networks have been
reported in the literature
 However	 signi
cant e�ort has been directed towards improving
the basic training method in terms of both speed and quality of obtained solutions for this
model type
 This has lead to the application of a multitude of di�erent training methods
for feed�forward networks including novel methods as well as methods wellknown from
other contexts
 The reader is referred to e
g
	 �M�l��� for an overview of training methods
for feed�forward networks
 Among the most successful �M�l��	 N�r��� are the class of
second�order methods	 involving second�order information of the cost function

Despite the good results with second�order methods for feed�forward networks very
few attempts have been reported in the literature to apply training methods to recurrent
networks which are signi�cantly di�erent from the basic gradient descent
 Among the at�
tempts is e
g
	 �PF��� where recurrent networks were trained using an Extended Kalman
Filtering method with encouraging results
 In �BSF��� a more traditional optimization
method was used	 namely a so�called pseudo�Newton method	 involving a diagonal ap�
proximation to the Hessian matrix with second derivatives

The type of training considered in this work is �o%ine� or �batch� training	 i
e
	
update of the model parameters only after presentation of all examples to the model

The training problem has therefore been viewed as a nonlinear unconstrained function
optimization problem
 The approach in this work has been to apply full Newton type
training methods	 involving the full Hessian matrix
 In particular	 the damped Gauss�

Newton method has been considered as it has turned out to be very e�cient

This chapter brie�y reviews the optimization theory which is of relevance to the present
work
 For a more elaborate presentation and description of alternative optimization meth�
ods the reader is referred to e
g
	 the classic text books �GMW��	 DS���
 In section �
� the
training problem is de
ned in terms of minimizing a cost function and section �
� reviews
the framework for optimization
 Section �
� describes the traditionally used gradient de�
scent and is followed by section �
� which describes the class of second�order methods
considered in this work
 Section �
� contains a discussion of various stopping criteria and
section �
� reviews the alternative to o%ine methods	 namely online training methods

�

�� Chapter �� Training adaptive models

The chapter is concluded by sections �
� and �
� which describe the calculation of the
gradient and Hessian matrix	 respectively	 for the recurrent networks considered in this
work

��� De�nition of the training problem

In order to train the selected model structure we need to obtain a database T of examples
consisting of inputs x�t� and corresponding desired outputs d�t�	 T " fx�t�� d�t�gTt�� where
T is the number of training examples
 E
g
	 for autoregressive one step ahead prediction
problems we have x�t� " �x�t�� x�t � ��� � � � � x�t � L # ��� and d�t� " x�t # ��
 We then
need to train the model	 i
e
	 adjust the parameters so as to obtain a �good� model
 We
thus need to somehow characterize a good model
 Here	 it seems reasonable to demand
that a good model describes the observed data well	 i
e
	 makes small errors e�t�	

e�t� " d�t�� y�tjw�x�t�� ��
��

where d�t� is the desired output at time t and y�tjw�x�t�� is the model output given the
external inputs x�t� and concatenated set of parametersw� in the following the dependency
upon the parameters will often be implicitly assumed and the model output at time t is
simply denoted as y�t�
 Note that whereas the order in which the examples are presented
to the model is not important for feed�forward networks	 the examples need to be presented
to recurrent networks in proper time ordering in order for the output to make sense

Based on Eq
 ��
�� we can compute the errors for all examples in the database	 or
training set	 T
 The parameters w of the model should be chosen so that the resulting
errors e�t�� t " �� � � � � T become as small as possible
 A commonly used criterion for
measuring the size of the errors is by the quadratic cost function	 de
ned as

E�w� "
�

�

TX
t��

�e�t��� ��
��

where the factor �
� is included for convenience in subsequent derivations and where the

dependency on the training database T is implicitly assumed
 A criterion like Eq
 ��
��
which maps the model parameters w onto a scalar value is termed a cost function
 We
can now de
ne the training problem as the problem of determining a set of parametersbw which estimates the true minimizer w� of the cost function
 Minimization of Eq
 ��
��
belongs to the class of Prediction Error Methods �Lju��� for which training is generally
de
ned as a minimization of the sum of transformed prediction errors

A reassuring property of the quadratic cost function E�w� is that it results from several
sound basic principles from which the learning problem may be interpreted
 Among these
is the simple geometrical interpretation where training is viewed as minimization of the
Euclidean distance between two vectors containing the desired outputs and the model
outputs	 respectively
 Another interpretation is the principle of Maximum Likelihood
where the object is to maximize the probability of the observed data
 Assuming that
the prediction errors are Gaussian with known variance	 the likelihood is maximized by
minimization of E�w�
 For further details and interpretations of the quadratic cost the
reader is referred to the excellent review in �Lju���

Sec� ��� Optimization ��

��� Optimization

Once the cost function has been determined	 training becomes an optimization problem
in which the object is to
nd a set of parameters w� that minimizes the cost function	

w� " argmin
w

E�w� ��
��

For the quadratic cost function Eq
 ��
�� the optimization problem is known as the least
squares problem which is thoroughly treated in the literature� see e
g
	 �Bj$o��	 DS���

In order to characterize a minimum w� we employ the Taylor expansion to second
order of E�w� around w�	

E�w� " E�w�� # �w�w��Tg�w�� #
�

�
�w�w��TH�w���w �w�� ��
��

where we have de
ned the gradient vector as

g�w�� " E��w�� "
�E�w�

�w

����
w�w�

��
��

and the Hessian matrix with the second derivatives as

H�w�� " E���w�� "
��E�w�

�w�wT

����
w�w�

��
��

In order for w� to be a local minimum of E�w� the necessary and su�cient conditions are
�GMW���

�
 w� is a stationary point	 g�w�� " �

�
 H�w�� is positive de
nite	 wTHw � � � �w
In the general case it is not possible to determine a minimizerw� of E�w� analytically and
we therefore have to resort to iterative methods
 The principle of iterative methods is to
start from an initial parameter estimate w� possibly chosen at random and then proceed
by generating a sequence fwkg of parameter estimates that �hopefully� converges towards
a minimizer w�
 Convergence of fwkg to w� is characterized by

lim
k��

kwk �w�k " � ��
��

where k 	 k is a suitable vector norm
 The general form of the parameter update is usually

wk�� " wk # 	&wk ��
��

where wk is the kth iterate of the parameters	 &wk denotes a search direction and 	
speci
es the step size	 that is	 the relative size of the step taken in the direction of search

In the general case of a nonlinear model structure the quadratic cost function may have
several points w� satisfying the conditions for a local minimum as listed above
 Points w�

satisfying
E�w�� � E�w� � �w ��
��

are termed global minima and are naturally the points of prime interest
 Unfortunately
there is no known general method for
nding a global minimum of the cost function	 and

�� Chapter �� Training adaptive models

iterative methods as outlined in Eq
 ��
�� can only be guaranteed to converge towards a
local minimum
 The only way in which to render a local minimum possible as a global min�
imizer is to repeat the iterative optimization method from di�erent initial starting points
w� and compare the value of the cost for the resulting solutions
 When this procedure is
applied to model structures like neural networks one should be aware that all local minima
w� will be ambiguous
 Due to symmetries in general neural network models it is possible
to create permutations of the units in the networks that will leave the functional mapping
implemented by the model unchanged
 These permutations lead to a reorganization of
the weights in the parameter vector w and thus to the ambiguity of the minima

��� First�order methods

When choosing the search direction &wk it seems reasonable to choose a direction that
leads �downhill� for the cost function E�w�	 i
e
	 a direction from the current iterate wk

in which E decreases
 This allows for determination of a next iterate wk�� in such a way
that E�wk���
 E�wk�
 This will be the case if the directional derivative of E at wk in
the direction &wk is negative	 that is	 if

g�wk�
T&wk
 � ��
���

A natural choice for &wk is the direction in which E descreases most rapidly from wk	
namely the opposite of the gradient direction
 This direction is referred to as the direction
of steepest�descent
 The parameter vector is then updated in each iteration as

wk�� " wk � 	g�wk� ��
���

which is known as the method of steepest descent or simply gradient descent
 Methods
of the form of Eq
 ��
��� are generally termed
rst�order methods as they only involve

rst�order derivatives of the cost function
 For the quadratic cost function used here the
ith component of the gradient is calculated as

gi�w� "
�E�w�

�wi
" �

TX
t��

e�t�
�y�t�

�wi
��
���

where �y�t���wi is the partial derivative of the model output wrt
 parameter wi

Important to the convergence towards a local minimum is the choice of the step size 	

If we choose 	 small enough we can always obtain a decrease of the cost function� however	
a small 	 leads to slow convergence towards a local minimum
 A larger value of 	 might
lead to faster convergence but too large a value will lead to divergence and thus make the
training algorithm unstable

A commonly applied strategy in the neural network community is to keep 	
xed
throughout training �Hay��	 HKP���
 Provided we are close enough to a local minimum
w� to allow for fairly accurate description of the cost function by a second�order Taylor
expansion Eq
 ��
�� it can be shown �WS��� that in this case 	 must be chosen as

�
 	

�

�max
��
���

where �max is the largest eigenvalue of the Hessian evaluated in the local minimum	H�w��

If employing a
rst�order method for training we usually do not have second�order infor�
mation of the cost function available� furthermore	 we do not know w� beforehand
 In
practice	 	 is therefore often chosen �by hand� in a rather ad hoc fashion by trial�and�error

Sec� ��� Second�order methods ��

An appealing alternative to keeping the step size
xed is to invoke a line search �DS���
in each iteration
 A line search works by examining the cost function starting from the
current iterate in the direction of search and choosing an 	k which leads to a reduction of
the cost function
 An exact line search seeks an 	k that solves

min
�k��

E�wk # 	k&wk� ��
���

If the 	k chosen only approximates the minimizing step size the line search algorithm is
called an inexact line search
 The literature is rich on various line search algorithms	 see
e
g
	 �DS���
 In this work a simple inexact line search adopted from �DS��� is used
 The
idea is to choose an initial value for 	k and then to keep halving it until a decrease in
the cost is obtained
 Here	 the method is slightly re
ned in that it is examined whether
further reduction of 	k will lead to a further decrease of the cost function

From this procedure we note that employing a line search involves an increased com�
putational burden compared to using a
xed step size
 However	 the tedious �and compu�
tationally demanding as well� work of choosing a proper step size �by hand� is eliminated

In �Ped��� it was empirically found that the halving line search suggested above in practice
works just as well or better than an �optimally� chosen
xed step size

Gradient descent methods are globally convergent optimization methods meaning that
they will converge to a local minimum w� or a saddlepoint� from almost every starting
point w� �DS���
 Usually	 convergence to a saddlepoint is not a problem in practice

However	 the convergence towards w� is only linear
 Linear convergence means that in
each iteration the error is reduced as

kwk�� �w�k � ckwk �w�k � c � ��� �� ��
���

Often convergence is very slowly linear	 i
e
	 the constant c is very close to unity
 We shall
return to the convergence properties of gradient descent in chapters � and �

Despite the slow convergence	 the choice of gradient descent�like methods has been
dominating training in the neural network community
 The reasons for this are probably
rooted in the ease of implementation as well as in the history of neural networks
 Gradient
descent was the method of choice in �RM��� which made the e�cient computation of
gradients for feed�forward networks known as backpropagation widely known	 and revived
the application of and research in neural networks
 From an optimization point of view	
however	 the method was not an optimal choice

��� Second�order methods

A class of optimization methods which has been found to be very e�cient is the second�
order methods
 Whereas
rst�order methods like gradient descent involve only
rst deriva�
tives of the cost function	 second�order methods include second derivative information as
well
 The principle underlying second�order methods is to expand the cost function to
second order around the current iterate wk in each iteration	

eE�w� " E�wk� # &wT g�wk� #
�

�
&wTH�wk�&w ��
���

�Stationary point in which the Hessian is inde�nite�

�� Chapter �� Training adaptive models

where w " wk #&w and where element ij in the Hessian for the quadratic cost function
Eq
 ��
�� is calculated as

Hij�wk� "
��E�w�

�wi�wj

����
w�wk

" �
TX
t��

�
e�t�

��y�t�

�wi�wj
� �y�t�

�wi
	 �y�t�
�wj

�
��
���

A search direction is then determined based on the second�order expansion
 In the follow�
ing various second�order methods will be reviewed

����� The Newton method

In the optimization algorithm known as Newton�s method the next iterate wk�� is chosen
as the minimizer of the second�order expansion eE�w�
 The step &wk leading to the
minimum is determined by setting the derivative of Eq
 ��
��� to zero	

r eE�w� " g�wk� #H�wk�&wk " � ��
���

where the symmetry of the Hessian is used
 From this expression we see that the &wk

leading to the minimum can be obtained as the solution to a system of linear equations	

&wk " � �H�wk��
�� g�wk� ��
���

The resulting weight change is denoted the Newton step and the parameters are updated
according to wk�� " wk #&wk	 i
e
	 with step size 	 " �

Newton�s method is based on the assumption that the approximation eE is fairly ac�
curate so that minimizing Eq
 ��
��� will lead to a decrease of the true cost function E

In practice	 however	 the expansion is only valid in a certain neighbourhood around the
expansion point	 and taking the full Newton step might actually lead to an increase of the
cost function
 Newton�s method should therefore be combined with a line search using
Eq
 ��
��� as search direction	 leading to the parameter update

wk�� " wk � 	 �H�wk��
�� g�wk� ��
���

This combination is called a damped Newton method �DS���

A problem for Newton methods is that the search direction &wk obtained from

Eq
 ��
��� will only be a descent direction	 i
e
	 satisfying Eq
��
���	 if the Hessian is
positive de
nite
 Far away from a local minimum the Hessian might be inde
nite or even
negative de
nite	 resulting in a search direction towards a local maximum
 For this reason
the Newton method is only locally convergent meaning that it will only converge �close� to
a local minimum
 Newton�s method should therefore be combined with a globally conver�
gent method like gradient descent	 switching whenever the Newton step is not a descent
direction

The advantage of the Newton method compared to gradient descent is that close to a
minimum w� convergence is quadratic �DS���	

kwk�� �w�k � ckwk �w�k� � c � � ��
���

and therefore much faster than for gradient descent
 Quadratic convergence can be con�
ceived as the number of correct digits roughly doubling in each iteration close to w�

Despite the fast local convergence of Newton�s method it is rarely used for training
adaptive models
 This not only due to the lack of global convergence abilities but also
due to the often vast computational burden associated with calculation of the second
derivatives of the model output y�t� entering Eq
 ��
���

Sec� ��� Second�order methods ��

����� The Gauss�Newton method

Instead of using the true Hessian Eq
 ��
��� when solving least squares problems we can
use an approximation to the second derivatives	

Hij�wk� "
��E�w�

�wi�wj

����
w�wk

TX
t��

�y�t�

�wi
	 �y�t�
�wj

��
���

where we simply neglect the term in Eq
 ��
��� involving second derivatives of the model
output
 The approximation will be exact in the limit of an in
nite number of examples T
provided that the model is capable of implementing the teacher function �refer to chapter ��
for a set of parameters w�
 In the limit the prediction errors fe�t�g will have zero mean
and be independent in which case the second�order term will be zero �Lju���
 Thus	 for
a �good� model trained on a large number of examples	 the second�order term will be
�small� close to w� which justi
es the approximation

Using this approximation when determining the weight change in Eq
 ��
��� leads
to the so�called Gauss�Newton method �DS��	 Bj$o���	 and the resulting step is denoted
the Gauss�Newton step
 We note that the approximation does not require additional
information to that already available from the gradient calculation	 leading to a fairly
straightforward implementation

The Hessian H for the quadratic cost function Eq
 ��
��� may also be written as

H " JTJ# S ��
���

where

Jti "
�y�t�

�wi
� Sij " �

TX
t��

e�t�
��y�t�

�wi�wj
��
���

The matrix J is called the Jacobian matrix and S is the matrix with second�order terms
omitted in the Gauss�Newton approximation	 which reads

H
 JTJ ��
���

Besides relieving from the computational burden of computing the second derivatives of
the model output	 it is clearly seen from Eq
 ��
��� that the Gauss�Newton approximation
to the Hessian is always positive �semi�� de
nite	 ensuring that the Gauss�Newton step is
a descent direction

As we are still working from an approximation to the cost function	 taking the full
Gauss�Newton step might actually increase the cost function and may prevent the Gauss�
Newton method from converging
 The Gauss�Newton method should therefore be com�
bined with a line search	 which will make the method globally convergent �DS���
 Involving
a line search leads to a parameter update equivalent to Eq
 ��
��� and the resulting method
is called the damped Gauss�Newton method �DS���

In this work is used the step size halving line search described in section �
� in com�
bination with the Gauss�Newton method
 The initial value for the step size 	 is usually
set to unity �DS���	 	 " �	 which corresponds to taking the full Gauss�Newton step
 One
might consider to set the initial step size to a value somewhat larger than one
 This will
in theory allow the damped Gauss�Newton method to escape from the neighbourhood of
a local minimum at which the value of the cost function is relatively high	 to a lower�
lying region of the cost function surface
 The bene
t from this approach is however rarely
observed in practice

�� Chapter �� Training adaptive models

The local convergence properties of the Gauss�Newton method will clearly depend on
whether the omitted second�order term S is signi
cant at the local minimum w�	 that is	
whether S�w�� is �large� compared to JTJ in Eq
 ��
���
 For models which are linear in
the parameters the second�order term is always zero and the approximation thus exact� in
this case the Gauss�Newton method
nds the �global� minimum in a single iteration
 For
the so�called zero residual problems where all the errors e�t� are zero in w� the omitted
second�order term S�w�� will be zero as well and the Gauss�Newton method will have
quadratic convergence just as the Newton method

If the second�order term is not negligible at the local minimum	 convergence will gen�
erally only be linear �DS���
 Even though the theoretical local convergence properties for
the Gauss�Newton method in this case are not better than for gradient descent	 experi�
ence has shown that the damped Gauss�Newton method completely outperforms gradient
descent
 A drawback of Newton type methods seems to be the requirement of solving a
system of linear equations in each iteration
 Even so	 the damped Gauss�Newton method
usually converges orders of magnitude faster than gradient descent measured in actual
computation time	 as will be illustrated in chapter �

Looking at Eq
 ��
��� one might get the impression that in order to obtain the search
direction we actually invert the Hessian matrix and take its product with the gradient
vector
 Usually it is however more e�ective regarding both precision and computational
speed to solve the system of linear equations resulting from Eq
��
���
 This is so even if
using the matrix inversion lemma �Lju��� for iterative computation of the inverse Hessian	
as suggested in e
g
	 �HS���
 In appendix C it is demonstrated that in most cases it is
actually more computation intensive to iteratively compute the inverse Hessian and take
the product with the gradient than it is to solve the system of linear equations

Furthermore	 solving the system might be more robust in case of a singular Hessian

If the Hessian is singular	 the inverse H�� cannot be computed
 However	 as long as
the gradient g in Eq
 ��
��� lies in the subspace spanned by H	 i
e
	 the range of H	 the
system of linear equations will have a solution which can be obtained by the Singular
Value Decomposition �SVD� method �PFTV���
 We are however still likely to run into
problems if the Hessian is singular or very ill�conditioned
 We shall return to the problems
of singularity and ill�conditioning of the Hessian in more detail in chapter �

As a
nal note it is here suggested to always precede the damped Gauss�Newton method
by a few iterations of gradient descent even though the damped Gauss�Newton is globally
convergent
 The reason for this is that initially the errors e�t� are generally relatively
large as we start from a randomly chosen set of parameters
 The large errors mean that
the second�order term S omitted in the Gauss�Newton approximation Eq
 ��
��� is large	
which will lead to a fairly poor search direction even though it is still a descent direction

Just a few iterations of gradient descent will reduce the initial errors signi
cantly and
lead to better search directions for the damped Gauss�Newton method
 Even though this
strategy is not strictly necessary it tends to speed up convergence and thus reduce overall
computation time

����� The pseudo Gauss�Newton method

Even though the Gauss�Newton approximation is much simpler to compute than the true
Hessian we still need to solve a system of linear equations in each iteration in order to
determine the search direction
 In order to avoid solving the system of equations it has
been suggested �HKP��� to introduce a diagonal approximation to the Gauss�Newton

Sec� ��	 Stopping criteria ��

Hessian	 assuming that the diagonal elements are dominating
 This leads to the pseudo
Gauss�Newton method in which the search direction in iteration k for the ith parameter
is simply computed as

&wi " �gi�wk��Hii�wk� ��
���

The search direction resulting from the pseudo Gauss�Newton method is thus equivalent
to using the Gauss�Newton method separately for each weight
 As was the case for both
Newton�s method and the Gauss�Newton method	 pseudo Gauss�Newton should be com�
bined with a line search
 In practice it has been found that convergence for the pseudo
method when applied to the training of fully recurrent networks is better than for gradient
descent �Ped��� but not nearly as fast as for the full Gauss�Newton method

��	 Stopping criteria

In order to determine when to stop the training we need to employ one or several stop�
ping criteria
 The stopping criteria should indicate whether the iterates have converged
towards a satisfactory solution w� or whether further iterations will be fruitless
 In the
following some common choices of stopping criteria will be discussed

Maximum number of iterations
 An obvious criterion which should always be used is to
set an upper limit on the number of iterations performed
 The maximum number of iter�
ations allowed indicates our patience with the training algorithm and guarantees that it
will terminate in
nite time
 Maximum number of iterations should however not be the
only stopping criterion as it does not give any information regarding the quality of the
solution obtained
 Rather	 it should be used to indicate that something went wrong as
the training algorithm did not
nd a �satisfactory� solution within the expected time

Size of the gradient
 A necessary condition for a solution w� to be a local minimum is that
the gradient is zero	 g�w�� "
	 indicating a stationary point
 Due to
nite precision and
the iterative nature of the training algorithms we cannot expect to
nd a solution that
satis
es this condition exactly
 In practice	 an adequate test for whether the kth iterate
satis
es this condition is

kg�wk�k� �
� ��
���

where k 	 k� denotes the Euclidean norm and
� is a su�ciently small positive constant

This test for a stationary point is not only a necessary condition	 but in fact also a su��

cient condition for being close to a local minimum
 This is so because convergence towards
a saddlepoint or a local maximum is practically impossible if we make sure always to use
a descent direction in combination with a line search �DS���

Lower bound for parameter change� As a criterion for whether the training algorithm is
progressing satisfactory or has ground to a halt	 we can use a lower bound on the minimally
accepted parameter change over a number & of iterations	

kwk�� �wkk� �
� ��
���

where k 	 k� denotes the sup norm and
� indicates our tolerance with progress as well as
the number of signi
cant digits we desire �DS���
 Whenever this criterion is satis
ed it is
an indication that the training algorithm has either converged or it has stalled due to e
g
	

�	 Chapter �� Training adaptive models

numerical problems
 In order to decide between the two possibilities we need to employ
the gradient criterion

Lower bound for change in cost function� In some presentations �Hay��� the iterations
are considered to have converged when the absolute rate of change in the cost function is
su�ciently small	

E�wk����E�wk� �
	 ��
���

where
	 typically lies in the range ������ � ���� �Hay���
 Such a stopping criterion
however seems rather inappropriate when working with nonlinear models like neural net�
works
 Experience has shown �HKP��� that the cost function surface often possesses very
�at �plateaus� and �rain gutter��like passages beyond which the error all of a sudden drops
signi
cantly
 Passing through such regions may leave the cost practically unchanged while
the weights undergo a dramatic change	 and the size of the gradient will often indicate
farness from a local minimum
 As this stopping criterion furthermore does not provide
any information regarding the quality of the obtained solution it seems rather super�uous

From the above it seems clear that the gradient stopping criterion should always be
employed as it indicates the closeness to a local minimum
 A proper choice of threshold

� will however be problem dependent �DS��� and the investigation of parameter changes
should therefore ideally be employed as well in order to ensure that iterations are not
terminated prematurely

In the experiments reported in this work the stopping criteria used has been maxi�
mum number of iterations combined with the gradient stopping criterion
 The bound on
parameter change was omitted as experience showed that if
� was chosen in the interval
����
� ���	� no further signi
cant weight changes took place within this range of a local
minimum

��
 Online training methods

The methods for training reviewed above are known as �batch� or �o%ine� methods	 as the
training of the model is not integrated into the application
 Rather	 an example database
T of corresponding input and output values from the system to be modeled is acquired
beforehand
 The model is then being fully trained before it is applied to the prediction
task in question	 after which no further training takes place
 Typically when training
o%ine	 an iteration of the training algorithm corresponds to presenting all examples to
the model before updating the parameter estimate

An alternative to this approach is to adopt an �online� method where the parameters
are updated immediately after the presentation of each example to the model
 This opens
up for the possibility of integrating training into the application	 continuously improving
the model
 Such methods are also known as recursive methods �Lju��� or �pattern mode�
methods �Hay���
 When updating the parameters immediately after the presentation of
each example we can choose to base the parameter update on the most recent example
only	 i
e
	 on the instantaneous quadratic error measure	

J�t� "
�

�
�e�t��� � ��
���

When training using this error measure it is common to use gradient methods �HKP��	
Hay��� as the Hessian is extremely ill�conditioned �has rank one� when based on a single

Sec� ��
 Computing the gradient for RNNs �

example only
 A classical signal processing example of this approach is the Least Mean
Square �LMS� algorithm �WS���	 derived for linear models

As an alternative to the instantaneous quadratic error measure we can choose to com�
pute the parameter update from an accumulated quadratic error measure	 which at time
t is computed as

E�t�w� "
�

�t

tX
t���

�e�t���� � ��
���

Using an accumulated error measure opens up for the application of �online versions� of
the Gauss�Newton method	 which are known as Recursive Least Squares �RLS� methods
�Lju���
 These methods are generally more e�ective than LMS�type methods	 but as for
�o%ine� optimization methods at the cost of increased computation in each iteration
 In
order to avoid a matrix inversion at each time step �or more appropriately solving a sys�
tem of linear equations�	 RLS�type methods rely on the matrix inversion lemma treated
in appendix C to compute the inverse of the Gauss�Newton approximation to the Hessian
in an iterative manner

When training a model using �batch� methods	 we assume that the system to be
modeled is stationary
 By stationary we understand that the parameters de
ning the
teacher function do not vary with time and that the additive noise contributions are
generated by a stationary stochastic process� refer also to section �
�

If the assumption of a stationary environment cannot be justi
ed we need to resort to
online methods which allow the model to continuously adapt itself to the changing condi�
tions of operation
 If using an accumulated error measure we need to introduce a weighting
scheme of the individual errors in Eq
 ��
��� assigning less weight to older errors relating
to conditions that are no longer representative for the underlying system
 A commonly
applied approach is to introduce a forgetting factor �	 modifying the accumulated error
measure as �Lju���

E�t�w� "
�

�t

tX
t���

�t�t
�

�e�t���� � � � �
 � � ��
���

This weighting scheme leads to an exponential decay of the relative weighting of old
errors	 the rate of the decay being determined by the value of �
 In order to make a
proper selection of � we need to estimate the rate at which the underlying system is likely
to change

Online methods are treated in more detail in e
g
	 �Lju��	 Par���
 They have not been
considered in the present work	 training of the models has been done o%ine on a
xed
training set thus assuming a stationary environment �Hay���

��� Computing the gradient for RNNs

In order to train adaptive models we need to compute the gradient of the quadratic cost
function Eq
 ��
��
 From Eq
 ��
��� we see that the gradient is composed of a sum of terms
involving the prediction errors as well as the partial derivatives of the model output at each
time step
 If modeling using a feed�forward neural network the model outputs y�t� are
independent as they are based on the current inputs only� in this case the partial derivatives
�y�t���wi will be independent as well and are easily obtained by the backpropagation

�� Chapter �� Training adaptive models

method� see e
g
	 �HKP��� for an excellent description of this method
 If modeling using
recurrent networks	 the individual model outputs are however not independent	 as the
output at time t generally depends on both the external input at time t as well as unit
outputs entering the model output at the previous time step t� �� refer to section �
�
�

The partial derivatives for an RNN model output at time t will therefore involve derivatives
of the previous unit outputs as well	 making computation of the quadratic cost function
gradient somewhat more involved than for feed�forward networks

This section describes the two basic approaches towards computing the gradient of the
cost function for fully recurrent networks
 The expressions for the derivations apply specif�
ically to the RNNs considered in this work	 described in section �
�
�	 but the principles
are easily applied to other recurrent structures as well
 The two methods to be described
in the following are Back�Propagation Through Time and Real�Time Recurrent Learning

which di�er signi
cantly in the requirements of storage and computation time

����� Back�Propagation Through Time

The
rst algorithm that was applied to the calculation of the cost function gradient for
RNNs was called Back�Propagation Through Time �BPTT� �HKP��	 Hay���
 The method
works by unfolding the recurrent network in time
 Unfolding in time is a procedure which
turns an arbitrary recurrent network into an equivalent	 deeply layered feed�forward net�
work employing a massive weight sharing
 For a sequence of length T we duplicate all
the units in the network for each time step t " �� � � � � T
 The hidden units of time step t
are connected to the units of timestep t# � through the feedback weights of the RNN as
illustrated in Figure �
�
 The external input x�t� is connected to the hidden units of time
t through the input weights of the RNN	 and the hidden unit outputs si�t� are connected
to the output unit through the output weights for computation of the output y�t� at time
t
 As the weights do not change with time	 the weights are identical between layers
 The
example in Figure �
� is for a recurrent network of the type described in section �
�
� with
one external input	 two hidden units and no feedback from the output unit back to the
hidden units for convenience of presentation

The resulting structure is equivalent to a feed�forward network and is updated likewise	
layer by layer
 This corresponds to the iteration of the recurrent network time step by
time step
 The quadratic cost function Eq
 ��
�� may for this structure be interpreted as
an �instantaneous� error measure for a multilayer feed�forward network having T output
units	 one in each layer as illustrated on Figure �
�
 The principle of BPTT is to calculate
the gradient for this �instantaneous� error measure using simple back�propagation	 an
ideal tool for computing derivatives for feed�forward structures �HKP���
 Having output
units in each layer of the unfolded network poses a major di�erence from traditional feed�
forward structures which typically only have output units in the
nal layer
 It is of no
problem to the application of back�propagation however	 the error signals computed for
these units are simply propagated backwards from the layer in which they originate along
with the errors for the hidden units in the same layer

The back�propagation algorithm works by computing an error � for each unit in the
network
 The derivative of the squared error wrt
 a given weight wto�from is then computed
as �to
 zfrom	 where zfrom is the value �hidden unit output or external input� at the origin
of the weight and �to is the error for the destination unit of the weight� see e
g
	 �HKP���
for further details
 This way	 the back�propagation algorithm calculates the derivative of
the error measure wrt
 every weight in the feed�forward network
 As the weights in the

Sec� ��
 Computing the gradient for RNNs ��

�
�
�
�

x(3)

x(T)

x(2)

x(1)

s (2)

s (1) s (1)

s (2)

s (3) s (3)

2

21

1

1

s (T) s (T)1 2

2

y(T)

y(3)

y(2)

y(1)

t=T

t=3

t=2

t=1

Figure �
�� Unfolding in time of recurrent network with one external input and two hidden
units
 Note that in this example there is no feedback from the output unit back to the
hidden units
 The weights connecting the units are identical in each time step	 i
e
	 between
layers

unfolded network are identical in each layer	 the total derivative of the error measure wrt

a particular weight is obtained by summing the derivatives in all layers obtained for this
particular weight
 See e
g
	 �WP��� for a more detailed description of the BPTT algorithm

A big advantage when computing the derivatives using the BPTT algorithm is that
the number of operations required per time step scales as O�N�

u� just as for ordinary back�
propagation� Nu is here the number of units in the network
 This is much faster than the
alternative	 Real�Time Recurrent Learning	 which is described below

A major criticism of the BPTT algorithm has been the requirements for storage
�HKP���
 If the total number of units in the RNN is Nu and we are considering a se�
quence of training examples of length T 	 we need to store NuT activations
 Thus	 storage
requirements scale with the length of the training sequence which might be impractical for
long sequences
 However	 for most applications this is not a practical problem as computer
memory is now available in large quantities at low cost

Another and more severe critique of BPTT has been that in its standard formulation
it is not practically possible to use it for online training of RNNs as both storage and
computations required in each iteration will grow linearly with time
 In order to overcome
this problem	 several modi
cations have been suggested� see e
g
	 �WP���
 The principle
underlying the modi
ed algorithms is to store the activations of only the h most recent
time steps	 thus all information older than h time steps is �forgotten� about
 BPTT is
then applied to these h most recent time steps only	 leading to an approximation of the
true gradient computed from the initial time step

�� Chapter �� Training adaptive models

����� Real�Time Recurrent Learning

A method that overcomes the problems with true gradient following online training is
the Real�Time Recurrent Learning algorithm �RTRL� �WZ���
 The key feature of this
algorithm is an exact recursive update of the derivatives	 eliminating the need to store all
previous states of the units in the recurrent network
 However	 this advantage over BPTT
comes at the price of a signi
cantly increased computational burden as we shall see

In the following the RTRL algorithm is derived for the type of recurrent networks
used in this work
 Whether using the instantaneous error measure J�t� Eq
 ��
��� or
training using the accumulated error measures of Eq
 ��
�� or Eq
 ��
��� we need the
partial derivatives of the instantaneous quadratic error measure at each time step t	

�J�t�

�wij
" �e�t��y�t�

�wij
��
���

Recall from section �
�
� that we combine the inputs to the hidden units and the output
unit at time t in vectors zh�t� and zo�t�	 respectively	 de
ned as

zhk �t� "

�	

xk�t� � k � I
sk�t� �� � k � H
y�t� �� � k " o

� zok�t� "
�
sk�t� � k � H ��
���

where I denotes the set of indices for the inputs	 H denotes the set of indices for the hidden
units and o denotes the output unit
 For convenience of presentation in the following we
will assume that the bias weights for the units in the network are provided indirectly by
e
g
	 an additional hidden unit with an output value permanently set to #� �and thus not
receiving any inputs�

The derivatives of the output unit at time t Eq
 ��
�� are then computed as

�y�t�

�wij
" �oiz

o
j �t� #

X
j��H

woj�
�sj��t�

�wij
��
���

where �oi is the Kronecker delta
 This expression contains the derivatives of the hidden
unit outputs	

�sk�t�

�wij
"

�f �vk�t��

�vk�t�
	 �vk�t�
�wij

� k � H ��
���

where
�vk�t�

�wij
" �kiz

h
j �t� #

X
j��H

wkj�
�sj��t� ��

�wij
wko

�y�t� ��

�wij
��
���

Assuming that iterations start at time t " � we set the initial conditions to zero according
to standard practice �WZ���
 I
e
	

sk��� " � � k � H ��
���

�sk���

�wij
" � � k � H

�y���

�wij
" �

The recursive equations above form the essence of the RTRL algorithm
 We note how
the exact value of the partial derivatives of the network output at time t are computed in

Sec� ��� Computing the Hessian for RNNs ��

an iterative manner by accumulation of derivatives from the previous time step only
 The
partial derivatives obtained from the RTRL algorithm can be accumulated over a training
sequence or used immediately	 depending on the type of cost function and method used
for training

Note that in order compute the derivative of a unit output at time t wrt
 a particular
weight we need to compute and store derivatives of all units in the network wrt
 this
particular weight	 which leads to a signi
cantly increased computational burden compared
to BPTT
 Let the total number of units in the recurrent network be Nu and the number of
inputs be NI
 The total number of weights in a fully connected network is then Nu�Nu #
NI�
 From Eqs
 ��
����
��� we see that we need to maintain the derivatives of every unit
in the network wrt
 each of these weights	 N�

u�Nu#NI� derivatives in total
 Each of these
derivatives are seen to involve around Nu operations leading to a total of N	

u�Nu # NI�
operations� an operation is here de
ned as a multiplication combined with an addition

The computational complexity of the RTRL algorithm in each iteration thus scales as
O�N�

u� whereas the storage requirements scale as O�N	
u�

The iterative computation of exact derivatives and the signi
cantly decreased demand
for storage compared to BPTT is seen to come at the price of a signi
cantly increased
computational complexity
 Even so	 the RTRL approach towards computation of deriva�
tives has been the method of choice in this work due to problems with computation of
second derivatives using the BPTT approach	 as will be explained below

��� Computing the Hessian for RNNs

When training using second�order methods we need the Hessian matrix with second deriva�
tives of the cost function
 This section describes how to compute the Hessian for the
quadratic cost function when modeling using recurrent networks
 The description is di�
vided into two parts	 computation of the Gauss�Newton approximation and computation
of the second�order part

��	�� The Gauss�Newton approximation

When calculating the Gauss�Newton approximation to the Hessian	 at each time step t
we need to compute the outer product of a vector containing the partial derivatives of
the network output at time t with itself	 as can be seen from Eq
 ��
���
 In order to
obtain these partial derivatives �y�t���w we need to employ the RTRL algorithm as it is
unfortunately not possible to obtain these derivatives from the faster BPTT algorithm	 as
will be shown below

When employing the BPTT algorithm we are in fact utilizing an alternative way of
writing the partial derivatives for the quadratic cost function E�w� given by Eq
 ��
��

The derivatives in Eq
 ��
��� can alternatively be written as �Hay���

�E�w�

�wij
"

TX
t��

�E�w�

�si�t�

�si�t�

�wij
��
���

where wij is a weight leading to unit i in the network and where si�t� is the output of unit
i at time step t
 t may also be conceived as indicating the layer number in the unfolded
network� refer to Figure �
�
 As the weights are assumed to be constant when computing

�� Chapter �� Training adaptive models

the cost function we will naturally obtain a contribution to the derivatives �E�w���wij

at each step t� this corresponds to the weights between each layer being identical when
unfolding the recurrent network in time as described in section �
�
�

When employing the BPTT algorithm we are using the traditional back�propagation
algorithm to obtain the elements of Eq
 ��
���	 starting from time!layer t " T and working
backwards to t " �
 Note however	 that

�E�w�

�si�t�

�si�t�

�wij
�" �J�t�

�wij
� J�t� "

�

�
�e�t��� ��
���

I
e
	 the element obtained at step t of the BPTT algorithm is not equal to the derivative
of the squared error at time t
 This can immediately be apprehended by noting that the
lefthand side of Eq
 ��
��� involves only terms computed from time T back to time t	 while
the righthand side involves only terms computed from time t " � up to time t	 as seen
from Eqs
 ��
����
���
 It is only when we take the sum over all t that we obtain equality
between the gradients computed from Eq
 ��
��� and Eq
 ��
��� �Hay���

Partial derivatives of a feed�forward network output are obtained by �back�propagating
ones�	 i
e
	 by applying the back�propagation algorithm and back�propagate errors set
equal to one	 e�t� " �
 However	 applying this strategy to the BPTT algorithm will not
provide the terms �y�t���w needed for computation of the Gauss�Newton approximation
to the Hessian	 for the same reason as listed in Eq
 �
��
 Only if we take the sum of
�y�t���w over all t will equality be obtained to the sum of all the elements resulting
from the RTRL algorithm
 Therefore	 BPTT cannot be applied to the computation of the
Gauss�Newton approximation to the Hessian

When computing the Gauss�Newton approximation to the Hessian we are thus forced
to use the RTRL algorithm in order to obtain the partial derivatives �y�t���w
 Besides the
N	
u�Nu#NI� operations thus required in each iteration to compute the partial derivatives	

it takes an additional Nu�Nu # NI��Nu�Nu # NI� # ���� operations to form the outer
product if utilizing the symmetry of the Hessian

This seemingly large cost in order to obtain the Hessian matrix combined with the
need to solve a system of linear equations in each iteration has lead to an often stated
claim that second�order methods are much more computationally demanding than
rst�
order methods
 Let us delve into this claim	 investigating it in more detail for the RTRL
algorithm

For simplicity	 we assume that the number of external inputs NI is somewhat smaller
than the number Nu of units in the network
 Using this simpli
cation there is approxi�
mately N�

u weights in the network	 and the number of operations required at each time
step for computation of the partial derivatives is thus N�

u
 Forming the outer product
of the partial derivatives costs N�

u�N
�
u # ���� operations	 or around half the cost of the

partial derivatives
 For a training sequence with T examples	 the total cost of computing
the Gauss�Newton approximation to the Hessian is thus approximately ���N�

uT

In order to obtain the search direction we need to solve a system of N�

u linear equations

The computational cost of this is approximately N

u according to �PFTV����
 Usually we
have much more examples available for training than there are weights in the network	 as
the training problem will otherwise be ill�posed due to a rank�de
cient Hessian matrix

Let us however be pessimistic and say that the number of training examples T equals

�Experiments in MATLAB where the Gauss�Jordan elimination method is used indicated that the
number of operations required for solving a system of N linear equations scales approximately as ��
N� �

Sec� ��� Computing the Hessian for RNNs ��

the number of weights N�
u
 The solution of the system of linear equations thus requires

N

u
 N�

uT operations

From the above we see that the total cost of obtaining the search direction for the

Gauss�Newton method is ���N�
uT
 Comparing to the number of operations required for the

computation of the gradient using the RTRL algorithm	 N�
uT 	 we learn that the application

of the Gauss�Newton method to RNNs is just a mere factor of ��� more computationally
costly than gradient descent'

��	�� Computing the second�order term

As the Newton method described in section �
�
� is not used in practice due to lack of
global convergence abilities as well as the vast computational burden generally associated
with the computation of second derivatives of the model output	 there is no real practical
need for the second�order part of the Hessian Eq
 ��
���
 Second derivatives of the output
for the recurrent networks considered in this work were however derived in �PH��� in order
to investigate the �importance� of the second�order term

The second derivatives are obtained by further di�erentiation of the expressions Eq
 ��
���
and Eq
 ��
��� entering the RTRL algorithm
 The term in Eq
 ��
��� denoting the second
derivative of the RNN output is calculated as

��y�t�

�wij�wpq
" �oi

�zoj �t�

�wpq
#

X
j��H

woj�
��sj��t�

�wij�wpq
�op

�zoq �t�

�wij
��
���

which is obtained as the derivative of Eq
 ��
���
 This expression contains the second
derivative of the hidden unit outputs which is calculated as

��sk�t�

�wij�wpq
"

��f �vk�t��

�vk�t��
	 �vk�t�
�wij

	 �vk�t�
�wpq

#
�f �vk�t��

�vk�t�
	 ��vk�t�

�wij�wpq
��
���

where the second derivative of the input to unit k is calculated as

��vk�t�

�wij�wpq
" �ki

�zhj �t�

�wpq
#

X
j��H

wkj�
��sj��t� ��

�wij�wpq
wko

��y�t� ��

�wij�wpq
�kp

�zhq �t�

�wij
��
���

which is obtained by di�erentiation of Eq
 ��
���
 In line with the
rst derivatives	 the
second derivatives are set equal to zero at time t " �

The computational complexity of the calculation of the second derivatives is as follows

The number of weight combinations for the derivatives is equal to the number of weights
squared	 N�

u�Nu#NI�
�
 From Eqs
 ��
����
��� we see that we need to maintain and store

the second derivatives of all units in the network wrt
 every weight combination	 leading
to a total of N	

u�Nu#NI�
� second derivatives
 Each of these second derivatives is seen to

involve around Nu operations leading to a total of N�
u�Nu#NI�

� operations per iteration

If utilizing the symmetry of the second derivatives	 however	 the storage requirements
and number of operations is approximately halved
 The computational complexity of
each iteration when computing second derivatives from the method outlined above thus
scales as O�N

u� whereas the storage requirements scale as O�N�
u�
 Inclusion of the second

order term in the Hessian therefore leads to a signi
cantly increased computational burden
compared to the Gauss�Newton approximation in its own

��

Chapter �

Generalization

In the previous chapter training of adaptive models was de
ned in terms of minimizing the
prediction errors made on examples in the training set
 Provided that the chosen model
has been properly trained it therefore seems reasonable to believe that the errors made
on the training examples are �small
� From an application point of view the training
error in itself is	 however	 a fairly uninteresting quantity for assessing the quality of a
model� in problems where low error on the examples used for training is the primary
object of modeling	 one could simply use the training data to create a lookup table� this
will naturally lead to zero error on the training examples

A more relevant measure of quality for a trained model is its ability to generalize	�

i
e
	 to provide good predictions on examples that were not present in the training set
 A
commonly adopted measure of the generalization ability of a model applied to time series
prediction is the expected squared prediction error on a novel example

Section �
� describes the theoretical de
nition of the generalization error for feed�
forward models as well as an approximation computed on a test set
 The theoretical
de
nition of the generalization error for feed�forward networks is not directly applicable
to dynamic system models like recurrent networks due to the dependency of the model
output of all previous inputs
 In section �
� an attempt is made to provide a theoretical
de
nition of the generalization error for recurrent networks
 Further	 it is described how
the generalization error has been estimated in this work
 The chapter is concluded by
a description of an analytical estimate of the generalization error	 namely Akaike�s Final
Prediction Error estimate

	�� Generalization in feed�forward models

The generalization error of a model intended for prediction is for feed�forward models
commonly de
ned as the expected squared prediction error on a novel example �HKP��	
Hay��	 Bis���	 consisting of an input x�t� and a desired output d�t�� for auto�regressive
modeling we might have x�t� " �x�t�� x�t � ��� � � � � x�t � L # ��� and the desired output
is the next value in the series	 d�t� " x�t # ��
 Assuming stationarity	 the generalization
error G�bw� of a model g� 	 � bw� is obtained as

G�bw� " Ef � d � g�x� bw� �� g ��
��

"

Z
� d� g�x� bw� �� 	 P �x� d� dx dd ��
��

�A term apparently borrowed from psychology �Hay����

��

�	 Chapter �� Generalization

where bw denotes the parameter estimate resulting from training and P �x� d� denotes the
joint probability density function for inputs x and corresponding outputs d as described
in section �
�

Usually the joint probability density function is unknown just as only a
nite amount of
data is available
 The generalization error is in practice therefore estimated on a separate
set of examples denoted the test set
 Assuming that test set comprises V examples and
that the index of the
rst example is T # � the generalization error is estimated as

bG�bw� "
�

V

T�VX
t�T��

� d�t�� g�x�t�� bw� �� "
�

V

T�VX
t�T��

e��t� bw� ��
��

If the generalization error is estimated on a single time series it must be assumed that the
generating process is ergodic

	�� Generalization error for recurrent models

The theoretical de
nition of the generalization error for feed�forward networks is not di�
rectly applicable to dynamic system models like recurrent networks due to the dependency
of the model output of all previous inputs
 In the literature the generalization error of
recurrent networks is traditionally simply estimated on a test in the same way as it is
done for feed�forward networks as described above
 However	 as a recurrent network im�
plements a function of in principle all previously applied inputs	 it is not immediately
obvious to what extent this approach may be theoretically justi
ed
 In this section an
attempt is made to formulate the generalization error of recurrent models within a statis�
tical framework in line with the approach which is traditionally adopted for feed�forward
models

���� Theoretical de�nition

As the output from a dynamic system model like a recurrent network is based on all

previous outputs	 time necessarily enters the de
nition of generalization error for this
model type
 In the following it will be assumed that the problem at hand is one step
ahead time series prediction and the desired output is therefore set to d�t� " x�t� for
inputs x�t � ��� x�t � ��� � � � to the network� the expressions in the following are however
easily modi
ed to other applications

We now formulate the expected squared prediction error which will be encountered at
time step t as

Gt�bw� " E
�
�x�t�� gt�X

t��� bw� ��
�

��
��

"

Z
�x�t�� gt�X

t��� bw� �� 	 Pt
�
Xt

�
dXt ��
��

where x�t� denotes the true system output at time t and gt� 	 � bw� denotes the �time un�
folded� recurrent network model output at time t� refer to the general model description
given in section �
�
 This error may be interpreted as the average squared error resulting
at time t if the same model gt� 	 � bw� was applied to in
nitely many realizations of the
observation sequence Xt�� from the true system
 The error Gt�bw� de
ned by Eq
 ��
��
may consequently also be conceived as the ensemble error at time t

Sec� 	�� Generalization error for recurrent models �

Due to lack of knowledge of the complete observation sequence Xt from the true system
as well as the true system initial state the network model will initially enter a transient

mode of operation as described in section �
�	 before asymptotically converging towards
the approximated mode of operation of the true system� the asymptotic behaviour of the
recurrent network model as t � � may also be referred to as the steady�state �PC���

During the transient the generalization error Gt�bw� will typically not be representative
for the generalization error obtained after entering the steady�state and thus the �normal�
mode of operation� rather	 the errors will on average tend to be too large
 As the transient
may last for an arbitrary period of time	 the overall generalization error G�bw� of a dynamic
system model is consequently de�ned as the average squared error to expect after entering
the steady�state mode of operation
 Ultimately	 this will be the case after iteration of the
model for an in
nitely long period of time and the generalization error is therefore de
ned
as

G�bw� � lim
t��

Gt�bw� " lim
t��

Z
�x�t�� gt�X

t��� bw� �� 	 Pt
�
Xt

�
dXt ��
��

In order to de
ne the generalization error this way it is necessary to assume that the limit
exists	 i
e
	 that the expected squared prediction error will not vary with time after the
model has entered its steady�state mode of operation

Consider a sequence of squared prediction errors fe�t� bw��g resulting from predictions
of a single	 in
nitely long sequence of observations generated by the true system
 Assuming
this sequence of squared errors to be a mean�ergodic sequence �Pap��� the generalization
error de
ned by Eq
 ��
�� may equivalently be obtained as

G�bw� " lim
T��

�

T

TX
t��

�x�t� � gt�X
t��� bw� �� " lim

T��

�

T

TX
t��

e��t� bw� � ��
��

When computing the generalization error this way the initial prediction errors might be
subject to the e�ects of the transient	 and therefore not representative for the errors in the
steady�state mode of operation
 The e�ects of the increased errors during the transient
will	 however	 tend to zero when applying the limit

���� Empirical estimate

In practice we only have a
nite amount of observations from the true system available	
usually extracted as part of a single realization of a true system observation sequence� i
e
	
only one series is available as it may not be possible to repeat the �experiment� which
generated the obtained series
 An estimate of the generalization error is therefore in
practice obtained by holding back a
nite length segment of the observed time series as an
independent test set	 and an estimate of the generalization error de
ned by Eq
 ��
�� of the
recurrent network is obtained as the average squared predition error on the observations
in this test segment	

bG�bw� "
�

V

t��VX
t�t���

e��t� bw�
 G�bw� ��
��

where t� # � denotes the time index for the
rst �target value� in the test segment which
comprises V elements�

�The generalization error estimates reported in this thesis are normalized by the empirical variance
of the samples in the test set in order to comply with the Normalized Mean Squared Error de�ned in
appendix A�

�� Chapter �� Generalization

0 50 100 150 200 250

−0.4

−0.2

0

0.2

TIME

E
R

R
O

R

0 50 100 150 200 250

0.5

1

V
A

LU
E

Figure �
�� Illustration of transient when starting iterations on a test segment
 Up�
per panel� Correct output �solid line� and network output �dotted line�
 Lower panel�
Prediciton errors
 Note how the prediction errors decay as the network approaches the
steady�state mode of operation

When estimating the generalization error on a
nite length test segment the e�ect of
the transient will generally not tend to zero and become negligible as is the case in the
limit in Eq
 ��
��
 Rather	 a bias is introduced into the estimate of the true generalization
error
 Naturally	 it is of interest to reduce this bias as much as possible� this will be
elaborated upon in the following

The recurrent network models considered in this work are working solely from an in�

ternal memory of previous input values	 built up in the hidden unit state vector during
iterations of the network
 When commencing iterations on e
g
	 a test segment the in�
ternal state of the network is usually set to zero as described in sections �
� and �
�
�	
and a memory of past observations graduately builds up during the
rst iterations until
the internal memory contains a full representation of those previous values necessary for
accurate predictions
 The initial iterations of the recurrent network during which the
internal memory is not fully developed thus mark a transient before convergence to the
steady�state mode of operation as described in section �
�
�

During the transient the prediction errors will be larger than in the steady�state as
illustrated in Figure �
�
 Here	 a fully trained single�input recurrent network is applied to
a test segment	 by setting the internal hidden state to zero before starting the iterations

The recurrent network has a very low test error once the model has converged	 but the
initial errors are large and not representable for what should be expected once the network
has converged to the steady�state
 As iterations progress the prediction errors decay as
the network approaches the steady�state mode of operation

From Figure �
� it is seen how inclusion of the initial prediction errors when estimat�
ing the generalization error using Eq
 ��
�� will introduce a bias	 leading to an overly
pessimistic estimate of the true generalization error
 In order to avoid this bias the initial
errors should be omitted from the estimate of the generalization error
 Omission of these

�The time index of the �rst element in the test segment is here arbitrarily set to zero�

Sec� 	�� Generalization error for recurrent models ��

0 500 1000 1500 2000 2500 3000

−0.02

0

0.02

TIME

E
R

R
O

R

Figure �
�� Illustration of the development of the prediction error when iterating from the
training set into an immediately following test set �the same test set as used in Figure �
�
but extended� for the same recurrent network as used in Figure �
�
 The vertical line
denotes the train!test separation point
 Note the small scale here on the ordinate axis
compared to the lower panel of Figure �
�

non�representative errors poses at least two problems	 however
 First of all it is di�cult
to decide exactly how many of the initial prediction errors should be discarded	 as the
length of the transient will depend upon both the nature of the problem at hand as well
as the particular network realization which resulted from training
 Secondly	 values of the
possibly scarce test series are �wasted� during the transient as they are not contributing
to the generalization error estimate	 but rather used to initialize the internal memory of
the network� the consequence is a reduction of the e	ective size of the test set leading to
larger variance on the generalization error estimate

In order to reduce the e�ect of transient bias on the generalization error estimate as
much as possible while still utilizing all available data in the test series for the estimate	
the approach adopted in the present work has been to always choose the test series to
immediately follow the training series
 When estimating the generalization error	 iterations
are initiated on the preceeding training series in order for the internal memory of the
recurrent network to be close to the �normal mode of operation�	 i
e
	 the steady�state
once iterations enter the test segment
 This is illustrated in Figure �
� for the same network
which was used in Figure �
� and using the same �extended� test set
 Now	 iterations are
initiated on the training set at time t " � and continued into the test set which starts
at time step ���� as denoted by the vertical line
 It is seen that the initial errors on the
test set no longer su�er from transient e�ects� note the small scale on the ordinate axis
compared to Figure �
�

This method will tend to introduce a bias into the generalization error estimate as
well
 The prediction errors obtained in the beginning of the test set might be overly
optimistic compared to the steady�state mode of operation when t � � as the internal
memory of the network is initially dominated by observations from the training set
 The
smaller initial prediction errors on the test set consequently introduce a negative bias
into the generalization error estimate
 The approach is	 however	 preferable considering

�� Chapter �� Generalization

1000 1500 2000 2500

−0.4

−0.2

0

0.2

0.4

TIME

E
R

R
O

R

Figure �
�� Illustration of the development of the prediction error when iterating from the
training set into an immediately following test set for a recurrent network having a very

large estimated generalization error
 The vertical line denotes the train!test separation
point
 Note the small initial errors on the test set due to in�uence from the training set

the smaller magnitude of the introduced bias �compare Figure �
� to Figure �
�� and	
considering that as the quality of training improves	 the average test errors will approach
the average training error �as it appears in Figure �
�� and the relative e�ect of the bias
will thus tend to zero

The e�ect of smaller intial test errors due to in�uence from the training series is
not easily seen from Figure �
� as the errors on the training and test set are practically
identical
 In order to more clearly demonstrate the e�ect	 a similar illustration is provided
in Figure �
�
 However	 the recurrent network used exhibits severe overtraining	 i
e
	 the
average squared error of the fully trained network is much smaller on the training set than
on the test as the network has adapted itself to features speci
c to the training set that
are not present in the test set
 From the
gure it is seen that the initial prediction errors
made on the test set are hardly distinguishable from the errors made on the training set	
but as the in�uence from the points in the training set on the internal memory decays	
the prediction errors increase dramatically in magnitude

Estimation of the generalization error on a test series immediately following the train�
ing series is a commonly adopted procedure for feed�forward models as well	 see e
g
	
�WHR��	 WG���
 For these models the lag space extends back into the training series
when predicting the
rst few values in the test series� this will introduce a negative bias
into the estimate in the same way as was described for recurrent networks above
 The
ideal situation for both network types would be to have a very large test series far away
in time from the training series	 allowing for an unbiased generalization error estimate

However	 practical limitations usually makes this ideal situation unattainable

	�� Analytical generalization error estimates

As an alternative to estimating the generalization error on a test set it has in the liter�
ature been suggested to derive analytical expressions for the generalization error by use

Sec� 	�� Analytical generalization error estimates ��

of asymptotic theory
 The concept underlying the analytic approach is to estimate the
generalization error in terms of the training error and the model complexity
 Analytical
generalization error estimates include the AIC	 BIC	 FPE and NIC estimates
 An often
adopted estimate for neural networks is the Final Prediction Error �FPE� estimate �Aka���
which will be brie�y outlined in the following

���� The FPE�estimate

This section brie�y outlines the derivation of the FPE�estimate
 For a detailed derivation
the reader is referred to e
g
	 �Lar��	 Ras���

The derivation of the FPE�estimate assumes that examples in terms of inputs x�k�
and corresponding outputs d�k� from the true system are generated by a teacher function	
degraded by additive noise
 It is assumed that the teacher function can be perfectly
described by a network model g� 	 �w� for a set of teacher weights w� and thus that
examples are generated according to

d�k� " g �x�k��w�� # ��k� ��
��

where the noise samples ��k� are independent identically distributed stochastic variables
with
nite	 but unknown variance ��
 Further	 it is assumed that the noise terms are
independent of the corresponding inputs

It is now assumed that an ensemble of student networks is available in which each
network is provided with its own individual training set comprising T examples
 Each
network in the ensemble is trained	 leading to an estimate bw of the teacher weights w�

for each network
 It is assumed that the parameter �uctuations �w " bw � w� around
the teacher weights are small	 which may be justi
ed if the number of training examples
T is large
 This ensures the validity of an approximation of the student Mean Squared
Error MSE�bw�� by a Taylor series approximation to second order in weigth �uctuations
�w around MSE�w�� for the teacher function	 calculated on the same training set as the
student
 Averaging over the entire ensemble leads to

hMSE�bw�iT "

�
�� N

T

�
	 �� #O

�
���T ��

�
��
���

where
 	 �T denotes the ensemble average over all possible training sets of size T 	 N
denotes the number of weights in the networks and it is assumed that terms of Landau
order ���T �� can be neglected
 Note that the ensemble average of the training errors is
smaller than the noise level	 corresponding to the students having learned some of the
noise as well

Similary	 the generalization error G�bw� of each student network is approximated by an
expansion of the teacher function generalization error G�w�� to second order in parameter
�uctuations �w
 The ensemble average is then obtained as

hG�bw�iT "

�
� #

N

T

�
	 �� #O

�
���T ��

�
��
���

Elimination of the noise level �� in Eq
 ��
��� and Eq
 ��
��� leads to a relation between
the ensemble average training and generalization errors obtained as

hG�bw�iT "
T #N

T �N
	 hMSE�bw�iT ��
���

�The Mean Squared Error relates to the error measure E	w
 de�ned by Eq� ��� as MSE	w
 � �

T
E	w
�

�� Chapter �� Generalization

Usually	 only one training set is available
 The ensemble average of the training errors
is then replaced by the single available observation	 leading to the FPE�estimate of the
generalization error for this particular model	

bG�w� "
T #N

T �N
	MSE�bw� ��
���

Often the student network is trained from an error function augmented by an additive
regularization term as will be described in the following two chapters
 The regularization
term constrains the weights	 thereby in e�ect limiting the degrees of freedom in the network
model
 The limitation of degrees of freedom may be seen as a reduction of the actual

number of weights in the network to an e	ective number of weights Ne
 �Moo���	 Ne

 N

Let A denote the matrix with second derivatives of the quadratic error function	 D denote
the matrix containing the second derivatives of the additive regularization term and let
H " A #D denote the second derivatives of the augmented cost function �refer also to
page ���
 The e�ective number of weights may then be estimated as �LH���

Ne
 " tr�AH��AH��� ��
���

For a more rigorous de
nition of the e�ective number of parameters the reader is referred to
�LH���
 When estimating the generalization error using the FPE�estimate for a network
trained on a regularized error function the actual number of parameters N should be
replaced by the e�ective number of parameters Ne
	

bG�w� "
T #Ne

T �Ne

	MSE�bw� ��
���

From this expression it is seen that the estimated generalization error for a regularized
network will be smaller than that of an unregularized network having the same training
error
 This is due to the e�ect that a �small� regularization term will reduce the ability
of the networks in the ensemble to adapt themselves to the noise on the training set as
seen from Eq
 ��
���	 i
e
	 to over�t	 leading to an improved generalization ability as will
be described in the following chapter

The extent to which the derivations outlined above leading to the FPE�estimate applies
to dynamic systems like e
g
	 recurrent models is not entirely clear
 One complication of a
formal derivation of the FPE�estimate for general dynamic systems will be the in�uence
of transient e�ects when e
g
	 expanding the student network training error around the
teacher network training error computed on the same
nite training set
 In this case
the exact value of the teacher function training error will be dependent on the initial
value of the unmeasurable internal state vector� this needs to be taken into account when
calculating the ensemble average of the errors

Despite the lack of formal justi
cation it has been brie�y attempted in this work to
apply the FPE�estimate to recurrent networks in order to empirically assess the relevance
of the estimator for this model type
 In particular the FPE�estimate has been applied as
a means for selection of the optimal model structure among the networks resulting from a
pruning procedure as it was done for feed�forward networks in e
g
	 �SHL��	 HMPHL���

The results are reported in chapter ��

Chapter �

Model complexity optimization

In the previous chapter it was emphasized that the quality of a trained model should be
measured in terms of the generalization ability rather than the error on the speci
c data
set used for training the model	 and several approaches towards estimating the expected
generalization error were described
 A measure of great importance to the generalization
ability of a model is the model complexity	 i
e
	 in the case of neural networks the number of
hidden units and weights
 If the chosen model is too simplistic it will not be �exible enough
to emulate the dynamics of the system which produced the time series� this situation is
often denoted as �under
tting� and will naturally lead to a large generalization error

On the other hand	 if the chosen model is too complex the excess degrees of freedom
will allow the model to
t not only the original signal but also the additional noise	
due to the
nite size training set
 This situation is denoted as �over
tting� and will
also lead to a large generalization error
 The phenomena of under
tting and over
tting
are illustrated in many text books �HKP��	 Hay��	 Bis��� in terms of a polynomial
t
to noise contaminated data	 using too low and too high order of the
tting polynomium	
respectively
 These illustrations emphasize the need to choose not only a proper functional
family when modeling but also a proper model complexity

The problems of under
tting and over
tting were illustratedmathematically in �GBD���
where it was shown that the generalization error splits into three components	

G�bw� " �noise variance� # �model bias�� # �model variance� � ��
��

The
rst component is the variance of the additive noise which is independent of the
chosen model and indicates an absolute lower bound on the obtainable generalization
error
 The second component is �model bias squared� which indicates an o�set from the
lowest possible generalization error due to a systematic di�erence on average from the
teacher function
 This term will dominate the generalization error if the chosen model is
too simplistic and thus prone to under
tting as described above
 The third term is model
variance which indicates an o�set from the lowest possible generalization error due to large
variability in the models which result from training
 A large model variance thus indicates
that widely di�erent models may result from training on di�erent realizations of the
xed
size training set
 This will be the case for a model with excess degrees of freedom	 hence
prone to �over
tting
�

In order to decrease the model bias and thereby the bias term of the generalization
error we may increase the model complexity	 i
e
	 the number of parameters
 This will
however increase the model variance and lead to an increasing variance contribution to

��

�� Chapter �� Model complexity optimization

the generalization error
 Only in the case of an unbiased� model and in the limit of an
in
nite training set will it be possible to eliminate both the bias term as well as the
variance term in Eq
 ��
��
 In practice we are however training on a
nite size training set
and therefore need to choose a model complexity which makes a tradeo	 between the bias
term and the variance term of Eq
 ��
�� in order to minimize the generalization error
 This
tradeo� is also denoted the �bias!variance dilemma� �GBD���
 The following contains a
description of various methods for controlling the model complexity and thereby choosing
an optimal model structure

�� Regularization

A possible approach towards controlling the model complexity and thus seek for the opti�
mal bias!variance tradeo� is by regularizing the cost function	 i
e
	 to modify the original
cost function in such a way that constraints are imposed on the parameters in order to
reduce the degrees of freedom in the model
 This approach is also called complexity
regularization �Hay���
 Regularization of the cost function is usually accomplished by
augmenting the original cost function E�w� by an additive regularization term R�w�	
resulting in the total cost function

C�w� " E�w� #R�w� ��
��

A commonly used regularization term is of the form

C�w� " E�w� #
�

�
wTw � ��
��

where � is a positive constant denoted the weight decay� the division by a factor of two
is applied for convenience when computing derivatives
 The e�ect of the weight decay
is to bias the weights uniformly towards zero during training and thus in e�ect reduce
degrees of freedom� the �persistence� of the bias is determined by the magnitude of the
weight decay parameter �
 The bias towards zero will reduce the magnitude of the weights
and therefore bias the network towards a simple linear model as the sigmoid activation
functions are approximately linear for small weights
 For an illustrative elaboration on
the simple weight decay the reader is referred to e
g
	 section ��� in �Bis���

The simple weight decay is a special case of a more general regularizer of the form

C�w� " E�w� #
�

�
wTDw ��
��

where D is a positive de
nite matrix
 It is common to keep the matrix D diagonal but an
individual weight decay parameter is sometimes assigned with each weight	 i
e
	 Dii " �i
and Dij " �	 i �" j
 Instead of assigning an individual weight decay parameter with each
weight we can assign di�erent weight decay parameters with certain groups of weights� e
g
	
in �SHL��� two di�erent weight decay parameters were used for a feed�forward network	
one for the weights on the input side of the layer of hidden units and one for the weights
on the output side
 For recurrent networks it is of course possible to do likewise
 E
g
	
the weights of a recurrent network like the one illustrated in Figure �
� may be split into
two groups	 one group which contains the weights which would also be present in a feed�
forward network	 the other group containing the feedback weights
 If the indices of the

�A model which is capable of implementing the teacher function� This is also denoted as a complete

model �Lar����

Sec� ��� Architecture optimization ��

feed�forward weights are collected in the set F and the indices of the feedback weights are
collected in the set B we may regularize the recurrent network as

C�w� " E�w� #
�

�
�

X
i�F

w�
i #

�

�
�rec

X
i�B

w�
i ��
��

where �
 and �rec are the weight decay parameters associated with the two groups of
weights
 The intriguing about this construction of the regularizer is that it allows for
control of not only the overall model complexity but also the degree of feedback in the
network� i
e
	 in the limit of �rec �� the recurrent network will reduce to a feed�forward
network

The probably most commonly adopted method for determination of proper values
for the weight decay parameters is by the trial�and�error method	 i
e
	 by appropriate
sampling of the weight decay parameter space	 training a number of networks for each
weight decay sample and then estimate the generalization ability of the resulting networks
on a validation set set� this method has been adopted in the present work as well
 However	
the literature contains suggestions to algorithmic determination of the weight decays
 In
�HRSL��	 HR��	 HMPHL��� the weight decay parameters were determined by alternating
minimization of the augmented cost function wrt
 the weights and minimization of an
analytical generalization error estimate �e
g
	 the FPE�estimate� wrt
 the weight decay
parameters	 and encouraging results were obtained
 A related approach was adopted in
�LHSO��	 LSAH���	 where the weight decay parameters were determined by minimization
of the estimated generalization error obtained on a validation set
 These approaches
towards algorithmic determination of the weight decay parameters has yet to be tested for
recurrent networks

It is
nally noted that regularization is of importance not only from a model complexity
point of view but during training also from a numerical point of view
 This will be
described in more detail in section �
�

�� Architecture optimization

As an alternative to the indirect control of the model complexity by regularization one may
resort to a more direct manipulation of the network architecure in search of an optimal
model for the problem �and amount of data� at hand	 i
e
	 to directly manipulate the
number of units in the network as well as their connectivity

A naive approach towards exploring the space of possible network architectures is by
exhaustive search of possible network architectures
 A simple search method is to vary the
number of hidden units Nh and determine the performance of the resulting models
 This
procedure is simple to apply but the approach may require signi
cant computational e�ort
as many di�erent networks have to the trained
 An additional drawback of this method is
that it only searches a very restricted class of network models	 as the connectivity of the
networks is not being adjusted

More selective procedures towards obtaining an optimal network architecture have
been suggested in the literature
 Two classes of such procedures are the pruning algorithms
and the growing algorithms
 Pruning alorithms work by training a network with excess
degrees of freedom and gradually remove connections or complete units in order to obtain
an optimal architecture
 Growing algorithms work the other way around by starting with
a very simple network architecture and gradually add complexity in terms of hidden units

�	 Chapter �� Model complexity optimization

and connections
 Actually these two approaches towards architecture optimization may
be combined as it was done in e
g
	 �HP���
 Growing algorithms have not been considered
in this work and the reader is referred to e
g
	 �HKP��	 Bis��� for an overview of these
methods

The focus of this work has been on pruning algorithms in line with what seems to be
the majority of the literature on architecture optimization
 Part of the success of pruning
algorithms over growing algorithms is owed to the renowed pruning algorithms Optimal
Brain Damage �OBD� and Optimal Brain Surgeon �OBS� which will be described in detail
in the following sections

Both of these methods work from a network initially having excess degrees of freedom
and trained to a local minimum of the cost function
 The weights are then ranked according
to relative importance	 or saliency	 and weights having low saliency are eliminated
 The
saliency of a weight is measured in terms of its e�ect on the training error	 i
e
	 the
increase in training error that will result if the weight is eliminated
 The rationale behind
this method is that if we eliminate the least salient weights according to training error
we gracefully relieve the capability of the network to over
t the training data and thus
improve generalization

The optimal way in which to determine the saliency of a weight in terms of training
error would be to eliminate each weight of the network in turn	 each time retraining the
reduced network to a new local minimim of the cost function and
nally determining the
saliency of the eliminated weight as the discrepancy between the training errors from before
and after the weight was eliminated
 The resulting �optimal� saliencies re�ect the �true�
consequences of eliminating a particular weight but this approach is computationally very
costly to implement
 Even so	 this way of determining saliencies was applied in �Tho���
and has since been denoted as the �brute force� method
 As an alternative to saliencies
computed by brute force	 OBD and OBS work from approximations to these optimal
saliencies

The weight elimination procedure is usually succeeded by retraining of the reduced
network to a new minimum of the cost function after which the elimination procedure
is repeated
 This results in a nested family of network architectures among which we
must choose the optimal
 This choice is usually based on the generalization error of the
resulting networks	 estimated either on a validation set or by an analytical generalization
error estimate like the FPE estimate
 We now formulate a repice for the pruning procedure
as follows�

�
 Train the network to a minimum of the cost function

�
 Estimate the generalization error for the resulting network

�
 Determine whether any further weights should be eliminated
 If this is not the case	
go to item �

�
 Determine the saliencies for all weights in the network

�
 Rank the weights according to saliency and eliminate the least salient weight�s�
 Go
to item �

�
 Stop the pruning procedure and choose the network with smallest estimated gener�
alization error

Sec� ��� Architecture optimization �

The following two sections explain how saliencies are estimated for the OBD and OBS
pruning schemes and relevant expressions are derived
 The derivations will be performed
for a cost function augmented by an additive regularization term of the form of Eq
 ��
��
as the cost function should generally be regularized in order to handle numerical problems	
as discussed in chapter �
 The resulting expressions will therefore di�er slightly from the
original expressions in �CDS��	 HS���
 In the following	 H will denote the Hessian of the
augmented cost function	 obtained as

H "
��C�w�

�w�wT
"

��E�w�

�w�wT
#
��R�w�

�w�wT
" A#D ��
��

Thus	 A denotes the second derivatives of the error measure E�w� and D is the second
derivatives of the regularization term

����� Optimal Brain Damage

This section describes the Optimal Brain Damage �OBD� pruning scheme which was in�
troduced in �CDS���
 The overall pruning procedure is as outlined in the recipe above
 In
each �round� of weight eliminations the saliency of a weight is computed as the estimated
increase in training error E�w� if the weight is eliminated
 Eliminating a weight is equiv�
alent to setting it to zero as it then no longer contributes to the network output� this way	
the saliency is obtained as the estimated change in training error if the weight is set to
zero
 Consequently	 the saliency estimates of OBD do not include the e�ect of retraining
the reduced network

Let bw denote the parameters resulting from training the network to a local minimum
of the augmented cost function C�w�
 As we are interested in changes in the error measure
E�w� we expand this to second order around the current parameter estimate	

E�bw # �w�
 E�bw� # �wTrE�bw� #
�

�
�wTA�w ��
��

where �w denotes a perturbation of the parameter vector bw and A denotes the Hessian
matrix of the error measure E calculated at bw
 Assuming the point bw to be a local
minimum of the total cost function C	 we have

rC�bw� " rE�bw� #Dbw "

m
rE�bw� " �Dbw ��
��

This expression is inserted into ��
�� which leads to

�E " E�bw# �w� �E�bw�

" ��wTDbw#
�

�
�wTA�w ��
��

where �E denotes the change in the error measure E resulting from the weight perturbation
�w
 Assuming that the perturbation of the parameter vector bw corresponds to setting the
jth parameter to zero	

�w " ��eTj bw�ej ��
���

in which ej denotes the jth unit vector	 the resulting change in the error measure E is
obtained as

�Ej " bwj

X
i

Dji bwi #
�

�
Ajj bw�

j ��
���

�� Chapter �� Model complexity optimization

where bwj denotes the jth element in bw
 In the case of individual weight decay parameters
�j we thus estimate the saliency of the jth weight as

�Ej "

�
�j #

�

�

��E�w�

�w�
j

� bw�
j � ��
���

The OBD pruning scheme allows for the elimination of more than one parameter at
a time
 In this case it is assumed that the total change �E in the error measure can be
approximated by the sum of the saliencies resulting from setting the parameters to zero
one at a time	

�EP

X
j�P

�Ej "
X
j�P

�
�j #

�

�

��E�w�

�w�
j

� bw�
j ��
���

where P denotes the indices for the pruned weights
 Approximating the total change in
the error measure in this way is equivalent to the assumption that o��diagonal elements
of the Hessian can be neglected	

��E�w�

�wi�wj

 � � i �" j ��
���

The remaining diagonal terms of the Hessian are furthermore approximated as

��E�w�

�w�
j

TX
t��

�y�t�

�wj
	 �y�t�
�wj

��
���

which corresponds to the Gauss�Newton approximation Eq
 ��
��� to the second derivatives
as described in section �
�
�

As described above	 the saliency estimates of the OBD pruning scheme do not include
the e�ect of retraining the reduced network to a new local minimum of the cost function

As the training error E�w� will decrease� during retraining the OBD saliency may be
seen as an upper bound on the change in training error after retraining of the remaining
parameters	 as pointed out in �GHK����
 Even so it is not clear from the OBD saliencies
how retraining will a�ect the ranking of the weights

����� Optimal Brain Surgeon

This section describes the Optimal Brain Surgeon �OBS� pruning scheme which was intro�
duced in �HS���
 The basic idea of OBS is the same as for OBD	 namely to estimate the
change in training error if a weight is set to zero	 working from a second�order expansion

As opposed to OBD however	 OBS seeks to include in the saliency estimate the e�ect of
retraining the reduced network and thereby provide a saliency estimate which is closer to
the �optimal� saliency as described above
 The retraining e�ect is incorporated into the
saliency by reestimation of the remaining parameters in the network to a new minimum
within the quadratic approximation of the training error E�w�	 calculating the change in
training error in this minimum
 As for OBD	 the expressions for OBS are here derived for
a regularized cost function	 the results of which were originally presented in �HP���

�Note that it is theoretically possible for the error measure E	w
 to actually increase during retraining
when training from a regularized cost function C	w
� However� if the weight decay parameters are small

this will seldomly occur in practice�

Sec� ��� Architecture optimization ��

Once more	 let bw denote the parameters resulting from training the network to a local
minimum of the augmented cost function C�w�
 The cost function is expanded to second
order around bw	

C�w�
 C�bw� #
�

�
�wT�A#D��w ��
���

where �w denotes a perturbation of the parameter vector bw� the
rst order term vanishes
as bw is assumed to be a local minimum of C
 Furthermore recall from Eq
 ��
�� that the
Hessian matrix H for the augmented cost function C�w� is obtained as H " A#D where
A is the matrix with second derivatives of the error measure E�w� computed at bw

We now set the jth weight to zero which is expressed as

�wT
j ej # bwTej " � � �wT

j ej " �bwTej ��
���

where ej denotes the jth unit vector
 Reestimation of the remaining weights to a new min�
imum within the quadratic approximation is equivalent to determination of the minimum
of Eq
 ��
��� subject to an equality constraint given by Eq
 ��
���
 We thus introduce the
Lagrange function

(Cj�w� " C�w� # �j��wj # bw�Tej ��
���

in which C�w� denotes the approximation from Eq
 ��
���
 The coe�cient �j is the
Lagrange multiplier and �wj as well as �j are now to be determined in such a way that
the expression ��
��� is minimized	 at the same time satisfying Eq
 ��
���
 First	 �wj is
determined so as to minimize Eq
 ��
���
 This is obtained by setting the derivatives of
Eq
 ��
��� equal to zero	

�C�w�

���wj�
�jej "

m
H�wj # �jej "

m
�wj " ��jH��ej

��
���

In order to determine �j we use Eq
 ��
��� inserted into Eq
 ��
���	

�je
T
j H

��ej " bwTej
m

�j "
bwTej

eTj H
��ej

��
���

The reestimation of the remaining parameters after setting the jth weight to zero thus
leads to a change in the parameter vector which is determined by insertion of Eq
 ��
���
into Eq
 ��
���	

�wj " � bwTej

eTj H
��ej

H��ej ��
���

Using this expression it is now possible to estimate the change in the error function E�w�
resulting from the parameter change	 i
e
	 the saliency
 A Taylor expansion to second order
around bw leads to

Ej�w� " E�bw� # �wT
j rE�bw� #

�

�
�wT

j A�wj ��
���

�� Chapter �� Model complexity optimization

The
rst order term in Eq
 ��
��� may be determined from the
rst order derivatives of
the regularized cost function C�w� as it is assumed that bw is a local minimum	

rC�bw� " rE�bw� #Dbw "
 � rE�bw� " �Dbw ��
���

This expression is inserted into Eq
 ��
��� which leads to

�Ej�w� " ��wT
j Dbw#

�

�
�wT

j A�wj ��
���

in which �Ej�w� " Ej�w��E�bw�
 Finally the expression for the retraining Eq
 ��
��� is
inserted into Eq
 ��
��� and the expression which estimates the saliency when setting the
jth weight to zero is calculated as

�Ej�w� " �je
T
j H

��Dbw#
�

�
��je

T
j H

��AH��ej ��
���

The expression ��
��� is computationally fairly complex but can be simpli
ed somewhat
if assuming that the regularization is a simple weight decay in which case H " A#D "
A#�I� note that the weight decay parameters are assumed to be identical for all weights
in the network
 In this case the saliencies are �simpli
ed� as

�Ej�w� " ��je
T
j H

�� bw#
�

�
��je

T
j H

���H�D�H��ej

" �
bwTej�e

T
j H

�� bw�

eTj H
��ej

#
�

�

�bwTej�
�

�eTj H
��ej��

�
eTj H

��ej � �eTj H
��ej

�
"

�

�

�bwTej�
�

eTj H
��ej

�

� bwTej�e
T
j H

�� bw�

eTj H
��ej

� �

�

�bwTej�
�eTj H

��ej

�eTj H
��ej��

�

"
�

�

bw�
j

H��
jj

�

� bwj�e
T
j H

�� bw�

H��
jj

� �

�

bw�
jH

��
jj

�H��
jj �

�

�
��
���

where bwj denotes the jth component of the parameter vector at the local minimum bw
and H��

jj is obtained as the jth diagonal element of
�
H�� 	H��

�

 Careful accounting of

the computational complexity reveals that Eq
 ��
��� saves Nw � � vector dot products
compared to Eq
 ��
���	 where Nw is the number of weights in the network

From the reestimation vector Eq
 ��
��� and the resulting saliency Eq
 ��
��� we note
that the OBS pruning scheme requires the inverse of the full Hessian whereas OBD re�
quires the inverse of the diagonal elements only
 The Hessian is taken as the Gauss�Newton
approximation Eq
 ��
��� as originally suggested in �HS���� refer to section �
� for com�
putation of the Hessian for recurrent networks
 In �HS��� it was argued that one might
save on computation by using an iterative scheme for calculation of the inverse Hessian	
namely the matrix inversion lemma	 rather than direct matrix inversion
 However	 a de�
tailed count of operations reveals that it is only bene
cial to use the iterative scheme in
the atypical case Nw � T 	 i
e
	 when the number of weights in the network is larger than
the number of training examples
 Refer to appendix C for the detailed operations count

Note from Eq
 ��
��� that when working from a regularized cost function the saliency
estimate may actually become negative� whereas a perturbation of bw will always lead to
an increase of the regularized cost C�w� within the quadratic approximation it may be
that a perturbation will actually decrease the training error E�w� while increasing the

Sec� ��� Architecture optimization ��

regularization term	 resulting in a negative saliency estimate
 This has been experienced
to occur in practice
 In this case the weight selected for pruning is the one having the
largest magnitude negative saliency

If no regularization is used corresponding to D "
	 then Eq
 ��
��� reduces to the
�original� saliency estimate presented in �HS���	

�EOBS�j�w� "
�

�
��je

T
j A

��ej

"
�

�

�bwTej�
�

eTj A
��ej

"
�

�

bw�
j

A��
jj

��
���

where A��
jj is the jth diagonal element of the inverse Hessian matrix A�� for E�w� com�

puted in bw
 Naturally	 in this case the saliency estimates will always be positive

As mentioned in the general description of pruning algorithms above	 the weight elimi�
nation should always be succeeded by a retraining step which trains the reduced network to
a new local minimum in order to ensure that the gradient is zero as assumed by both OBD
and OBS
 In �HS��� it was boldly claimed that no further retraining of the weights is nec�
essary beyond the �built�in� reestimation of the remaining parameters
 This claim relies
heavily upon the accuracy of the quadratic approximation to the cost function
 Whereas
the OBS pruning scheme and thereby the built�in reestimation of remaining parameters
is exact in the case of a linear model the second�order approximation may be very crude
for nonlinear models like neural networks as it will be illustrated in chapter ��
 In fact	
experience from this work has shown that the OBS pruning scheme is practically useless
if no further retraining by e
g
	 the Gauss�Newton method is applied

����� Nuisance parameters

This section directs the attention towards a problem when estimating saliencies that
seems not to be generally appreciated	 namely the problem of nuisance parameters	 e
g
	
�Lar��	 Rip���� nuisance parameters were also treated in �PHL��� included in appendix H

Nuisance parameters are weights which enter the neural network but have no in�uence on
the output	 regardless of their value

As an example	 consider the elimination of an output weight woj in a feed�forward net�
work	 described in section �
�
 In this case all the weights to the corresponding hidden unit
are in e�ect also pruned away
 Such a situation is well�known in the statistics literature
on model selection where such �ghost� input weights are known as nuisance parameters

When using the OBS pruning scheme it is important to remove these parameters from
the network function before estimating the saliency �EOBS�oj	 as they will otherwise give
�spurious� contributions to both the saliency estimate as well as the corresponding reesti�
mation vector
 Applying OBS without taking this fact into consideration often results in
sudden �jumps� in the level of the network error due to pruning of an important weight
based on a corrupted saliency estimate

This phenomenon is illustrated in Figure �
� for a feed�forward network trained on
the Mackey�Glass series	 described in appendix A
�	 and pruned using the OBS pruning
scheme
 The
gure illustrates the errors that resulted after further retraining of the

�� Chapter �� Model complexity optimization

10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

NUMBER OF PARAMETERS

N
M

S
E

Figure �
�� �Jumps� when pruning a feed�forward network using the OBS pruning scheme

The solid line denotes the training error	 the dotted line denotes the error on a test set

The error levels resulted after further retraining by the damped Gauss�Newton method

remaining weights by the damped Gauss�Newton method
 The very
rst weight which
is chosen for pruning is in fact an output weight	 so that all the input weights to the
corresponding hidden unit are in e�ect also pruned away
 The poor choice of the weight
to eliminate leads to a dramatic increase in both training and test error and the network
cannot recover from the devastating e�ect even after further retraining of the weights� prior
to the further retraining the increase in errors was several orders of magnitude larger than
that in Figure �
�
 After elimination of the resulting nuisance parameters and further
retraining there are �� parameters left in the network� once more does OBS select an
output weight for pruning	 leading to yet another large increase in errors from which the
network cannot recover

In order to handle the problem of nuisance parameters when estimating the OBS
saliency and corresponding reestimation vector for a particular weight it is required to
remove the resulting nuisance parameters from the weight vector bw and the corresponding
rows and columns of the Hessian H before calculating these quantitites from Eq
 ��
���
and Eq
 ��
���
 Removing rows and columns from the Hessian corresponding to the
super�uous weights and forming a reduced �regularized� Hessian H� is straightforward

However	 inverting each of the di�erent �sub��matrices that will result when estimating
saliencies for a given network architecture may be very computationally expensive
 This
cost can be considerably reduced by rearranging the rows and columns of H�� as

H "

�
H� H�

H	 H�

�
� H�� "

�
�H���� �H����
�H���	 �H����

�
��
���

whereH�	 H	 andH� are the rows and columns corresponding to the nuisance parameters

Using a standard lemma	 for partitioned matrices	 we obtain

�H��
�� " �H���� � �H������H

�����
���H���	 ��
���

�Schur�s matrix inversion lemma�

Sec� ��� Architecture optimization ��

PRUNING

F

w w

w
w

1

4 5

2

w3

PARAMETERS
NUISANCE

WEIGHT

THIS

Figure �
�� Example of nuisance parameters when pruning an output weight in a feed�
forward network

which only calls for inversion of the �small� submatrix �H���� with a dimension equal to
the number of nuisance parameters
 Consequently	 in each �round� of pruning it is only
necessary to invert the full HessianH once� in the case of nuisance parameters only smaller
submatrices need to be inverted when computing the inverse of the reduced Hessian from
Eq
 ��
���	 thus reducing the amount of computation required

Figure �
� illustrates how the input weights to a hidden unit in a feed�forward network
become nuisance parameters when estimating the saliency of the corresponding output
weight
 Before computing the saliency for the output weight the nuisance parameters
need to be eliminated from the second�order expansion of the cost function in order not
to give spurious contributions to the saliency estimate
 This is obtained by partitioning
the �inverse� Hessian as described above	 leading to the submatrices

H "

������
H�� H�� H�	 H�� H��

H�� H�� H�	 H�� H��

H	� H	� H		 H	� H	�

H�� H�� H�	 H�� H��

H�� H�� H�	 H�� H��

����� �
H� "

�� H�� H�� H��

H�� H�� H��

H�� H�� H��

�
H� "

�
H�� H�	

H	� H		

�
where H� corresponds to the reduced Hessian and H� corresponds to the nuisance param�
eters

Nuisance parameters will be a problem not only when estimating saliencies for an out�
put weight in a feed�forward network but also if the weight in question is e
g
	 the sole
input weight to a hidden unit� in this case the corresponding output weight will become
a nuisance parameter
 When estimating saliencies for the output weights in a recurrent

network the input weights to the corresponding hidden unit will however not necessar�
ily become nuisance parameters as the hidden unit may be connected to other hidden
units in the network	 thus still contributing to the network output� refer to Figure �
�
on page �� for an illustration of a recurrent network in order to visualize this
 When
estimating saliencies in general	 nuisance parameters will result and must be taken care of

�� Chapter �� Model complexity optimization

either if the weight in question is the sole weight leading to a hidden unit or if the weight
in question is the sole weight originating from a hidden unit

The description of nuisance parameters in this section has been focused on the OBS
pruning scheme
 The reason for this is that nuisance parameters are not a problem when
computing saliencies by the OBD pruning scheme
 This is so as the saliency estimates
of OBD involve only the diagonal element of the Hessian corresponding to the weight in
question� hence	 potential nuisance parameters will not in�uence the saliency estimate in
any way

For both OBD and OBS it might be that a weight is selected for pruning	 leaving nui�
sance parameters in the reduced network	 even if these nuisance parameters are accounted
for when estimating the saliency
 This will in fact always be the case when eliminating
the
nal weights to a hidden unit	 thus removing it entirely from the network� as only one
weight is pruned at a time	 removal of a hidden unit from the network will always leave
at least one nuisance parameter in the network
 Regardless of their origin	 nuisance pa�
rameters should be identi
ed and eliminated before commencing retraining of the reduced
network as they may also be a nuisance to the training methods applied

If it is decided to trust the quality of the built�in reestimation of the parameters in the
reduced network supplied by OBS and thus neglect further retraining	 possibly for a few
weight elimination rounds only	 computation may be reduced if applying the Schur matrix
inversion lemma described above to compute the inverse of the Hessian for the reduced
network
 As only one weight is pruned at a time the inverse of the reduced network is
especially simple to obtain �Lar��� as it merely involves inverting a scalar as seen from
Eq
 ��
���	 unless of course nuisance parameters must be removed from the network as
well

����� Generalization based saliencies

As described above	 the purpose of architecture optimization by pruning is to improve
generalization ability of a network model by removal of the least important weights and
in this way optimize the network architecture to the problem at hand
 Architecture
optimization may be viewed as a search for the optimal tradeo� between the model bias
and the model variance contributions to the generalization error	 due to a limited amount
of training data
 In order to determine the optimal network in the nested model family
resulting from pruning	 the generalization error of each model is estimated either on a
validation set or by an analytical generalization error estimate
 Even though model quality
is assessed in terms of generalization error	 the saliency measure of both OBD and OBS
according to which weights are ranked is based solely on the change in training error which
will result if a weight is eliminated
 This approach is adopted in the hope that if the least
salient weights according to training error are deleted we gracefully relieve the danger of
over
tting	 thus hopefully improving generalization ability
 However	 as the real object
of pruning is to improve generalization	 why not let the saliency itself re
ect the possible

improvement in generalization error� This approach was adopted in �PHL���	 included in
appendix H

De
ning saliency in terms of the change in estimated generalization error rather than
training error leads to the concept of generalization based saliencies
 The generalization
error estimate from which the saliency is estimated may be an analytical expression like
the FPE estimate� this is the approach adopted in �PHL���	 leading to modi
ed versions of

Sec� ��� Architecture optimization ��

the pruning schemes OBD and OBS	 denoted as �OBD and �OBS
 Generalization based
saliencies may however also be calculated as the estimated change in error on a validation
set
 In this case OBD and OBS may be applied directly	 however replacing the training
error with the validation set error� this approach was adopted in �LHSO���

Estimating saliencies as the expected change in the FPE estimate of the generalization
error if a weight is pruned means estimating the change in

bEtest "
T #Ne

T �Ne

Etrain

�
� #

�Ne

T

�
Etrain � ��
���

where T is the number of training examples and Ne
 is the e	ective number of parameters	
estimated as Ne
 " tr�AH��AH��� as described in section �
�
 While OBD and OBS
are based on estimates of the change in Etrain we see from Eq
 ��
��� that in order to
obtain saliencies that estimate the change in generalization error we must generally take
the prefactor into account
 We note that if the network is not regularized then Ne
 "
tr�AH��AH��� " tr�I� " N 	 i
e
	 the total number of parameters left in the network
after pruning	 and the prefactor is only a function of the total number of weights
 In
this case ranking according to training error saliency is equivalent to ranking according to
generalization error

In the generic case of a regularized network we have Ne

 N 	 and we need to evaluate
the change in the prefactor	 i
e
	 in the e�ective number of parameters	 associated with
the pruning of every weight in the network
 Denoting the generalization based saliency of
weight bwj as �Etest�j we
nd

�Etest�j
 �Etrain�j � � �Ne
 �Ne
�j�

T
Etrain ��
���

where the number of parameters after pruning of weight j is Ne
�j and �Etrain�j is the
training error based saliency

The reader is referred to appendix H for details on modifying the pruning schemes
OBD and OBS to incorporate generalization based saliencies
 In order to emphasize the
use of generalization error for the ranking of weights in the modi
ed methods the pre
x
� is applied� �OBD and �OBS

Both �OBD and �OBS were in �PHL��� applied to feed�forward networks trained on
the Mackey�Glass series
 However	 generalization based saliencies have yet to be applied to
recurrent networks
 It has not been attempted during this work but remains an interesting
task of the future

�	

Chapter �

Ill�conditioning in recurrent
networks

This chapter addresses the problem of training recurrent networks
 Training recurrent
networks is generally believed to be a di�cult task �Moz��	 PF��	 TB��� and excessive
training times and lack of convergence to an acceptable solution are frequently encountered
problems
 Many authors have made this observation but few have attempted to diagnose
the reasons for these training problems
 Among the most debated attempts is the work
presented in �BSF��� where it was shown that a recurrent network cannot be trained to
store	 or latch	 information for an arbitrary period of time using gradient based training
algorithms	 as the fraction of the gradient relating to information n time steps in the past
approaches zero as n becomes large
 Naturally	 if the dependencies in the data span long
time intervals	 i
e
	 the desired output at time T depends on inputs presented at times
t � T 	 this
nding may explain di�culties in training a recurrent network to perform
the proper mapping
 This problem for recurrent networks of learning long�time depen�
dencies seems to be of particular importance in the context of classi
cation of sequences
of arbitrary length	 where e
g
	 the information relevant to a correct classi
cation may be
presented to the network already during the
rst few time steps
 Sequence classi
cation�
like problems have been the dominating type of problems considered in the literature
addressing the long�term dependency learning problem �BSF��	 HS��	 LHTG��	 GLH����
the problem has not been addressed in the context of time series prediction even though
it has potential relevance to this application as well
 In order to handle the problems
of learning long�term dependencies it has been suggested to increase network complex�
ity in various ways
 E
g
	 in �LHTG��	 GLH��� it was found that increasing the order
of the internal memory facilitates learning of long�term dependencies as this corresponds
to �jump�ahead� connections in the time�unfolded network
 In �HS��� a rather exotic
network construction involving special so�called �memory cells� controlled by high�order
�gating units� was reported to be capable of completely eliminating the long�term depen�
dency problem
 The construction is capable of storing information for an arbitrary period
of time without leading to a decaying gradient wrt
 the stored information

The problem of learning long�time dependencies is potentially relevant to time series
prediction problems but it seems to be a manageable problem in this context
 In order
to be able to model the dynamic system underlying the time series at all it is necessary
to assume that the in�uence of current observations on future observations will decay at
an appropriate rate as discussed in section �
�
 The network model need therefore not

�

�� Chapter 	� Ill
conditioning in recurrent networks

be capable of storing information for an arbitrary period of time but rather for a limited
period of time
 Thus	 the problems caused by insu�cient �memory� of the network may
be handled in the traditional way of increasing network memory	 i
e
	 by adjusting the
network complexity in terms of e
g
	 number of hidden units

Another possible explanation for the problems of training recurrent networks was pro�
vided in �BGM��� where the problems of reaching satisfactory solutions were attributed
to the many local minima of the cost function surface
 In order to reach a local minimum
of the cost function surface at all it is however a requirement of prime importance that the
training algorithm applied is practically capable of reaching such a minimum
 This will
often not be the case as the performance of commonly used training algorithms rooted in
optimization theory are severely hampered by numerical problems
 Such problems are a
seemingly neglected aspect of recurrent network training as it appears that so far no one
have treated the recurrent network training problem from a general numerical point of
view

Slow convergence and thus long training times are also frequently encountered problems
for feed�forward networks
 Even so	 it seems that also for this model type little research
e�ort has been directed towards the question of understanding the numerical reasons
for why various optimization methods perform poorly when applied to neural network
training problems
 Apparently	 the only reference that has treated this problem in detail
is �SBC���	 in which the causes for numerical problems were analyzed for feed�forward
networks applied to classi
cation problems

In this chapter the analysis of numerical problems is extended to recurrent networks
applied to time series prediction problems but the analysis applies to any application
of recurrent networks
 In section �
� the numerical problems will be related to a large
condition number of the Hessian matrix and it is described how a large condition number
will a�ect the convergence of commonly adopted training algorithms
 In section �
� it will
be theoretically analyzed how ill�conditioning of the Hessian might arise� the analysis is
performed in terms of the Jacobian matrix
 In section �
� it is described how the problems
of ill�conditioning may be handled by a simple quadratic weight decay term

��� Ill�conditioning

When training adaptive models using traditional iterative optimization methods as de�
scribed in chapter �	 a measure of great importance to the successful application of these
methods is the condition number of the Hessian matrix of the cost function
 The condition
number of a matrix is de
ned in terms of the singular values obtained from a Singular

Value Decomposition �SVD�

The SVD decomposition is based on a theorem from linear algebra which states that
any matrix A of dimension m
 n can be factorized into a product	

A "UDVT � ��
��

where U of dimension m
 n and V of dimension n
 n are column�orthogonal matrices
and D is an n
 n diagonal matrix with elements Dii " �i � � and Dij " � � i �" j
 The
elements �i are called the singular values of A
 For a matrix A where m � n the singular
values are obtained as the nonnegative square roots of the eigenvalues of ATA	 and the
columns of U and V are the eigenvectors of AAT and ATA	 respectively
 The number of
non�zero singular values denotes the rank of A	 i
e
	 the number of linearly independent

Sec�
�� Ill�conditioning ��

columns in A� if A does not have full column rank it is said to be rank�de�cient
 See e
g
	
�PFTV��� for further details regarding the SVD decomposition

The condition number of A is now de
ned as

��A� "
�max

�min
� ��
��

where �max is the largest singular value and �min is the smallest singular value of A
 From
this de
nition it is straightforward to see that if A is a symmetric	 positive de
nite matrix
the condition number is obtained as

��A� "
�max

�min
� ��
��

where �max and �min are the largest and smallest eigenvalues of A	 respectively

If the condition number ��A� is in
nite then the matrix A is singular and some of

the columns in A are linearly dependent
 If the condition number is
nite but �large�	
this is an indication of some of the columns in A being �nearly� linearly dependent� in
this case	 A is said to be ill�conditioned
 Except in special cases	 it is in practice rare to

nd singular values exactly equal to zero in e
g
	 the Hessian matrix H during training

It is however not uncommon to encounter very small singular values	 leading to a large
condition number ��H�	 which may severely hamper the performance of the optimization
algorithm employed

In �GMW��	 DS��� it is shown that within the region around a local minimumw� where
the cost function can be described by a second�order Taylor expansion	 the sequence of
parameter estimates fwkg obtained using gradient descent will converge towards w� as

kwk�� �w�k
 c kwk �w�k � c "
��� ��

��# ��
��
��

provided that an exact line search is used� � is here the condition number of the Hessian
evaluated in the local minimum	 ��H�w���
 Thus	 if the condition number of the Hessian
is large	 the constant c will be close to unity and gradient descent will converge very slowly

If training using a Newton type optimization method we need to solve a linear system
of equations Eq
 ��
��� based on the Hessian matrix in each iteration in order to obtain
the search direction
 If the condition number of the Hessian becomes large	 the solution
might however become unreliable due to the in�uence of round�o� errors when using

nite�precision arithmetic
 In e
g
	 �DS��� it is shown how the solution to a system of
linear equations like Eq
 ��
��� is likely to be entirely unreliable if the condition number
��H� �
��	 where
 is the machine precision
 According to �DS��� it is however �generally

felt� that the solution may not be trustworthy already if ��H� �
�
�

� � this bound may
thus be interpreted as a �rule of thumb�	 indicating when attention should be paid to
the condition number
 For the IEEE ���bit �oating point representation� the machine
precision is
 " ����
 ���� 	 ����
 and the rule of thumb then reads ��H� � ��� 	 ���

This might seem as a �large� number	 but this order of magnitude is not uncommon in
the framework of either feed�forward networks �SBC��� or recurrent networks	 as we shall
see in the next chapter
 A very large condition number of the Hessian is an indication
that the second�order approximation to the cost function is very ��at� in some directions	
leading to very large components in these directions when solving for the search direction

�The IEEE ���bit �oating point representation is used for e�g�� the datatype double in the C program�
ming language on most platforms as well as in MATLAB�

�� Chapter 	� Ill
conditioning in recurrent networks

vector
 The large resulting Newton step	 possibly combined with poor precision in the
solution due to the large condition number	 will lead to a very badly determined search
direction and thus to slow convergence towards a local minimum
 Thus	 if the condition
number is large	 the otherwise highly e�ective Gauss�Newton method is likely to perform
very poor
 Appendix E describes the e�ect of the condition number when solving a system
of linear equations

As the condition number is very important for the convergence of the methods used
for training	 an analysis of possible causes for a singular or ill�conditioned Hessian matrix
is appropriate
 Such analysis was initiated in �CKS��� where it was theoretically indicated
that if the training data to each individual input of a feed�forward network is scaled to
zero mean	 then an eigenvalue of the order of the number of inputs NI can be suppressed

Further	 it was shown how a similarly sized eigenvalue can be suppressed if a symmetric
activation function like tanh�	� is used
 However	 these simple countermeasures are not
adequate for avoiding ill�conditioning in either feed�forward or recurrent networks as will
become apparent

In the following it will be analyzed what might lead to a singular or near�singular
Hessian matrix for the quadratic cost function when applied to a recurrent network
 The
analysis will refer to the Gauss�Newton approximation to the Hessian which is of direct
relevance to the Gauss�Newton training method
 Furthermore	 the Gauss�Newton approx�
imation is the dominating part of the Hessian �SBC���	 as will be indicated in section �
�

In order to facilitate the analysis of causes for large condition numbers we write the Hessian
as in Eq
 ��
���	

H
 JTJ � Jti "
�y�t�

�wi
��
��

where J is the Jacobian matrix of dimension T
 Nw whose columns are the partial
derivatives of the network output at each time step in the training series� T is here the
number of training examples and Nw is the number of weights in the network

As the condition number of H is the square of ��J�	 ��H� " ���J�	 an analysis of H
can be given in terms of the Jacobian J
 E
g
	 if some of the columns in J can be shown
to be linearly dependent this means that the Jacobian is rank de
cient which leads to
a singular Hessian
 On the other hand	 if some of the columns in J are nearly linearly
dependent small singular values of the Jacobian will result	 leading to ill�conditioning of
the Hessian H

��� Analysis of the Jacobian

The Jacobian matrix of a recurrent network will now be analyzed in order to determine
in which situations a large condition number of the Jacobian	 and thereby of the Hessian
matrix	 will result
 The analysis is split into three parts
 The
rst part treats exact
collinearity between certain columns of the Jacobian	 thus leading to an in
nite condition
number
 The second part identi
es situations that will lead to nearly collinear columns
of the Jacobian	 which is found to be equivalent to a decrease of the smallest eigenvalue
of the Hessian	 while the third part describes how large eigenvalues of the Hessian might
arise

Sec�
�� Analysis of the Jacobian ��

�� ����

����

�� ����

+1

y(t)

+1x(t)

z-1z-1

s (t)1

y(t-1) s (t-1)1

w w w

w

1o 1x 1b

w

w11

o1

ob

Figure �
�� Simple recurrent network with redundant connection w��

����� Exact column collinearity

The Jacobian analysis is initiated by an identi
cation of situations which will lead to exact
linear dependencies between columns of the Jacobian
 For the type of recurrent networks
considered in this work	 de
ned by Eq
 ��
�� and Eq
 ��
��	 it turns out that there is a
built�in rank de
ciency in the Jacobian as it is easy to show that some of the columns in
J will in theory always be linear combinations of each other	 i
e
	 they are collinear
 The
cause of the collinearity is redundancy in the parametrization which will be illustrated by
an example involving the small network shown in Figure �
�
 The results are not speci
c
for this particular network but apply generally to networks having an arbitrary number
of hidden units

For simplicity	 the network considered here involves only one external input and one
hidden unit as seen from Figure �
�	 and the output is thus de
ned as

y�t� " wo�s��t� # wob ��
��

s��t� " f �w��s��t� �� # w�oy�t� �� # w�xx�t� # w�b� ��
��

" f ��w�� # w�owo��s��t� �� # w�xx�t� # �w�b # w�owob�� ��
��

" f �k�s��t� �� # w�xx�t� # k�� ��
��

where Eq
 ��
�� is obtained by insertion of Eq
 ��
�� in Eq
 ��
��
 We see that the network
output will remain unchanged as long as the total weighting k� of s��t � ��	 k� " w�� #
w�owo�	 and the total bias k� on the hidden unit	 k� " w�b # w�owob	 remains constant

wo� and wob cannot be changed without directly a�ecting the network output Eq
 ��
��
and are therefore kept
xed which we denote by �
 However	 changes in w��	 w�o and w�b

that satis
es both expressions

w�� # w�o� 	 w�o # � " k�
� # w�ob 	 w�o # w�b " k�

��
���

will leave the network output unchanged
 The equations in ��
��� form hyperplanes in
parameter space spanned by w��	 w�o and w�b and their line of intersection is computed

�� Chapter 	� Ill
conditioning in recurrent networks

0 20 40 60 80 100 120 140 160 180 200
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

TIME

A
C

C
U

R
A

C
Y

 O
F

 D
E

P
E

N
D

E
N

C
Y

Figure �
�� �Accuracy� of dependencies between columns in the Jacobian �see text�

as
�w��� w�o� w�b� " �k�� �� k�� # t��w�o�� ���w�ob� ��
���

parametrized by t
 The line de
nes a direction in parameter space in which the network
output is constant
 The constant network output means that derivatives in this direction
are zero
 Thus	 columns in the Jacobian corresponding to �w��� w�o� w�b� are linearly
dependent

When investigating Jacobians for the dependency problem outlined above it is however
uncommon to encounter singular values exactly equal to zero� but according to the analysis
above this clearly ought to be the case
 The reason for this is the initialization of the units
when starting up the network
 If the recurrent network starts iterations at time t " � it
is common practice �WZ��� to set the previous states of the hidden units as well as their
derivatives to zero	

si��� " � �
�si���

�w
" � � ��
���

This startup procedure clearly marks an initial discontinuity in the recursive equations
��
�� and ��
�� governing the feedback network
 Thus initially the partial derivatives wrt

the involved weights in the Jacobian will generally not be linearly dependent
 But after
iterating a few time steps indicating a transient	 the dependency arises with increasing
accuracy

In order to illustrate this discontinuity an RNN with the same architecture as shown in
Figure �
� was applied to the
rst ���� points of the Santa Fe laser data series described
in appendix A
�	 and the Jacobian matrix was calculated
 As described above	 columns in
this Jacobian corresponding to the weights �w��� w�o� w�b� ought to be linearly dependent
in the direction given by ��w�o�� ���w�ob�
 This may also be expressed as

�y�t�

�w��
� w�o� 	

�y�t�

�w��
� w�ob 	

�y�t�

�w�b
" � � t " �� � � � � T ��
���

The lefthand side of Eq
 ��
��� is illustrated in Figure �
� as time progresses from t " �
onwards
 Initially Eq
 ��
��� does not hold due to the startup process described above	 but

Sec�
�� Analysis of the Jacobian ��

as iterations progress the accuracy increases and after a �transient period� the expression
is satis
ed to machine precision	 indicating linear dependency among the corresponding
columns of the Jacobian

The linear dependency described above is eliminated if we omit the feedback weights
wio � i " �� � � � � Nh	 leading from the output unit back to the hidden units i	 as the
degeneracy can then no longer occur
 This elimination has no in�uence on the modeling
capabilities of the network since the remaining weights can be adjusted so that the network
output remains una�ected
 The weights wio are thus completely redundant parameters
and should be omitted

����� Approximate column collinearity

Even though removal of the feedback weights wio leading from the linear output unit
back to the hidden units removes the problem of exact rank�de
ciency of the Jacobian for
recurrent networks	 this does not eliminate ill�conditioning as experiments will show
 The
condition number of the Hessian very often grows large due to columns of the Jacobian
being nearly collinear
 The degree of collinearity between two vectors x and y may be
expressed in terms of the angle � between them	 de
ned by

cos � "
xTy

kxkkyk
 �� ��

�
��
���

where k 	 k is the Euclidean norm� this expression may also be interpreted as the cross

correlation coe�cient between x and y
 The approximation is obtained by a Taylor ex�
pansion of the cosine to second order
 Naturally	 if cos � " � then the angle � between the
two vectors is zero and the vectors are exact multiples of each other
 On the other hand	
if the angle � is �nearly� zero it is an indication of the vectors being nearly collinear� thus
the smaller the �	 the closer the vectors x and y are to being collinear�

In �SBC��� it was shown that if the vectors x and y are taken as columns of the
Jacobian J	 then the condition number of the Hessian H " JTJ is bounded below by

��H� �
�

����� ���
	
�kxk�
kyk� #

kyk�
kxk� # �

�
� ��
���

where k 	k� denotes the Euclidean norm squared
 From this lower bound we learn that the
condition number of the Hessian will grow at least inversely proportional to the square of
the smallest angle � obtained between columns of the Jacobian
 The proof for this lower
bound is provided in appendix D
 There	 it is furthermore demonstrated that a decrease
of � will lead to a decrease of only the smallest eigenvalue of the Hessian while the largest
eigenvalue will remain una�ected

In order to reveal what might cause near collinearity between columns of the Jacobian
we need to analyze the expressions de
ning the partial derivatives of the model output	
forming the columns of the Jacobian
 Such analysis of the partial derivatives was per�
formed for a feed�forward network with two hidden layers in �SBC���
 The analysis there
lead to an enumeration of particular situations that will result in near collinearity between
columns in the Jacobian and thus to ill�conditioning of the Hessian

The focus of the present work is recurrent networks for which the expressions for the
partial derivatives are somewhat involved as seen in section �
�
�
 In order to introduce

�This may naturally be equivalently expressed in terms of the cross correlation coe�cient being close
to unity�

�� Chapter 	� Ill
conditioning in recurrent networks

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��+1

y(t)

a(t) b(t)

w w

w

w

w

w

+1

1b1a

2a

2b
2,bias

1,bias

wo,bias

o1w wo2

f (t) f (t)1 2

Figure �
�� A simple feed�forward network having two external inputs and two hidden
units

the concept of partial derivative analysis we will therefore initially focus on feed�forward
networks for which the partial derivative expressions are more easily comprehended	 and
then later relate the results to recurrent networks

As in the previous section the issue will be addressed in terms of a small example
 In
particular we will consider a simple feed�forward architecture as illustrated in Figure �
�	
having two external inputs a�t� and b�t� and two hidden units
 The output from this
feed�forward network is calculated as

y�t� " wo�f��v��t�� # wo�f��v��t�� # wo�bias

" wo�f��w�aa�t� # w�bb�t� # w��bias� ��
���

wo�f��w�aa�t� # w�bb�t� #w��bias� # wo�bias �

In order to investigate the columns of the Jacobian for this network we caluclate the partial
derivatives of the network output y�t� as

�y�t�

�wo�
" f��v��t�� ��
���

�y�t�

�wo�
" f��v��t�� ��
���

�y�t�

�wo�bias
" � ��
���

�y�t�

�w�a
" wo�f

�
��v��t��a�t� ��
���

Sec�
�� Analysis of the Jacobian ��

�y�t�

�w�b
" wo�f

�
��v��t��b�t� ��
���

�y�t�

�w��bias
" wo�f

�
��v��t�� ��
���

�y�t�

�w�a
" wo�f

�
��v��t��a�t� ��
���

�y�t�

�w�b
" wo�f

�
��v��t��b�t� ��
���

�y�t�

�w��bias
" wo�f

�
��v��t�� ��
���

We will now examine these derivatives in order to determine possible causes for �near�
collinearity between the corresponding columns of the Jacobian
 E
g
	 we
nd that if the
external inputs a�t� and b�t� are linearly dependent for all t	 then the columns of the
Jacobian determined by Eq
 ��
��� and Eq
 ��
��� will be linearly dependent as well� this
is also the case for the columns determined by Eq
 ��
��� and Eq
 ��
���
 If two inputs are
linearly dependent then one of them is clearly redundant and the problem can be solved
by discarding one of the inputs	

Assuming that the external inputs are not linearly dependent there are however still
situations where conditions internal to the network will lead to an almost rank�de
cient
and thus ill�conditioned Jacobian
 In order to describe these situations we de
ne a vector
containing the outputs from the
rst hidden unit as

f� " �f��v������ f��v������ � � � � f��v��T ���
T ��
���

where T is the number of training examples and de
ne vectors f�	 f
�
� and f �� likewise�

here	 prime denotes the derivative
 Inspecting Eqs
 ��
����
��� we may now identify the
following situations which will lead to an almost rank�de
cient Jacobian �SBC����

�
 If the vectors f� or f� are nearly multiples of ��� �� � � � � ��T then columns in the
Jacobian determined by Eq
 ��
��� or Eq
 ��
��� will be nearly multiples of Eq
 ��
���

This situation arises e
g
	 if a hidden unit output is constantly saturated at the same
value
 This is likely to be the case if the magnitude of the weights in the network is
large

�
 If the vectors f �� and f �� are nearly multiples of each other	 then the pairs of columns
in the Jacobian determined by Eq
 ��
��� and Eq
 ��
���	 Eq
 ��
��� and Eq
 ��
���
as well as Eq
 ��
��� and Eq
 ��
��� will be nearly multiples of each other
 This
situation will arise if e
g
	 the hidden unit outputs are constantly saturated� they
may however toggle between the two levels of saturation

�
 If the vectors f� and f� are nearly multiples of each other	 then the columns in the
Jacobian determined by Eq
 ��
��� and Eq
 ��
��� will be nearly multiples of each
other
 This situation will occur not only if the two hidden units both saturate	 but
also if they specialize to the same features in the data

�Naturally� for a recurrent network working from only one external input this is not a relevant issue�

�	 Chapter 	� Ill
conditioning in recurrent networks

These situations which will lead to ill�conditioning are all related to intrinsic problems of
the neural network architecture
 All items in the list refer to situations which may be
traced back to the modular structure of neural networks as they all describe situations
where the outputs of di�erent modules in terms of hidden units become highly correlated

Furthermore	 all of the situations described may be caused by the saturating characteristic
of the sigmoid functions usually applied as activation function for the hidden units

We will now proceed to consider recurrent networks
 For recurrent networks we may
write the partial derivatives explicitly for a simple network as well	 and examine them in
the same way as was done for the feed�forward network above
 Such analysis is however
not as straightforward and intuitive to perform as in the feed�forward case	 since most
partial derivatives �y�t���wi involve the partial derivatives of all the Nh hidden units in
the network wrt
 �wi	 �sk�t���wi � k " �� � � � � Nh� refer to Eqs
 ��
����
���
 Furthermore	
the partial derivatives depend on derivatives from previous time steps	 complicating an
analysis like for the feed�forward network above even further
 It is however not necessary
to perform a similar analysis as it is fairly straightforward to convince oneself that ill�
conditioning of the Jacobian and thereby of the Hessian matrix for a recurrent network
will result from the exact same situations as listed above for a feed�forward network

The reason for this is that all of the situations listed will lead to near redundancy in the
parametrization of any network	 in the same way as was found for the output unit feedback
weights in section �
�
�
 E
g
	 if a hidden unit of a recurrent network is permanently
saturated and constant �� ��� it will act as an extra bias input to the units with which
it is connected	 making the �original� bias weights redundant
 This is so since addition of
an arbitrary constant c to the weight leading from the saturated hidden unit to the other
units in the network and addition of �c to the �original� bias weights will leave the total
bias to the hidden units unchanged
 Likewise	 if the outputs from two or more hidden
units in a recurrent network are constantly proportional	 the weights leading from these
units to any unit �including the two proportional units them selves� could be combined
into a single weight	 thus also leading to redundancy in the parametrization
 Hence	 the
situations causing ill�conditioning for a feed�forward network will cause ill�conditioning for
a recurrent network as well as the situations are equivalent to redundant parametrization
for both network architectures

The e�ects of e
g
	 two proportional hidden unit outputs are generally much more
severe for recurrent networks than for feed�forward networks due to the higher connectivity
between the units of a recurrent network
 If the outputs from two hidden units become
proportional in a feed�forward network with one hidden layer	 the only weights a�ected
in terms of redundancy are the two which connect the hidden units with the output unit

In a fully connected recurrent network however	 the two proportional hidden unit outputs
are connected to all units in the network	 and the weights a�ected are therefore every pair
of weights leading from the two proportional units to every single one of the Nu units in
the network
 This way �Nu weights will be a�ected	 which should be contrasted to the
mere two weights a�ected for the feed�forward network

This
nding is illustrated by a small example
 Consider the feed�forward network
displayed in Figure �
� having three hidden units
 If the outputs from hidden units two
and three become proportional then redundancy will result between the two weights wo�

and wo	 as indicated by dashed connections
 Now consider the recurrent network displayed
in Figure �
� which also has three hidden units thus Nu " � units in total
 If the outputs
from hidden units two and three become proportional then not only will the output weights

Sec�
�� Analysis of the Jacobian �

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

+1

y(t)

s (t) s (t) s (t)1 2

+1

.....

x(t-L+1)x(t) x(t-1)

3

Figure �
�� Feed�forward network having three hidden units
 In case of the outputs
from hidden units two and three becoming proportional the weights a�ected in terms of
redundancy will be the ones indicated by dashed connections	 two weights in total

wo� and wo	 be a�ected in terms of redundancy	 the weight pairs �w��� w�	�	 �w��� w�	�
and �w	�� w		� will be a�ected as well	 leading to eight weights a�ected in total

The parameters between which redundancy occurs de
ne directions in parameter space
in which the cost function is approximately constant	 as the parameters may be manipu�
lated arbitrarily along these directions almost without a�ecting the network output	 in
line with the description of the redundant output feedback weights in section �
�
�
 The
almost constant cost function causes negligible derivatives of any order in the directions
involved	 leading to an ill�conditioned Hessian

The situations leading to ill�conditioning listed on page �� and applying to both feed�
forward as well as recurrent networks might seem rather speculative in nature as they

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��
��
��
��

-1z -1z -1z

s (t-1) s (t-1)1 x(t) +1

+1

2

y(t)

s (t) s (t)1 2

s (t-1)

s (t)

3

3

Figure �
�� Recurrent network having three hidden units
 In case of the outputs from hid�
den units two and three becoming proportional the weights a�ected in terms of redundancy
will be the ones indicated by dashed connections	 eight weights in total

	� Chapter 	� Ill
conditioning in recurrent networks

involve a lot of �if�s�
 Even so	 the situations have nevertheless been found to occur
rather frequently in practice
 Numerous examples of this were provided in �SBC��� for
feed�forward networks applied to classi
cation problems	 and the same phenomena has
been observed frequently during the present work for both feed�forward and recurrent
networks applied to time series prediction problems
 In particular it seems that item three
in the list above	 i
e
	 that two or more hidden units specialize to the same features in the
training data making their outputs highly correlated	 occurs very often during training

High correlation between the hidden unit outputs was also found in e
g
	 �WR��� where
the covariance matrix of the hidden unit outputs from a feed�forward network applied to
time series prediction on the sunspot problem was studied in terms of its eigenvalues
 An
experiment which illustrates the occurrence of high correlation between two hidden unit
outputs and the problems that arise due to ill�conditioning will be described in section �
�

����� Column length disparity

So far the analysis of the Jacobian matrix has been focused around situations which will
cause ill�conditioning of the Hessian due to increasing collinearity between columns of the
Jacobian� this collinearity will lead to a decrease of the smallest eigenvalue as demonstrated
in appendix D
 However	 from the lower bound on the condition number ��H� provided
by Eq
 ��
��� we learn that an increase of the condition number may result not only from a
decreasing angle � between columns of the Jacobian but also from an increasing disparity
between the lengths of columns of the Jacobian
 In appendix D it is shown that an increase
of the largest column length will lead to an increase of the largest eigenvalue of the Hessian
and that a decrease of the smallest column length similary will lead to a decrease of the
smallest eigenvalue

Based on these observations it therefore seems appropriate to identify situations which
will lead to a large column length disparity in the Jacobian
 In order to initiate such anal�
ysis we once more direct the attention towards the simple feed�forward network displayed
in Figure �
� whose partial derivatives are given by Eqs
 ��
����
���
 By inspecting these
partial derivatives we learn that the derivative wrt
 the output bias weight wo�bias is con�
stantly equal to one� the length of the corresponding column of the Jacobian will therefore
be constant	 indicating a bound to which other column lengths should be compared

Inspecting the remaining derivatives in Eqs
 ��
����
��� we note that if the output
weights wo� and wo� grow large then the lengths of some columns of the Jacobian may
grow large	 namely the columns corresponding to the partial derivatives wrt
 the weights
leading to the hidden units Eqs
 ��
����
���	 as these derivatives scale with the output
weights
 Thus	 an increasing magnitude of the output weights of a feed�forward network
may generally lead to an increase in the magnitude of the partial derivatives wrt
 weights
leading to the hidden units and thus to an increase of the largest eigenvalue of the Hessian

For recurrent networks	 the partial derivatives of the model output �y�t���wpq are
dominated by sums of weighted terms of the form

�sk�t�

�wpq
�

NuX
j��

wkj
�sj�t� ��

�wpq
��
���

as seen from Eqs
 ��
����
���� Nu denotes the number of units in the network and wjk

denotes the weights connecting the units
 From this expression we learn that if any of the
weigths connecting units in a recurrent network grow large	 elements of the Jacobian are
likely to grow large as well

Sec�
�� Regularization 	�

By comparing the partial derivatives for a feedforward network Eqs
 ��
����
��� to the
partial derivatives for a recurrent network Eqs
 ��
����
��� we learn that the problem of
growing elements in the Jacobian due to growing weights is potentially much more severe
for recurrent networks than for feed�forward networks
 Not only are more columns of the
Jacobian of a recurrent network likely to be a�ected by an increasing magnitude of the
weights	 the individual elements are also likely to grow much larger in magnitude than
for a feed�forward network with weights of comparable magnitude
 This is due to the
structure of the partial derivatives which are calculated from sums of weighted hidden
unit derivatives Eq
 ��
���	 each of which are themselves computed from sums of weighted
hidden unit derivatives at the previous time step Eq
 ��
��� and so on
 Thus the recur�
sive calculation of derivatives is likely to amplify the e�ects of large magnitude weights	
compared to feed�forward networks
 This will be demonstrated by a simple example in
section �
�

The recursive structure of the RNN derivatives results from the high connectivity be�
tween the units in a recurrent network
 From the analyses of Jacobian column collinearity
and column length disparity above we learned that this network structure may lead to
numerical problems which are potentially more severe than for a comparable feed�forward
network
 The numerical problems may result from both a decrease of the smallest eigen�
value as well as from an increase of the largest eigenvalue

If the Hessian starts to become ill�conditioned due to small eigenvalues	 the condition�
ing problem will soon become worse due to an increase in the values of the largest eigenval�
ues	 especially if training using the Gauss�Newton method
 The small eigenvalues indicate
directions in parameter space in which the cost function is almost constant� calculating
the Gauss�Newton search direction will lead to large components in these approximately
constant directions
 The domination of the search direction by these directions in param�
eter space will lead to an unrestrained growth in the magnitude of the a�ected weights

This growth will lead to an increased magnitude of the elements in some columns of the
Jacobian and thereby to large eigenvalues of the Hessian	 making the learning problem
even more ill�conditioned
 This e�ect will be illustrated experimentally in chapter �

��� Regularization

A traditional method for handling the problem of ill�conditioning is by regularizing the
cost function �DS��	 Hay���
 A simple yet highly e�ective regularization can be obtained
by augmenting the cost function by a simple quadratic weight decay �HKP��	 Hay���	

C�w� " E�w� #
�

�
wTw ��
���

where � is a small positive constant
 Simple weight decay is often primarily considered
as a means for avoiding over
tting as it constrains the parameters and thus reduces the
degrees of freedom as was described in chapter �
 Weight decay should however also �and
for recurrent networks primarily� be considered for its numerical e�ects
 The immediate
e�ect of the weight decay is addition of � to the diagonal of the Hessian which puts a
lower bound on the smallest eigenvalues when working from the positive semi�de
nite
Gauss�Newton Hessian	 since it is easy to show that

��H# �I� " ��H� # � ��
���

	� Chapter 	� Ill
conditioning in recurrent networks

where ��H� is a vector with the eigenvalues of H and I is the identity matrix
 The
condition number of the regularized Hessian is now calculated as

��H# �I� "
�max # �

�min # �

 �max

�
��
���

Another e�ect resulting from regularization of the cost function by a simple weight
decay term is the limit imposed on the growth of the weights
 Weight decay will bound
the magnitude of the weights and thus indirectly bound the largest singular values of
the Jacobian and thereby the largest eigenvalues of the Hessian
 This is obtained by
a reduction of the Jacobian column lengths according to the description in section �
�
�

Consequently	 a simple quadratic weight decay will bound the eigenvalues from both below
and from above	 leading to a more manageable condition number and thus highly improved
training as will be illustrated in chapter �

An alternative way in which to handle problems caused by ill�conditioning during train�
ing by the Gauss�Newton method is by solving the system of linear equations Eq
 ��
���
using the pseudoinverse �PFTV��� of the Hessian H
 The pseudoinverse of a matrix A is
computed as the inverse of the righthand side of Eq
 ��
��	

A�� " VD�UT ��
���

where D� denotes the inverse of the diagonal matrix D in which some of the elements
���i are set to zero
 If we want to eliminate all singular values!eigenvalues of the Hes�
sian which are smaller than a threshold of e
g
	 ���		 then we set to zero all elements
���i in D

� for which �i
 ���	 prior to the computation of the inverse from Eq
 ��
���

Comparing to weight decay we note that only the directions of the smallest eigenvalues
are a�ected by application of the pseudoinverse whereas weight decay a�ects all eigenval�
ues
 Furthermore	 the gradient is not modi
ed by the pseudoinverse as is the case when
using weight decay
 Consequently	 application of the pseudoinverse will not necessarily
bound the magnitude of the weights during training
 The weights may thus still grow
large	 leading to ill�conditioning due to large eigenvalues
 In this situation the singular
value!eigenvalue threshold must be increased in order to handle the resulting numerical
problems
 The pseudoinverse has only been brie�y attempted during this work	 verifying
these observations

The constraints put on the weights by the weight decay regularization has a smoothing
e�ect on the cost function by making it more �regular�	 hence the name
 This smoothing
e�ect was clearly illustrated for a recurrent network in �PH��� included in appendix G

Here	 a recurrent network was trained on the sunspot problem using a small weight decay
parameter	 and a slice through the cost function revealed a high complexity of the cost
surface
 The network was then retrained using a larger weight decay parameter	 and the
same slice through the retrained cost function revealed a much smoother cost surface

Regularization of recurrent networks was also treated in �WM��b� presented at NIPS ��
and elaborated upon in �WM��a�	 where the use of a �smoothing� regularizer of a some�
what di�erent form than in Eq
 ��
��� was suggested
 The motivation for the regularizer
was however to improve the generalization ability	 the numerical aspects of the regularizer
were not considered
 In both references it was stated that �To our knowledge� recurrent

learning with regularization has not been reported before
� However	 training recurrent net�
works using regularization had been reported before	 as �PH��� was presented at NIPS ��
the previous year
 The statement however supports the impression that the importance of

Sec�
�� Regularization 	�

regularization in order to prevent numerical problems	 especially when training recurrent
networks	 is not generally recognized in the neural network community

In addition to the quadratic weight decay	 several other regularization terms have been
suggested in the literature� see e
g
	 �HKP��	 Hay��� for an introduction and references
and e
g
	 �WM��a� for further references
 These have however not been considered in this
work due to a higher complexity which is seemingly not justi
ed by an increased ability to
handle the numerical problems described in this chapter	 compared to the simple quadratic
weight decay

	�

Chapter 	

Illustration of ill�conditioning

Whereas the previous chapter described hypothetically how ill�conditioning might arise
in recurrent networks it is in this chapter demonstrated how ill�conditioning typically
manifests itself in practice
 Section �
� describes an example of recurrent network training
in terms of which many of the aspects described in chapter � are extensively illustrated

Training is performed by the damped Gauss�Newton method as well as by gradient descent

Section �
� provides a quantitative comparison between the conditioning problems for
comparable feed�forward and recurrent networks having random weights which illustrates
the increased numerical problems for the recurrent structure
 The chapter is concluded
by a small example which serves to illustrate the signi
cance of the often neglected second
derivative term of the Hessian matrix

��� Recurrent network training
 An example

It will here be illustrated how ill�conditioning usually occurs in practice during training of
recurrent networks
 The illustration will be made in terms of a recurrent network applied
to a time series prediction problem
 The series to be modeled in this section is the laser
data from the Santa Fe time series prediction competition described in appendix A
�
 The

rst ���� data points from the series were scaled to zero mean and unit variance and used
for training	 and the following ��� points scaled accordingly were used as a separate test
set
 The test set is however of minor importance here as the focus is on aspects of training

The recurrent network used for the experiments was of the type described in sec�
tion �
�
�
 For simplicity and ease of presentation a small network having only three
hidden units was chosen� the small network does however not make the results less general
as similar results may be obtained for more complex network structures
 Furthermore the
network received only one external input and no feed�back was present from the linear
output unit back to the hidden units	 as was found appropriate in section �
�
�
 The
resulting network architecture thus involved �� parameters in total and is illustrated in
Figure �
�

The following describes how the recurrent network was trained by use of both the
damped Gauss�Newton method as well as by gradient descent and illustrates numerous
aspects of the network during training
 Training was performed both without and with a
weight decay term in order to illustrate the e�ects of applying this regularizer

	�

	� Chapter �� Illustration of ill
conditioning

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��

-1z -1z -1z

s (t-1) s (t-1)1 x(t) +1

+1

2

y(t)

s (t) s (t)1 2

s (t-1)

s (t)

3

3

Figure �
�� Architecture of the recurrent network used for experiments in this section

	���� Training by damped Gauss�Newton without weight decay

At
rst the network was trained by the damped Gauss�Newton method without weight
decay
 However	 application of the second�order method was preceeded by
ve iterations
of gradient descent in order to improve the accuracy of the Gauss�Newton approximation
as suggested in section �
�
�
 In the left panel of Figure �
� is shown the training curves	
i
e
	 the evolution of the Normalized Mean Squared Error �NMSE	 refer to appendix A�
for both the training and test set as iterations progress
 Considering these errors alone it
seems that training is converging towards a solution at a local minimum w�	 as the errors
are almost constant from iteration to iteration
 This is however not the case as may be
learned from the evolution of the weights shown in the right panel of Figure �
�
 Several
of the weights seem to have started an unrestrained growth in magnitude
 Furthermore	
examining the evolution of the Euclidean norm of the gradient shown in the left panel of
Figure �
� seems to con
rm that the weight iterates are indeed not approaching a local

TRAIN
TEST

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

ITERATION #

N
M

S
E

0 20 40 60 80 100 120
−50

−40

−30

−20

−10

0

10

ITERATION #

W
E

IG
H

T
 V

A
LU

E

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Left panel� Evolution of training
and test errors
 Right panel� Evolution of the weight values

Sec� ��� Recurrent network training
 An example 	�

0 10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

ITERATION #

G
R

A
D

IE
N

T
 N

O
R

M

0 10 20 30 40 50 60 70 80 90 100
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Left panel� Evolution of the
gradient norm	 kgk�
 Right panel� Evolution of the condition number of the Hessian	
��H�

minimum	 as the norm is growing very large
 Thus	 taking the weights and the gradient
norm into consideration it seems like the training algorithm has failed

The condition number of the Hessian during training is shown in the right panel of
Figure �
�	 it is seen to grow enormously shortly after the damped Gauss�Newton method
is applied
 This reveals the reason for the failure of the training algorithm	 as the Hessian
is becoming extremely ill�conditioned
 In order to investigate the possible cause for the ill�
conditioning the outputs from the hidden units were examined
 The left panel of Figure �
�
shows the outputs from the three hidden units of the recurrent network after training
iteration ��� as time progresses
 It seems that the two low�amplitude outputs are highly
anti�correlated
 This observation is con
rmed by the right panel of Figure �
� which
illustrates the values of the cross correlation coe�cients de�ned by Eq
 ��
��� between
the hidden unit outputs
 The magnitude of the correlation coe�cient between hidden

0 20 40 60 80 100 120 140 160 180 200

−1

−0.5

0

0.5

1

TIME

H
ID

D
E

N
 U

N
IT

 O
U

T
P

U
T

 V
A

LU
E

HID 1 − 2
HID 1 − 3
HID 2 − 3

0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION #

C
R

O
S

S
 C

O
R

R
E

LA
T

IO
N

 C
O

E
F

F
IC

IE
N

T

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Left panel� Outputs from the
hidden units after training iteration ���
 Right panel� Evolution of the cross correlation
coe�cients between the hidden unit outputs �see text�

		 Chapter �� Illustration of ill
conditioning

units two and three is close to unity ��������	 indicating that the outputs from these two
hidden units are proportional� this may also be interpreted as the vectors containing the
hidden unit outputs at each time step as elements being collinear
 The cause of the ill�
conditioning thus seems to be that two of the hidden units have specialized on the same
features in the data set	 corresponding to situation � in the list on page �� of possible
sources of ill�conditioning

The weights that grow in magnitude in the right panel of Figure �
� are the pairs of
weights between which redundancy occurs	 i
e
	 the weights leading from units two and
three to every unit in the network	 including the output unit
 This is in line with the small
example given in Figure �
� on page ��
 Note that the error in the left panel of Figure �
�
and thus the network output is una�ected by the growing weights since the e�ects of the
weight changes cancel out due to the dependency between the hidden unit outputs
 Note
also that each pair of weights have values of the same sign� as the proportional outputs
from the two hidden units are negatively correlated	 the network output is left unchanged
if the discrepancies between the weight values remain constant as is the case on the left
panel of Figure �
�

The proportional hidden unit outputs lead to directions in parameter space in which
the quadratic cost function is constant as was described on page ��
 This is illustrated
in Figure �
� which displays the surface of the cost function after iteration �� when the

−6
−4

−2
0

−6
−4

−2
0

2

0

500

1000

W_12W_13

C
O

S
T

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Cost function surface after ��
iterations illustrated as a function of the weights w�� and w�	 leading from hidden units
two and three to hidden unit one
 The asterisk on the underlying contour plot denotes
the current iteration point and the dashed line emanating from this point indicates the
direction of the Gauss�Newton step
 Note the �rain gutter��like structure of the cost
surface indicating a direction in which the cost is �practically� constant

Sec� ��� Recurrent network training
 An example 	

weights w�� and w�	 leading from hidden units two and three to hidden unit one	 a pair
of weights a�ected by redundancy	 are varied
 The cost surface clearly reveals a �rain
gutter��like structure in the direction of constant cost
 The parameter estimate after
iteration �� is indicated by an asterisk and is seen to be positioned approximately at the
bottom of the �rain gutter
� Forming the second�order expansion around this point leads
to large components of the Gauss�Newton search direction in the constant direction as
indicated by the dashed line

The rapid increase in both weight magnitudes as well as the condition number displayed
in the right panel of Figure �
� is seen to occur shortly after the initiation of the damped
Gauss�Newton method
 The second�order method quickly �discovers� the increasing de�
pendency between the hidden unit outputs in terms of the directions of constant cost

The e�ects of the large components in the search direction are however handled by the
line search which returns very small step sizes	 as indicated by the smooth increase in the
weight magnitudes
 The explanation for the small step sizes is that the search direction
does not lead precisely towards the bottom of the �rain gutter	� partly due to imprecision
caused by ill�conditioning when computing the Gauss�Newton step� refer to appendix E

The drastic increase of the gradient norm displayed in the left panel of Figure �
� may
also be described in terms of the �rain gutter��like structure of the cost surface
 It turns
out that the parameter estimates are not located exactly at the bottom but rather a little
bit �up the sides
� As iterations progress the parameter estimate moves slightly down
towards the bottom	 however never quite reaching it
 As the weight magnitudes increase
it turns out that the sides of the �rain gutter� become steeper	 leading to the increase of
the gradient norm

In Figure �
� is shown the eigenvalues of the Hessian after iterations �	 �� and ���

At each of the iterations it is seen that the condition number results from both very small
as well as very large eigenvalues and we note that as iterations progress the eigenvalues
extend both upwards and downwards
 This is consistent with the description given in
sections �
�
� and �
�
� as well as the mathematical derivation given in appendix D

7
20
100

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Eigenvalues of the Hessian at
iterations �	 �� and ���

� Chapter �� Illustration of ill
conditioning

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

θ2 /
2

 =
 1

 −
 C

O
S

(θ
)

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

ITERATION #

C
O

LU
M

N
 L

E
N

G
T

H

Figure �
�� Training by damped Gauss�Newton	 � " ���
 Left panel� Measuring the
collinearity between the �� most collinear column pairs of the Jacobian matrix
 Right
panel� Measuring the length of the columns of the Jacobian

The decrease of the smallest eigenvalues is due to increasing collinearity between
columns of the Jacobian	 i
e
	 a decreasing angle between the corresponding column vec�
tors
 This is veri
ed in the left panel of Figure �
� which illustrates half the square of the
angle � between the �� most collinear pairs of columns of the Jacobian matrix as iterations
progress
 The values of ���� were obtained as one minus the absolute value of the fraction
given in Eq
 ��
���
 Several of the values are seen to decrease as iterations progress leading
to a decrease of the smallest eigenvalues as described in appendix D

The increase of the largest eigenvalues is due to an increasing disparity between the
lengths of some columns of the Jacobian matrix as described in section �
�
�
 This is
veri
ed in the right panel of Figure �
� which illustrates the lengths of the columns of
the Jacobian as iterations progress
 Note the horizontal line which denotes the constant
length of the derivatives wrt
 the output unit bias
 The lengths of several of the columns
are seen to grow as iterations progress	 leading to an increase of the largest eigenvalues�
the increasing magnitude of some elements of the Jacobian is due to the increasing weight
magnitudes as was also explained in section �
�
�

	���� Training by damped Gauss�Newton using a small weight decay

The training of the recurrent network was then repeated using the exact same initial
weights and the same training approach	 but now with a simple weight decay regularization
term added to the cost function as in Eq
 ��
���	 using a �small� weight decay � " ���	

In the left panel of Figure �
� is shown the resulting evolution of the errors
 The positive
e�ect of the regularization is immediately evident	 as the
nal errors are several orders
of magnitude below the levels shown in Figure �
� obtained without regularization
 In
the right panel of Figure �
� we see that the regularization term limits the growth of the
weights compared to Figure �
�

The limitation imposed on the weights by the weight decay leads to more well�de
ned
local minima of the cost function	 as the weights now cannot continue to grow inde
nitely
without signi
cantly in�uencing the cost function at some point
 The damped Gauss�
Newton method is now able to locate a local minimum of the cost function as seen from
the left panel of Figure �
�
 Here we see the norm of the gradient which suddenly de�

Sec� ��� Recurrent network training
 An example
�

TRAIN
TEST

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

0 20 40 60 80 100 120
−25

−20

−15

−10

−5

0

5

10

ITERATION #

W
E

IG
H

T
 V

A
LU

E

Figure �
�� Training by damped Gauss�Newton	 � " ���	
 Left panel� Evolution of
training and test errors
 Right panel� Evolution of the weight values

creases dramatically as iterations enter the neighbourhood of a local minimum
 Iterations
terminate after satisfying the stopping criterion set to kgk�
 ����
 Note that the weights
change very little during the last ��� iterations as the damped Gauss�Newton method
performs the last �
ne tuning� of the weights as it approaches the local minimum

From the right panel of Figure �
�	 showing the values of the cross correlation coef�

cients between the hidden unit outputs	 we see that hidden units two and three still
specialize on the same features in the data set as their outputs are highly anti�correlated

At iteration ��� the magnitude of the correlation coe�cient is ������	 approximately
equal to the level reached without regularization� thus	 the network is still prone to ill�
conditioning
 The condition number of the Hessian	 shown in the left panel of Figure �
��	
grows to around ��� in magnitude where it stabilizes due to the e�ects of the weight decay

Despite the still large condition number	 the damped Gauss�Newton manages to locate a
local minimum of the cost function
 Experience shows that when using the damped Gauss�

0 20 40 60 80 100 120
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ITERATION #

G
R

A
D

IE
N

T
 N

O
R

M

HID 1 − 2
HID 1 − 3
HID 2 − 3

0 20 40 60 80 100 120

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION #

C
R

O
S

S
 C

O
R

R
E

LA
T

IO
N

 C
O

E
F

F
IC

IE
N

T

Figure �
�� Training by damped Gauss�Newton	 � " ���	
 Left panel� Evolution of the
gradient norm	 kgk�
 Right panel� Evolution of the cross correlation coe�cients between
the hidden unit outputs

� Chapter �� Illustration of ill
conditioning

0 20 40 60 80 100 120
10

4

10
5

10
6

10
7

10
8

10
9

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

7
20
100

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure �
��� Training by damped Gauss�Newton	 � " ���	
 Left panel� Evolution of
the condition number of the Hessian	 ��H�
 Right panel� Eigenvalues of the Hessian at
iterations �	 �� and ���

Newton method	 successful training to a local minimum is generally obtained for condition
numbers up to about ��� in magnitude which is in line with the �rule of thumb� described
in section �
�
 The exact bound is however problem dependent and may further depend
on the decomposition algorithm used when solving for the search direction Eq
 ��
���� in
this work was used the fast and stable Cholesky factorization �DS��	 PFTV��� adopted
from �PFTV���

From the right panel of Figure �
�� it is seen that the reduction in the condition number
is primarily obtained from the lower bound of ���	 imposed on the smallest eigenvalues
by the weight decay
 Comparing to the eigenvalues in Figure �
�	 this is seen to have
reduced the condition number by
ve orders of magnitude
 The constraints put on the
magnitude of the weights by the weight decay only lead to a comparably small decrease of
the largest eigenvalues	 about one order of magnitude
 This is due to the still fairly large
weight magnitudes as seen in Figure �
�

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

θ2 /
2

 =
 1

 −
 C

O
S

(θ
)

0 20 40 60 80 100 120
10

0

10
1

10
2

10
3

ITERATION #

C
O

LU
M

N
 L

E
N

G
T

H

Figure �
��� Training by damped Gauss�Newton	 � " ���	
 Left panel� Measuring the
collinearity between the �� most collinear column pairs of the Jacobian matrix
 Right
panel� Measuring the length of the columns of the Jacobian

Sec� ��� Recurrent network training
 An example
�

The left panel of Figure �
�� illustrates half the squared angle ���� between the same
columns of the Jacobian as was displayed in Figure �
�
 The reduced weight magnitudes
due to the weight decay is seen to reduce the collinearity between the Jacobain columns as
the smallest angles are somewhat larger than in Figure �
�
 However	 the resulting increase
of the smallest eigenvalues is probably dominated by the direct e�ect of the weight decay
parameter being added to the diagonal of the Hessian

In the right panel of Figure �
�� is illustrated the evolution of the lengths of the
columns of the Jacobian as iterations progress
 The di�erence between the longest and
the shortest columns is seen to be diminished compared to the equivalent illustration in
Figure �
� when training without regularization
 This diminution explains the reduction
of the largest eigenvalues as seen in the right panel of Figure �
��

	���� Training by damped Gauss�Newton using a larger weight decay

Naturally	 the training problem will become more well�conditioned if the weight decay is
increased even further
 The weight decay was increased to � " ����	 and training was
started from the same initial weights as in the previous two examples
 In the upper left
panel of Figure �
�� is shown the evolution of the errors
 The level of the errors obtained

TRAIN
TEST

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

0 10 20 30 40 50 60 70 80
−6

−5

−4

−3

−2

−1

0

1

2

3

ITERATION #

W
E

IG
H

T
 V

A
LU

E

0 10 20 30 40 50 60 70 80
10

4

10
5

10
6

10
7

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

7

20

70

0 2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure �
��� Training by damped Gauss�Newton	 � " ����
 Upper left panel� Evolution
of training and test errors
 Upper right panel� Evolution of the weight values
 Lower
left panel� Evolution of the condition number of the Hessian	 ��H�
 Lower right panel�
Eigenvalues of the Hessian at iterations �	 �� and ��

� Chapter �� Illustration of ill
conditioning

0 10 20 30 40 50 60 70 80
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

θ2 /
2

 =
 1

 −
 C

O
S

(θ
)

0 10 20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

ITERATION #

C
O

LU
M

N
 L

E
N

G
T

H

Figure �
��� Training by damped Gauss�Newton	 � " ����
 Left panel� Measuring the
collinearity between the �� most collinear column pairs of the Jacobian matrix
 Right
panel� Measuring the length of the columns of the Jacobian

are somewhat higher than in Figure �
� as the weights are now severely constrained by the
increased weight decay as seen from the upper right panel of Figure �
��� the magnitudes
of the weights are signi
cantly smaller than for the lower weight decays
 As for the lower
weight decay	 iterations terminate due to satisfaction of the stopping criterion kgk�
 ����

but now after only �� iterations� the training problem has become more �quadratic�	 i
e
	
more well�behaved due to the larger weight decay

As seen from the lower left panel of Figure �
�� the condition number of the Hessian is
reduced further compared to Figure �
��	 about three orders of magnitude
 Comparing the
lower right panel of Figure �
�� to Figure �
�� we learn that two orders of magnitude are
due to the direct e�ect of the increased weight decay	 increasing the smallest eigenvalues

The last order of magnitude is due to a reduction of the largest eigenvalue	 resulting from
the smaller weight magnitudes

The improvement in the condition number is further re�ected by Figure �
��
 In the
left panel it is seen that the columns of the Jacobian are now less collinear than was the
case in Figure �
�� when using a lower weight decay
 Also	 the lengths of the columns of
the Jacobian seen in the right panel of Figure �
�� are further reduced due to the increased
constraints on the weight magnitudes

Augmenting the quadratic cost function by a weight decay term eliminates the direc�
tions of constant cost which were illustrated in Figure �
�
 When using a weight decay
the total cost will no longer remain unchanged in these directions as is illustrated in Fig�
ure �
��
 Here	 the total cost function surface is displayed for the same weights as in
Figure �
�	 now after �� iterations using � " ����
 It is seen that the direction in which
the cost was constant when training without a weight decay is now e�ectively �cealed o�
�
This elimination of constant directions in parameter space also eliminates the correspond�
ing large components which previously dominated the Gauss�Newton search directions	
leading to improved training of the network

Sec� ��� Recurrent network training
 An example
�

−3 −2 −1 0 1 2 3−4

−2

0
0

500

1000

W_12
W_13

C
O

S
T

Figure �
��� Training by damped Gauss�Newton	 � " ����
 Cost function surface after ��
iterations illustrated as a function of the weights w�� and w�	 leading from hidden units
two and three to hidden unit one
 The asterisk on the underlying contour plot denotes the
current iteration point
 Note how the weight decay has eliminated the �rain gutter��like
structure of the cost surface

	���� Training by gradient descent

The examples above have given a practical illustration of how ill�conditioning might
arise when training recurrent networks using the damped Gauss�Newton method	 how
ill�conditioning of the Hessian may actually increase when using this method and how
weight decay helps the conditioning problems by bounding the eigenvalues from both
below and above thus improving e�ciency of the training

We now turn to investigate the e�ects of ill�conditioning when training using gradient
descent featuring a line search	 as described in chapter �
 In order to allow for a direct com�
parison to the damped Gauss�Newton method	 experiments were performed on the exact
same problem as considered above
 Training was started from the same initial weights as
above	 but instead of switching to the Gauss�Newton method after
ve iterations	 training
was continued using gradient descent

In the left panel of Figure �
�� is seen the evolution of the errors when training without
weight decay for ���� iterations
 Comparing to the Gauss�Newton method without weight
decay in Figure �
� it is seen that the levels of the errors reach a lower level before they
�atten out due to apparent convergence
 As was the case for the Gauss�Newton method	
iterations are however not close to a local minimum
 This is indicated by the small but
signi
cant weight changes displayed in the right panel of Figure �
�� and in particular by

� Chapter �� Illustration of ill
conditioning

TRAIN
TEST

0 500 1000
10

−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

0 500 1000
−4

−3

−2

−1

0

1

2

ITERATION #

W
E

IG
T

H
 V

A
LU

E

Figure �
��� Training by gradient descent	 � " ���
 Left panel� Evolution of training and
test errors
 Right panel� Evolution of the weight values

the Euclidean norm of the gradient	 shown in the left panel of Figure �
��
 The gradient
norm is seen to be large compared to the smallest norm obtained in Figure �
� at which
no further weight changes took place

In the right panel of Figure �
�� is shown the cross correlation coe�cients between the
hidden unit outputs
 Comparing to Figures �
� and �
� for the damped Gauss�Newton
method it is seen that the hidden unit outputs do not become nearly as correlated when
training using gradient descent
 This is re�ected by the evolution of the condition number	
shown in the left panel of Figure �
��
 It is seen to be small compared to the condition
numbers which resulted from Gauss�Newton training even when using a relatively large
weight decay
 From the right panel of Figure �
�� it is seen that the relatively small
condition numbers result from both a relatively large magnitude of the smallest eigenvalue
and from a relatively small magnitude of the largest eigenvalue

From the left panel of Figure �
�� it is seen that the columns of the Jacobian matrix

0 500 1000
10

0

10
1

10
2

10
3

ITERATION #

G
R

A
D

IE
N

T
 N

O
R

M

HID 1 − 2
HID 1 − 3
HID 2 − 3

0 500 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ITERATION #

C
R

O
S

S
 C

O
R

R
E

LA
T

IO
N

 C
O

E
F

F
IC

IE
N

T

Figure �
��� Training by gradient descent	 � " ���
 Left panel� Evolution of the gradient
norm	 kgk�
 Right panel� Evolution of the cross correlation coe�cients between the hidden
unit outputs

Sec� ��� Recurrent network training
 An example
�

0 500 1000
10

3

10
4

10
5

10
6

10
7

10
8

10
9

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

50
500
1000

0 2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure �
��� Training by gradient descent	 � " ���
 Left panel� Evolution of the condition
number of the Hessian	 ��H�
 Right panel� Eigenvalues of the Hessian at iterations ��	
��� and ����

do not become nearly as collinear as was the case in Figure �
� when training by the
damped Gauss�Newton method without weight decay
 Rather	 the magnitudes of the
smallest ���� are comparable to Figure �
�� where a relatively large weight decay was
used
 The decreased collinearity is due to the decreased correlation between the hidden
unit outputs leading to a relatively large magnitude of the smallest eigenvalue
 The right
panel of Figure �
�� illustrates the length of the columns of the Jacobian matrix which are
seen to be relatively small compared to the lengths in Figure �
�
 This is due to the small
magnitude of the weights	 leading to a relatively small value of the largest eigenvalue of
the Hessian

From the observations made above it is seen that initally the convergence of gradient
descent is better than for the Gauss�Newton method without weight decay as it is not
in�uenced in the same way by directions in which the cost function is almost constant
 This
leads to a lower level of error	 before convergence slows down considerably
 Whereas the

0 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

θ2 /
2

 =
 1

 −
 C

O
S

(θ
)

0 500 1000
10

0

10
1

10
2

10
3

ITERATION #

C
O

LU
M

N
 L

E
N

G
T

H

Figure �
��� Training by gradient descent	 � " ���
 Left panel� Measuring the collinear�
ity between the �� most collinear column pairs of the Jacobian matrix
 Right panel�
Measuring the length of the columns of the Jacobian

	 Chapter �� Illustration of ill
conditioning

0 500 1000
10

−5

10
−4

10
−3

10
−2

10
−1

ITERATION #

S
T

E
P

 S
IZ

E

Figure �
��� Training by gradient descent	 � " ���
 Step size found by line search in each
iteration

damped Gauss�Newton method would take large steps in this situation	 gradient descent
can take steps no larger than 	 " ���max �Eq
 �
��� in order to ensure a decrease in the
cost function
 From the eigenvalues shown in the right panel of Figure �
�� we learn that
the maximum step size is 	
 � 	 ����
 Figure �
�� shows the step sizes actually chosen
by the line search and we see that they are indeed matching the theoretical limit
 Thus	
the steps taken by gradient descent are very small	 leading to slow convergence

From the examples above using damped Gauss�Newton we learned that this method
could easily handle condition numbers of a magnitude of ��� which is commonly encoun�
tered when training recurrent networks
 Condition numbers of this relatively small order
of magnitude will however lead to very slow convergence of gradient descent as illustrated
theoretically by Eq
 ��
�� and in practice by the example above

In an attempt to improve convergence for gradient descent we may augment the
quadratic cost function by a weight decay term in order to reduce the condition num�
ber as was successfully applied for the damped Gauss�Newton method
 From the right
panel of Figure �
�� we learn that the magnitude of the weight decay should be �
 � in
order to increase the smallest eigenvalues

Training by gradient descent was repeated several times from the same initial weights
as previously	 using an increasing magnitude of weight decay
 As expected	 weight decays
of a magnitude less than one had no signi
cant in�uence as the weights resulting during
training and thus the errors and condition number di�ered only in insigni
cant decimal
places from the values which resulted from training without weight decay
 At no point
was obtained errors smaller than displayed in Figure �
��
 It turned out that in order
to decrease the condition number by one order of magnitude	 the weight decay should be
� " �

The evolution of the errors when training using a weight decay of � " ��� is shown in
the upper left panel of Figure �
��
 One of the e�ects of the large weight decay is seen
to be increased errors compared to Figure �
�� which is due to the signi
cant constraints
put onto the weights as seen from the upper right panel of Figure �
��
 Comparing the
magnitude of the gradient norm shown in the lower left panel of Figure �
�� with the levels

Sec� ��� Recurrent network training
 An example

TRAIN
TEST

0 500 1000
10

−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

0 500 1000
−4

−3

−2

−1

0

1

2

ITERATION #

W
E

IG
H

T
 V

A
LU

E

0 500 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

ITERATION #

G
R

A
D

IE
N

T
 N

O
R

M

50

500

1000

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

EIGENVALUE NUMBER

V
A

LU
E

Figure �
��� Training by gradient descent	 � " ���
 Upper left panel� Evolution of training
and test errors
 Upper right panel� Evolution of the weight values
 Lower left panel�
Evolution of the gradient norm	 kgk�
 Lower right panel� Eigenvalues of the Hessian at
iterations ��	 ��� and ����

of the gradient norm obtained without weight decay shown in Figure �
��	 it seems that
iterations have come nearer to a local minimum of the total cost within the ���� iterations
allowed as the gradient norms are about two orders of magnitude smaller
 The improved
convergence towards a local minimum of the augmented cost function however comes at
the price of reduced performance on the primary cost	 the quadratic cost function	 as the
assisting weight decay term has become too dominating

From the lower right panel of Figure �
�� showing the eigenvalues of the Hessian at
various stages of training it is seen that the slightly improved convergence is obtained from
the decrease of the condition number by one order of magnitude	 compared to Figure �
��

It is seen that the reduction is obtained mainly from an increase of the smallest eigenvalues	
the largest eigenvalues are of about the same order of magnitude as without weight decay

As a curiosity it is mentioned that in order to satisfy the stopping criterion kgk�
 ����

within ���� iterations when using gradient descent the weight decay had to be � " ���	
leading to a mere condition number
 ��
 Naturally	 a weight decay of this order of
magnitude leads to completely degenerate networks
 For comparison	 the Gauss�Newton

��� Chapter �� Illustration of ill
conditioning

method needed a weight decay as low as � " ���� in order to spend more than ��� itera�
tions in order to satisfy the same stopping criterion

The proper choice of weight decay is dependent upon both the problem at hand as
well as the speci
c network architecture used
 Even so	 the examples above have indicated
that the damped Gauss�Newton method is capable of converging much faster to a local
minimum than gradient descent	 and this in the presence of condition numbers many orders
of magnitude larger than can be handled by gradient descent
 Consequently	 the weight
decay needed by the damped Gauss�Newton method in order to converge is many orders
of magnitude smaller relative to the magnitude needed if training by gradient descent

Using a smaller weight decay means that the in�uence on the modeling capabilities of the
network is less pronounced	 leading to better adapted network models

��� Comparison
 feed�forward vs� recurrent networks

In section �
�
� it was described how the situations found leading numerical problems
for neural network structures were potentially much more severe for recurrent networks
than for feed�forward networks
 The reason for this was found to be rooted in the higher
connectivity of recurrent networks
 This leads to many more weights a�ected if e
g
	 two
hidden units specialize on the same features in the data during training and become pro�
portional as was illustrated in the examples above
 Furthermore	 the recurrent structure
of the partial derivatives	 which are calculated partly as weighted sums of the hidden unit
derivatives from the previous time step	 will tend to increase the magnitude of the largest
eigenvalues compared to feed�forward networks as was described in section �
�
�

In an attempt to illustrate the increased numerical problems one is facing when working
with recurrent rather than feed�forward networks	 a quantitative comparison between the
two network structures was made
 Networks with an increasing number of hidden units
were initialized with random values	 drawn from a uniform distribution centered around
zero
 The networks were then applied to the
rst ���� points of the Santa Fe laser data
and the Hessian matrix computed for the resulting unregularized cost function	 and the
smallest and the largest eigenvalue were determined
 For each network structure this
procedure was repeated ��� times for each of a number of increasing magnitudes of the
bounds on the uniform distribution from which the weights were drawn

In Figure �
�� is shown the results for the recurrent network structures	 each having
a single external input and three	
ve and eight hidden units	 respectively
 The mean of
the logarithm of the largest eigenvalues is indicated by an)x� while the dotted vertical line
indicates the standard deviation
 The mean of the logarithm of the smallest eigenvalues
is indicated by an)o� with the solid vertical line indicating the standard deviation
 By
comparing the levels of the largest eigenvalues in the three panels it is clearly seen that the
magnitude of the largest eigenvalues increase as the number of hidden units in the network
increases
 From a level of ��
 for the network in the upper left panel of Figure �
�� having
three hidden units the magnitude increases to a level around ��� for the network in the
lower panel having eight hidden units
 This increase in magnitude can be explained by
the increasing number of terms entering the calculation of the partial derivatives wrt

the hidden unit weights� refer to Eq
 ��
���
 The more terms entering the calculation	
the higher the probability of large magnitude partial derivatives and thus the higher the
probability of large magnitude eigenvalues
 Within each plot in Figure �
�� it appears that
the magnitudes of the largest eigenvalues are not in�uenced by the increase in the weight

Sec� ��� Comparison
 feed�forward vs� recurrent networks ���

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

MAXIMUM WEIGHT MAGNITUDE

LO
G

A
R

IT
H

M
 O

F
 E

IG
E

N
V

A
LU

E

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

MAXIMUM WEIGHT MAGNITUDE

LO
G

A
R

IT
H

M
 O

F
 E

IG
E

N
V

A
LU

E

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12

MAXIMUM WEIGHT MAGNITUDE

LO
G

A
R

IT
H

M
 O

F
 E

IG
E

N
V

A
LU

E

Figure �
��� Mean values and standard deviations of the logarithm to the largest �)x��
and smallest �)o�� eigenvalues of the Hessian for recurrent networks with random weights
of increasing magnitude
 Upper left panel� One input	 three hidden units ��� weights�

Upper right panel� One input	
ve hidden units ��� weights�
 Lower panel� One input	
eight hidden units ��� weights�

magnitudes
 This is due to the large variability within each weight magnitude as well as
the logarithmic scale used

The levels of the smallest eigenvalues are seen to be una�ected by the increasing number
of hidden units
 The reason for this is the lack of specialization of the hidden units on the
same features in the training set
 As the networks are completely random the hidden units
have of course not specialized to anything and the hidden unit outputs are therefore not
likely to become proportional for this reason
 However	 as the magnitude of the random
weights increases so does the probability of several hidden units becoming saturated and
thus proportional	 leading to small magnitude of the smallest eigenvalues
 In fact	 if the
magnitude of the weights is extended beyond the largest magnitude used in Figure �
��
this will lead to a signi
cant drop in the levels of the smallest eigenvalues
 This drop is
indicated by the slightly decreasing levels of the smallest eigenvalues seen in Figure �
��
as the weight magnitudes are increased

In Figure �
�� is shown the results for the feed�forward network structures	 each hav�

��� Chapter �� Illustration of ill
conditioning

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

MAXIMUM WEIGHT MAGNITUDE

LO
G

A
R

IT
H

M
 O

F
 E

IG
E

N
V

A
LU

E

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

MAXIMUM WEIGHT MAGNITUDE

LO
G

A
R

IT
H

M
 O

F
 E

IG
E

N
V

A
LU

E

Figure �
��� Mean values and standard deviations of the logarithm to the largest �)x�� and
smallest �)o�� eigenvalues of the Hessian for feed�forward networks with random weights
of increasing magnitude
 Left panel� Four inputs	 seven hidden units ��� weights�
 Right
panel� Four inputs	
fteen hidden units ��� weights�

ing four external inputs	 x�t� " �x�t�� � � � � x�t � ���	 and seven and
fteen hidden units	
respectively
 Note that the levels of the largest eigenvalues are signi
cantly lower than
for the recurrent networks and especially note that the level of the largest eigenvalues is
una�ected by the increase in the number of hidden units
 The lower level of the largest
eigenvalues is explained by the simpler	 non�recursive structure of the partial derivatives
of the feed�forward network output involving only a single term� refer to Eqs
 ��
����
���

As the expression for each individual partial derivative is independent of the number of
hidden units in the network the magnitude and thus the largest eigenvalues will remain
una�ected by the increase in the number of hidden units
 Furthermore	 the non�recursive
structure leads to less variability in the values of the derivatives which explains the de�
creased standard deviations compared to the recurrent networks in Figure �
��

This simple comparison between random recurrent and feed�forward networks has ex�
perimentally veri
ed the observation made in section �
�
�
 that application of recurrent
networks leads to increased numerical problems compared to feed�forward networks due to
an increase of the largest eigenvalue of the Hessian
 The di�erences in the smallest eigen�
values in this comparison were less pronounced due to the randomness of the networks

In order to properly illustrate the di�erences for the smallest eigenvalues the compari�
son should be made between trained networks� such comparison has however not been
performed in the present work

��� Importance of second derivative term

This chapter is concluded by an attempt to indicate the importance of the second derivative
term S of the Hessian� refer to Eq
 �
��
 The second derivative term is often neglected
during both training by second�order methods as well as during analysis �DS��	 SBC��	
HS��� as was also the case in the experiments described above

In �PH��� included in appendix G the relative importance of the second derivative

Sec� ��� Importance of second derivative term ���

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

ITERATION #

R
A

T
IO

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

R
A

T
IO

Figure �
��� Ratios between the largest magnitude eigenvalue of the second derivative term
S of the Hessian and the largest magnitude eigenvalue of the complete Hessian JTJ # S

as they appeared during ten training sessions on the laser series
 The connected circles
represent the average ratios
 Left panel� Training with a small weight decay	 � " �����

Right panel� Training with a higher weight decay	 � " ����

term was determined as the ratio between the largest magnitude eigenvalue of the sec�
ond derivative term S of the Hessian and the largest eigenvalue of the complete Hessian
JTJ# S
 This way	 the importance of the second derivative term during training on the
sunspot problem was monitored as iterations progressed using two di�erent magnitudes of
weight decay
 It was found that applying a weight decay signi
cantly reduced the relative
importance of the second derivative term due to the regularizing e�ect on the complexity
of the cost function	 thus justifying the Gauss�Newton approximation

In order to support this
nding a similar experiment was performed for the Santa Fe
laser series using the same experimental setup as in section �
�	 i
e
	 one external input
and three hidden units
 Ten networks with random weights were trained by the damped
Gauss�Newton method using a small weight decay � " ����� and the ratio between the
eigenvalues was determined in each iteration� the second�derivative term S was computed
from the expressions given in section �
�
�
 The resulting ratios along with the mean
values are illustrated in the left panel of Figure �
��

The experiment was then repeated using a higher weight decay � " ����	 the result
of which is illustrated in the right panel of Figure �
��
 The average relative importance
of the second derivative term is seen to be reduced	 thus indicating increased justi
cation
of the Gauss�Newton approximation to the Hessian when regularizing the cost function

���

Chapter

Recurrent network training
experiments

We will now turn towards examples of recurrent network training which are more quan�
titative in nature
 As described in the introduction to chapter � it generally believed to
be a di�cult task to train recurrent networks by
rst�order methods like gradient descent

Even so	 gradient descent is still the most common training method of choice	 possibly
due to the ease of implementation
 A primary object of this work has been to overcome
the problems of recurrent network training by application of potentially more e�cient
second�order methods
 In particular the damped Gauss�Newton method has been applied
and it has turned out to be much more e�cient than gradient descent in terms of both
computation time and quality of the resulting network models as we shall see

This chapter describes the results which have been obtained by single�input	 fully
recurrent networks applied to time series prediction
 Section �
� contains a comparison
between gradient descent and the damped Gauss�Newton method which illustrates the
typically encountered improvement in training when using the second�order method
 In
section �
� it is investigated how the performance of a trained recurrent network depends
on the number of examples used for training in terms of the learning curve
 In particular	
a learning curve is generated for both the Santa Fe laser series and the Mackey�Glass
series
 Once the expected performance of single�input	 fully recurrent networks has been
established in terms of the learning curve it is of interest to compare with the expected
performance of comparable feed�forward networks working from an externally provided
lag space
 Section �
� describes experiments for selection of optimal lag space as well
as generation of learning curves for feed�forward networks applied to the laser and the
Mackey�Glass series in order to perform such a comparison
 The chapter is concluded in
section �
� by an investigation of the extent to which the single�input recurrent networks
are able to simulate the dynamics which generated the chaotic time series on which they
were trained

��� Comparison of training methods

In the previous chapter illustrating the e�ects of ill�conditioning on a small example it was
indicated that augmenting the cost function by a small weight decay can greatly improve
the e�ciency of the damped Gauss�Newton method in terms of convergence speed and
quality of solution obtained
 In contrast the gradient descent method was practically

���

��� Chapter �� Recurrent network training experiments

una�ected by the weight decay as it still converged very slowly	 yielding an unsatisfactory
solution
 Only in the case of a prohibitively large weight decay leading to a degenerate
network was gradient descent able to converge to a local minimum of the augmented
cost function within reasonable computation time
 These observations suggest that the
gradient descent method is very sensitive to ill�conditioning and therefore not suited for
training of recurrent networks which are inherently ill�conditioned in nature as described in
chapter �
 On the other hand	 once the need for a regularization term has been recognized
the damped Gauss�Newton method seems to be very robust to even a relatively large
condition number and is thus a better choice of training algorithm

We will now consider a quantivative comparison between the two training methods

The
rst example compares the ability of the two methods to reach a local minimum of
the cost function
 In the next example it is illustrated how the second�order method leads
to much better performing networks in much less computation time

As in the previous chapter the problem is modeling of the
rst ���� points of the Santa
Fe laser series described in appendix A
� using recurrent networks with only one external
input but now using nine hidden units
 As there was no feedback from the output unit back
to the hidden units the networks comprised ��� weights
 Five networks were generated
by initializing their weights with random values drawn from a uniform distribution over
the interval ������ ����
 These networks were trained using gradient descent featuring the
step size halving line search described in section �
�
 The cost function was augmented by
a weight decay term using � " ���� and the stopping criteria were set to a gradient norm
kgk�
 ���� or a maximum of ���� iterations reached

The resulting evolutions of the training errors �Normalized Mean Squared Errors de�

ned in Eq
 �A
��� are indicated by the dotted lines in Figure �
�
 It is seen that the
training errors decrease signi
cantly during the
rst ��������� iterations after which con�
vergence becomes extremely slow
 For all
ve networks training stopped after the maxi�
mally allowed ���� iterations
 If no further investigations regarding the networks are made
one might draw the conclusion that the networks have converged to a local minimum of
the cost function
 This is however not the case	 revealed by the gradient norm �not shown�
which for all networks were kgk�
 �
 Progress has practically come to a halt due to the
in�uence of ill�conditioning on the gradient descent method

In order to clearly illustrate the di�erence in convergence speed between gradient de�
scent and the damped Gauss�Newton method	 the comparison between the two methods
was initiated once gradient descent slowed down considerably and thus seemingly ap�
proached a local minimum
 The networks from Figure �
� resulting after ���� iterations
of gradient descent were extracted and further training was applied using the damped
Gauss�Newton method
 The resulting evolutions of training errors are illustrated by the
solid lines in Figure �
�
 After between ������� of damped Gauss�Newton iterations the
gradient stopping criterion kgk�
 ���� was met for all
ve networks	 indicating closeness
to local minima
 Furthermore	 the value of the training errors had dropped almost an
order of magnitude
 If given enough iterations	 gradient descent would probably converge
towards the same local minima as the damped Gauss�Newton and thus obtain the same
low levels of error
 The number of iterations needed for this however seems to be enor�
mous	 making the low levels of error practically unattainable when using gradient descent

One might argue that the increased performance on the training set will not necessarily
lead to increased performance in terms of generalization ability
 Further	 each iteration

Sec� ��� Comparison of training methods ���

GRADIENT DESCENT
GAUSS−NEWTON

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

Figure �
�� Comparison of convergence properties for gradient descent and damped Gauss�
Newton
 The dotted lines indicates evolution of training errors when training by gradient
descent	 the solid lines starting at iteration ���� indicates a switch to the damped Gauss�
Newton method

of the second�order method comes at the expense of an increased compuational burden
as it is needed to compute an approximation to the Hessian and solve a system of linear
equations in each iteration as described in chapter �
 However	 experience shows that the
dramatic decrease in training error is generally accompanied with a decrease in estimated
generalization ability as well provided that the network model does not possess excess
complexity which might lead to �over
tting� as described in chapter �
 The increase in
computation time in each iteration is justi
ed by the faster convergence leading to less
total computation time

In order to provide an illustration of these statements an experiment with a setup
similar to the example above was performed on the
rst ���� points of the Santa Fe
laser series	 the following ��� points were used as a test set
 Thus	 each iteration of the
damped Gauss�Newton method involved solving a system of linear equations of size ���
by ���
 A set of six inital networks were generated by initializing their weights with values
drawn from a uniform distribution over the interval ������ ����
 These six networks were
duplicated into a completely identical set
 Performance was then compared by training
one set of networks using gradient descent and training the other set by the damped
Gauss�Newton method
 For both sets of networks a weight decay � " ���� was used
 The
resulting evolution of errors is shown in Figure �
�� in the left panel is shown the resulting
errors using the damped Gauss�Newton method	 in the right panel using gradient descent

Using both methods the stopping criteria were set to kgk�
 ���� or a maximum of �����
iterations reached

For the damped Gauss�Newton method the gradient norm stopping criterion was met
in all six runs
 The resulting average training error �Normalized Mean Squared Error� was
��� 	 ����	 the average test error was ��� 	 ���	
 The average time for a complete training
run was ��� iterations performed in ��� seconds
 For gradient descent the gradient norm
stopping criterion was never met
 The average training error obtained after the maximally
allowed ����� iterations was ��� 	 ���		 the average test error was ��� 	 ���	
 The average

��	 Chapter �� Recurrent network training experiments

TRAIN
TEST

0 50 100 150 200 250 300 350 400 450
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

TRAIN
TEST

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

Figure �
�� Evolution of errors when training the same initial recurrent networks on the
laser series using di�erent training methods
 Left panel� The damped Gauss�Newton
method
 Right panel� Gradient descent with line search

time used for obtaining these error levels was ���� seconds
 Note that the levels of both
training and test errors obtained using gradient descent are much higher than the levels
obtained using the damped Gauss�Newton method even though gradient descent used a
factor of �� times more iterations and a factor of �� times more computer time
 Thus	 even
though an iteration of the damped Gauss�Newton method is computationally more costly
than an iteration of gradient descent	 the additional cost per iteration is highly justi
ed
by the vastly increased convergence rate
 The results of the comparison are summarized
in Table �
�

Gauss�Newton Gradient descent

Final average training error ��� 	 ���� ��� 	 ���	
Final average test error ��� 	 ���	 ��� 	 ���	
Average * of iterations ��� �����

Average time used per run ��� sec
 ���� sec

Table �
�� Summary of the results from the experiments illustrated in Figure �
�

By inspection of the left panel in Figure �
� it is seen that the networks trained by
the damped Gauss�Newton method actually slightly over
ts the training data as several
of the test errors increase between iterations ������
 This is not the case for the networks
in the right panel	 trained by gradient descent
 Consequently	 one might expect that an
even more pronounced di�erence in performance measured on the test set would result if
the model complexity was somewhat reduced

Careful inspection of the results reveals that the di�erence in total computation time
per iteration between gradient descent and the damped Gauss�Newton was as low as ����
seconds per iteration
 The explanation for this very small time di�erence is to be found in
the line search	 which generally returns a smaller step size for the direction opposite the
gradient than for the Gauss�Newton search direction� thus	 more evaluations of the cost
function are performed before a suitable stepsize is found
 A slight reduction in average
time per iteration could possibly be obtained from utilization of this general observation	

Sec� ��� Learning curves for recurrent networks ��

starting from a lower initial step size when using gradient descent

Another explanation for the small di�erence in computation time between the
rst�

order and second�order methods has to do with the method used for computing the gra�
dient
 Recall from section �
� that the gradient could be computed using two approaches	
the slower iterative approach �RTRL� and the faster approach involving unfolding in time
�BPTT�
 The gradients in the experiment described above were actually computed using
the slower RTRL approach
 In order to investigate the improvement in speed that would
result overall from the application of the BPTT approach	 the experiment described above
using gradient descent for training was repeated	 now using BPTT
 As the initial networks
were the same	 the resulting errors were identical to the ones reported in table �
�
 The
time used for performing the ����� iterations in each run was however reduced to ����
seconds	 or around one third of the time required when computing gradients by the RTRL
approach
 This overall speedup is fairly modest compared to the theoretical improvement
of order O�N�

u� �refer to section �
�� in the actual gradient computation
 However	 the
line search is requiring its fair share of the total computation time per iteration and is
not in�uenced by the faster gradient computation
 Overall speedup can never exceed the
the fraction of the total computation time which is spent on computing the gradient �Am�
dahl�s law	 �Hay����

Due to the extremely slow convergence of gradient descent resulting from ill�condi�
tioning	 the damped Gauss�Newton method should be the training method of choice even
for fairly large networks even though we are forced to compute the Hessian using the
slow RTRL approach as described in section �
�
�
 The signi
cant increase in the time
required for obtaining the search direction for the damped Gauss�Newton method is highly
justi
ed by the superior convergence abilities leading to error levels that are practically
unattainable using gradient descent
 Such justi
cation has been observed for networks
with up to ��� parameters but is likely to result for even larger network structures

��� Learning curves for recurrent networks

Having established the e�ciency of the Gauss�Newton method for training compared to the
traditionally adopted gradient descent we will now investigate the performance in terms
of estimated generalization error which can be obtained from recurrent networks working
from only a single external input
 In chapter � it was described how a properly chosen
model complexity is of importance for the generalization error
 An equally important
factor in order to obtain a small generalization error is the availability of a su�cient
amount of data in order to train the model� if too little data is used for training	 the
model might not be able to properly capture the underlying dynamics of the series to be
modeled and is furthermore likely to model the noise as well	 i
e
	 to over
t the training
data
 As a result	 generalization will su�er

An important tool for investigating whether �enough� data is used for training is the
learning curve �SSSD��	 HKP��� which will be applied to recurrent networks in the follow�
ing
 Ideally	 the learning curve expresses the average generalization error of a particular
model structure over all possible training sets of a particular size T as a function of T

However	 practical considerations usually lead to a more restricted de
nition of the learn�
ing curve
 First of all	 the generalization error has to be estimated using a
nite amount
of data� here	 the generalization error is estimated empirically on a
nite size test set
immediately following the training set
 The test set is kept
xed for all training set sizes

��� Chapter �� Recurrent network training experiments

which will �bias� the generalization error estimates for the resulting models by an equal
amount	 allowing for consistent ranking of models trained on di�erent training set sizes

Furthermore	 the estimated average generalization error is here obtained by averaging over
di�erent realizations of the estimated models for a �xed training set� that is	 there is no
averaging over di	erent training sets of a particular size T

Despite the restricted de
nition of the learning curve it is still an important tool
for assessing whether the generalization error of a particular model structure may be
decreased� if using more data for training or whether the additional training data will
leave the generalization error practically unchanged and thus merely lead to an increase
in computation time
 A �typical� learning curve displays an initial rapid decrease in
generalization error as the size of the training set is increased
 For larger training set sizes
the learning curve �attens out	 indicating that only a small reduction in generalization
error will result if increasing the training set size
 It is therefore desirable to use a size of
the training set at which the learning curve has �attened out
 On the other hand	 if the
learning curve has not �attened out for the training set size used this is an indication that
the training set used is too small and does not allow for optimal training of the model

We will now proceed to describe the generation of learning curves for recurrent net�
works
 Learning curves were generated for both the Santa Fe laser series as well as for the
Mackey�Glass series
 The series are described in appendix A

���� RNN learning curve for the laser series

For convenience of presentation the full laser series described in appendix A
� is illustrated
in Figure �
� as well
 In order to generate a learning curve for the Santa Fe laser series	
the
rst ���� points of the series corresponding to the two uppermost panels in Figure �
�
were set aside for training and the last ���� points corresponding to the lower panel of
Figure �
� were used as a test set
 The increasing size of the training series was obtained
by extending backwards in time from point ���� in order always to have the test series
immediately following the training series and at the same time keeping the test series
xed

For instance	 a training set of size ���� involved training using points x������ through
x������

The fully recurrent network structure used to generate a learning curve for the laser
series worked in �open�loop� from only a single input x�t� in order to predict the im�
mediately following value in the series� at each time step t the desired network network
output d�t� was d�t� " x�t # ��
 As the network received only one external input the
choice of lag space was eliminated
 However	 it is still necessary to determine a proper
number of hidden units as well as the weight decay for recurrent networks as is the case
for feed�forward networks

After some initial testing it was decided to use ten hidden units as this seemed like a
fair tradeo� between low model complexity and good modeling capabilities� the network
thus comprised ��� weights in total
 The
nal choice to make was that of the weight decay
to use
 Whereas the weight decay is often chosen from a model complexity point of view
in order to improve generalization as it was described in section �
�	 the primary concern
was here to choose the weight decay in such a way so as to avoid numerical problems as
described in chapters � and �

�It is in theory always possible to reduce the generalization error further towards the noise level if using
more data for training� refer to the introduction in chapter ��

Sec� ��� Learning curves for recurrent networks ���

1 1000 2000 3000
−5

0

5
SANTA FE LASER SERIES

4000 5000 6000 7000
−5

0

5

7001 8000 9000 10000
−5

0

5

Figure �
�� The complete Santa Fe laser series	 scaled to zero mean and unit variance

A proper value of the weight decay to use was decided upon by empirical means	
i
e
	 by trial�and�error
 Initially it was found that a large weight decay was necessary in
order to avoid numerical problems during training	 but using a large weight decay for
all the weights in the network reduced the modeling capabilities of the trained networks
signi
cantly
 After some testing it was found that a split�up of the weights into two groups	
one containing the �feed�forward� weights which would also be present in a feed�forward
network and the other group containing the �feedback� weights was appropriate� this
corresponds to the regularization terms de
ned in Eq
 ��
��
 It was found that lowering the
weight decay for the feed�forward weights while maintaining a larger value for the feedback
weights improved the modeling capability without leading to numerical problems
 This

nding may be explained by the fact that the increased numerical problems for feedback
networks compared to feed�forward networks tend to be caused in directions of parameter
space de
ned by the feedback connections as described in chapter � and illustrated in
chapter �
 This way it was decided to use the weight decays �
 " ���� for the feed�
forward weights and �rec " ��� for the feedback weights	 i
e
	 the constraints put on the
feedback weights were much larger than the constraints put on the feed�forward weights

The learning curve which was generated for the laser series is shown in Figure �
�
 For
each of the sampled training set sizes T ten networks were trained by the damped Gauss�
Newton method until the stopping criterion kgk�
 ���� was satis
ed
 The generalization
errors were then estimated on the test set and scaled to the Normalized Mean Squared
Error �NMSE� as de
ned in Eq
 �A
�� on page ���
 Each of the resulting test set errors
enters Figure �
� as a dot and the connected circles indicate the expected test error for
the sampled training set sizes

Initially the test error drops as the size of the training set is increased	 but from training
set size ���� to ���� the expected test error is fairly constant
 The reason for this atypical
behaviour of the learning curve may be explained by visual inspection of the laser series
in Figure �
� as the �shape� of many of the collapses between the corresponding points
��������� �recall that the size of the training set is increased by extending backwards
from point ����� seems atypical for the test series
 The test error drops signi
cantly when
increasing the training set size from ���� to ���� points which might be explained by

��� Chapter �� Recurrent network training experiments

0 1000 2000 3000 4000 5000 6000 7000
10

−3

10
−2

10
−1

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Learning curve for recurrent network having one external input and �� hidden
units ���� weights� trained on an increasing number of examples from the Santa Fe laser
series
 The expected normalized generalization error when training on ���� examples is
estimated to bG�bw� " ������ � ������

the fact that the training set now incorporates an additional collapse between points ����
and ���� very similar in shape to the ones in the test series
 These observations suggest
that for the laser series	 the concept of an example should be conceived on several time
scales� there are the pointwise examples corresponding to each single input presented to
the network� but more important	 there obviously exist what might be denoted as �super
examples� consisting of a whole section or period of the time series	 separated by the
collapses
 If additional �super� examples or sections when extending the training set are
not similar to the sections encountered in the test series	 generalization will not improve
as seen from Figure �
�

Once more it is stressed that the behaviour of the learning curve illustrated in Figure �
�
is atypical and is caused by the particular realization of the laser series from which the
curve is generated
 Had more data been available	 allowing for a less restricted de
nition
of the learning curve than described above	 the learning curve would not have displayed
the sudden plateau as this e�ect would be eliminated if averaging test errors from models
trained on di	erent training sets of the same size and estimating the generalization error
on a larger test set

It is noted how the variability within the models trained on the same training set
decreases as the number of training examples is increased	 as indicated by the decreasing
spread in the resulting test errors
 This corresponds to a decrease of the variance term
contribution to the generalization error in Eq
 ��
��
 The learning curve �attens out at
training set size ���� and the variability within the resulting models is seen to be very
small if using ���� training examples
 From the learning curve we may thus derive that
no signi
cant improvement in generalization error would be obtained if using more than
���� examples for training
 Finally we derive from the learning curve that one may expect
a normalized generalization error of bG�bw� " ������ � ������ when training a recurrent
network with similar architecture and weight decay on ���� examples from the Santa Fe
laser series

Sec� ��� Learning curves for recurrent networks ���

���� RNN learning curve for the Mackey�Glass series

The learning curve for the Mackey�Glass series	 described in appendix A
�	 was generated
from the available sequence of ���� points by setting aside the
rst ���� points for training
sets and using the following ���� points as a test set in order to obtain a good estimate of
the generalization ability of the resulting networks
 As for the laser series	 an increasing
size of the training series was obtained by extending backwards in time from data point
���� in order to evaluate networks trained on a di�erent number of examples on the same
test set	 thus allowing for consistent comparison of performance

As described in appendix A
� it is common practice to implement a six step ahead
predictor	 i
e
	 to model x�t # �� from a lag space vector x�t� " �x�t�� x�t � ��� � � �� when
using feed�forward networks
 Here a fully recurrent network structure working from only
one external input was used� at each time step t the network received x�t� as input while the
desired value for the network output was d�t� " x�t#��
 Once more the number of hidden
units and the weight decay were decided upon by empirical means
 It was decided to use
eight hidden units so that the networks comprised �� weights
 It was found that a uniform
weight decay for all weights in the network was appropriate	 using � " �rec " �
 " �������
thus in this case it was not necessary to constrain the feedback weights relatively more
than the feed�forward weights in order to handle numerical problems while still obtaining
adequate performance from the network

The learning curve generated for the Mackey�Glass series is illustrated in Figure �
�

Ten networks were trained for each of the sampled training set sizes using the damped
Gauss�Newton method	 and the stopping criterion was once more set to kgk�
 ����
 The
generalization errors were estimated on the test set	 scaled to NMSE and enter Figure �
�
as dots
 The connected circles represent the expected test errors for the sampled training
set sizes
 The Mackey�Glass series learning curve has a more �typical� appearance than the
laser series learning curve
 This might be explained by increased �regularity	� partly due to

0 200 400 600 800 1000 1200 1400 1600
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Learning curve for recurrent network having one external input and � hidden
units ��� weights� trained on an increasing number of examples from the Mackey�Glass
series
 The expected normalized generalization error when training on ���� examples is
estimated to bG�bw� " ��� 	 ���� � � 	 ���

��� Chapter �� Recurrent network training experiments

the series being generated arti
cially rather than measured from a real�world experiment

Initially the test error decreases rapidly as the training set is extended which is due to
the increased amount of information available allowing for more accurate modeling of the
underlying system
 At a training set size of ��� examples the learning curve starts to �atten
out
 There is however still some variability in the resulting models� this is eliminated as
the size of the training set is further increased which allows for more consistent modeling

At a training set comprising ���� examples both the estimated expected generalization
error as well as the variability seem to have reached a minimum	 indicating that a further
increase of the training set will yield very little improvement in performance
 According
to the learning curve one may expect a normalized generalization error of magnitudebG�bw� " ��� 	 ���� � � 	 ���
 when training a recurrent network with similar architecture
and weight decay on ���� examples from the Mackey�Glass series

��� Comparison of RNNs to feed�forward networks

A main advantage of using recurrent networks for time series prediction problems rather
than feed�forward networks is their ability to work from only a single external input which
has become apparent from the examples described so far
 This is possible as recurrent
networks are able to store a representation of previous inputs internally in the hidden
units as was described in section �
�
 The ability to work from only one input relieves
the modeler from the tedious and often di�cult task of selecting a proper lag space as is
necessary when using feed�forward networks and thus leads to a simpler and faster model
selection procedure

As single�input recurrent networks this way are more straightforward to apply it is
naturally of interest to determine how the performance of the recurrent models compare
to the performance of a feed�forward network working from an �optimally� chosen lag space
and having a comparable number of parameters
 Such a comparison will be attempted in
this section by generation of learning curves for both the laser series and the Mackey�Glass
series when modeling using feed�forward networks
 Prior to the learning curve generation
it is however necessary to determine the lag space to use

���� Feed�forward network lag space selection

In order to determine a proper lag space to use for the feed�forward networks a pragmatic
approach was adopted
 A �su�ciently� large number of hidden units was chosen and
networks working from an increasing number of external inputs were trained on a training
set using the damped Gauss�Newton method combined with a small weight decay until the
stopping criterion kgk�
 ���� was satis
ed
 The error on a test set was then computed for
all the trained networks and the dimension of the �optimal� lag space was then determined
as the smallest number of inputs for which the smallest test error was obtained
 Naturally	
this method for lag space determination is somewhat crude as it does not allow for omission
of intermediate lags

For the feed�forward networks trained on the laser series a number of �� hidden units
was chosen
 Setting the desired value of the network output at time t to d�t� " x�t#�� a
lag space x�t� " �x�t�� x�t���� � � � � x�t�L#��� of increasing dimension L was investigated

The training set comprised the
rst ���� points of the laser series	 i
e
	 a fairly large training
set in order to reduce the e�ect of degrading performance as the lag space was increased

Expanding the lag space while keeping the number of hidden units
xed increases the

Sec� ��� Comparison of RNNs to feed�forward networks ���

5 10 15 20
10

−3

10
−2

10
−1

10
0

NUMBER OF EXTERNAL INPUTS

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Lag space selection for feed�forward network trained on the Santa Fe laser
series
 The networks have �� hidden units and training is performed on the
rst ����
points of the series
 The optimal number of inputs is determined to L " ��

number of parameters which needs to be adapted� using too few training examples might
in�uence the choice of proper lag space
 Lag space dimensions ranging from L " � to
L " �� in steps of two were examined and ten networks were trained for each lag space
dimension
 The resulting test errors computed on the last ���� points of the laser series are
illustrated in Figure �
�
 Dots indicate the individual network errors and the connected
circles denote average values
 The optimal lag space was determined to be L " �� as
this was the smallest lag space dimension having a low error� in fact it was the lag space

2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

NUMBER OF EXTERNAL INPUTS

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Lag space selection for feed�forward network trained on the Mackey�Glass
series
 The networks have �� hidden units and training is performed on the
rst ����
points of the series
 The optimal number of inputs is determined to L " �

��� Chapter �� Recurrent network training experiments

dimension for which the lowest error was obtained
 The networks comprised ��� weights
and the estimated generalization error was bG�bw� " ������ � ������

For the feed�forward networks trained on the Mackey�Glass series a number of ten
hidden units was chosen as this number of hidden units was successfully used in �PHL���
included in appendix H and was reduced further by pruning without degrading perfor�
mance
 Implementing a six step ahead predictor	 the desired value of the network output
at time t was set to d�t� " x�t # �� and the lag spaces investigated were obtained as
x�t� " �x�t�� x�t� ��� � � � � x�t� ��L� ���� for increasing L	 according to standard practice�
refer to appendix A
�
 Lag space dimensions ranging from L " � to L " � were examined
and ten networks were trained on the
rst ���� points of the Mackey�Glass series for each
lag space dimension
 The resulting test errors on the ���� example test set are illustrated
in Figure �
�
 The performance seems to stabilize when applying seven or more external
inputs to the network
 Consequently the optimal lag space was determined to L " �
 The
corresponding networks comprised �� weights and the estimated generalization error wasbG�bw� " ��� 	 ���� � ��� 	 ����

���� Feed�forward network learning curves

After choosing the lag spaces	 learning curves were generated for feed�forward networks
which could be compared to the recurrent networks described above
 For the feed�forward
networks trained on the laser series a lag space L " �� was found appropriate� as the
recurrent networks used for the generation of the laser series learning curve comprised ���
weights	 a number of �� hidden units was chosen leading to ��� weights for the feed�forward
networks
 A learning curve was then generated by the same procedure as was adopted for
the recurrent networks
 Ten networks were trained for each training set size	 extending
the training set backwards from point ����
 The resulting learning curve is illustrated in
Figure �
� and is seen to have a shape very similar to the recurrent network learning curve
illustrated in Figure �
�
 Overall the level of the test errors are however seen to be slightly
larger than for the recurrent network
 The best performance is obtained when using ����
training examples for which a generalization error of bG�bw� " ������� ������ is obtained

The performance is seen to degrade slightly when using ���� examples for training� this
might be due to �peculiarities� in this particular realization of the laser series which do
not a�ect the recurrent network in the same way as it does the feed�forward network

The learning curve generated for the Mackey�Glass series using feed�forward networks
is illustrated in Figure �
�
 A lag space of L " � was found appropriate above and the
number of hidden units was then set to ten leading to �� weights in the feed�forward
networks in order to match the �� weights of the recurrent networks used for generation of
the Mackey�Glass series learning curve
 Ten networks were trained for each of the sampled
training set sizes
 Note how the variability in the resulting networks is much smaller than
for the recurrent networks in Figure �
�
 Further note the rather slow decrease of the
expected generalization error as the training set is expanded
 Even so	 the feed�forward
networks reach a performance which is comparable to the recurrent networks� from the
learning curve we see that when using ���� examples for training of the feed�forward
network one may expect a normalized generalization error of bG�bw� " ��� 	 ����� � 	 ����

As the feed�forward learning curve has not completely �attened out at ���� training
examples it seems reasonable to belive that the performance would improve beyond the
particular recurrent networks considered above if more examples were used for training

From the above experiments we learn that for the problems considered here a com�

Sec� ��� Comparison of RNNs to feed�forward networks ���

0 1000 2000 3000 4000 5000 6000 7000
10

−3

10
−2

10
−1

10
0

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Learning curve for feed�forward network having �� external inputs and ��
hidden units ���� weights� trained on an increasing number of examples from the Santa Fe
laser series
 The expected normalized generalization error when training on ���� examples
is estimated to bG�bw� " ������ � ������	 slightly more than for the recurrent networks in
Figure �
�

parable performance may be obtained for recurrent and feed�forward networks
 The per�
formance of the recurrent networks on the laser series was slightly better than for the
feed�forward networks
 For the Mackey�Glass series the performances of the two model

0 200 400 600 800 1000 1200 1400 1600
10

−5

10
−4

10
−3

10
−2

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �
�� Learning curve for feed�forward network having � external inputs and �� hidden
units ��� weights� trained on an increasing number of examples from the Mackey�Glass
series
 The expected normalized generalization error when training on ���� examples is
estimated to bG�bw� " ��� 	 ���� � � 	 ����	 which is about equal to the recurrent networks
in Figure �
�
 Note the slow decrease in test error as the training set is expanded

��	 Chapter �� Recurrent network training experiments

types were almost identical	 even though it seems that the feed�forward networks would
be slightly better than the recurrent networks if more examples were used for training

However	 the recurrent networks still have the advantage in this comparison as the adap�
tive memory allows this model structure to work from only a single input	 thus reducing
the problems of model selection considerably
 Further	 the di�erence might be eliminated
by a
ne tuning of the weight decay for the recurrent networks

��� Simulating the dynamics

The recurrent networks considered in this chapter have been trained to perform so�called
direct prediction of the time series for a
xed time step into the future	 i
e
	 to function
in �open�loop� as illustrated in Figure �
�
 Even so it is of interest to investigate the
ability of the networks to perform �closed�loop� predictions	 i
e
	 to predict multiple time
steps into the future by feeding the predicted values from the network output back to the
input as it was done for feed�forward networks in e
g
	 �WHR��	 WHR��	 Sva��� and for
recurrent networks in e
g
	 �Wul���

As the systems underlying both the laser series and the Mackey�Glass series are chaotic
in nature we know that the closed�loop iterated network output is bound to diverge from
the true series at some point even in the unlikely case of a perfect model	 as described
in appendix A� this will also be the case in general due to the e�ect of accumulated
prediction errors
 Even though the network output diverges from the true series we may
however still investigate the extend to which the network is able to simulate the dynamics
of the underlying system	 i
e
	 the ability to continuously generate points which lie on the
attractor of the true system
 This may be seen as the extent to which the network has
learned the generating dynamics

When investigating a recurrent network running in closed�loop the
rst step is to
initialize the network dynamics
 This is accomplished by �normal� open�loop iterations
of the network	 applying values of the true series to the external input of the network for
a su�ciently long sequence �like e
g
	 the training set�
 Then the mode of operation is
switched to closed�loop iterations	 feeding the network output back to the input
 When
determining the extent to which the network is able to simulate the dynamics of the
true system	 a natural
rst�hand investigation is visual comparison of the series generated
by the network to the true series
 If obvious di�erences in the structure of the series are
present	 e
g
	 the network output reduces to a constant value	 this may be taken as evidence
that the network is not able to simulate the dynamics of the underlying system and further
investigation is unnecessary
 If the series �look alike� the next step might be to embed the
network outputs in delay space and create a phase space plot
 The resulting geometrical
structure is then compared by visual inspection to the attractor resulting from embedding
of the true series� appendix A provides illustrations of the attractors for the chaotic systems
considered in this work
 If the recurrent network is able to generate a structure which is
similar to the true attractor one may proceed to quantize the similarity of the attractors
by comparing their attractor dimensions� refer to appendix A for a description

In the following an investigation of the recurrent network dynamics for selected net�
works trained on the laser series and networks trained on the Mackey�Glass series will be
performed as described above

Sec� ��� Simulating the dynamics ��

���� Laser dynamics

All the networks resulting from the generation of the laser series learning curve illustrated
in Figure �
� were examined for their ability to simulate the dynamics of the system
which generated the series
 The dynamics of each network was initialized by open�loop
iterations on the respective training series and closed�loop iterations were then commenced
at various points in the test set which extends beyond point ���� in the laser series� refer
to Figure �
�

It turned out to be very problematic for the networks to handle the �collapses� of the
laser series as illustrated in Figure �
��
 Here	 the dynamics of a network trained on ����
points was initialized on the
rst ���� points of the laser series after which closed�loop
iterations were commenced	 leading to the displayed series
 It is seen that the network
output is in accordance with the true series until the collapse is encountered
 The network
�misses� the exact location of the collapse in the true series but generates a collapse
shortly after
 As seen from Figure �
�� the network does not recover from the collapse but
enters a degenerate mode of constant output
 The vast majority of the networks entered a
similar mode of constant output after generation of the
rst collapse and the few networks
able to �survive� a collapse were only capable of generating a few �periods� of the laser
series before entering a mode of constant output as well
 Consequently	 examination of the
closed�loop iterated network outputs revealed that none of the networks in the learning
curve displayed in Figure �
� were able to properly simulate the dynamics underlying the
laser series

Examination of the network outputs revealed that the number of time steps into the
future which a network performing closed�loop iterations was able to provide good pre�
dictions was highly in�uenced by the position in the series at which closed�loop iterations
were commenced
 Naturally	 starting iterations just before a collapse would lead to very
few accurate predictions as the network would enter a mode of constant output shortly

7200 7400 7600 7800 8000 8200 8400 8600 8800 9000
−2

−1

0

1

2

3

4

TRUE CONTINUATION

7200 7400 7600 7800 8000 8200 8400 8600 8800 9000

−6

−4

−2

0

2

4

CLOSED−LOOP NETWORK OUTPUT

Figure �
��� Upper panel� Closed�loop iterated outputs from a recurrent network from
the laser series learning curve trained on ���� points
 The network is unable to handle a
collapse of the series
 Lower panel� True continuation of the laser series

��� Chapter �� Recurrent network training experiments

6800 7000 7200 7400 7600 7800 8000
−6

−4

−2

0

2

4

6

8

TIME

CL
OS

ED
−L

OO
P

 E
RR

OR

Figure �
��� Prediction errors for the closed�loop network outputs displayed in Figure �
��

The dashed vertical line denotes the point at which the closed�loop iterations commense	
prior to this point the network is iterated in open�loop
 Note the small closed�loop pre�
diction errors for more than ��� time steps

after
 However	 when starting the closed�loop iterations far from a collapse the number
of iterations before the prediction error would �explode� could vary greatly by o�setting
the starting point by just a few time steps� this corresponds to starting the closed�loop
iterations at di�erent points on the laser attractor illustrated in Figure A
�

Figure �
�� illustrates the closed�loop iterated prediction errors that resulted from the
network outputs displayed in Figure �
��
 The vertical dashed line indicates the starting
point of the closed�loop iterations� prior to this point the network was iterated in open�
loop
 It is seen that fairly accurate predictions of the laser series are provided for more
than ��� iterations before the error explodes
 Shortly after	 the network enters the mode
of constant output and the prediction errors become an o�set of the true series
 This
illustrates that it is possible to obtain accurate long�term predictions of the laser series
from the recurrent networks as long as the predictions do not extend past a collapse

A systematic method for determination of the number of time steps one may expect
reliable closed�loop iterated predictions was indicated in �WHR��	 WHR���
 Here	 closed�
loop iterations were commenced at each point in a test series	 allowing for estimation of
the expected error after	 say	 n iterations
 Calculating these errors for increasing n allows
for determination of the expected number of iterations n� before the prediction error ex�
plodes	 i
e
	 exceeds a speci
ed tolerance
 This number of iterations may be denoted as the
iterated prediction horizon of the network
 Such analysis may be seen as a tool for charac�
terizing the dynamic properties of a trained recurrent network but has unfortunately not
been pursued in great detail in this work

Even though it was not possible for any of the networks of the laser series learning
curve to simulate the underlying dynamics it is in fact possible for a single�input fully
recurrent network to simulate these dynamics
 This was revealed when performing a
series of experiments not included in this thesis
 Figure �
�� illustrates the closed�loop

Sec� ��� Simulating the dynamics ���

6000 7000 8000
−2

0

2

4

6
CLOSED−LOOP NETWORK OUTPUT

6000 7000 8000
−2

0

2

4

6
TRUE CONTINUATION

Figure �
��� Upper panel� Closed�loop iterated outputs from a recurrent network having
�� hidden units and trained on the
rst ���� points of the laser series
 This network is able
to simulate the dynamics which generated the laser series
 Lower panel� True continuation
of the laser series

iterated output from a single�input network having �� hidden units ���� weights�	 trained
on the
rst ���� points of the laser series
 It is seen that the network is indeed capable
of �surviving� the collapses
 By visual comparison of the generated series to the true
laser series it is seen that the �structure� of the series seems to be in accordance with

6000 6500 7000 7500 8000
−6

−4

−2

0

2

4

6

TIME

CL
OS

ED
−L

OO
P

 E
RR

OR

Figure �
��� Prediction errors for the closed�loop network outputs displayed in Figure �
��

The dashed vertical line denotes the point at which the closed�loop iterations commense	
prior to this point the network is iterated in open�loop
 Note the rapid increase in the
prediction errors compared to Figure �
��

��� Chapter �� Recurrent network training experiments

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

X(t)

X
(t

−
2)

1000 POINTS

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

X(t)

X
(t

−
2)

10000 POINTS

Figure �
��� Phase space plots for the laser data series generated by a recurrent net�
work running in closed�loop
 Compare to the true attractor illustrated in Figure A
� on
page ���
 Left panel� ���� points
 Right panel� ����� points

each other even though they are not exactly alike� Figure �
�� displays the closed�loop
prediction errors which indicates that the two series rather quickly diverge

The series generated by the recurrent network was then embedded in two dimensions	
using a delay time � " � as was done for the true laser series in appendix A
�
�
 The
resulting points were plotted in a phase space plot as illustrated in Figure �
��� this
gure
should be compared to Figure A
� on page ��� which illustrates the phase space plot
of the true laser series
 By visual inspection it seems that the network attractor has a
structure very similar to the true attractor
 During the
rst ���� closed�loop iterations
the network does not produce a collapse after which the oscillations start at zero as seen
from Figure �
��� this explains the �hole� in the center of the attractor in the left panel
of Figure �
��
 When including ����� points in the phase space plot as in the right panel
of Figure �
�� the �wheel with spokes��structure however becomes clearly visible	 in fact
more clearly visible than in the attractor illustrated for the true series in the right panel
of Figure A
�

In order to provide a more quantitative comparison of the attractors the correlation
dimension D� was estimated for the network attractor in the same way as it was done for
the true attractor in Figure A
� on page ���
 In order to provide as unbiased a comparison
as possible	 ����� points from the network output were used for the dimension estimation	
the same number as for the true series
 The result is illustrated in Figure �
��
 The
correlation dimension seems to saturate at embedding dimension L " � and the dimension
of the network attractor is estimated to D�
 ���� by averaging the values obtained at
L " �� �� �� �
 This value is not quite equal to the value which was estimated for the true
attractor �D�
 ����� but considering the relatively few number of points from which the
dimensions are estimated as well as the sampling noise present in the true series it seems
fair to state that the dimensions are approximately equal and that the network has learned
the underlying dynamics

As a
nal remark on laser series network dynamics it is mentioned that all of the very
few networks found capable of simulating the dynamics which generated the laser series
had �� hidden units	 � more than was used for the networks when generating the learning

Sec� ��� Simulating the dynamics ���

2.11

1 2 3 4 5 6 7 8 9
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

EMBEDDING DIMENSION

C
O

R
R

E
LA

T
IO

N
 D

IM
E

N
S

IO
N

Figure �
��� Estimation of the correlation dimension D� for the attractor generated by a
recurrent network trained on the laser series

curve in Figure �
�� apparently the learning curve networks did not possess su�cient
complexity
 Furthermore it turned out that every network capable of simulation exhibited
severe overtraining	 i
e
	 the average one�step ahead prediction error on the test set was
very large for all of those networks
 In the experiments performed during this work none of
the networks with a low one�step ahead test error have been found capable of simulating
the dynamics generating the laser series
 An explanation for this phenomenon has not
been found

���� Mackey�Glass dynamics

We now turn towards the networks resulting from the generation of the Mackey�Glass series
learning curve illustrated in Figure �
�
 It turned out that learning the dynamics which
generated the Mackey�Glass series is apparently an easier task than learning the dynamics
of the laser series as all of the networks examined having test error
 ���� were capable
of simulating the dynamics underlying the Mackey�Glass series
 Figure �
�� displays the
closed�loop iterated output from one of the networks in the learning curve trained on
���� points along with the true series� the solid vertical line at point ���� indicates the
beginning of the test set at which the closed�loop iterations were commenced
 The closed�
loop predictions are seen to be fairly accurate for about ��� time steps after which the
true series and network generated series diverge
 The corresponding closed�loop prediction
errors are illustrated in Figure �
��

A relevant comment to make at this point is that the network has been trained to
implement a six�step ahead predictor and does therefore assume no knowledge of the
ve
values in the series immediately preceeding the value to be predicted
 Consequently	 when
performing closed�loop iterations the network output should not be fed directly back to
the input but rather pass through a delay line which delays the network output six time
steps before it is applied to the input

A series consisting of ���� points generated by the network was embedded in three

��� Chapter �� Recurrent network training experiments

1300 1400 1500 1600 1700 1800 1900 2000 2100
0.4

0.6

0.8

1

1.2

1.4

2200 2300 2400 2500 2600 2700 2800 2900 3000
0.4

0.6

0.8

1

1.2

1.4

Figure �
��� Comparison of the outputs of a recurrent network from the Mackey�Glass
series learning curve trained on ���� points when performing closed�loop iterations to the
true Mackey�Glass series
 The solid vertical line at time step ���� indicates the start of
the closed�loop iterations
 Dotted line� Network output
 Solid line� True series

dimensions using a delay time � " � as was done for the true series in appendix A
�
�
 The
resulting points were then plotted in a phase space plot which is illustrated in Figure �
��

Visual comparison of the network attractor to the true Mackey�Glass attractor illustrated
in Figure A
� reveals that the two structures are almost identical
 In fact	 only careful
inspection reveals the subtle di�erences between the two attractors

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

−0.4

−0.2

0

0.2

0.4

TIME

CL
O

SE
D−

LO
O

P
 E

RR
O

R

Figure �
��� Prediction errors for the closed�loop iterated network outputs displayed in
Figure �
��
 The solid vertical line denotes the point at which the closed�loop iterations
commense	 prior to this point the network is iterated in open�loop
 Note the small pre�
diction errors for about ��� iterations

Sec� ��� Simulating the dynamics ���

0.4
0.6

0.8
1

1.2
1.4 0.4

0.6
0.8

1
1.2

1.4
0.4

0.6

0.8

1

1.2

1.4

X(t)
X(t−6)

X
(t

−
12

)

Figure �
��� Phase space plot for the Mackey�Glass series using ���� points generated by
a recurrent network running in closed�loop
 Compare to the true attractor illustrated in
Figure A
� on page ���

��� Chapter �� Recurrent network training experiments

1.89

1 2 3 4 5 6 7 8
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

EMBEDDING DIMENSION

C
O

R
R

E
LA

T
IO

N
 D

IM
E

N
S

IO
N

Figure �
��� Estimation of the correlation dimension D� for the attractor generated by a
recurrent network trained on the Mackey�Glass series

In order to provide further comparison of the attractors the correlation dimension D�

was estimated for the network attractor as it was done for the true Mackey�Glass attractor
in Figure A
� on page ���
 As for the laser series above the network attractor dimension
was estimated from the same number of points as was used for the true attractor in order
to avoid a bias in the comparison due to a di�erent number of points
 Thus the network
attractor dimension was estimated from an embedding of the ���� points used to generate
Figure �
��
 The result is illustrated in Figure �
��
 As for the true attractor the dimension
estimate saturates at embedding dimension L " � and the network attractor correlation
dimension is estimated to D�
 ���� by averaging the values obtained at embedding
dimensions L " �� �� �� �� �
 This dimension estimate is very close indeed to the dimension
estimate of the true attractor �D�
 �����
 The small di�erence is probably due to the
slight tendency to lacunarity at some parts of the network attractor	 compared to the true
attractor
 The almost identical attractor dimensions combined with the visually veri
ed
identity of the two attractors may be taken as evidence that the recurrent network has
indeed learned the Mackey�Glass dynamics

Chapter ��

Illustration of recurrent network
pruning

The literature is rich on examples where various pruning schemes have been applied to
feed�forward networks �e
g
	 �CBD���	 Tho��	 GHK���	 SHL��	 SHLR��	 HP��	 HR��	
HMPHL��	 PHL���� with success in terms of improved generalization ability and signi
�
cantly reduced network architectures
 Even though architecture optimization by pruning
extends naturally to recurrent networks the literature is very sparse on examples
 Among
the examples is �GO��� where entire units are pruned away	 based on a magnitude based
criterion calculated from the vector of weights entering the unit
 A similar method is
adopted in �CFP���
 Very few attempts to employ pruning methods like OBD and OBS	
based on weight saliencies de
ned in terms of training error �refer to chapter ��	 have been
reported
 One of the few is �LGHK��� where saliencies are determined for each memory

order of an output feedback network �see Figure �
�� in a manner similar to combining
several weight saliencies in the OBD pruning scheme

In this work pruning of fully recurrent networks by the OBD and OBS schemes has
been investigated
 Tentative results using the OBS pruning scheme were presented in
�PH��� included in appendix G
 This chapter serves as an elaboration on the viability
of recurrent network pruning by OBD and OBS
 Section ��
� demonstrates pruning by
the OBD scheme on networks selected from the Santa Fe laser series and the Mackey�
Glass series learning curves
 It has been observed that saliencies computed using the
OBS scheme often severely underestimate the actual change in error which results from
pruning a particular weight
 This leads to pruning of weights which are important to the
network
 In contrast	 the saliency estimates computed using the OBD scheme are much
more consistent with the actual change in error
 In section ��
� the quality of both OBD
and OBS saliencies is assessed by comparison to the actual saliencies
 Furthermore	 the
accuracy of the second�order expansion is illustrated

���� Pruning by Optimal Brain Damage

Pruning of recurrent networks by OBD will now be demonstrated for selected networks
from various parts of the learning curves which were described in chapter �
 Generally	
the success in terms of improved generalization ability to expect from pruning depends on
the variance of the generalization errors for the particular size of training set
 The larger
the variance	 the larger the potential improvement from pruning as the ability to over
t

���

��	 Chapter �
� Illustration of recurrent network pruning

is reduced	 as may also be seen from Eq
 �
�
 I
e
	 in order to bene
t from pruning the
potential decrease in the variance term should exceed the resulting increase in the bias
term

If training is performed using a training set size residing on the the initial part of the
learning curve �small number of examples� then the potential improvement in general�
ization error is large due to a large variance
 However	 it cannot be expected that the
generalization error reaches the lowest level of the learning curve as there is just too few
examples available in order to properly learn the underlying dynamics

On the other hand	 if the size of the training set resides on the ��at� part of the learning
curve �large number of examples� then the potential improvement in generalization error
is smaller due to a small variance
 In this case pruning is however a valuable tool for
assessing the architecture of a minimal model still able to implement the teacher function
for the problem at hand

In order obtain a stopping criterion for the pruning procedure one might set aside data
for a validation set �Bis��	 Rip��� �di�erent from the independent test set on which the
generalization error is estimated� and then select the network having the lowest error on the
validation set as the �optimal� network
 In order to avoid using data for a validation set an
alternative is to employ the FPE�estimate	 described in section �
�
 This was done for feed�
forward networks in e
g
	 �SHL��	 HRSL��	 PHL��	 HMPHL��� where the generalization
error was estimated by the FPE�estimate for each of the networks which resulted during
pruning
 By selecting the network with the lowest FPE�estimated generalization error
a stopping criterion for the pruning procedure was obtained
 This approach has also
been attempted here for recurrent networks	 even though the FPE�estimate has not been
formally justi
ed for this network type� refer to section �
�

These general considerations will be investigated for recurrent networks in the follow�
ing
 The experiments illustrate how pruning helps to utilize the available training set in
the best possible way
 Note that only one weight is pruned at a time

������ Pruning of RNNs applied to the laser series

Pruning is here illustrated for two networks selected from the laser series learning curve
displayed in Figure �
� on page ���
 The
rst network is selected among the networks
resulting when training on ���� examples

The training curve for the fully connected network	 i
e
	 the evolution of the train�
ing and test errors as training iterations progress are illustrated in the upper panel of
Figure ��
�
 Note the rapid decrease of the errors after the training method shifts to
the Gauss�Newton method after �� initial iterations of gradient descent
 The long �tail�
where the errors are changing very little indicates a
ne tuning of the weights in order
to satisfy the stopping criterion	 kgk� � ����	 i
e
	 to get �close� to a local minimum

Verifying that a small gradient is obtained is important for the OBD pruning scheme as
the saliency estimates assume that the
rst order term can be neglected when expanding
the cost function to second order
 Finally note that very little overtraining occurs due to
the large size of the training set

The evolutions of the NormalizedMean Squared Errors �refer to appendix A� as weights
are pruned away are illustrated in the lower panel of Figure ��
�� the errors displayed are
the ones resulting after retraining of the reduced networks by the damped Gauss�Newton
method to a new local minimum of the cost function
 The estimated generalization error
on the test set exhibits a fairly modest decrease as parameters are pruned due to the large

Sec� ���� Pruning by Optimal Brain Damage ��

TRAIN
TEST

0 50 100 150 200 250 300 350 400 450
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

TRAIN
TEST
FPE

20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

x 10
−3

NUMBER OF PARAMETERS

N
M

S
E

Figure ��
�� Upper panel� Training curve for fully connected network trained on ����
examples from the laser series
 Lower panel� Evolution of training	 test and FPE errors
during pruning
 The solid vertical line indicates the minimum value of the FPE�estimate

Estimated generalization errors on test set� bG�bw� " ��� 	 ���	 for the fully connected
network	 bG�bw� " ��� 	 ���	 for the network having �� weights

number of training examples	 in line with the discussion above
 The test error reaches
its minimum when �� weights are left in the network	 after which it increases due to
a signi
cantly increased model bias
 Pruning is improving the estimated generalization
error from bG�bw� " ��� 	 ���	 for the fully connected network to bG�bw� " ��� 	 ���	 for the
network having �� weights	 a �� + reduction in error and a �� + reduction in the number
of weights
 Similar results were obtained for the nine other networks in the learning curve
trained on ���� points of the laser series

The FPE�estimate de
ned by Eq
 �
�� is here attempted as a stopping criterion for
the pruning procedure
 The vertical line in the lower panel of Figure ��
� indicates the

��� Chapter �
� Illustration of recurrent network pruning

72 PARAMETERS

+1

X(t)

+1

s1(t−1)
s2(t−1)
s3(t−1)
s4(t−1)
s5(t−1)
s6(t−1)
s7(t−1)
s8(t−1)
s9(t−1)
s10(t−1)

y(t)

Figure ��
�� Structure of recurrent network trained on ���� examples from the laser series
and pruned to �� weights �refer to text for interpretation�

network for which the generalization error according to FPE is minimal
 Whereas FPE
selects a network having ��� weights it is seen that the network with the smallest estimated
generalization error on the large test set contains only �� weights

The FPE�estimate is in the lower panel of Figure ��
� seen to follow the training error
very closely
 This is due to the large number of examples used for training
 In comparison
the e�ective number of parameters in the network is small	 and the prefactor in Eq
 �
��
is therefore close to unity
 This implies that the network selected by the FPE�estimate is
always very close to or identical to the network having the smallest error on the training
set	 which is in general not the network with the best generalization ability
 As the
network having the smallest training error is often �close� to the fully connected network	
this means that the FPE�estimate has a tendency to choosing networks containing too
many weights which is also the the experience obtained in this work
 Consequently	 the
FPE�estimate cannot be recommended as a general stopping criterion for pruning
�

The architecture of the network containing �� parameters is illustrated in Figure ��
��
this network may be viewed as the smallest network still capable of accurately modeling
the laser series
 Solid lines in the
gure indicate the remaining weights and the dotted lines
indicate the feedback paths�)
� symbolizes a delay of one time step
 It is seen that most
of the pruned weights are feedback connections	 weighting previous hidden unit outputs

However	 no hidden unit has been entirely pruned away
 This might be due to the fact
that the entire memory of single�input recurrent networks is located in the hidden units�
pruning of a whole unit may consequently hamper the network memory and thus modeling
ability signi
cantly

It has been investigated whether the pruned network illustrated in Figure ��
� is better
capable of simulating the underlying dynamics than the fully connected network
 How�
ever	 the result was similar to Figure �
�� on page ���

�Note that these general observations apply to feed�forward networks as well�

Sec� ���� Pruning by Optimal Brain Damage ���

The second network considered from the laser series learning curve in Figure �
� is
selected among the networks trained on ���� examples
 The chosen network is among
those having the largest error on the test set as these networks are likely to bene
t the
most from pruning

The training curve for this network is illustrated in the upper panel of Figure ��
� and
reveals slight over
tting of the training set
 The lower panel illustrates the evolution of
errors after retraining as weights are pruned away
 The network is apparently undergoing
signi
cant changes as pruning progresses even though the training error is practically
unchanged
 The changes are revealed by the error on the test set� the network is suddenly
signi
cantly over
tting the training series
 As more weights are pruned the ability to

TRAIN
TEST

0 50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

ITERATION #

N
M

S
E

TRAIN

TEST

FPE

20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

NUMBER OF PARAMETERS

N
M

S
E

Figure ��
�� Upper panel� Training curve for fully connected network trained on ����
examples from the laser series
 Lower panel� Evolution of training	 test and FPE errors
during pruning
 The solid vertical line indicates the minimum value of the FPE�estimate

Estimated generalization errors on test set� bG�bw� " ��� 	 ���	 for the fully connected
network	 bG�bw� " ��� 	 ���	 for the network having �� weights

��� Chapter �
� Illustration of recurrent network pruning

46 PARAMETERS

+1

X(t)

+1

s1(t−1)
s2(t−1)
s3(t−1)
s4(t−1)
s5(t−1)
s6(t−1)
s7(t−1)
s8(t−1)
s9(t−1)
s10(t−1)

y(t)

Figure ��
�� Structure of recurrent network trained on ���� examples from the laser series
and pruned to �� weights

over
t is eliminated which leads to a dramatic decrease in the test error
 Shortly after	
the test error increases again due to insu�cient model complexity

In this case pruning is improving the estimated generalization error from bG�bw� "
��� 	 ���	 for the fully connected network to bG�bw� " ��� 	 ���	 for the network having ��
weights	 a �� + reduction in error and a �� + reduction in the number of weights
 By
comparison to the learning curve in Figure �
� it is seen that the pruned network now
ranks among the best networks obtained when training on ���� examples
 Once more the
FPE�estimate is seen to select a network having too many parameters ���� weights� which
is close to the network having the lowest training error ���� weights�

The architecture of the network having �� parameters is illustrated in Figure ��
�

Note the large number of input weights still present and note that no hidden units have
been discarded even though �� + of the parameters have been pruned away

������ Pruning of RNNs applied to the Mackey�Glass series

We now proceed to consider pruning of networks selected from the Mackey�Glass series
learning curve displayed in Figure �
� on page ���
 The
rst network is selected among
the networks resulting when training on ���� examples
 For these networks there is a very
small variance on the resulting test errors� consequently	 very little improvement should be
expected from pruning
 However	 pruning may still provide insight into the architecture
of the minimal network still able to accurately model the Mackey�Glass series

The training curve for the selected network is illustrated in the upper panel of Fig�
ure ��
�
 The training and test errors are seen to have merged completely due to the
�relatively� large number of training examples used
 The evolution of the errors during
the pruning procedure is illustrated in the lower panel of Figure ��
� and they too are
very close throughout the course of pruning
 As weights are pruned it is seen that the
damped Gauss�Newton retraining method manages to converge to local minima for which

Sec� ���� Pruning by Optimal Brain Damage ���

TRAIN
TEST

0 50 100 150 200 250 300 350 400 450 500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ITERATION #

N
M

S
E

TRAIN
TEST
FPE

10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

x 10
−4

NUMBER OF PARAMETERS

N
M

S
E

Figure ��
�� Upper panel� Training curve for fully connected network trained on ����
examples from the Mackey�Glass series
 Lower panel� Evolution of training	 test and
FPE errors during pruning
 The solid vertical line indicates the minimum value of the
FPE�estimate
 Estimated generalization errors on test set� bG�bw� " ��� 	 ���� for the fully
connected network	 bG�bw� " ��� 	 ���� for the network having �� weights

the training error is slightly less than the initial error
 The smallest training error and	
consequently	 the smallest test error is obtained when �� weights are left in the network

In this case the FPE�estimate manages to point out the optimal network as it coincides
with the smallest training error
 The estimated generalization error is improved frombG�bw� " ��� 	 ���� for the fully connected network to bG�bw� " ��� 	 ���� for the network
having �� weights	 a mere � + reduction
 However	 the number of weights is reduced by
�� +

The architecture of the network having �� weights is illustrated in Figure ��
�
 Once
more it is seen that nearly all the input weights are retained� only one hidden unit has

��� Chapter �
� Illustration of recurrent network pruning

38 PARAMETERS

+1

X(t)

+1

s1(t−1)

s2(t−1)

s3(t−1)

s4(t−1)

s5(t−1)

s6(t−1)

s7(t−1)

s8(t−1)

y(t)

Figure ��
�� Structure of recurrent network trained on ���� examples from the Mackey�
Glass series and pruned to �� weights

0.4
0.6

0.8
1

1.2
1.4 0.4

0.6
0.8

1
1.2

1.4
0.4

0.6

0.8

1

1.2

1.4

X(t)
X(t−6)

X
(t

−
12

)

Figure ��
�� Phase space plot for the Mackey�Glass series using ���� points generated by
the network illustrated in Figure ��
� when running in closed�loop

Sec� ���� Pruning by Optimal Brain Damage ���

been completely discarded despite the large reduction in the number of weights
 Whereas
the networks applied to the laser series and illustrated above sampled almost all of the
hidden units in order to obtain the network output	 it is noted that the network output
in Figure ��
� is obtained from relatively few of the hidden units

The network illustrated in Figure ��
� is indeed still capable of simulating the dynam�
ics which generated the Mackey�Glass series
 After initialization on the training set the
network was operated in �closed�loop� feeding the network output back to the input as
it was done for the fully connected network in section �
�
�
 This way ���� points were
generated	 embedded in three dimensions and visualized in the phase space plot illustrated
in Figure ��
�
 Comparing to the attractor of the fully connected network in Figure �
��
on page ��� it is noted that the pruned�network attractor exhibits less lacunarity	 i
e
	 the
�band� is more evenly
lled with points
 Comparing to the true attractor in Figure A
�
on page ��� it seems that the pruned�network attractor has an even greater resemblance
than the attractor of the fully connected network

The
nal pruning example involves a network from the Mackey�Glass learning curve in
Figure �
� trained on only ��� examples
 This training set size resides on the initial part
of the learning curve where the potential improvement in generalization ability resulting
from pruning is large

When training on very few examples it is likely that the network will over
t the training
data	 leading to a large test error
 This is also the case for the network considered here
as seen from the training curve in the left panel of Figure ��
�
 Initially the test error
decreases along with the training error but as the network starts to over
t �shortly after
application of the damped Gauss�Newton method which succeeds the initial �� iterations
of gradient descent� the test error increases dramatically

The evolution of errors as weights are pruned away are illustrated in the right panel of
Figure ��
�
 Initially the test error is seen to remain fairly unchanged at a high level
 As
the model complexity is reduced	 the ability to over
t is abruptly eliminated leading to a

TRAIN
TEST

0 500 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

ITERATION #

N
M

S
E TRAIN

TEST
FPE

10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

10
1

NUMBER OF PARAMETERS

N
M

S
E

Figure ��
�� Left panel� Training curve for fully connected network trained on ���� exam�
ples from the Mackey�Glass series
 Right panel� Evolution of training	 test and FPE errors
during pruning
 The solid vertical line indicates the minimum value of the FPE�estimate

Estimated generalization errors on test set� bG�bw� " ��� for the fully connected network	bG�bw� " ��� 	 ���	 for the network having �� weights

��� Chapter �
� Illustration of recurrent network pruning

signi
cant drop in test error
 The test error drops to bG�bw� " ��� 	 ���	 for the network
having �� parameters which is close to the lowest level bG�bw� " ��� 	 ���	 obtained in the
left panel of Figure ��
�
 Pruning has thus eliminated the capability of over
tting

Comparing to the learning curve in Figure �
� it is seen that the test error obtained
from pruning is much smaller than the test error for any of the networks in the learning
curve trained on ��� examples
 This is due to the remaining networks having severely
over
tted as well
 Note also that the level of the test error obtained from pruning is
much larger than the smallest errors obtained in the learning curve when training on more
examples
 This is due to the ��� examples not being su�cient in order to properly learn
the underlying dynamics

The FPE�estimate is once more selecting a network having too many parameters and
close to the network having the smallest error on the training set
 The FPE�estimate
is now seen to be more clearly o�set from the training error	 compared to the previous
examples
 This is due to the small number of training examples� the changes in the
e�ective number of parameters are now signi
cantly in�uencing the prefactor in Eq
 �
��
which is therefore initially larger than one
 Thus	 the smaller size of the training set �bias�
the FPE�estimate towards selecting networks with a smaller number of weights and thus
closer to the networks which have empirically been found to exhibit optimal generalization
ability
 However	 this practical observation is not in harmony with the derivation of the
FPE�estimate outlined in section �
� where it is assumed that the number of training
examples is large
 Thus	 the application of the FPE�estimate is not properly justi
ed in
this case

The architecture of the network with minimal test error and having �� weights is
illustrated in Figure ��
�
 The characteristics are similar to the previous examples as the
majority of the pruned weights are feedback connections	 weighting previous hidden unit
outputs
 Almost all of the input weights are still remaining and no hidden units have been
discarded
 Note the sparse sampling of the hidden units in order to obtain the network

52 PARAMETERS

+1

X(t)

+1

s1(t−1)

s2(t−1)

s3(t−1)

s4(t−1)

s5(t−1)

s6(t−1)

s7(t−1)

s8(t−1)

y(t)

Figure ��
�� Structure of recurrent network trained on ��� examples from the Mackey�
Glass series and pruned to �� weights

Sec� ���� Saliency quality
 OBD vs� OBS ���

output just as in the previous example

���� Saliency quality
 OBD vs� OBS

We will now turn to towards an investigation of the accuracy and thereby the quality of the
saliency estimates which results from the OBD and OBS pruning schemes	 respectively

Such investigation was presented for feed�forward networks in e
g
	 �GHK���� as well as
in �PHL��� included in appendix H
 Here it was found that the OBD saliencies were very
accurate and that ranking the weights according to the estimated saliencies was consistent
with ranking according to actual saliencies	 obtained by setting each weight to zero in turn
and computing the resulting change in error
 The OBS saliencies	 however	 were found
to highly underestimate the actual change in error resulting from the weight elimination
and quadratic retraining of the remaining parameters
 This underestimation was found
to lead to a ranking of the weights according to estimated saliency which was inconsistent
with ranking according to actual saliency	 and thus to pruning of the wrong weights

Similar qualitative investigations have been made for recurrent networks	 showing the
same results� OBD saliencies are generally very accurate	 especially for the low�saliency
weights in which we are interested	 whereas OBS saliencies are generally much smaller
than the actual saliencies	 leading to elimination of important weights
 The di�erence in
accuracy found between OBD and OBS saliencies was initially indicated by a quantitative
experiment in �Ped��� involving pruning of numerous recurrent networks by both OBD
and OBS
 It was found that	 on average	 OBD pruned the weight having the smallest
actual saliency in �� + of the weight eliminations whereas OBS pruned the correct weight
in only �� + of the eliminations

During this work many experiments have been made involving pruning of recurrent
networks by OBD and OBS	 both methods starting from the same initial networks
 The
experience obtained from these experiments is that pruning by OBS rarely leads to an
improvement in generalization ability whereas the results presented in the previous section
have been found to be representable for the OBD pruning scheme
 The reason for this
di�erence in performance is rooted in the quality of the saliencies
 In the following a
qualitative comparison between OBD and OBS saliencies will be illustrated for a network
trained on the Mackey�Glass series and pruned by OBD in the previous section
 Saliencies
for the fully connected network will be compared to actual saliencies for both OBS and
OBD	 and the accuracy of the second order approximation will be illustrated

������ OBS saliencies

The OBS saliency for each weight in the fully connected network which was pruned in
Figure ��
� was computed using the expression in Eq
 �
��
 Further	 the actual saliency
of each weight was computed by retraining the remaining weights within the quadratic
approximation according to Eq
 �
�� and then determining the actual change in error

The result is illustrated in the upper panel of Figure ��
�� where actual saliency is plotted
versus estimated saliency
 Due to the weight decay �refer to section �
�
�� some of the
estimated saliencies were negative
 In order to visualize these saliencies in the log�log plot
as well	 the absolute value was used and enter the upper panel of Figure ��
�� as circles

If the saliency estimates were accurate then estimated saliency would equal actual
saliency and be located on the solid line
 This is seen not to be the case� rather	 the
estimated saliencies are consistently too small corresponding to an underestimation of the

��	 Chapter �
� Illustration of recurrent network pruning

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ACTUAL SALIENCY

E
S

T
IM

A
T

E
D

 S
A

LI
E

N
C

Y

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

ACTUAL SALIENCY

E
S

T
IM

A
T

E
D

 S
A

LI
E

N
C

Y

Figure ��
��� OBS saliency quality for the fully connected network of Figure ��
�
 Upper
panel� Actual vs
 estimated saliency
 Negative estimated saliencies are indicated by circles

Smallest estimated saliency is indicated by an asterisk
 Lower panel� Actual vs
 estimated
saliencies	 both coordinates o�set by a constant corresponding to twice the magnitude of
the largest magnitude negative saliency �see text�

Sec� ���� Saliency quality
 OBD vs� OBS ��

actual change in error
 Further	 the rank ordering of the weights according to estimated
saliency is not consistent with rank ordering according to actual saliency
 The weight
selected for pruning is the one having the largest magnitude negative saliency and is
indicated by an asterisk in the
gure� the corresponding actual saliency is seen to be
positive and very large

In order to more clearly illustrate the inconsistent rank ordering of the weights	 each
point �actual� estimated� was translated by addition of the same small constant to each
coordinate
 The constant was chosen as twice the magnitude of the largest magnitude
negative saliency	 making all estimated saliencies positive and thus more easily visualized
in a log�log plot
 The result is illustrated in the lower panel of Figure ��
�� where the
weight selected for pruning is once more indicated by an asterisk
 The dotted lines in the
plot indicate the former level of zero	 i
e
	 all points below the horizontal line had negative
estimated saliency prior to the translation
 From the
gure the inconsistent ranking is
clearly seen	 i
e
	 the weights having the smallest estimated saliencies are not the ones with
the smallest actual saliencies

We now turn towards an examination of the quadratic approximation to the error
function E�w� from which the saliencies were computed
 The OBS saliency estimate
is computed as the estimated di�erence in error E�w� between the retrained network
and the unchanged network
 Therefore the validity of the quadratic approximation will be
illustrated along a line in parameter space indicated by a retraining vector �wj determined
by Eq
 �
�� and passing through the unchanged parameter vector bw	 i
e
	 w " bw# c 	 �wj

The line is parametrized by c where c " � denotes the initial weights bw and c " � denotes
the weights for which the saliency is estimated

The
rst weight to be considered in this respect is the one having the smallest estimated
�negative� saliency
 The quadratic approximation in the direction of the corresponding
retraining vector is illustrated in the upper panel of Figure ��
�� along with the true value
of the error function
 Note that the approximation in this direction is not minimal at the
expansion point bw which is due to the weight decay used� this furthermore leads to the
negative saliency
 It is seen that whereas the true error displays �walls� which rise sharply	
the quadratic approximation is very ��at� which explains the large discrepancy between
estimated and actual saliency

The reason for the ��at� quadratic approximation is revealed by an enlargement around
c " � as illustrated in the lower panel of Figure ��
��
 It is seen that the true error here
displays the shape of a �bath tub� �GHK���� with steep walls and very low curvature at
the bottom
 The �bath tub� results e
g
	 if the direction of the retraining vector �w is
almost along the bottom of a �rain gutter��like structure of the error function as illustrated
in Figure �
� on page ��
 Thus	 the very �at quadratic approximation is a result of an
ill�conditioned Hessian as described in chapter � and illustrated in chapter �

We now consider the weight having the largest estimated saliency in Figure ��
��
 The
quadratic approximation in the direction of the corresponding retraining vector for this
weight is illustrated in the upper panel of Figure ��
�� along with the true value of the
error function
 Once more the quadratic approximation is seen to be very �at whereas
the true error function has very steep walls	 leading to a very large discrepancy between
actual and estimated saliency
 From the upper panel in Figure ��
�� it is clearly seen that
the estimated error need not necessarily be minimal for the retrained network	 c " �
 This
is due to the retraining being performed for the weight decay augmented cost function
C�w� whereas the saliency is estimated as the change in the error E�w�� refer also to

��� Chapter �
� Illustration of recurrent network pruning

TRUE ERROR
ESTIMATED ERROR

−1 0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

FACTOR ‘c’

S
Q

U
A

R
E

D
 E

R
R

O
R

TRUE ERROR
ESTIMATED ERROR

−0.2 0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

FACTOR ‘c’

S
Q

U
A

R
E

D
 E

R
R

O
R

Figure ��
��� Accuracy of quadratic approximation to the squared error function E�w�

The direction in parameter space is determined by w " bw # c 	 �wj 	 where j indexes
the weight having the smallest estimated saliency in Figure ��
��
 Upper panel� Gen�
eral overview showing minimum of quadratic approximation
 Right panel� Enlargement
illustrating the �bath tub� shape of the true error

section �
�
�
 The lower panel in Figure ��
�� contains a closer �zoom�in� around c " �
than in the previous
gure	 clearly illustrating a �bath tub� shape of the cost function in
this direction as well

Generally	 OBS has been found to be very sensitive to ill�conditioning of the Hessian
matrix
 The ill�conditioned Hessian leads to a very ��at� quadratic approximation of the
cost function as illustrated above
 Thus	 the built�in reestimation of the remaining weights
after pruning will often lead to a very large �step� in weight space in order to reach a

Sec� ���� Saliency quality
 OBD vs� OBS ���

TRUE ERROR
ESTIMATED ERROR

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

FACTOR ‘c’

S
Q

U
A

R
E

D
 E

R
R

O
R

TRUE ERROR
ESTIMATED ERROR

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
10

−3

10
−2

10
−1

FACTOR ‘c’

S
Q

U
A

R
E

D
 E

R
R

O
R

Figure ��
��� Accuracy of quadratic approximation to the squared error function E�w�

The direction in parameter space is determined by w " bw # c 	 �wj 	 where j indexes
the weight having the largest estimated saliency in Figure ��
��
 Upper panel� General
overview showing minimum of quadratic approximation
 Right panel� Enlargement	 once
more illustrating the �bath tub� shape of the true error

new minimum within the quadratic approximation
 The large change in the weights leads
to a region in weight space where the second�order expansion is no longer valid
 Thus	
whereas the �at quadratic approximation leads to small estimated saliencies the large steps
taken for reestimation lead to large actual saliencies
 As ill�conditioning is a commonly
encountered problem especially for recurrent networks �refer to chapters � and �� OBS
cannot be recommended for this network type

��� Chapter �
� Illustration of recurrent network pruning

������ OBD saliencies

The OBD saliency for each weight in the same fully connected network as was considered in
section ��
�
� above was then estimated according to Eq
 �
��
 The actual saliencies were
determined as well by setting to zero each weight in turn and computing the actual change
in error
 Actual saliencies were then plotted against estimated saliencies as illustrated in
Figure ��
��
 It is seen that the smallest estimated saliencies are very accurate and that
the accuracy remains high even for fairly large�saliency weights
 Furthermore it is seen
that rank ordering of the weights according to estimated saliency is consistent with rank
ordering according to actual saliency� thus the correct weight gets pruned

Figure ��
�� illustrates the quadratic approximation together with the true squared
error error function E�w� along the directions indicated by the weights having the small�
est and largest estimated saliency	 respectively
 It is seen that the approximation along
these directions is not as ��at� as was the case along the OBS reestimation directions
as illustrated above
 The true error function is consequently approximated with a higher
accuracy	 leading to better saliency estimates

The accuracy of the OBD saliencies has been veri
ed in numerous investigations similar
to the one described here
 The explanation for the better saliencies of OBD compared to
OBS seems to be that the directions where the second�order expansion is �at is typically
not along the directions indicated by the individual weights
 Rather	 �at directions often
occur along directions in weight space determined by combinations of several weights
 This
empirical observation is in line with the description of ill�conditioning in chapter �	 where
it was found that ill�conditioning is essentially caused by parameters becoming redundant
and thus in combination indicating directions of constant error

Of importance is also that OBD does not attempt to include the e�ect of retraining in
the saliency estimate
 Consequently	 the weight change is limited to the magnitude of the
weight in question whereas the OBS reestimation vector might lead to large weight changes
even for small magnitude weights	 due to the in�uence of ill�conditioning
 Generally	 the
smaller the weight changes	 the more likely it is that the quadratic approximation is still

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ACTUAL SALIENCY

E
S

T
IM

A
T

E
D

 S
A

LI
E

N
C

Y

Figure ��
��� OBD saliency quality for the fully connected network of Figure ��
�� actual
saliency vs
 estimated saliency
 Smallest estimated saliency is indicated by an asterisk

Sec� ���� Saliency quality
 OBD vs� OBS ���

TRUE ERROR
ESTIMATED ERROR

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
10

−3

10
−2

10
−1

10
0

10
1

WEIGHT VALUE

S
Q

U
A

R
E

D
 E

R
R

O
R

TRUE ERROR
ESTIMATED ERROR

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

WEIGHT VALUE

S
Q

U
A

R
E

D
 E

R
R

O
R

Figure ��
��� Accuracy of quadratic approximation to the squared error function E�w�

Upper panel� The direction in parameter space is determined by the weight having the
smallest estimated saliency in Figure ��
��
 Lower panel� The direction in parameter
space is determined by the weight having the largest estimated saliency

valid in the new point

In this work it has been found that the saliencies obtained by OBD are very accurate

not only for the quadratic cost function applied to feed�forward as well as to fully recurrent
networks but also for the entropic cost function applied to novel recurrent model structures
rooted in statistical physics	 namely Boltzmann chains and Boltzmann zippers as will be
illustrated in chapter ��

���

Chapter ��

Recurrent network memory

In order to characterize a fully trained recurrent network one may resort to the traditional
tools from non�linear dynamic systems analysis
 These tools include e
g
	 phase space plots	
measurement of fractal dimensions and measurements of Lyapunov exponents �Aba���	
some of which were applied to recurrent networks in section �
� in order to investigate
their ability to simulate the dynamics of the teacher function
 However	 a drawback
of these tools is that they are mainly directed towards the analysis of a network when
running in closed�loop	 where the network does not receive external inputs but feeds the
network output back to the input
 As the recurrent networks are usually trained and
intended for open�loop operation being driven by external inputs	 the traditional tools
seem inappropriate
 In fact they may completely fail to provide insight if the network is
incapable of functioning in a closed�loop mode of operation� this was the case for most of
the recurrent networks trained on the Santa Fe laser series as described in section �
�
�

Furthermore	 the traditional tools are aimed at characterizing the solution found by a
network rather than the network itself	 i
e
	 how the recurrent network implements its
solution to the modeling problem at hand

In order to allow for proper characterization and interpretation of recurrent networks
it seems necessary to create additional tools for analysis
 This work has initiated the
investigation of such novel tools aimed speci
cally at the characterization of recurrent
networks
 In particular	 a novel operational method for assessing the e	ective memory

of a recurrent network has been proposed and will be described in the following
 In
section ��
� it is discussed how to conceive the notion of an e	ectivememory for a recurrent
network which in principle has an in
nite memory
 Section ��
� contains a proposal for
an operational approach towards assessing the average e�ective memory of a fully trained
recurrent network and in section ��
� the approach is slightly modi
ed leading to a time�
local e�ective memory
 The chapter is concluded by section ��
� which illustrates the
proposed memory measures applied to recurrent networks trained on the Santa Fe laser
series as well as the Mackey�Glass series

���� The e�ective memory of recurrent networks

In chapters � and � it was described how feed�forward networks can accommodate dynam�
ics by working from a lag space vector x�t� " �x�t�� x�t � ��� � � � � x�t �M�� of previous
observations from the system to be modeled
 As the lag space enters the units in the

rst hidden layer of the feed�forward network by a linear weighting	 the input to each

���

��� Chapter ��� Recurrent network memory

of these units may be conceived as the outputs of linear FIR
lters� refer to Figures �
�
and �
�
 If the input to the FIR
lters at present time t is denoted as x�t� then the
network memory of previous inputs x�t � ��� x�t � ��� � � � available to the network equals
M as feed�forward networks do not posess any internal memory in the hidden units� the
only memory available about previous inputs resides in the externally provided tapped
delay line	 extending M steps back in time from the current time step t
 It is here as�
sumed that the delay time between each of the previous observations entering the lag space
equals one� naturally	 if the delay time between the observations is an integer � � � then
x�t� " �x�t�� x�t � ��� � � � � x�t �M 	 ��� corresponding to a �sub�sampled� tapped delay
line
 Considering the memory of the feed�forward network as the total time span of the
lag space	 the memory of the network consequently equals M 	 �

Whereas the memory of a feed�forward network is determined solely by the externally
provided lag space	 a characteristic of recurrent networks is their ability to build up an
internal memory representing the �history� of previous inputs on which the predictions of
future values are based
 The signi
cance of this internal memory is especially clear when
using recurrent networks working from only one external input
 Without the ability to
create internal memory this class of networks would be practically useless
 Fully recurrent
networks are however highly capable of creating an internal memory which allows this
network type to accurately model complex dynamics when working from only a single
input as the experiments in the preceeding chapters have demonstrated

The output of a recurrent network is based on the current and � in principle � in
nitely
many previous inputs which may be expressed as

y�t� " y �tjbw� x�t�� x�t � ��� � � � � x����� � ���
��

where bw indicates the parameter estimate resulting from training
 This way	 the memory
of recurrent networks is neither
xed nor directly limited by the network architecture as is
the case for feed�forward networks
 It is however not at all clear exactly how a recurrent
network utilizes this in
nite information of the past in order to model a particular system

Interesting insight into the functionality of a recurrent network could be obtained if we
could somehow characterize the way in which the network utilizes the information of the
previous inputs

One way in which to characterize the dynamics of a recurrent network is to somehow
determine the e	ective memory of the network	 i
e
	 to determine how far back in time
previous inputs have signi�cant in�uence on the network output
 This problem has been
addressed in the literature in the context of sequence classi
cation problems like e
g
	 the
so�called latching problem �BSF��	 LHG��	 GLH���
 In the latching problem it is examined
how far back in time it is possible to present the trained network with information of vital
importance to the classi
cation of a sequence and still obtain a correct classi
cation
 The
e�ective memory of the network may hence be indirectly characterized in terms of the
percentage classi
cation errors made	 the so�called error rate
 The lower the error rate
for a particular time span between vital input and time of classi
cation	 the longer the
memory of the network

Whereas the memory of a recurrent network applied to arti
cial problems may be
determined in terms of a set of pre�speci
ed events easy to locate in time it is however
not obvious how to assess the e�ective memory of a general nonlinear recurrent network
applied to e
g
	 a real�world time series prediction problem
 In this case	 measuring the
recurrent network memory poses a problem which has apparently not been addressed in
the literature

Sec� ���� Measuring the average e�ective memory ���

In this work a novel operational approach towards assessing the e�ective memory of
a recurrent network applied to time series prediction has been suggested
 The approach
results in both an average memory and a time�local memory which will be described in
the following sections
 Application of these memory measures to a fully trained recurrent
network will provide partial insight into the functionality and time scale of the dynamics
of the network

���� Measuring the average e�ective memory

Once a recurrent network is trained	 the basic idea here is to de
ne an integer variable
M which expresses the e	ective memory length of past values of the input signal x�t�	 in
much the same way as the time span of the lag space provided to a feed�forward network
expresses the memory for this network type	 as described above
 In order to introduce the
concept of quantizing the length of the memory of a recurrent network we will initially
consider the linear IIR
lter �a linear recurrent network�

For a linear IIR
lter the memory of previous inputs may be expressed in terms of
e
g
	 the impulse response
 The impulse response of the IIR
lter may be conceived as the
coe�cients of an � in principle � in
nite�order FIR
lter	 implementing a linear weighting
of each element in an in
nite lag space of previous inputs to the
lter
 The e�ective
memory of the IIR
lter may now be de�ned as the FIR�
lter order M beyond which the
summed weighting relative to the total weighting sum is insigni�cant	 i
e
	 the order M
beyond which the contribution to the output from values further back in time may be
considered negligible
 As a consequence	 starting iterations of the IIR�
lter at time t�M
which is equivalent to setting to zero all elements in the input sequence prior to time t�M 	
will yield an output at time t which is insigni
cantly di�erent from the output obtained
had the
lter been presented with the full input sequence	 in principle from time t��

It is not possible to fully characterize nonlinear recurrent networks using analysis tools
from linear systems theory like e
g
	 the impulse response� thus	 analytical assessment of
the e�ective memory of a recurrent network is infeasible
 However	 we may still determine
the memory of a recurrent network in an operational manner similar to what was described
for the IIR
lter
 I
e
	 the e�ective memory is determined as the smallest M for which
starting iterations at time t �M with all values in the input sequence prior to this time
step absent	 i
e
	 set to zero will yield a network output

y�t� " y �tjbw� x�t�� x�t� ��� � � � � x�t�M�� ���
��

for an arbitrary time t which is not signi�cantly di�erent from the output obtained with
iterations commencing at time t�� as denoted by Eq
 ���
��

As the recurrent network is intended for prediction on novel data not included in the
training set it seems reasonable to decide upon the signi
cance of the deviation in the
network output caused by the limited memory of previous inputs	 when using data in a
separate test set
 This way	 the memory measure will be independent of e�ects particu�
lar to the training data �e
g
	 noise� which the network might have �discovered� during
training	 leading to an e�ective memory longer than encountered during actual application
of the network
 In order to determine the signi
cance of limiting the access to previous
inputs it is therefore here suggested to evaluate an estimate of the generalization error �
i
e
	 prediction errors on a test set � using predictions based on only a limited number of
previous inputs
 This generalization error is then compared to the error obtained using
all � in principle in
nitely many � previous inputs

��	 Chapter ��� Recurrent network memory

Assuming that the test set of size V follows immediately after the training set which
extends to time T 	 the generalization error obtained from predictions based on only the
m most recent inputs is estimated by computation of

bGm�bw� "
�

V

T�VX
t�T��

�d�t�� y �tjbw� x�t�� x�t � ��� � � � � x�t�m����� m � � ���
��

where d�t� denotes the desired output at time t� e
g
	 for autoregressive prediction tasks
we might have d�t� " x�t# ��
 The network output y �tjbw� x�t�� x�t� ��� � � � � x�t�m�� is
computed for each t � �T # ��T # V � by resetting the hidden unit states si�t �m � ��	
i " �� �� 	 	 	 � Nh	 to zero and then iterate the network from time t�m until time t	 using
the output y�t� at this time step as the prediction of d�t� as outlined in Figure ��
�

Setting the hidden unit states si�t �m � �� to zero is equivalent to erasing the memory
of the network regarding inputs prior to time t �m as the hidden unit values constitute
the network memory
 In the
rst iteration calculating y �t�mjbw� x�t�m��	 the network
thus functions as a feed�forward network since the previous values of the hidden units �
and thereby all previous external inputs � have no in�uence on the network output� in
order to verify this the reader is referred to section �
�
�
 Then	 the network gradually
builds up a representation of the past in the hidden units during the next m#� iterations
before it makes its prediction at time t

d(t)

x(t)x(t-m)

........

Figure ��
�� One step ahead prediction from only a limited number m of previous inputs

The resulting limited memory generalization errors bG��bw�� bG��bw�� � � � computed from
Eq
 ���
�� are then compared to bG��bw� denoting the error obtained from Eq
 ��
�� when
using all available previous inputs	 i
e
	 no resetting of the hidden unit states at any time

The network memory M is now de�ned as	

M " inf

�
m

������m� � m�
j bGm��bw�� bG��bw�jbG��bw�

�
���
��

i
e
	 as the integer m beyond which the limited memory generalization error is not signi��
cantly di�erent from the �in
nite� memory generalization error
 Here	
 is a small constant
indicating the level of signi
cance
 The numerical value is applied in order to eliminate
�uctuation e�ects	 as will be illustrated in section ��
�
 As the e�ects of limiting the net�
work memory for each prediction are averaged out across the entire test set	 the memory
de
ned by Eq
 ���
�� is in fact an estimate of the average memory of the network
 Thus
the memory	 M 	 denotes the minimal number of previous inputs beyond which additional
inputs on average are insigni
cant in terms of generalization ability

Sec� ���� Measuring the time�local e�ective memory ��

One way in which to interpret the memory measure de
ned by Eq
 ���
�� is as an
expression for the average transient to expect from the recurrent network when initiating
iterations on a novel sequence of data generated by the system which has been modeled

This way	 the memory measure also denotes the minimum number of time steps which on
average should be iterated before the network output can be trusted
 The memory M may
be conceived as the dimension of the e�ective �lag space� implemented by the recurrent
network
 Naturally	 working from a lag space which is not fully initialized may lead to
poor predictions	 just as is the case for feed�forward networks

An alternative way in which to explain the computation of the recurrent network
memory is in terms of a generalization based �pruning� procedure applied to the time�
unfolded network structure
 Consider computing the limited memory network output
y �tjbw� x�t�� x�t� ��� � � � � x�t�m��
 By referring to Figure �
� on page �� it can be seen
that the procedure described above for obtaining the limited memory network output at
time t is equivalent to unfolding the recurrent network in time and then prune all weights
in the unfolded network which reside in layers prior to time t � m by setting them to
zero
 Computation of the the fraction in Eq
 ���
�� for increasing depths of the unfolded
network is in a sense equivalent to computing the �relative� saliency of the pruned weights
on a test set
 The network memory is then determined as the smallest unfolded network
depth for which the �relative� saliencies of larger depths are negligible

The level of signi
cance for the relative di�erence between the limited memory and
in
nite memory generalization errors in Eq
 ���
�� is expressed as a small constant

 This
constant could possibly be chosen in such a way that the resulting quantity M denotes the
network memory of previous inputs beyond which the variations in generalization error are
indistinguishable from the variations that would result due to di�erent realizations of the

nite size training set	 when operating from an unlimited memory
 A proper constant
 in
this sense may possibly be determined from e
g
	 the derivations of the FPE generalization
error estimate
 This approach has however not been pursued in this work as the initial
investigations have primarily concerned the behaviour of the memory measure and thus
the viability of the analysis tool
 Here	
 has been chosen �by hand�

���� Measuring the time�local e�ective memory

The memory measure de
ned by Eq
 ���
�� determines the number of previous inputs that
the network needs knowledge about in order to obtain good predictions on the average
sample in the test set
 Therefore the measure was interpreted as the average memory of
the network
 A recurrent network	 however	 is a nonlinear dynamic system whose internal
characteristics may be highly in�uenced by the nature of the input series
 Especially	 if the
input series exhibits regions of seemingly non�stationary behavior	 the network dynamics
including memory must clearly be a�ected
 Such changes in dynamics are not captured
by the average memory measure but we may de
ne a time�local memory measure	 in
accordance with Eq
 ���
��	 using a time�local generalization error estimate

bGm�t� bw� "
�

K

tX
t��t�K��

�d�t��� y
�
t�jbw� x�t��� x�t� � ��� � � � � x�t� �m�

�
��� ���
��

where m � �	 t � T 	 and � � K � V is the size of a smaller test set
 The time�
local generalization error estimate at time t is thus obtained by averaging over the K
most recent squared prediction errors
 The time�local memory at time t is then obtained

��� Chapter ��� Recurrent network memory

by inserting Eq
 ���
�� into Eq
 ���
��	 comparing to the generalization error estimatebG��t� bw� obtained by using an in
nite memory	 averaging over the K most recent squared
prediction errors as well
 Choosing a small K gives rise to a very noisy estimate of the
generalization error� however	 it will in principle provide a good resolution of changes
in network memory due to the changing nature of the input series
 On the other hand	
increasing K improves generalization error accuracy but reduces the resolution of changes
in memory
 Ultimately	 if K equals V the time�local memory measure obtained at time
t " T # V equals the average memory de
ned in the previous section

���� Illustration of the memory measures

The memory measures suggested above will now be demonstrated on recurrent networks
trained on the laser series as well as networks trained on the Mackey�Glass series	 both
described in appendix A
 Once more it is stressed that currently	 the primary objective
of the memory measures is to function as tools for characterization of a recurrent network
operated in �open�loop� in the same way as e
g
	 computation of the correlation dimension
is a tool for characterization of a strange attractor and the underlying dynamics of a
system running in �closed�loop�� refer to section �
�
 It will be argued below that the
memory measure may be used to select between networks having a comparable estimated
generalization error
 The future might bring suggestions to other practically oriented
applications of the proposed memory measures

������ Memory of RNNs trained on the laser series

The memory measures will here be demonstrated for selected networks resulting from the
laser series learning curve	 illustrated in Figure �
� on page ���
 The left panel of Fig�
ure ��
� depicts the limited input generalization error bGm�bw� for increasing values of m	
the number of previous inputs on which predictions are based	 for one of the networks
trained on ���� examples
 The horizontal dotted line indicates bG��bw�	 i
e
	 the gener�
alization error obtained without limiting the network memory
 It is seen that bGm�bw�
indeed converges as expected towards bG��bw� as the available information of the past is
increased

By visual inspection of the
gure it seems that the network memory de
ned by
Eq
 ���
�� must lie �somewhere between ��� and ���� as the two curves are collaps�
ing onto each other in this interval
 Recall that the memory was speci
ed in terms of the
absolute relative error between the limited and in
nite input generalization errors	 corre�
sponding to the fraction entering Eq
 ���
��
 This quantity is illustrated in the right panel
of Figure ��
�
 The horizontal dotted line denotes an arbitrarily chosen level
 " ����

According to Eq
 ���
�� we now determine the memory M of the network as the number of
previous samples m at which the �nal intersection between the solid and the dotted lines
occurs� in this case we obtain the memory M " ���
 Beyond this
nal intersection the
improvement in generalization error by including more previous points for the predictions
will be less than � + of bG��bw�	 just as the relative di�erence will no longer exceed the
� + signi
cance level imposed� the in�uence of previous inputs beyond ��� time steps is
seen to decay at an exponential rate

From the right panel of Figure ��
� it is clearly seen how the value M of the network
memory depends on the choice of signi
cance	
 in Eq
 ���
��	 de
ning the level below
which we consider the two generalization errors as equivalent
 Table ��
� lists the memory

Sec� ���� Illustration of the memory measures ���

0 50 100 150 200 250
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

PREVIOUS # OF SAMPLES, m

R
E

LA
T

IV
E

 E
R

R
O

R

Figure ��
�� Measuring average memory for one of the networks from the laser series
learning curve	 trained on ���� examples
 Left panel� Evolution of bGm�bw� as m increases

Horizontal dotted line indicates bG��bw�
 Right panel� Evolution of the relative error
between bGm�bw� and bG��bw�
 The dotted horizontal line denotes the threshold
 " ����

that results for di�erent values of

 The large di�ences in memory resulting from relatively
small changes in the threshold are seen to be due to the �plateau� which suddenly occurs
for the relative error
 The plateau may be interpreted in such a way that on average	 the
network does not utilize the information lying between approximately ������� time steps
back in time from the current iteration
 Beyond ��� time steps back the information is
having in�uence on the network output again as seen from the now exponentially decaying
relative error

 ���� ����� ����

M ��� ��� ���

Table ��
�� The value M of the memory for various values of
 for the measurements
shown in Figure ��
�

The curves in Figure ��
� are seen to be superimposed a periodic oscillation
 The
period of this oscillation appears to correlate well with the period of the oscillations in
the laser series� refer to Figure A
� on page ���
 The limited input generalization errorbGm�bw� is at its lows when the number of previous inputs m comprises an integer number
of periods of the laser series oscillations

The time�local memory de
ned by Eq
 ���
�� of the same network as in Figure ��
� is
examined in Figure ��
� on the ���� point test set following the training set
 For each time
step the local memory was determined by using the threshold
 " ���� by averaging over
the � and �� most recent limited input squared prediction errors	 respectively
 Note how
the memory in the left panel of Figure ��
� averaging over only K " � previous errors is
seen to be a very noisy quantity
 AsK is increased the memory measure becomes smoother

From the time�local memory measures we learn that the memory of a recurrent network

��� Chapter ��� Recurrent network memory

7000 7500 8000 8500 9000 9500 10000
0

50

100

150

200

250

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME

7000 7500 8000 8500 9000 9500 10000
0

50

100

150

200

250

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME

Figure ��
�� Measuring the time�local memory with threshold
 " ���� for the laser series
network from Figure ��
� having a long average memory
 Lower part of plots indicates the
true series
 Left panel� Using
ve point average	 K " �
 Right panel� Using
fty point
average	 K " ��

is indeed a dynamic quantity
 Had the memory been static the time�local memory would
lie around ��� just as for the average memory determined above
 However	 the memory
is seen to be dependent upon and closely related to the structure of the immediately
preceeding segment of the laser series

From Figure ��
� it is also learned that the memory of the network is maximal around
a collapse of the laser series and furthermore most of the time much smaller than the ���
average memory
 The reason for the large average memory is revealed by the segment
between the last two collapses in the test series which has characteristics highly atypical
from the rest of the series
 The number of previous inputs needed for memory initialization
in order to provide accurate predictions in this part of the laser series is seen to approach
���
 The local�time memory examination thus provides an explanation for the plateau
between previous number of inputs ������� encountered in the relative di�erence between
generalization errors shown in the right panel of Figure ��
�
 This interval is seen to ap�
proximately correspond to the gap between the
nal large memory �peak� in Figure ��
�
and the preceeding smaller peaks
 Providing additional previous inputs beyond m " ���
time steps back does not in�uence prediction errors up to around time step ���� of the
laser series as the errors here are already below the speci
ed threshold
 At the same time
the prediction errors on the last segment of the laser series are not in�uenced either as
they require a much longer memory� the result is an unchanged value of bGm�bw� which
leads to the plateau in relative generalization error
 Not until the number of previous
inputs m exceeds the memory required for the last segment does bGm�bw� decrease further

In Figure ��
� is illustrated the examination of the average memory of another of the
networks trained on ���� examples in the laser series learning curve shown in Figure �
�

The
rst thing to note compared to Figure ��
� is the much more rapid decay of bGm�bw�
as the number of previous inputs m is increased
 This leads to a much shorter memory
of the network	 from the right panel of Figure ��
� it is seen that a threshold of
 " ����
leads to a memory of M " ��
 From the right panel it is furthermore seen that the value
of the memory is less sensitive to the exact choice of
 as the curve indicating the relative

Sec� ���� Illustration of the memory measures ���

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

PREVIOUS # OF SAMPLES, m

R
E

LA
T

IV
E

 E
R

R
O

R

Figure ��
�� Measuring average memory for a typical network from the laser series learning
curve	 trained on ���� examples
 Left panel� Evolution of bGm�bw� as m increases
 Hori�
zontal dotted line indicates bG��bw�
 Right panel� Evolution of the relative error betweenbGm�bw� and bG��bw�
 The dotted horizontal line denotes the threshold
 " ����

errors between the generalization error estimates contains no plateaus

Figure ��
� illustrates the time�local memory examination for the network from Fig�
ure ��
�
 Comparing to Figure ��
� it is seen that the time�local memory still follows the
structure of the laser series to some extent	 but the peaks around the collapses are much
less pronounced	 and generally the memory is subject to �uctuations of a much smaller
magnitude than in the previous example
 Note that this network has no �problems� with
the last segment of the test series as the memory required in this part of the laser series
is no di�erent from the memory required for the other segments of the series

7000 7500 8000 8500 9000 9500 10000
0

10

20

30

40

50

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME

7000 7500 8000 8500 9000 9500 10000
0

10

20

30

40

50

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME

Figure ��
�� Measuring the time�local memory with threshold
 " ���� for the laser series
network from Figure ��
� having a short average memory
 Lower part of plots indicates
the true series
 Left panel� Using
ve point average	 K " �
 Right panel� Using
fty point
average	 K " ��

��� Chapter ��� Recurrent network memory

Examinations of network memory similar to the above were performed for the re�
maining eight networks of the laser series learning curve trained on ���� examples
 These
examinations showed that the remaining networks all exhibited an average memory around
M " �� for the threshold
 " ����	 i
e
	 a memory similar to Figure ��
�
 The network
which was examined in Figure ��
� and found to have a long average memory of M " ���
for the same threshold therefore appears to be rather atypical
 The large di�erence in ef�
fective memory between networks having the exact same performance in terms of bG��bw�
�refer to Figure �
�� reveals that recurrent networks may implement the dynamics of a
particular problem in several widely di�erent ways	 leading to di�erent time scales for the
resulting network dynamics

When selecting among candidate networks with comparable estimated generalization
errors for a particular practical application	 networks with a shorter memory seem to be
preferable
 The shorter memory indicates a shorter transient before the steady�state mode
of operation is reached when starting iterations on a novel observation sequence	 and the
network thus more quickly provides accurate predictions
 One might state that networks
with a shorter memory are better �tuned� to the problem at hand as they are capable of
utilizing the available information more e�ciently

Careful inspection of Figures ��
� and ��
� reveals that when limiting the number of
previous inputs m the resulting generalization error bGm�bw� may actually become lower

than bG��bw�
 This e�ect is more clearly illustrated in Figure ��
� which displays the exam�
ination of the average memory of the network in the laser series learning curve trained on
��� examples and having the smallest estimated generalization error
 The phenomenon
often occurs for overtrained networks which is also the case for the network examined
here
 An explanation might be that the recurrent network has adapted its memory to ac�
comodate features like e
g
	 noise in the training set which are not characteristic for what
will be encountered more generally in e
g
	 a test set
 In this case	 limiting the memory
might act as a kind of regularization and actually improves the performance on the test set

We now compare the typical memory of a recurrent network trained on ���� examples
of the laser series to the feed�forward network input selection curve shown in Figure �
� on
page ���
 It is seen that whereas the recurrent networks implement an e�ective memory of
previous input values of length M
 �� the feed�forward networks need access to only ten
previous values in their lag space in order to yield comparable performance
 This might
be explained by the di�erence in �resolution� �Moz��� between the memories of the two
network types

The only information available about the current dynamics of the true system is en�
coded into the values of the most recent observations�
 A feed�forward network has direct
access to each individual value of these most recent observations from its memory residing
in the lag space� this is also denoted a high�resolution memory �Moz���
 In contrast	 the
memory of a single�input recurrent network is more of a �low�resolution� memory	 holding
coarser information about the most recent observations as the observation values cannot
be accessed individually
 Consequently	 the recurrent network cannot utilize the informa�
tion stored in previous observations to its full and needs to maintain a longer �or deeper
�Moz���� memory in order to make up for the low memory resolution and thus obtain the
same information as the feed�forward network

�Refer also to Takens� theorem described in section ����

Sec� ���� Illustration of the memory measures ���

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

PREVIOUS # OF SAMPLES, m

R
E

LA
T

IV
E

 E
R

R
O

R

Figure ��
�� Measuring average memory for the network from the laser series learning
curve trained on ��� examples and having the lowest generalization error
 Left panel�
Evolution of bGm�bw� as m increases
 Horizontal dotted line indicates bG��bw�
 Right
panel� Evolution of the relative error between bGm�bw� and bG��bw�
 The dotted horizontal
line denotes the threshold
 " ����

Due to the lower resolution of the memory implemented by recurrent networks it seems
reasonable to state that it will in theory always be possible to construct a feed�forward
network with a lag space dimension equal to or smaller than the e�ective memory of the
recurrent network and yielding the same performance
 The e�ective memory of a recurrent
network may hence be seen as an upper bound on the lag space dimension required by
a feed�forward network in order to obtain comparable performance
 In practice however	
this observation might be hampered by such a feed�forward network having many more
parameters than the recurrent network	 thus requiring more data for training

������ Memory of RNNs trained on the Mackey�Glass series

In order to support the presentation of the e�ective memory measures	 these will also
be brie�y demonstrated for a few of the networks resulting from the Mackey�Glass series
learning curve	 illustrated in Figure �
� on page ���
 Figure ��
� illustrates examination
of the average memory for one of the networks which were trained on ���� examples and
having the smallest estimated generalization error
 Setting the threshold to
 " ���� leads
to a memory of M " ��� as seen from the right panel� by referring to the left panel it is
veri
ed that the curves indicating bGm�bw� and bG��bw� have practically collapsed onto each
other for this value
 Note that the exponential decay of the relative error is fairly �well�
behaved�	 i
e
	 even fairly large changes in the threshold
 will only lead to comparably
small changes in the measured e�ective memory M unlike the situation in Figure ��
�

The corresponding time�local memory measurement is illustrated in Figure ��
� on
part of the ���� sample test set	 also using a threshold
 " ����
 Again	 the time�local
memory in the left panel averaging over only K " � previous errors is seen to be a very
noisy quantity
 However	 it clearly reveals once more that the recurrent network memory
is indeed a dynamic quantity
 For the Mackey�Glass problem it seems harder to relate the
time�local memory directly to the structure of the series than for the laser series above	

��� Chapter ��� Recurrent network memory

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

PREVIOUS # OF SAMPLES, m

R
E

LA
T

IV
E

 E
R

R
O

R

Figure ��
�� Measuring average memory for a network from the Mackey�Glass series learn�
ing curve	 trained on ���� examples
 Left panel� Evolution of bGm�bw� asm increases
 Hor�
izontal dotted line indicates bG��bw�
 Right panel� Evolution of the relative error betweenbGm�bw� and bG��bw�
 The dotted horizontal line denotes the threshold
 " ����

but the �peaks� in memory seems to coincide with the large downwards peaks of the test
series
 Careful inspection of the right panel of Figure ��
� reveals a regularity in the
structure of the time�local memory as repeating patterns are present

The average e�ective memory determined to M " ��� in Figure ��
� was among the
shortest encountered for the examined networks with comparable performance
 In fact	 all
of the networks from the Mackey�Glass learning curve trained on ���� examples exhibited
a much longer average memory
 An example of this is provided in Figure ��
�
 From
the level of bG��bw� it is seen that the performance is almost identical to the previously
examined network but the memory measurement reveals that the average e�ective memory
has more than doubled� for
 " ���� a memory of M " ��� is determined	 as seen from

1500 2000 2500 3000 3500
20

40

60

80

100

120

M
E

M
O

R
Y

1500 2000 2500 3000 3500
0.4

0.6

0.8

1

1.2

1.4

TIME

1500 2000 2500 3000 3500
60

80

100

120

M
E

M
O

R
Y

1500 2000 2500 3000 3500
0.4

0.6

0.8

1

1.2

1.4

TIME

Figure ��
�� Measuring the time�local memory with threshold
 " ���� for the Mackey�
Glass series network of Figure ��
� having a short average memory
 Lower part of plots
indicates the true series
 Left panel� Using
ve point average	 K " �
 Right panel� Using

fty point average	 K " ��

Sec� ���� Illustration of the memory measures ���

0 50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 50 100 150 200 250 300 350 400
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

PREVIOUS # OF SAMPLES, m

R
E

LA
T

IV
E

 E
R

R
O

R

Figure ��
�� Measuring average memory for a network from the Mackey�Glass series learn�
ing curve	 trained on ���� examples
 Left panel� Evolution of bGm�bw� asm increases
 Hor�
izontal dotted line indicates bG��bw�
 Right panel� Evolution of the relative error betweenbGm�bw� and bG��bw�
 The dotted horizontal line denotes the threshold
 " ����

the right panel
 A similar memory was measured for the remaining networks also trained
on ���� examples

A short section of the time�local memory measure is illustrated in Figure ��
��	 when
averaging over the
ve most recent errors
 Comparing to the similar segment in the left
panel of Figure ��
� it is seen that the �uctuations in memory are larger in magnitude
just as the overall level of the time�local memory has increased

As was done for the laser series above we may compare the e�ective recurrent network
memories with the memories spanned by the lag space of feed�forward networks having
comparable performance in the input selection curve shown in Figure �
� on page ���

From this
gure it is seen that between ��� input values are necessary in order to obtain

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
50

100

150

200

250

300

M
E

M
O

R
Y

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
0.4

0.6

0.8

1

1.2

1.4

TIME

Figure ��
��� Measuring the time�local memory for the Mackey�Glass series network of
Figure ��
� having a long average memory	 using a threshold
 " ���� and a
ve point
average	 K " �
 Lower part of plot indicates the true series

��	 Chapter ��� Recurrent network memory

a performance comparable to the best recurrent networks
 The networks implement a six
step ahead predictor and the spacing between input values is set to � " �
 The memory
of previous inputs �i
e
	 the time spanned by the lag space according to the de
nition in
section ��
� above� for the feed�forward networks are thus between �����
 In comparison	
the e�ective memory M of the recurrent networks were generally between �������� a few
networks have been encountered having an e�ective average memory longer than ��� for
the threshold
 " ����
 Part of an explanation for these long memories should naturally be
found in the low resolution of the recurrent network memory as described above
 Further�
more	 whereas the feed�forward networks are sampling only every sixth element of their
�memory� the recurrent networks need to store a representation of intermediate values as
well

Another part of the explanation might be the �regularity� of the Mackey�Glass series
as can be seen from e
g
	 the lower parts of the plots in Figure ��
�	 combined with the
low noise which for this arti
cial problem origins from
nite precision arithmetic only
 In
this case	 information residing far back in time may still contribute to an explanation of
the current time dynamics on almost equal terms as more recent observations
 The recur�
rent networks discover these relations during training which results in the long network
memories

Chapter ��

Boltzmann Chains � Zippers� A
Tutorial

So far in this thesis the problem of time series modeling has been interpreted in terms of
modeling the conditional expectation of future observations given previous observations
which is equivalent to prediction� refer to section �
�
 We now turn towards another and
more general approach to time series modeling	 namely modeling of the joint probability
distribution function of the observed series
 The attention is therefore directed from the
fully recurrent network considered thus far and to another type of recurrent model which
allows for modeling of the joint probability distribution for discrete valued time series

The model is called the Boltzmann chain and an extension has been dubbed the Boltz�
mann zipper
 This chapter contains a comprehensive tutorial on these models
 It further�
more describes the work which has been done here in order to apply e�cient second�order
methods for training as well as architecture optimization by pruning to these models

The chapter was originally written as an independent	 �stand alone� tutorial and
therefore brie�y describes the topics of second�order training and pruning which have
already been introduced in previous chapters
 The tutorial follows the notation adopted
in the relevant literature
 It is of importance to note that the notation in this chapter
is therefore inconsistent with the notation in the previous chapters
 The reader is kindly
asked to forgive any inconvenience this might lead to

Two conference papers resulting from this work are included in appendices K and
N
 The work described in this chapter was completed during a stay at Ricoh California
Research Center

���� Introduction

In �SJ��� a new model called the Boltzmann chain for modeling discrete valued stochastic
time series was proposed
 An extended structure for modeling two simultaneously oc�
curing and correlated stochastic time series was also introduced
 It was later named the
Boltzmann zipper �SL���
 The Boltzmann chain is closely related to both the Boltzmann
network rooted in statistical physics and to the Hidden Markov Model �HMM� which is
traditionally used for modeling stochastic time series
 The Boltzmann chain combines
desirable properties of Boltzmann networks	 e
g
	 natural handling of missing data �during
both training and application� with the �exibility and e�cient techniques of HMMs for
e
g
	 computing likelihoods

��

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

This tutorial provides a detailed description of the Boltzmann chain and zipper mod�
els based on an outline of the traditional framework for stochastic modeling	 HMMs and
Boltzmann networks
 The motivation for the tutorial is that the literature on these in�
teresting new model types so far has been very sparse as well as very brief in nature

The tutorial includes a detailed description of methods for reducing the architecture of
the Boltzmann chain and Boltzmann zipper
 Using these methods it is possible to e��
ciently compute likelihoods of sequences as well as model derivatives exactly
 Furthermore
methods for conversion between HMMs and Boltzmann chains will be discussed

Second�order optimization methods have been found capable of speeding up learning
considerably compared to gradient methods for deterministic networks �Ped���
 In this
tutorial	 second derivatives are calculated for the entropic cost function applied to general
Boltzmann networks	 allowing for optimization using second�order methods
 In particular
the damped Gauss�Newton method is applied to Boltzmann chains and zippers

A well�known concept in the framework of deterministic networks is algorithmic ar�
chitecture optimization
 A frequently used strategy is pruning where a model with excess
degrees of freedom is trained and parameters eliminated according to a pruning scheme

When working with stochastic models the architecture has traditionally been chosen by
hand or found by �exhaustive� search
 Having derived the second derivatives for the en�
tropic cost function	 however	 opens up for the application of the OBD �CDS��� and OBS
�HS��� pruning schemes in the framework of general Boltzmann networks
 Here	 the OBD
pruning scheme is applied to Boltzmann chains and Boltzmann zippers

Both Boltzmann chains and Boltzmann zippers are applied to arti
cial problems as well
as to a small speech recognition task
 In particular	 a speechreading system is constructed	
using both audio and video information for recognition

The tutorial is organized as follows� Section ��
� provides a brief introduction to
stochastic signal modeling and the Hidden Markov Model� the concept of �unnormalized�
HMMs is also introduced
 Section ��
� reviews the traditional Boltzmann network	 and
second derivatives are calculated for the entropic cost function
 The section is concluded
by an introduction to multi state units derived from the Potts model	 used in Boltzmann
chains and zippers
 Section ��
� contains a detailed description of the Boltzmann chain
and explains how exact learning is performed
 The link to HMMs is explained and the
section is concluded by notes and observations regarding training using second�order meth�
ods and pruning of Boltzmann chains
 Boltzmann zippers are described in section ��
�
along with the reduction methods for exact learning	 and some notes on training and
pruning
 Section ��
� contains a description of experiments using Boltzmann chains and
section ��
� describes the experiments using Boltzmann zippers
 The tutorial is summa�
rized in section ��
� and appendix F describes a conversion recipe for conversion from
general Boltzmann chains into corresponding HMMs

���� Stochastic modeling

When modeling a time series it is often assumed that the system generating the obser�
vations may be described by a stochastic process
 The modeling problem is therefore
cast in terms of modeling this underlying generator of the series
 For prediction type
problems it is common to model the conditional expectation of future observations given
previous observations
 Commonly adopted models for this task are e
g
	 linear FIR�
lters
and traditional feed�forward!feedback neural networks

Sec� ���� Stochastic modeling ���

�P �x� x�t�

Figure ��
�� Schematic of a stochastic system
 P �	� represents the internal stochastic
process

The most general and complete description of the stochastic generator of the series is
however obtained by modeling of the joint probability distribution function of the observed
series
 This approach is common when working with e
g
	 speech recognition �Rab��� and
recently �KBM���� also in biological sequence �e
g
	 protein and DNA sequences� modeling

The series of observations x�t� �possibly vectors� can be continuous valued or they can be
discrete symbols from a
nite countable alphabet	 e
g
	 x � f�� �� � � � �mg

When modeling the distribution of the series we need to choose a statistical model
 Ex�
amples of these are Gaussian processes	 Poisson processes and Markov processes �Rab���

A particularly popular choice is the Hidden Markov model which is widely believed to be
one of the best models for speech recognition
 Hidden Markov Models are closely related
to Boltzmann chains and are thus brie�y reviewed in the following

������ Hidden Markov Models

A Hidden Markov Model �HMM� is a stochastic model characterized by a number n of
hidden states which are internal for the model
 With each of the states is associated a prob�
ability distribution to account for the possible observations from the system to be modeled

These distributions can be both continuous and discrete in nature
 In this context we will
focus on HMMs used for modeling discrete valued time series
 A comprehensive tutorial
on HMMs can be found in �Rab���

Let a time series of discrete observations be denoted fjtgLt�� " JL where L denotes
the length of the observation sequence and let the number of possible observations be m	
jt � f�� � � � �mg

At each time step the HMM is in one of its n states
 The initial state at time t " � is
chosen according to a prior distribution �i � i " �� � � � � n
 Transitions from state i to state
i� occur at each time step with probability aii� according to a
rst�order Markov process�
hence the name of the model
 The Markov process thus leads to a sequence of states
which we will denote fitgLt�� " JL � it � f�� � � � � ng
 With each of the states is associated
a discrete probablility distribution over the m possible observations
 At each time step t
the model generates an observation j according to the distribution corresponding to the
current state
 Given that the model is in state i	 observation j will occur with probability
bij

We collect the transition probabilities aii� in the transition matrix A	 the observation
probablilities bij in the emission matrix B and the prior distribution �i in the vector �
and denote the collection of all parameters � " �A�B� ��
 A sequence of states fitg and
observations fjtg given the model � is thus modeled to occur with probability

P �fit� jtgL� j�� " �i�ai�i�ai�i� � � � aiL��iLbi�j�bi�j� � � � biLjL ���
��

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

���� �����
�

R R� �
�

�
�

�
�
�

�
�

b�� b�� b�� b�� b�� b��

State � State �
a��

a��

a�� a��

Figure ��
�� Schematic of a Hidden Markov Model with two hidden states and three
possible observations in each state

" �i�

L��Y
t��

aitit��

LY
t��

bitjt

" P �IL� JLj��

In Figure ��
� is shown a schematic of an HMM having two hidden states and modeling
three possible observations

The modeling problem now is to determine the parameter values �aii� � bij � �i� that
maximize the likelihood of the HMM model � generating the sequences of observations
obtained from the signal source that we are trying to model
 We thus want to maximize
the probability

P �JLj�� "
X
all IL

P �IL� JLj�� ���
��

"
X
all IL

P �JLjIL� ��P �ILj�� ���
��

where the sum is over all possible hidden state sequences able to account for the observation
sequence JL
 Given n hidden states and a sequence of length L	 the number of possible
state sequences is nL
 This number is generally very large	 and computing Eq
 ���
�� by
straightforward summing is computationally infeasible	 even for small values of n and L

When estimating parameters and applying the trained HMMs	 three basic problems

are of prime importance�

Problem �� Given a sequence of observations JL and a model �	 how do we e�ciently
compute the probability of the observation sequence given the model P �JLj��,

Problem �� Given the observation sequence JL and a model �	 what is the most likely
state sequence IL having generated the observations,

problem �� How do we determine the set of parameters � " �A�B� �� that maximizes
the probability P �JLj��,

A detailed discussion of the solutions to these basic problems can be found in �Rab��� and
will not be repeated here
 For future reference	 su�ce it to mention that an e�cient so�
lution to the
rst problem can be obtained using the forward�backward algorithm and the
solution to problem two involves the viterbi algorithm
 There is no known way to analyti�
cally solve for the model parameters � which maximize the probability of the observation
sequence
 Thus	 estimation of the parameters must be performed using an iterative pro�
cedure like the Baum�Welch method which is an implementation of the EM�algorithm	 or
using gradient techniques �Rab���

Sec� ���� Stochastic modeling ���

������ �Unnormalized� HMMs

The parameters in an HMM are probabilities and thus subject to the following constraints�

�i � aii� � bij � � ���
��X
i

�i " � ���
��X
i�

aii� " � � �i ���
��X
j

bij " � � �i ���
��

The normalization naturally ensures thatX
all IL�JL

P �IL� JLj�� " � �

where the joint probability P �IL� JLj�� is given by Eq
 ���
��

As an alternative to this explicit normalization of the parameters for conventional

HMMs we can de
ne an �unnormalized� version of the HMM	 in which the only constraint
on the parameters is that they must be non�negative
 In this case	 in order to determine the
joint probability of a particular sequence IL of hidden states and JL of observations for the
model we need to normalize this particular �path� through the model by a normalization
factor ZL computed as the sum of all possible paths of length L through the model	

ZL "
X

all IL�JL

�i�ai�i�ai�i� � � � aiL��iLbi�j�bi�j� � � � biLjL ���
��

Note that the normalization factor is dependent on the sequence length L
 Computation
of ZL can be done in a manner similar to the forward�backward algorithm
 The joint
probability is now computed as

P �IL� JLj�� " �

ZL
	 �i�ai�i�ai�i� � � � aiL��iLbi�j�bi�j� � � � biLjL ���
��

which may also be interpreted as a globally normalized HMM
 As for traditional HMMs the
probability of a particular observation sequence JL originating from an �unnormalized�
HMM is computed by summing over all possible hidden unit sequences like in Eq
 ���
��	
however	 using the joint probabilities given by Eq
 ���
��
 We can of course still com�
pute likelihoods for sequences of varying lengths if only we normalize with the proper
normalization factors

When using �unnormalized� HMMs we can no longer interpret the parameters as
probabilities
 This has the implication that it is no longer straightforward how to simulate
the model timestep by timestep in an iterative manner since the prior	 transition and
emission parameters are now mixed together in the normalization factor� this also makes
the model harder to interpret than traditional HMMs

�Unnormalized� HMMs are not widely used in the literature	 possibly due to the prob�
lems associated with interpretation and computation of the normalization factor
 How�
ever	 in �RK��� describing a model for speech phoneme recognition in which the transition
and emission probabilities are replaced by feedforward neural networks �denoted as Hid�
den Neural Networks� it was found advantageous to use �unnormalized� network outputs

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

since the normalization term cancelled out
 The reason for mentioning �unnormalized�
HMMs here is that they are directly related to Boltzmann chains and Boltzmann zippers
which will become apparent in the following

���� Boltzmann networks

Another choice of model when modeling systems generating discrete valued stochastic ob�
servations is the Boltzmann machine	 or Boltzmann network
 Boltzmann networks are
stochastic recurrent neural networks rooted in statistical physics
 The following provides
an introduction to this type of neural network
 Furthermore it is indicated how to train
these models using second�order methods and how to perform architecture optimization
using pruning schemes
 Both approaches are well�known for traditional deterministic feed�
forward and recurrent networks but are believed to be novel in the context of Boltzmann
networks

Boltzmann networks consist of a collection of units which are interconnected by bi�
directional or symmetric weights	 wij " wji as shown in Figure ��
�
 The units have no
self�feedback	 i
e
	 wii " � for all units i
 The units can take on binary values corresponding

��
�	

��
�	

�
�

w��

w��

unit � unit �
��
�	

��
�	

w�� � w��

unit � unit �

��PP PP��

Figure ��
�� Symmetric connection between two arbitrary units in a Boltzmann network

to �on� and �o��
 This has the implication that we are restricted to binary valued
observations when modeling stochastic systems using traditional Boltzmann networks
 In
the original formulation of Boltzmann networks �e
g
	 �AHS���� the units were assumed
to take on values Si � f�� �g
 In later formulations �e
g
	 �PA��	 HKP���� the units take
on the values si � f��� �g	 which is convenient when analyzing Boltzmann networks using
theory from statistical mechanics �HKP���
 The di�erence is minor since we can convert
between the two representations using the expression si " �Si � �	 thus all expressions in
the following apply to both representations
 The only di�erence is in learning	 which we
will return to later
 For now	 we adopt the notation si � f��� �g

Let the total number of units in the Boltzmann network be N
 The units are divided
into L visible units allowed to interact with the environment and K " N �L hidden units
that are internal to the network
 In fact	 Boltzmann networks can be viewed as Hop
eld
networks �Hop��� with hidden units
 Visible and hidden units of a Boltzmann network
can be arbitrarily connected as shown in Figure ��
�
 The visible units may be further
divided into input units and output units
 The implications of such a division are only
minor and will not be treated here� see e
g
	 �Hay��� for treatment of this case
 Once the
architecture of the Boltzmann network has been chosen it must remain
xed� thus	 it can
not be used to model observation sequences of varying lengths as e
g
	 the HMM

The concatenation of the states of all units �s�� � � � � sN � is called the �global� state of
the Boltzmann network
 Since there are N units	 the total network can be in any of �N

states
 Similary	 the visible units can be in any of �L states and the hidden units in any of

Sec� ���� Boltzmann networks ���

Visible unit

Hidden unit

Figure ��
�� Arbitrary connected visible and hidden units in a Boltzmann network

�K states
 For convenience	 we will denote the state of the visible units as � and the state
of the hidden units as �
 Consequently	 the state of the total network will be denoted by
��

As for Hop
eld networks an energy is assigned to each global state �� of the network
through an energy function

E�� " ��

�

NX
i��

NX
j��

wijsisj ���
���

The minima of the energy function correspond to stable con
gurations of the units
in the Boltzmann network
 The object then is to minimize the energy	
nding a stable
con
guration well suited to the problem at hand
 In order to search for the �global�
minimum of the energy E for a particular network the method of simulated annealing is
integrated into the network operation in order to avoid getting stuck in local minima of
the energy
 This means that the units of the Boltzmann network are stochastic	 �ipping
their state according to the expression

Prob�si � �si� " �

� # exp�&Ei�T �
���
���

where &Ei is the change in energy for the network resulting from the state change of unit
i
 This energy change can easily be shown to be

&Ei " Enew �Eold " �soldi
X
j

wijsj " �soldi hi ���
���

where hi is the activation of unit i
 The factor T in Eq
 ���
��� represents the temperature

It controls the steepness of the slope and thus the probability of accepting a given change
in energy

When simulating a Boltzmann network we start out with a high temperature T which is
graduately lowered using a simulated annealing schedule� for an introduction to simulated
annealing see e
g
	 �AK���
 For high temperatures T the network is very likely to change
state even to a state with higher energy	 thus performing a coarse search of the state space

As the temperature is lowered the search becomes
ner	 as changes to states with higher
levels of energy become less likely
 Eventually	 we end up in a minimum for the energy

At each temperature the network is relaxed using Monte Carlo simulation	 where units
are selected at random and updated according to Eq
 ���
���
 This process is repeated

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

until we reach equilibrium	 in which the energy of the network �uctuates around a con�
stant average value �HKP���
 At equilibrium	 the probability of
nding the units of the
Boltzmann network in any particular global state obeys the Boltzmann distribution
 The
probability P�� of
nding the units in the network in any particular global state �� is
therefore

P�� "
�

Z
e�E���T � ���
���

where E�� is the energy �dependent on the weights� when the visible units are in states
� and the hidden units are in states � and Z is the normalizing partition function

Z "
X
��

e�E���T ���
���

Note that state con
gurations of the units having low energy have a high probability of
occuring

When training Boltzmann networks	 the object is to adjust the weights wij so as to give
the states of the visible units a particular desired probability distribution
 The desired
distribution is speci
ed by clamping �i
e
	 keeping the state of the visible units
xed�
training patterns � onto the visible units with appropriate probabilities
 The probability
of
nding the visible units in states � irrespective of the hidden unit states � is

P�
� "

X
�

P�� "
�

Z

X
�

e�E���T � ���
���

where the superscript � indicates the probability of visible state � given the visible units
are allowed to change freely during simulation	 i
e
	 they are �unclamped�
 The superscript
will denote probabilities given that the visible units are clamped to a desired pattern
� of the states	 and P�

� is then the desired probability of this pattern	 determined by
the environment
 As a measure of the di�erence between the probability distributions of
the unclamped visible units in the Boltzmann network and the environment we use the
Kullback�Leibler measure	 or relative entropy	 as our cost function�

H�w� "
X
�

P�
� ln

P�
�

P�
�

" �
X
�

P�
� lnP�

� # const� ���
���

where const is a constant determined solely by the environment	 and is hence independent
of the weights w
 H�w� is always positive or zero	 and is zero only if P�

� " P�
� for all �

When annealing the Boltzmann network by lowering the temperature T we seek to lower
the energy E of the network in order to focus the probability mass around certain desired
patterns
 Note that this energy minimization is separated from the minimization of the
cost function Eq
 ���
���	 which is an overall measure of how close we are to the target
distribution

When training Boltzmann networks by minimizing the cost function using gradient
descent	 we need the gradient of H�w� wrt
 the weights wij 	

�H�w�

�wij
" �

X
�

P�
�

� lnP�
�

�wij
���
���

" �
X
�

P�
�

��X
�

P��

P�
�

�
� �

T
	 �E��

�wij

�
�

X
���

P���

�
� �

T
	 �E��

�wij

�
�

Sec� ���� Boltzmann networks ���

" �
X
�

P�
�

��X
�

P�j�

�
� �

T
	 �E��

�wij

�
�

X
���

P���

�
� �

T
	 �E��

�wij

�
�
" �

X
�

P�
�

��
� �

T
	 �E��

�wij

��

�

�
�
� �

T
	 �E��

�wij

��
�

" �
X
�

P�
�

�
� �

T
	 �E��

�wij

��

�

#

�
� �

T
	 �E��

�wij

��

" � �

T

X
�

P�
�
 sisj �

�
� #

�

T

 sisj �

�

"
�

T

�

 sisj �

� �
 sisj �
�
�

where
 	 	 	 ��
� is the mean value given that the visible units are clamped in states �	

equivalent to the correlations between the two units in question

 	 	 	 �� is the mean
when all units are free running	 and the conditional probability P�j� of hidden states �
given the visible states � is de
ned as

P�� " P�j�P
�
� ���
���

The above expression for the gradient reveals the di�erence between state representation
Si � f�� �g and si � f��� �g
 In the former representation only units that are both �on�
contribute to the mean values entering the gradient whereas the latter representation
extends the mean values to be a true correlation measure	 capturing negative contributions
as well
 Apparently this extension has a positive e�ect when training Boltzmann networks
�PA���

Generally it is impossible to calculate the numerical value of the partition function
since it involves summing over all the possible state con
gurations of the Boltzmann
network	 which grows exponentially with the number of units in the network
 When
training we are therefore not able to verify whether the value of the cost actually decreases�
however	 if the size of the steps taken is small enough it will
 Exact calculation of the
gradient is also computationally intractable for the same reason as for the cost
 The
values of the correlations entering the gradient can however be estimated by simulating
the network using a Monte Carlo method as mentioned above	 gathering statistics about
the correlations
 The combination of having to relax the network using simulated annealing
and then simulate in order to gather statistics makes the implementation of Boltzmann
networks very computation�intensive

We can now formulate a recipe for training and operation of Boltzmann networks�

�
 Initialize the weights in the Boltzmann network to small random values	 e
g
	 in the
range ������ ����

�
 Present every example to the network by clamping the visible units accordingly

Perform simulated annealing for a
nite sequence of decreasing temperatures� at
each temperature	 relax the network to equilibrium by randomly updating the units
according to Eq
 ���
���
 At the
xed
nal temperature T�nal simulate the net�
work long enough to collect statistics in order to estimate the clamped correlations

 sisj �

� of Eq
 ���
���

��	 Chapter ��� Boltzmann Chains � Zippers� A Tutorial

�
 Repeat the process in step � but now with the visible units free running	 estimating
the unclamped correlations
 sisj �

� in Eq
 ���
���

�
 Update the weights by taking a small step 	 opposite the gradient	
&wij " 	 �
 sisj �

� �
 sisj �
��

�
 Repeat from step � until no further changes take place in the weights wij � �i� j

������ Speeding up learning

In �PA��� it was shown that tremendous speedup can be obtained in the training of
Boltzmann networks if applying mean �eld theory from statistical physics
 Using mean

eld theory it is possible to e�ectively calculate approximations of the correlations entering
the gradient Eq
 ���
��� by deterministic methods	 thus avoiding the computationally
expensive simulated annealing and simulation
 The idea behind mean
eld annealing is
to replace all states si of the units by their average values
 si � which can be calculated
by iteratively solving a set of nonlinear equations
 The correlations are then calculated by
making the approximations
 sisj �

 si �
 sj �

Another way to avoid the costly annealing and simulation naturally is to compute the
exact value of the expected values of the correlations entering the gradient expression

As mentioned previously this is generally an infeasible task even for small networks
 In
�SJ��� it was however shown that for certain tree�like topologies of Boltzmann networks
it is practically possible to calculate the expectation values exactly	 without resorting to
simulated annealing and Monte Carlo simulation
 The key issue when calculating correla�
tions between two units is a recursive technique to reduce the entire network to a simple	
tractable subnetwork retaining the same Boltzmann distribution as the original network

The technique leads to a simpler network consisting only of the two units in question hav�
ing weights and biases that leaves the correlations and partition function of the original
network unchanged
 Using this technique it is also possible to compute the value of the
entropic cost function	 opening up for more advanced optimization methods
 The reduc�
tion technique furthermore opens up for the computation of visible unit state probabilities
from the Boltzmann distribution Eq
 ���
��� and thus for modeling of probabilistic
xed
length sequences using traditional Boltzmann networks in the same way as is done for
HMMs
 Similar reduction techniques are central to Boltzmann chains and zippers	 as will
become apparent in the following

Further speedup of the learning might be obtained if a more e�cient optimization
method than gradient descent is used
 E
g
	 in �Ped��� it was shown how using a second�
order method speeds up learning considerably for deterministic recurrent networks com�
pared to gradient descent
 The method used there was the damped Gauss�Newton method
in which the direction of the weight change in iteration k is computed as

&wk " ��H ���wk��
��H ��wk� ���
���

corresponding to the direction towards the minimum of a second�order expansion of the
entropic cost function around the current iteration point� H ���wk� is here a positive de
nite
approximation to the Hessian
 The term damped refers to the use of a line search like e
g
	
simple bisection in order to determine the step size 	
 Line search is naturally only possible
if the Boltzmann network is susceptible to the reduction technique �SJ��� mentioned above
as the line search involves computing the value of the entropic cost

Sec� ���� Boltzmann networks ��

In order to use a second�order method like the damped Gauss�Newton for training we
need the second derivatives of the entropic cost
 These second derivatives are calculated
as�

��H�w�

�wij�wpq
" �

�X
�

P�
�

P�
�
	 ��P�

�

�wij�wpq
�

X
�

�P�
�

�wij
	 P�

��
P�
�

�� 	 �P�
�

�wpq

�
���
���

" �
�X

�

P�
�

P�
�
	 ��P�

�

�wij�wpq
�

X
�

� lnP�
�

�wij
	 P�

� 	 � lnP
�
�

�wpq

�

X
�

� lnP�
�

�wij
	 P�

� 	 � lnP
�
�

�wpq
�

The approximation in Eq
 ���
��� is equivalent to that made in Fisher�s method of scoring

�SW��� and also corresponds to the Gauss�Newton approximation to the Hessian of a
quadratic cost in which the term with second derivatives is ignored
 As is the case for the
quadratic cost function	 the approximation becomes exact in the limit of in
nitely many
examples	 provided the network is not underparametrized
 In that limit	 the parameters
that minimize the entropic cost function will converge towards a set of optimal weights
w� for which P�

� " P�
� � ��
 For these weights the term in Eq
 ���
��� involving second

derivatives of the unclamped probabilities P�
� reads

X
�

P�
�

P�
�
	 ��P�

�

�wij�wpq
"

X
�

��P�
�

�wij�wpq
"

��

�wij�wpq

�X
�

P�
�

�
" �� ���
���

where in the
rst step we used the fact that P�
� " P�

� at w " w�	 and in the last step
that

P
� P

�
� " �� Thus	 for weights su�ciently �close� to the optimal	 w�	 the term in

Eq
 ���
��� involving second derivatives will be �small�
 Assuming that the scaling by the
inverse of the
nal temperature	 ��T�nal	 is incorporated into the weights	 the remaining
term involves terms of a form calculated from Eq
 ���
����

� lnP�
�

�wij
"

�
��E��

�wij

��

�

�
�
��E��

�wij

��

"
 sisj �
�
� �
 sisj �

� � ���
���

Thus we obtain the simpli
ed form of the second derivatives�

��H�w�

�wij�wpq

X
�

� lnP�
�

�wij
	 P�

� 	 � lnP
�
�

�wpq
���
���

"
X
�

P�
�
 sisj �

�
�
 spsq �

�
� �
 spsq �

�
X
�

P�
�
 sisj �

�
�

�
 sisj �
�

X
�

P�
�
 spsq �

�
� #
 sisj �

�
 spsq �
�

"
 sisjspsq �
� �
 spsq �

�
 sisj �
�

�
 sisj �
�
 spsq �

� #
 sisj �
�
 spsq �

� �

We note that the approximation to the second derivatives is positive de
nite which is
of advantage when using the second derivatives for second�order optimization
 The ap�
proximation involves only terms already computed when calculating the gradient	 thus
implementation is straightforward and requires little computational burden beyond that
needed for computing the gradient

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

������ Architecture optimization

Having calculated the second derivatives of the entropic cost function opens up for the
use of two well�known methods for architecture optimization	 namely the pruning schemes
Optimal Brain Damage �OBD� �CDS��� and Optimal Brain Surgeon �OBS� �HS���
 Both
methods involve training fully connected networks to a local minimum of the cost function
and then iteratively eliminate parameters according to saliency	 possibly incorporating
retraining in between eliminations
 The rationale behind both methods is that if we
iteratively remove the least salient weights according to training error we gracefully relieve
the danger of over
tting	 i
e
	 specialize the network to features present in the training set
not likely to be encountered in neither a validation set nor a real�life application
 Iteratively
applying a pruning scheme results in a nested family of networks between which we must
choose the optimal
 Optimality is often de
ned in terms of the performance on a validation
set

Elimination of a parameter is equivalent to setting it to zero	 and for both methods
the saliency of a parameter is set equal to the change in training error estimated from a
second�order expansion given the parameter in question is set to zero
 Using OBD the
saliency for parameter j is computed under the condition that the remaining parameters
in the network remains unchanged	 and is calculated as �CDS���

�HOBD
j "

�

�

��H�w�

�w�
j

w�
j ���
���

where it is assumed that the
rst�order term is small and can be ignored
 Provided the
second�order expansion is accurate the OBD saliency provides an upper bound on the
change in training error after retraining of the remaining parameters	 as the training error
is expected to decrease by such training

The saliencies for the OBS pruning scheme are also calculated from a second�order
expansion of the cost function	 again assuming
rst�order terms can be ignored
 The
di�erence from OBD is that saliencies for OBS take into account the e�ect of reestimation
of the remaining parameters to a new minimum within the second�order expansion
 The
saliency for the jth parameter is given by �HS���

�HOBS
j "

�

�

w�
j

A��
jj

���
���

where A denotes the Hessian matrix of the cost function� the denominator is thus the jth
diagonal element of the inverse Hessian
 The reestimation of the remaining parameters is
performed according to the expression

&wj " � wTej

eTj A
��ej

A��ej ���
���

where ej denotes the jth unit vector and T denotes transpose
 Provided the second�order
expansion is fairly accurate the OBS saliencies will provide a tighter bound than OBD
on the training error resulting from further retraining of the remaining parameters in the
network which is the actual measure of interest

As a
nal note on pruning we note that the above mentioned pruning schemes can
be applied to all structures of Boltzmann networks	 not just the ones for which we can
compute the value of the entropic cost function
 This is so since both OBD and OBS work
from approximations involving only second derivatives which can be either estimated or
computed exactly from Eq
 ���
��� regardless of the network structure

Sec� ���� Boltzmann networks ���

������ The Potts model

The binary valued units used in Boltzmann networks might seem like a severe limitation
to the application of modeling discrete valued probabilistic sequences since it is common
that observations can take on more than two values
 One way around this problem is to
assign a group of units to each of the observations to be modeled and then apply a coding
of the possible states� i
e
	 a group of m binary visible units are capable of representing
�m di�erent states

There is however another solution to this problem
 The binary valued units tradi�
tionally used in Boltzmann networks are known as the Ising model in statistical physics
�HKP���
 The statistical physics literature also treats a multistate model	 the so�called
Potts glass model �Wu���
 From the Potts glass we can derive multi�state units for Boltz�
mann networks
 The resulting multistate units are also denoted graded neurons �PS���

Understanding the concept of multistate units in Boltzmann networks is important for the
comprehension of Boltzmann chains and Boltzmann zippers and is therefore introduced
in the following

Multistate units derived from the Potts glass model are not con
ned to two states
only	 but can be more general m�state units
 With each unit we associate a state vector

S of dimension m	 indicating the state of the unit� if the unit is in state i	 Si " � and the
rest of the elements in S are zero� equivalently we may write S " ei	 where ei is the ith
principal unit vector
 In Figure ��
� we see an example of the interconnection of two such
units	 each having two states in order to emphasize the di�erence from the binary valued
Ising spin glass units illustrated in Figure ��
�
 We note that these two�state units are not
connected by just a single bidirectional weight as in the traditional case	 but rather by a
weight matrix
 Each state in one unit is connected by separate bi�directional weights to
every state in the other� e
g
	 if unit � in Figure ��
� is in state �� and unit � is in state ��
the two units are connected by weight w�� 	 which is the weight applied when calculating
the energy of this particular state con
guration

The energy function for a Boltzmann network using multistate units is similar to that
of a traditional Boltzmann network Eq
 ���
���	 and for the simple network shown in

gure ��
� it is calculated as

E " ��

�

X
ij

wijS
	
i S

j ���
���

where S	i is equal to one if unit � is in state i and zero otherwise
 Since each unit can be

��
�	

��
�	

�

�

W ��PP PP��

�
�

	
�

�
�

	
�

�� ��

�� ��

�
�
�
�
�
�

�
�

�
�

�
�

w��

w��

w��

w��

Figure ��
�� Multi state units derived from the Potts model

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

in only one of m states at any given time	 the energy E for each possible con
guration
of units is equal to minus the sum of the weights connecting the active states for this
particular state con
guration
 Thus	 the energy of the network in Figure ��
� when for
example in states ���� ��� is E " �w��

Models usingm�state Potts glass units can also be implemented in terms of traditional
Boltzmann networks using binary valued Ising spin units
 An m�state Potts glass unit can
be thought of as a group of m ��� �� binary state units under the constraint that exactly
one unit within the group is �on� at any given time	X

i

Si " � ���
���

Every �sub unit� �state� within one group is connected to every sub unit in another group	
leading to the weight matrix connections shown in Figure ��
�� there are no connections
between the sub units within a group
 The constraint that exactly one sub unit within a
group is one at any given time can be imposed implicitly by adding a penalty term to the
energy E �PS���

E " ��

�

X
k ��k�

X
ij

wijS
k
i S

k�

j #
�

�

X
k

�X
i

Ski � �

��

���
���

where � is su�ciently large	 ���� k sums over the groups	 i
e
	 � and � for the example in

gure ��
�
 We see that the penalty is zero if and only if exactly one sub unit within a group
is �on�	 and very large and positive otherwise
 With this interpretation of the multistate
units we note that for implementation it is optional whether to be explicit about the units
being multistate	 or whether to be implicit about this by using a traditional Boltzmann
network with a constraint added to the energy

The partition function for a network involving multistate units is as previously calcu�
lated as the sum of exponentials to minus all the possible energy states of the network	
that is	 as a sum over all the possible state con
gurations �� of the visible and hidden
units in the network Eq
 ���
���	 repeated here for convenience �assuming the temperature
is T " ���

Z �
X
��

e�E�� �����	�

For the simple network in
gure ��
� the partition function is calculated as

Z � ew��
 ew��
 ew��
 ew�� �������

In
gure ��
� is illustrated a slightly extended model now involving three two�state Potts
glass units	 along with all the possible �negative� energies �again assuming T " ��
 The
weights linking the active states associated with each con
guration can be thought of
in much the same way as the transition probabilities linking states in a particular state
sequence from an HMM in that they indicate a �path� through the model

In the following	 we will often denote minus the sum of the weights connecting active
units in a particular con
guration a path
 Thus	 the partition function can be thought of
as the sum of exponentials to every possible weight path through the network

Sec� ���� Boltzmann chains ���

�
�

	
�

�
�

	
�

�
�

	
��� ��

�� ��

�� ��

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

W
��

W
��

Possible weight paths�

w	

�� #w
�

��

w	

�� #w
�

��

w	

�� #w
�

��

w	

�� # w
�

��

w	

�� # w
�

��

w	

�� # w
�

��

w	

�� # w
�

��

w	

�� # w
�

��

Figure ��
�� Illustration of possible weight paths for partition function calculation

���� Boltzmann chains

We have now described all prerequisites necessary for the introduction of Boltzmann
chains
 Boltzmann chains were introduced in �SJ��� and are a special type of Boltzmann
networks particulary well suited for modeling discrete time series

Boltzmann chains are Boltzmann networks using multistate units organized as shown
in Figure ��
� from which the chain�like structure is evident� hence the name of the model

The units of the Boltzmann chain are divided into L m�state visible units and L n�state
hidden units where L is the length of the discrete series to be modeled
 At each time step
t a visible unit is connected to a corresponding hidden unit by weights Bij collected in a
matrix B of dimension n
m and between time steps the hidden units are connected by
weights Aii� collected in a matrix A of dimension n
 n
 It is important to note that the
matrices B are identical for each time step t� this also applies for the matrices A between
time steps
 Thus	 Boltzmann chains use extensive weight sharing
 Besides the weights
connecting the units in the Boltzmann chain the model also contains a set of bias weights
-i on the
rst hidden unit corresponding to time step one	 collected in the vector -
 The
bias weights are equivalent to connections to states that are always �on�

If we denote the sequence of visible unit states as � " fjtgLt��	 corresponding to a
con
guration of the visible units	 and the sequence of hidden unit states as � " fitgLt��	
corresponding to a con
guration of the hidden units	 then the energy of a particular
con
guration of the units in the Boltzmann chain is computed as

E�� " �-i� �
L��X
t��

Aitit�� �
LX
t��

Bitjt ���
���

where we have summed out the explicit inclusion of the unit activations Ski included in
Eq
 ���
���	 just as the factor ��� has been canceled out due to the bidirectionality of
the weights
 In line with the description of multistate units in section ��
�
�	 the energy
for the Boltzmann chain corresponds to minus the sum of the weights connecting all the

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

�
�

	
�
�
�

	
�
�
�

	
�
�
�

	
�

B
B
BB

B
B
BB

B
B
BB

B
B
BB

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

B
B
BB

B
B
BB

B
B
BB

B
B
BB

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�

��

�
�

��

�
�

��
Q
Q
Q
QQ

Q
Q
Q
QQ�

�
�
��

�
�
�
�� 	 	 	

	 	 	 visible
units

hidden
units

v� v� v� v�v� v� v� v�v	 v	 v	 v	

h� h� h� h�

h� h� h� h�

B B B B

A A

t " � t " � t " � t " L

e
� e ��

QQ

QQ

��

Figure ��
�� The architecture of a Boltzmann chain for modeling sequences of length L

In this example is used visible units with m " � states and hidden units with n " � states

Note that the weights connecting the units are identical at each timestep

active states of the model for a particular state con
guration �� along with minus the
bias weight on the initial hidden state

The probability of a particular state con
guration of the units in a Boltzmann chain is
given by the Boltzmann distribution Eq
 ���
�� and ��
���
 The likelihood of a particular
state sequence � of the visible units is given by summing over all possible hidden unit
con
gurations as in Eq
 ���
���	 repeated below�

P�
� "

�

Z

X
�

e�E���T "
Z�
Z

� ���
���

In the
nal expression	 Z� denotes the clamped partition function	 that is	 the partition
function obtained if the visible units are clamped in states � and the sum in Eq
 ���
���
thus only involves the hidden states �

As is the case for HMMs	 the modeling object is to determine the weights ���A�B�
that maximize the likelihood of the observed sequences used for training
 Maximizing

the likelihood of the observed training sequences is identical to minimizing the relative
entropy Eq
 ���
��� if we use the empirical distribution for the p sequences in the training
set D " f�kjk " �� � � � � pg�

P�
� "

� �
p � � � D

� � � �� D
� ���
���

For training Boltzmann chains using gradient methods	 we need the derivatives of the
relative entropy Eq
 ���
���	 repeated below for convenience�

H�w� "
X
�

P�
� ln

P�
�

P�
�

���
���

" �
X
�

P�
� lnP�

� # const ���
���

" lnZ �
X
�

P�
� lnZ� # const ���
���

These derivatives are obtained as follows�

�H�w�

�w
"

�

�w

�
lnZ �

X
�

P�
� lnZ�

�
���
���

Sec� ���� Boltzmann chains ���

"
�

Z
	 �Z
�w

�
X
�

P�
�

�

Z�
	 �Z�
�w

���
���

"
X
��

e�E���T

Z 	 T 	 ���E���

�w
�

X
�

P�
�

X
�

e�E���T

Z� 	 T 	 ���E���

�w
���
���

where w represents a parameter in the network and the energy E�� is given by Eq
 ���
���

If w is e
g
	 one of the parameters in A connecting the hidden units	 we obtain

���E���

�w

����
w�Apq

"

L��X
t��

�Aitit��

�w

�����
w�Apq

"

L��X
t��

�pit�qit�� ���
���

where �ij stands for the Kronecker delta function and the sum over the sequence length is
due to the weight sharing
 Similar expressions are obtained for the parameters in B and
-
 By insertion of these expressions in Eq
 ���
��� we can write the derivatives for the
parameters in the Boltzmann chain as

�H�w�

�Bij
"

�

T

LX
t��

�h�iit�jjti� � h�iit�jjti�
���
���

�H�w�

�Aii�
"

�

T

L��X
t��

h!
�iit�i�it��

"� � !
�iit�i�it��

"�i
���
���

�H�w�

��i
"

�

T

�h�ii�i� � h�ii�i�
���
���

where
 	 �� and
 	 �� denote expectations over the free and clamped Boltzmann
distributions	 respectively
 We see that the derivatives can be obtained by estimation �or
exact computation as we shall see� of the correlations between the states of neighboring
units	 similar to the expression Eq
 ���
���

������ Exact learning in Boltzmann chains

For Boltzmann chains it is possible to numerically calculate the value of the partition
function Eq
 ���
���	 and thereby the value of both the cost function Eq
 ���
��� and
the correlations entering the expressions for the gradient Eqs
 ���
�� � ��
��� exactly	
using reduction techniques similar to those described in �SJ��� for traditional Boltzmann
networks
 It is therefore not necessary to anneal the Boltzmann chain	 and in the following
we therefore work from temperature�rescaled weights �SJ��	 SJ���	 wnew " wold�T�nal

When calculating the partition function or the gradient	 the method involves reducing
the original chain into a simple structure by calculation of e	ective weights that will not
change the value of the �original� partition function or correlations when calculated from
the reduced structure
 This structure	 shown in Figure ��
�	 involves only the two units
between which we want to calculate correlations	 and possibly a bias weight for each state
in each unit
 The method for reducing to this structure will be described in section ��
�
�
�
below

The partition function is easily calculated for this structure	

Z "
X
pq

e�Epq "
X
pq

eb
�
p�wpq�b�q ���
���

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

�

�

	

�

�

�

	

�

��

��

��

��

Q
Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�
�
��

e

e

e

e
Bias Bias

b	 b
W

p qIndex

Figure ��
�� Reduced structure for calculation of partition functions and correlations for
Boltzmann chains
 The structure consists of two connected units with bias weights for
each unit� here	 each unit has two states

It is thus straightforward to calculate the value of the entropic cost function Eq
 ���
���
based on reduced models as the one in Figure ��
�
 The reduced models involved in com�
puting the cost are the ones resulting from �� the Boltzmann chain with the visible units
clamped in each pattern and �� the Boltzmann chain with the visible units unclamped

The derivatives of the logarithm to the partition function wrt
 the weights are identical
to the correlations between the connected states
 The correlations for the reduced structure
in Figure ��
�	
 S	i S

j �	 where S	i � f�� �g denotes state i for unit �	 are obtained as

D
S	i S

j

E
"

X
pq

e�Epq

Z

���Epq�

�wij
���
���

"
eb

�
i �wij�b�j

Z

Comparing Eq
 ���
��� and Eqs
 ���
�� � ��
��� we see that the gradient terms for the
Boltzmann chain can be obtained as the sums of the correlations between pairs of neigh�
bouring units
 So	 calculating the gradient for a Boltzmann chain lends itself naturally to
the reduced structure outlined above

�������� Exact learning� Clipping

A technique for reducing Boltzmann chains to the simple structure shown in
gure ��
�
without a�ecting the value of the partition function was given in �SJ��� and will be ex�
plained in the following
 The technique involves the reduction of a �dangling� unit into
e�ective bias weights on its parent	 as illustrated in Figure ��
� and was therefore origi�
nally termed �pruning� in �SJ���
 Unfortunately the term �pruning� is also widely known
in association with architecture optimization which might cause some confusion
 Since the
method described here has nothing to do with architecture optimization	 but is merely a
tool for reducing a given Boltzmann network topology into an equivalent computationally
tractable structure	 it is here suggested to instead call the method �clipping� for obvious
reasons

The clipping procedure is illustrated by an example on a structure composed of two�

state units	 where it is shown how to sum over the degrees of freedom represented by the

dangling unit � in the left model of Figure ��
�	 resulting in e�ective bias weights b� on

Sec� ���� Boltzmann chains ���

�

�

	

�

�

�

�
�

	
�

�
�

	
�

��

��

�� ��

	� 	�

�

�

W
��

W
��

W
��

W
��

W
��

Index

i

�
�
�
���

�
�
��

�
�
�
��

�
�
�
��

�
�

�
��

�
�

�
��

PP��
Clipping

�

�

�
�

	
�

�
�

	
��� ��

	� 	�

�

�

Index

j

k

l

�
�
�
��

�
�
�
��

�
�

�
��

�
�

�
��e

e

b�
�

b�
�

Figure ��
�� Clipping
 The degrees of freedom of unit � are summed over	 yielding an
e�ective bias b� on unit

the parent unit
	 as shown in the right model of Figure ��
�
 The partition function Z

initially derived from the structure to the left in the
gure is calculated as

Z �
X
ijkl

ew
��
ik
�w��

jk�w
��
kl �

X
ijkl

ew
��
ik � ew

��
jk�w

��
kl �������

�
X
jkl

�
ew

��
jk�w

��
kl �
X
i

ew
��
ik

�
�
X
jkl

ew
��
jk�w

��
kl � eb

�
k

�
X
jkl

ew
��
jk�w

��
kl�b

�
k

where we see that the bias weights b� on unit
 resulting from summing over the degrees
of freedom represented by unit � are calculated as

eb
�
k �

X
i

ew
��
ik �� b�k � ln

�X
i

ew
��
ik

�
�����
�

In the example shown here there are no bias weights on unit � which is �clipped� away�
inclusion of these is however straightforward	 as all that is required is to add the bias
weights to the exponents on the right hand sides of Eq
 ���
���

When calculating the exact value of the entropic cost Eq
 ���
��� we start by e
g
	
computing the value of the unclamped partition function Z	 i
e
	 the value when the states
of the visible units are allowed to change freely� refer to Figure ��
�
 The procedure is as
follows� First we use the clipping procedure described above to reduce all the visible units
to e�ective bias weights on the corresponding hidden units
 As the weight matrices B con�
necting the visible and hidden units are identical for each time step �refer to Figure ��
��
the biases resulting from the clipping will be identical for each hidden unit
 Then	 the

��	 Chapter ��� Boltzmann Chains � Zippers� A Tutorial

clipping procedure is applied iteratively on the resulting reduced structure starting either
from the left �forward in time� or right �backward in time� side of the structure until we
arrive at a structure similar to Figure ��
� for which the value of the partition function is
easily calculated

When calculating the value of the clamped partition function Z� where the visible units
are clamped onto the states of a particular observation sequence fjtgLt�� the approach is
similar
 However	 we do not have to �clip� the visible units as the clamped visible unit
states correspond to additional bias weights to the hidden units
 This is because only one
state is permanently �on� in a clamped visible unit	 e�ectively turning the weights leading
from the clamped state to the hidden unit state into bias weights

The procedure for computing partition functions outlined above is similar to the
forward�backward procedure used for HMMs to compute e
g
	 the likelihood of an ob�
servation sequence given a model �Rab���
 Clipping the Boltzmann chain from �the left�
is similar to the forward procedure and clipping from �the right� is similar to the backward
procedure

When computing gradients for a Boltzmann chain we use a similar approach to that
of computing partition functions
 For every weight matrix in the chain we iteratively
reduce to a structure involving only the two units connected by the currently considered
matrix
 Correlations are computed as described in section ��
�
� above and added to the
appropriate expression of Eqs
 ���
�� � ��
���

������ Link to HMMs

An interesting property of Boltzmann chains is that they can represent any
rst�order
HMM �SJ���
 If we compare the HMM distribution Eq
 ���
�� for a sequence of hidden
states � " fitgLt�� and visible symbols � " fjtgLt�� with the Boltzmann distribution
Eq
 ���
��� for the Boltzmann chain Eq
 ���
���	 we see that the two distributions are
identical if we choose the weights in the Boltzmann chain as

Bij " T ln bij ���
���

Aii� " T lnaii� ���
���

-i " T ln�i ���
���

in which case we have

P�� "
�

Z
e�E���T ���
���

"
�

Z
eln�i��

PL
t�� ln bitjt�

PL��
t�� ln aitit��

" �i�ai�i�ai�i� � � � aiL��iLbi�j�bi�j� � � � biLjL
" P �fit� jtg�

As mentioned above	 when working with Boltzmann chains we usually use temperature�
rescaled weights	 in which case we set T " � in the above expressions for convenience

When modeling using HMMs or Boltzmann chains the goal is to adjust the parame�
ters so as to maximize the probability P �fjtg� " P�

� of the observed training sequences
fjtgLt�� " �
 Learning in HMMs can thus be viewed as a special case of learning in
Boltzmann chains	 in which learning is performed subject to the constraints

Sec� ���� Boltzmann chains ��

X
i

e�i " � ���
���X
j

eBij " � ���
���

X
i�

eAii� " � ���
���

These constrains imply Z " �	 as used in Eq
 ���
���

From the above	 we see that any
rst�order HMM can be represented as a Boltzmann
chain
 However	 not all Boltzmann chains can be represented as an HMM
 The weights
in the Boltzmann chain can represent arbitrary energies between ��	 see Eq
 ���
���	
whereas the HMM parameters represent probabilities that are constrained to obey sum
rules such as Eqs
 ���
�����
��� �SJ���
 In general	 the Boltzmann chain thus has more
degrees of freedom than a
rst�order HMM

In �Mac��� it was shown how to transform a large class of Boltzmann chains into
an equivalent HMM representation
 It was shown that if the �nal hidden state iL of a

Boltzmann chain is constrained to be a particular end state� then the distribution over

sequences is identical to that of a hidden Markov model
 Thus	 if we force the �nal hidden
state iL of a Boltzmann chain to be the same for all sequences	 it is possible to represent
the Boltzmann chain as an HMM also having a
xed end state

The transformation from a Boltzmann chain to an HMM is done by manipulating the
weights in the exponent �E�� Eq
 ���
��� of the Boltzmann distribution Eq
 ���
��� by
adding and subtracting terms to the weights in such a way that the probability distribution
is left unchanged
 The additional terms are then solved for	 enabling the transformation to
HMM representation
 Appendix F includes a detailed explanation of the transformation

Whereas traditional HMMs are special cases of the Boltzmann chain it is interesting
to note that there is a direct one to one correspondence between any Boltzmann chain and
the �unnormalized� HMM described in section ��
�
�
 When converting from a Boltzmann
chain into an equivalent �unnormalized� HMM we simply compute the HMM parameters
as

bij " eBij ���
���

aii� " eAii� ���
���

�i " e�i ���
���

where it is assumed that T " �
 When converting the other way around we use Eqs
 ���
���
��
���
 In this case	 by comparing the partition functions for the two models Eq
 ���
��� to
Eq
 ���
�� and the joint probabilities Eq
 ���
��� to Eq
 ���
�� we see that the distributions
for the �unnormalized� HMM and the Boltzmann chain are identical

Figure ��
�� illustrates the relationship between the Boltzmann chain and various
HMM variants as described above
 The example in the
gure involves models with two
hidden states and observations having three states
 Note how the Boltzmann chain corre�
sponds to the HMM unfolded in time

�	� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

�
�

	
�
�
�

	
�
�
�

	
�
�
�

	
�

B
B
BB

B
B
BB

B
B
BB

B
B
BB

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

B
B
BB

B
B
BB

B
B
BB

B
B
BB

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�

��

�
�

��

�
�

��
Q
Q
Q
QQ

Q
Q
Q
QQ�

�
�
��

�
�
�
�� 	 	 	

	 	 	 visible
units

hidden
units

v� v� v� v�v� v� v� v�v	 v	 v	 v	

h� h� h� h�

h� h� h� h�

B B B B

A A

t " � t " � t " � t " L

e
� e

m

���� �����
�

R R� �
�

�
�

�
�
�

�
�

b�� b�� b�� b�� b�� b��

State � State �
a��

a��

a�� a��

��

QQ

QQ

��

Figure ��
��� Relationship between a Boltzmann chain and a corresponding HMM

������ Notes on training chains

Training of Boltzmann chains by minimization of the entropic cost function on a set
of training sequences can naturally be performed using gradient descent as indicated in
section ��
�
 In section ��
�
� it was shown that it is fairly straightforward to compute
the exact value of the gradient and thus also the exact value of the second derivatives
Eq
 ���
��� and of the entropic cost function
 Thus	 we can apply the e�ective damped
Gauss�Newton second�order optimization method involving a line search	 described in
section ��
�
�	 to the training of Boltzmann chains

The Gauss�Newton method involves solving a system of linear equations in each itera�
tion
 Of prime importance to the solution of this system of equations is naturally that the
Hessian matrix is not singular
 This will be the case if rows!colums are linearly dependent
and will arise if the entropic cost function is constant in certain directions in parameter
space
 Unfortunately Boltzmann chains have a built�in rank de
ciency in the Hessian due
to this problem
 For any parametrization of the Boltzmann chain we can add an arbitrary
constant c to all elements of any of the parameter matrices ���A�B� without a�ecting
the value of the entropic cost function
 Adding the constant c to e
g
	 the B�matrix means
that the energy of any state con
guration �� Eq
 ���
��� will be calculated as

E�� " �-i� �
LX
t��

�Bitjt # c��
L��X
t��

Aitit�� ���
���

" �-i� �
LX
t��

Bitjt �
L��X
t��

Aitit�� � Lc

When applying exponentials for calculation of the partition function Eq
 ���
��� the con�
stant thus corresponds to multiplication by the constant eLc to each factor of the sum

Sec� ���� Boltzmann chains �	�

When computing likelihoods P�
� Eq
 ���
��� the constant cancels out and the value of the

cost function Eq
 ���
��� is left unchanged

In order to handle this rank�de
ciency problem for Boltzmann chains we need to aug�
ment the entropic cost function with a regularization term
 A simple yet highly e�ective
regularizer is the simple quadratic weight decay and we thus arrive at the augmented cost
function	

C�w� " H�w� #
�

�
wTw ���
���

where � is a small positive constant
 The regularization ensures that the parameters can
no longer be changed along any direction in parameter space without a�ecting the total
cost function
 When calculating the Hessian of the augmented cost function the e�ect
of the weight decay term is addition of � to the diagonal	 and thereby incrementation of
all eigenvalues by �
 Weight decay thus removes the rank�de
ciency and generally makes
the Hessian more well�conditioned
 Ill�conditioning as described here is also a problem for
deterministic recurrent networks which is illustrated in �Ped���

The name �weight decay� for the regularizer is due to the bias towards zero that is
introduced for all parameters
 For deterministic networks it is well known that weight
decay has a �smoothing� e�ect on the surface of the cost function� see e
g
	 �PH��� for
a graphical illustration of this e�ect
 The �encouragement� of the parameters to attain
the same value will also have a smoothing e�ect on the Boltzmann distribution since
uniformly valued parameters will yield a uniform distribution� augmenting the entropic
cost with a simple weight decay term thus biases the Boltzmann distribution towards a
uniform distribution

As a
nal comment on training Boltzmann chains it should be noted that we are
not con
ned to modeling sequences of
xed length only
 As the parameters A and B

are identical in each time step	 the length of the chain can be varied according to the
length of the sequence in question
 This is the case during both training and application
and is similar to the approach adopted when modeling sequences of di�erent lengths
using HMMs
 The only implication of varying sequence lengths is that when computing
likelihoods according to Eq
 ���
��� the value of the normalizing partition function Z will
depend on the sequence length	 and the
nal separation of terms in the expression for the
entropic cost Eq
 ���
��� is then no longer valid

������ Notes on pruning chains

Architecture optimization as described in section ��
�
� is naturally also an option when
working with Boltzmann chains
 The essence of the methods reviewed is to remove degrees
of freedom not necessary to the network in order to relieve the danger of over
tting

Removal of degrees of freedom is obtained by
xing parameters at some value
 Usually	
a �neutral� value is chosen which ensures that the pruned parameters no longer in�uence
the model	 which corresponds to the parameters being absent from the model

The neutral value used by the pruning schemes OBD and OBS reviewed in sec�
tion ��
�
� is zero
 When pruning Boltzmann networks	 setting a parameter equal to
zero means that it no longer has any in�uence on the energy Eq
 ���
��� of the network
state con
guration and thus does no longer in�uence the model
 The function of weights
in a traditional Boltzmann network is to let the units in�uence each other so as to put
constraints onto the possible state con
gurations of the network
 Removing weights by
pruning them to the value zero loosens these constraints and will thus have a smoothing

�	� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

e�ect on the distribution of state con
gurations
 In the extreme case when all weights are
pruned away the units of the Boltzmann network are completely disconnected in which
case all state con
gurations become equally likely

Absent parameters in an HMM can also be thought of as being set to the value zero
as all state sequences involving the absent parameters will then occur with probability
zero and will therefore not contribute when computing likelihoods
 Examples of �pruned�
HMMs are the so�called left�to�right models often used in speech recognition �Rab��� in
which transitions are only possible to states having a number which is greater than or
equal to the current� all other transitions have the probability zero
 Setting parameters
to zero in an HMM is equivalent to putting ultimate constraints on the possible state
sequences that can occur and thus has the exact opposite e�ect of pruning parameters in
a traditional Boltzmann network

Since Boltzmann chains have an interpretation as both Boltzmann networks and as
HMMs it seems that pruning parameters can have two meanings	 namely imposing less

constraints onto the possible state con
gurations and imposing more constraints onto the
possible con
gurations
 When setting a pruned and thus absent parameter to the value
zero in the Boltzmann chain	 the parameter will no longer provide a contribution to the
energy Eq
 ���
��� of the chain for state con
gurations including states connected by the
parameter� refer also to Figure ��
�
 In the extreme case when all parameters have been
pruned to zero we end up with a Boltzmann chain in which all state con
gurations are
equally likely
 Pruning parameters to the value zero thus has the e�ect of loosening the
constraints imposed on the possible state con
gurations	 corresponding to the Boltzmann
network interpretation

From the above it is clear that pruning a parameter in a Boltzmann chain to the value
zero does not result in the e�ect that particular state con
gurations or sequences involv�
ing the pruned parameter will occur with probability zero according to the Boltzmann
distribution Eq
 ���
���
 When interpreting the Boltzmann chain as an HMM	 pruning
parameters to the value zero does therefore not correspond to setting probabilities to zero
in the corresponding HMM as all state sequences can still occur with non�zero probability

A �value� for a Boltzmann chain parameter that corresponds to the probability zero in an
HMM is ���� as can be seen directly from Eqs
 ���
�����
���
 Setting a parameter in a
Boltzmann chain to a large negative value equivalent to �� has the e�ect that state se�
quences involving this parameter will have in
nite energy as seen from Eq
 ���
���
 When
calculating the probability of an in
nite energy state con
guration from the Boltzmann
distribution Eq
 ���
��� we see that it will occur with probability zero	 as desired

When pruning Boltzmann chains we are consequently faced with the choice between
two values for the pruned parameters
 Either we must choose to prune to the value zero
which corresponds to putting less constraints onto the possible state sequences	 thus bi�
asing the Boltzmann distribution towards a smoother uniform distribution
 Alternatively
we prune to �� which corresponds to putting ultimate constraints onto the possible state
sequences	 thus biasing towards a peaked	 non�smooth distribution
 Which choice	 zero or
��	 that is the �right� one will depend on the application
 E
g
	 in speech recognition
there is strong empirical justi
cation for using HMMs like the left�to�right model �Rab���
in which certain hidden state sequences cannot occur
 In this case it seems most appropri�
ate to prune Boltzmann chain parameters to �� leading to zero transition probabilities
if interpreted as HMMs

An advantage when pruning Boltzmann chain parameters to �� is that the approach

Sec� ���� Boltzmann chains �	�

provides a way in which to actually prune traditional Hidden Markov Models
 A fully
trained HMM can be converted into a Boltzmann chain or	 alternatively	 the initial training
can be performed on the Boltzmann chain as well
 Pruning and further retraining is then
performed on the Boltzmann chain and the optimal chain is converted into a corresponding
HMM
 The necessary constraint on the HMMs is that they must have a mandatory end
state so that conversion can be performed using Mackays recipe described in section F

This is however a commonly applied constraint in the HMM literature �Mac���
 The reason
for not performing pruning on the HMM directly is primarily due to the constraint that
the probabilities in an HMM must sum to one at any given time
 Setting a parameter to
zero in an HMM leads to the problem of how to adjust the remaining parameters in the
HMM so that the constraint is still satis
ed
 This is not a problem for Boltzmann chains
as the normalization is handled indirectly� changing a single Boltzmann chain parameter
may lead to a change in several HMM parameters when converting using Mackays recipe

A disadvantage when pruning Boltzmann chain parameters to �� is that we can no
longer estimate the change in cost when pruning a parameter	 that is	 compute saliencies
from expressions like Eq
 ���
��� and Eq
 ���
��� as the second�order expansion does not
extend all the way to ��
 Instead we have to determine the saliencies by setting each
parameter equivalent to �� in turn and compute the actual change in the entropic cost
function
 This leads to an extra computational burden but also to very accurate saliencies

Another disadvantage when pruning parameters to �� is that successful conversion
from any Boltzmann chain to a corresponding HMM using Mackays recipe described in
section F is no longer guaranteed to be possible
 This is so since the elements of the
matrix in Eq
 �F
��� can now obtain the value zero thus violating the requirements for
the Perron�Frobenius theorem which can no longer guarantee that a positive eigenvalue
with positive associated eigenvector will exist
 This can lead to problems but experience
from this work indicates that this is seldomly a problem in practice
 When problems do
arise it is most often due to degenerate models for which it is obvious that they could be
implemented as an equivalent model using less parameters

A practical consideration when pruning Boltzmann chain parameters to �� is that we
should not prune the parameters B connecting the visible unit states with the hidden unit
states
 This is due to the pragmatic observation that during the architecture optimization
visible�to�hidden parameters unnecessary to �explain� the training set get pruned away

This may actually lead to the model adapting itself to peculiarities in the training set not
present in a test set in such a way that certain sequences in the test set are modeled to occur
with probability zero� this leads to an in
nite test error as can be seen from Eq
 ���
���

Not pruning the visible�to�hidden parameters means that any observation sequence will
always be modeled with non�zero probability as every observation can occur with non�
zero probability in every state
 Drawing the analogy to HMMs this is equivalent to only
putting restrictions on the possible transition probabilities and thus the possible hidden
state sequences while leaving emission probabilities unrestricted	 which is customary as
seen in �Rab���

Other practical considerations concern the implementation when pruning parameters
of the Boltzmann chain to ��
 Firstly	 from Eq
 ���
��� we see that setting parameters
equivalent to �� might actually lead to the application of the logarithm ln to the value
zero when clipping
 This should of course be handled in some appropriate way	 possibly by
having ln returning the large negative value used for�� in this case
 Secondly	 parameters
pruned to �� should of course not be considered when computing the value of the weight
decay term in Eq
 ���
���

�	� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

���	 Boltzmann zippers

When modeling stochastic signals it is sometimes desirable to build a uni
ed model from
two simultaneously occuring and correlated observation sequences
 Often the two se�
quences will have variations on disparate time scales	 i
e
	 observations occur at di�erent
time rates
 This is an important problem in speech recognition �JR��� where e
g
	 spectral
parameters varying on a time scale of �� msec are combined with the signal energy vary�
ing on a time scale of ��� msec
 It is also a problem of great relevance to speechreading

�Sto��	 HSP��� in which both audio and video information is used to recognize speech

One way in which to build a uni
ed model from the two simultaneous sequences is
simply to form the Cartesian product of their observation state spaces and then model as
usual	 e
g
	 using an HMM or a Boltzmann chain
 This way of integrating the observation
sequences is called early integration �HSP���
 Theoretically this simple method is very
powerful since it indeed allows the model to capture any correlation that might exist
between the observations from the two sequences
 In practice however	 early integration
poses several problems
 Forming the Cartesian product of the observation state spaces
will lead to an explosion in the number of possible states and thus in the number of
parameters that must be
tted from the training data� early integration models therefore
lead to increased demand for training data
 Another problem is that of di�erent time
scales� depending on the time scale chosen for the model	 early integration might lead to
an oversampling of the slowest sequence and thus redundancy or an undersampling of the
fastest sequence and thereby loss of information

Another approach is to build two separate models	 one for each of the two observa�
tion sequences
 The model outputs in the form of sequence likelihoods are then combined
in some manner by e
g
	 multiplication of the likelihoods �i
e
	 assuming independence
between the two sequences'� or by some weighting scheme expressing the reliability or rel�
ative importance of each sequence �Hen���
 This strategy is called late integration �HSP���

The advantages of late integration is that we avoid the curse of dimensionality problem
associated with forming the Cartesian product of state spaces
 Furthermore	 since the two
models work independently of one another	 problems with oversampling or undersampling
can be avoided
 This indepencence might however also be a disadvantage since possibly
relevant timing information regarding correlation between observations is lost and can not
be made use of

The Boltzmann zipper is a model type that allows for intermediate integration of ob�
servation sequences on disparate time scales without the need for forming the intractable
Cartesian product of the state spaces
 The structure of a Boltzmann zipper is illustrated
in Figure ��
�� and is seen to be composed of two parallel Boltzmann chains with hidden
units connected by cross�connection weights C� hence the name of the model �SL���
 If the
sequences to be modeled are on disparate time scales we distinguish between the chains for
each sequence as the fast and the slow chain
 Each of the hidden units in the slow chain
is connected to the corresponding hidden units in the fast chain as seen in Figure ��
��

Note that the two chains have separate parameter sets and that the parameters C are
identical for each cross�connection� if the number of hidden states in the fast chain is nf
and the number of hidden states in the slow chain is ns	 the dimension of C is thus nf
ns

If we denote the sequences of visible unit and hidden unit states for the fast chain as
�f " fjft gL

f

t�� and �f " fift gL
f

t��	 respectively	 and the sequences of visible unit and hidden
unit states for the slow chain as �s " fjst gL

s

t�� and �s " fistgL
s

t��	 respectively	 the energy

Sec� ���	 Boltzmann zippers �	�

t = 3t = 2t = 1

t = 2 t = 4

t = L-1 t = Lt = 4
V

V

H

A A

A A A

B B B B B B

C C C

A A

f fffff

C

ffff

s ss

BBBs s s

C C

Π

Π

f

s

t = L

Figure ��
��� Structure of the Boltzmann zipper
 Here	 the time scales have a ��� disparity

The upper chain modeling the faster sequence is denoted the fast chain	 the lower chain
is denoted the slow chain

of a particular con
guration of the units in the Boltzmann zipper can be expressed as

E�f�f�s�s " �-f

if
�

�
Lf��X
t��

Af

ift i
f
t��

�
LfX
t��

Bf

ift j
f
t

���
���

�
LsX
l��

lrX
k�lr�r��

C
if
k
is
l

�-s
is
�
�

Ls��X
t��

As
ist i

s
t��

�
LsX
t��

Bs
ist j

s
t

where Lf is the length of the fast chain	 Ls is the length of the slow chain and r is the ratio
between the time scales	 r " Lf�Ls �must be integer�
 As for the previously described
Boltzmann network structures the goal when training Boltzmann zippers is to make the
distribution of the visible units	

P�
�f�s

"
�

Z

X
�f�s

e
�E

�f�f�s�s "
Z�f�s

Z
� ���
���

here working from temperature rescaled weights	 resemble the distribution speci
ed by the
environment by minimization of the entropic cost function Eq
 ���
���
 The
rst deriva�
tives for the entropic cost function wrt
 the parameters ��f �Af �Bf � and ��s�As�Bs�
are computed by formulas similar to Eqs
 ���
�����
���
 The derivatives wrt
 the cross�
connections are similary computed as

�H�w�

�Cii�
"

LsX
l��

lrX
k�lr�r��

�D
�
iif
k

�i�is
l

E�
�

D
�
iif
k

�i�is
l

E��
���
���

This expression states that the gradient is computed by summing the correlations between
the states of all the pairs of hidden units that are connected by the cross�connections C

 	 �� denotes summing averages with the visible units of the Boltzmann zipper clamped
in the desired training patterns	
 	 �� denotes summing averages with the visible units
unclamped or free running	 as described previously

�	� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

���
�� Exact learning in Boltzmann zippers

As is the case for Boltzmann chains it is possible to compute the exact values of both the
entropic cost function and the gradient for Boltzmann zippers
 The approach is similar to
the description given in section ��
�
�	 but two additional techniques for reduction of the
zipper structure are called for� decimation and joining
 Below follows a description of the
two additional reduction techniques� a graphical illustration of how to iteratively apply
clipping	 decimation and joining for the reduction of a Boltzmann network can be found
in �SJ���

���	���� Exact learning� Decimation

Decimation �SJ��	 SJ��� is a technique for reducing Boltzmann networks like zippers by
summing out	 or decimating	 degrees of freedom represented by the middle unit in a
structure of three units connected in series	 as illustrated in Figure ��
��
 Though not
directly connected	 the units � and
 in the left network have an e�ective interaction
that is mediated through the weight matrices W	
 and W
� by the middle unit �
 This
interaction can be represented by a set of e	ective weights W	� as shown in the right
network of Figure ��
�� by summing over the degrees of freedom represented by unit �

In the
gure	 �Index� labels the units in the following

Consider the network to the left in Figure ��
��
 The partition function Z derived for
this network is

Z �
X
ijk

ew
��
ij �w

��
jk �

X
ik

X
j

ew
��
ij �w

��
jk �

X
ik

ew
��
ik �������

where we see that the weights w	�
ik resulting from summing over the degrees of freedom for

unit � are calculated as

ew
��
ik �

X
j

ew
��
ij �w

��
jk �� w

	�
ik � ln

�X
j

ew
��
ij �w

��
jk

�
� �������

�
�

	
�

�
�

	
�

�
�

	
��� ��

�� ��

�
�

Z
Z
Z
Z
ZZ

Z
Z
Z
Z
ZZ

�
�

�
�

��

�
�

�
�

��

W
�

W	

PP��
Decimation

�
�

	
�

�
�

	
��� ��

�
�

A
A
A
A
A
A
A
A
A
A
AA

	
	
	
	
	
	
	
	
	
	
		

W	�

k

j

i

Index

Figure ��
��� Decimation
 Unit � is decimated away and the units � and
 are connected
by the resulting weights W	�

Sec� ���	 Boltzmann zippers �	�

As an example	 consider the weight w	�
��
 This weight is obtained by summing over all the

possible weight �paths� from state �� to state
��

ew
��
�� � ew

��
��
�w��

��
 ew
��
��
�w��

��

m

w
	�
�� � ln

�
ew

��
��
�w��

��
 ew
��
��
�w��

��

� �������

From the above example we see that using the e�ective weightsW	� when calculating cor�
relations and partition functions	 possibly for a larger structure in which the substructure
in Figure ��
�� is embedded	 will not change the numerical value of these quantities

���	���� Exact learning� Joining

Joining refers to the situation where we have two sets of parallel weights connecting two
units	 as shown in the left network of Figure ��
��
 When calculating correlations or
partition functions it is easily seen that the two sets of parallel weights have the same
e�ect as a single set of weights equal to the sum of the parallel sets	

W	
 " U	
 #V	
 ���
���

as shown to the right on Figure ��
��

PP��
Joining

�
�

	
�

�
�

	
�

�� ��

�� ��

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

U	
�V	

�
�

	
�

�
�

	
�

�� ��

�� ��

�
�
�
�
�
�

�
�

�
�

�
�

U	
 #V	

W	
 "

Figure ��
��� Joining
 The two sets of weights between units � and � have the same e�ect
as the sum of the weights

���
�� Notes on Boltzmann zippers

The Boltzmann zipper can be viewed as an extension to the Boltzmann chain and the
notes made in sections ��
�
� and ��
�
� regarding training using second�order methods
and pruning of chains naturally apply to zippers as well
 A note to add on training is the
suggestion in �SJ��� to train the fast and the slow chains separately before combining them
in the zipper structure of Figure ��
�� and applying further training to the full structure

This approach might reduce the training time

Whereas the separate Boltzmann chains in special cases can be converted into cor�
responding traditional HMMs and vice versa	 there is no direct isomorphism between
the parameters of the complete Boltzmann zipper structure and a corresponding HMM
structure
 At any given time step the Boltzmann zipper is always in two hidden states
which is the prime reason for the lack of conversion possibilities into corresponding HMMs

�		 Chapter ��� Boltzmann Chains � Zippers� A Tutorial

However	 we may still conceptually apprehend a Boltzmann zipper as two interconnected
HMMs

Through the inter�connection weights C the hidden unit states of the fast and the slow
chain can in�uence each other
 If all the weights C are identical �e
g
	 they are all pruned
to the value zero�	 the net in�uence of the C�s will be the same for all possible hidden
unit state sequences �f�s
 When computing likelihoods Eq
 ���
��� the terms including
the C�s will cancel out and in this case the Boltzmann zipper is equivalent to two separate
Boltzmann chains having their likelihoods multiplied �late integration�
 By increasing
the numerical value of some C�s and decreasing the value of others we can increase the
joint likelihoods of certain hidden unit state con
gurations and decrease the likelihoods
of others and thus capture correlations between the observations of the sequences to be
modeled �intermediate integration�
 Thus	 when training from C�s with the initial value
zero we graduately transform the Boltzmann zipper from a late integration model into an
intermediate integration model

Pruning cross�connection weights in a Boltzmann zipper to the value zero will have the
e�ect of loosening the constraints between the hidden unit state sequences of the fast and
the slow chain
 Pruning cross�connections to the value zero thus biases the complete model
towards a late integration strategy
 On the other hand one might prune the values of the
cross�connections to �� as discussed for Boltzmann chains in section ��
�
�
 This will
put ultimate constraints on the hidden unit state sequences that can occur simultaneously
as any joint state sequences involving states combined with a cross�connection �� weight
will occur with probability zero
 This strategy might be advantageous if there is believed
to be a highly constrained underlying structure responsible for the correlations between
the two sequences to be modeled
 Such a constrained structure should be viewed in line
with e
g
	 left�to�right HMMs in which there are restrictions to the order in which hidden
unit states can occur

Finally	 a few practical notes concerning the reduction techniques decimation and
joining when pruning parameters to ��
 The same note that was made about clipping
applies to decimation
 If the argument to ln in Eq
 ���
��� is zero	 the large negative
value used as the equivalent to �� should be returned	 as there is then no valid �path�
between the two states connected by the resulting e�ective weight� refer to Figure ��
��

When joining it is obvious that if one or both of the weights to be joined are equivalent to
�� the combination should also be �� as the energy of a state con
guration involving
a �� connection is in
nite� refer to Figure ��
��

���
 Experiments using Boltzmann chains

This section contains a description of the experiments performed involving Boltzmann
chains
 The
rst class of experiments is based on an arti
cial problem	 namely the iden�
ti
cation of a �teacher� Hidden Markov Model �HMM�
 The second class of experiments
centers around the construction of a small isolated�word speech recognition system	 in�
cluding a speechreading system incorporating video information

������ Identi�cation of an HMM

As described in previous sections it is possible to convert between Boltzmann chains and
Hidden Markov Models	 especially if the
nal hidden state is constrained to be a particular
end state
 In this experiment the relationship between Boltzmann chains and HMMs is

Sec� ���� Experiments using Boltzmann chains �	

O3 : 0.00

O2 : 0.10

O1 : 0.90 O1 : 0.10

O2 : 0.80

O3 : 0.10

O2 : 0.10

O1 : 0.00

O3 : 0.90

1.0

0.9
0.1

0.9
0.1

1.0

Figure ��
��� Topology of the teacher HMM
 The numbers at the arrows indicate transis�
tion probabilities and the numbers in the boxes indicate the observation probabilities

experimentally veri
ed by using a Boltzmann chain to identify the structure of an HMM
from observation sequences generated by the HMM

The underlying �teacher� HMM is illustrated in Figure ��
��
 The HMM has a left�
to�right structure with three hidden states and three observations in each state
 ���
sequences of length �� were generated from this HMM and all of them terminated in the
rightmost hidden state in order to satisfy the criterion for exact conversion between the
Boltzmann chain and the HMM
 The sequences were divided into a training set and a
separate test set	 each containing ��� sequences
 In Figure ��
�� is shown four examples
of the generated sequences

���
���� Training

The Boltzmann chain used for identi
cation of the teacher HMM shown in Figure ��
��
had visible units with three states and hidden units with three states corresponding to

0 5 10 15 20 25 30 35 40

0

1

2

TIME

OB
SE

RV
AT

IO
N

EXAMPLE SEQUENCES

Figure ��
��� Four examples of the generated sequences from the teacher HMM

�
� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

the topology of the teacher HMM� the
nal hidden state was forced to be a particular
end state
 The chain was trained by minimizing the relative entropy cost function on the
training sequences� the constant term in Eq
 ���
��� was ignored and is not included in
any of the illustrations in the following
 Minimization was attempted using both gradient
descent and the second�order Gauss�Newton method in order to investigate the di�erence
in performance between the two methods
 Both methods were combined with a simple
linesearch algorithm and in order to ensure numerical stability �refer to section ��
�
��
the entropic cost function was augmented by a small quadratic weight decay	 � " ���	 in
Eq
 ���
���
 In both cases the stopping criterion was set to either a maximum number of
���� iterations reached or the Euclidean norm of the gradient su�ciently small	 k 	 k�

����	 indicating closeness to a �local� minimum

In the left panel of Figure ��
�� is shown a typical training curve	 i
e
	 trace of the
relative entropy �excluding the weight decay term� during training when using gradient
descent
 Training is performed in �batch mode�	 i
e
	 the weights are not updated until
all sequences have been presented to the chain
 It is seen that convergence is initially
fairly fast but then a plateau is reached from which convergence is extremely slow
 After
���� iterations the maximum number of iterations was reached still without satisfying the
gradient norm stopping criterion

In the right panel of Figure ��
�� is shown a typical training curve when using the
Gauss�Newton method� the initial �� iterations were however performed using gradient
descent in order to get �close� to a �local� minimum before initiating the second�order
method
 Convergence is very fast and training stops after about ��� iterations after which
the gradient stopping criterion is satis
ed
 Note that the level of cost obtained is about
�� + lower than the level obtained when using gradient descent and in fact equal to the

entropic cost obtained from the teacher HMM
 The di�erence in the level of cost reached
when using gradient descent resp
 Gauss�Newton was quite persistent
 In ten runs using
di�erent initial weights	 only once did gradient descent manage to reach the level shown
in the right panel of Figure ��
��� using the very same initial weights	 the Gauss�Newton
method managed to reach that level in all ten runs

Figure ��
�� illustrates the evolution of the Euclidean norm �the ��norm� of the gra�
dient corresponding to the training curves shown in Figure ��
��
 Note that the
nal

TRAIN
TEST

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

50

ITERATION #

C
O

S
T

TRAINING WITH GRADIENT DESCENT

TRAIN
TEST

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50

ITERATION #

C
O

S
T

TRAINING USING GAUSS−NEWTON METHOD

Figure ��
��� Left panel� Training using gradient descent
 Right panel� Training using
the Gauss�Newton method

Sec� ���� Experiments using Boltzmann chains �
�

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ITERATION #

2−
N

O
R

M
 O

F
 G

R
A

D
IE

N
T

TRAINING USING GRADIENT DESCENT

0 20 40 60 80 100 120 140 160
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ITERATION #

2−
N

O
R

M
 O

F
 G

R
A

D
IE

N
T

TRAINING USING GAUSS−NEWTON METHOD

Figure ��
��� Evolution of the gradient norm
 Left panel� Training using gradient descent

Right panel� Training using the Gauss�Newton method

gradient norm using gradient descent	 shown in the left panel of Figure ��
��	 is three
orders of magnitude larger than the
nal gradient norm when using the Gauss�Newton
method �right panel�
 The
nal chain when using gradient descent thus seems to be further
away from a �local� minimum than the chain trained with the Gauss�Newton method even
though a factor of �� times more iterations was used
 Given enough iterations the error as
well as the gradient norm would probably reach the levels obtained by the Gauss�Newton
method when training using gradient descent	 but at the cost of much more computation
time

The training session shown in the left panel of Figure ��
�� using gradient descent took
���� seconds on a �� MHz Pentium	 averaging ��� seconds per iteration
 The training
session using the Gauss�Newton method shown in the right panel of Figure ��
�� took
��� seconds	 averaging ��� seconds per iteration
 When using the Gauss�Newton method
it is necessary to solve a linear system of equations in each iteration	 scaling as O�n	�
operations	 n being the number of parameters in the model
 Even so	 the increased
computational burden in each iteration is highly justi
ed as the convergence rate using the
Gauss�Newton method is usually much higher than when training using gradient descent	

O1 : 0.531
O2 : 0.433
O3 : 0.036

O1 : 0.113
O2 : 0.419
O3 : 0.468

O1 : 0.001
O2 : 0.107
O3 : 0.892

0.0160.002

0.963 0.013 0.995

0.003

0.243

0.744

0.002

0.034

0.0030.982

Figure ��
��� Boltzmann chain trained by gradient descent converted into the correspond�
ing HMM

�
� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

0.996 0.002 0.002

0.106

0.893 0.891

0.108

0.001

0.000

0.001

0.001

0.999

O1 : 0.098
O2 : 0.801
O3 : 0.101

O1 : 0.914

O3 : 0.000
O2 : 0.086

O1 : 0.000
O2 : 0.095
O3 : 0.905

Figure ��
��� Boltzmann chain trained by the Gauss�Newton method converted into the
corresponding HMM

thus reducing the total training time

It turned out that within the limits set on the training time the choice of training

method was crucial for identi
cation of the teacher HMM
 In Figure ��
�� is shown the
Boltzmann chain resulting from the training using gradient descent converted into the
corresponding HMM using Mackays recipe
 It is seen that only the prior for the initial
hidden state and the end state transition!observation probabilities bears resemblance to
the parameters of the teacher HMM

In Figure ��
�� is shown the Boltzmann chain resulting from training using the Gauss�
Newton method converted into the corresponding HMM
 It is seen that the transition and
observation probabilities for this model are all very close to the corresponding parameters
in the teacher HMM
 This was the case for the chains resulting from all ten runs using the
Gauss�Newton method� only one chain trained by gradient descent came as close	 the one
that reached the same level of error as the chains trained by the Gauss�Newton method

Of great importance to the distribution implemented by the trained Boltzmann chain
is naturally the relative magnitude of the parameters in the model� the more uniform the
weights within a group �	 A or B	 the more uniform the distribution
 In Figure ��
�� is
shown the evolution of the parameters when training using gradient descent
 The weigths
are seen to grow a lot in the
rst few iterations after which the weight changes slow down
considerably	 due to the poor convergence when using gradient descent

In Figure ��
�� is shown the evolution when training using the Gauss�Newton method

Recall that in the
rst �� iterations gradient descent was used� during these iterations the
weight changes are fairly �well�behaved�
 When the Gauss�Newton method is initiated
the weights undergo a dramatic change which leads to a larger spread in the magnitudes

During the last �� or so iterations the weight changes are seen to be very small� the weights
are close to a �local� minimum and the Gauss�Newton method is performing a
ne tuning
in order to satisfy the stopping criterion �refer to right panel of Figure ��
���

By comparison of Figure ��
�� and Figure ��
�� it can be seen that the spread of weight
magnitudes is larger after training with the Gauss�Newton method than after training with
gradient descent
 The larger spread makes the resulting Boltzmann distribution more
focused around the training �and test� sequences from the teacher HMM and leads to the
�� + lower error seen in Figure ��
��

From the Boltzmann distribution for a Boltzmann chain Eqs
 ���
�� and ��
��� we see

Sec� ���� Experiments using Boltzmann chains �
�

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF HIDDEN WEIGHTS

Iteration #

V
al

ue

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF VISIBLE WEIGHTS

Iteration #

V
al

ue

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF BIAS WEIGHTS

Iteration #

V
al

ue

Figure ��
��� Training using gradient descent
 Upper left panel� Evolution of hidden�
to�hidden unit parameters A
 Upper right panel� Evolution of hidden�to�visible unit
parameters B
 Lower panel� Evolution of hidden unit initial bias parameters �

�
� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

0 20 40 60 80 100 120 140 160
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF HIDDEN WEIGHTS

Iteration #

V
al

ue

0 20 40 60 80 100 120 140 160
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF VISIBLE WEIGHTS

Iteration #

V
al

ue

0 20 40 60 80 100 120 140 160
−12

−10

−8

−6

−4

−2

0

2

4

6

8
EVOLUTION OF BIAS WEIGHTS

Iteration #

V
al

ue

Figure ��
��� Training using the Gauss�Newton method
 Upper left panel� Evolution of
hidden�to�hidden unit parameters A
 Upper right panel� Evolution of hidden�to�visible
unit parameters B
 Lower panel� Evolution of hidden unit initial bias parameters �

that sequences involving a weight with a relatively large magnitude will have a relatively
large probability of occuring� thus	 a weight with a relatively large magnitude may be
compared to a large prior	 emission or transition probability in an HMM
 In fact	 the
three largest magnitude weights in the upper left panel of Figure ��
�� corresponds to the
three self�transitions in the corresponding HMM shown in Figure ��
��
 The following two
weights when ranking according to magnitude correspond to the left�to�right transitions of
Figure ��
�� and the last weights having signi
cantly lower magnitude correspond to the
super�uous transitions in the HMM when comparing to the teacher HMM
 In the upper
right panel of Figure ��
�� the two lowest magnitude weights correspond to the observation
probabilities equivalent to zero	 and the largest magnitude weight in the lower panel of
Figure ��
�� corresponds to the prior probability of the leftmost state in the HMM shown
in Figure ��
��

In Figure ��
�� is shown the evolution of the numerical value of the unclamed partition
function Z for the Boltzmann chain
 The partition function is seen to grow to extremely
large values	 ���������� in this case
 Such levels �and higher� are very common when
working with Boltzmann chains
 The explanation for the large values lies in the terms

Sec� ���� Experiments using Boltzmann chains �
�

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
20

10
40

10
60

10
80

10
100

10
120

10
140

ITERATION #

P
A

R
T

IT
IO

N
 F

U
N

C
T

IO
N

 Z

TRAINING USING GRADIENT DESCENT

0 20 40 60 80 100 120 140 160

10
20

10
40

10
60

10
80

10
100

10
120

10
140

ITERATION #

P
A

R
T

IT
IO

N
 F

U
N

C
T

IO
N

 Z

TRAINING USING GAUSS−NEWTON METHOD

Figure ��
��� Evolution of the unclamped partition function Z
 Left panel� Training using
gradient descent
 Right panel� Training using the Gauss�Newton method

which enters the partition function Eq
 ���
���	 namely the sum of exponentials of minus
the energy of all possible state con
gurations of the chain
 If some weights are large and
positive many of the exponents will be large and positive which leads to the explosion in
the numerical value of the partition function
 In order to avoid numerical problems that
will otherwise occur when computing e
g
	 likelihoods Eq
 ���
��� we need to scale the
parameters of the Boltzmann chain before computation in order to reduce the partition
function to a more numerically manageable level
 Scaling due to numerical problems is
routinely applied when working with HMMs	 see e
g
	 �Rab���	 and similar techniques
can be applied to Boltzmann chains by subtraction of appropriate quantities from the
parameter matrices �	 A and B

���
���� Pruning to ��
In order to examine the possibilities for architecture optimization	 Boltzmann chains hav�
ing too many hidden unit states compared to the teacher HMM were trained using the
Gauss�Newton method
 Parameters were then pruned using the OBD pruning scheme
outlined in section ��
�
�� after a parameter was pruned the reduced model was retrained

In section ��
�
� it was discussed how we have to choose between setting pruned param�
eters to the value zero or setting them equivalent to ��
 For the present problem of
identifying an HMM it seemed most appropriate to impose more constraints on the model
through pruning	 i
e
	 letting pruned parameters correspond to a zero probability in the
corresponding HMM
 Parameters were thus pruned to a value equivalent with ��� here
the value ����� was used
 As a consequence of this choice the parameters B connecting
the hidden unit and visible unit states were not pruned	 due to the problem with spe�
ci
c adaption to the training sequences sometimes resulting in test sequences with zero
probability	 leading to an in
nite test error as described in section ��
�
�
 Furthermore	
pruning to such a value naturally means that we cannot estimate the saliencies according
to Eq
 ���
��� but have to set the parameters to ����� in turn and calculate the resulting
changes in cost

In
gure ��
�� is shown the evolution of the relative entropy for the training and test
set as the parameters in the chain were pruned� note that the initial level of the cost is
comparable to the level obtained in the right panel of Figure ��
��
 We note that the

�
� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

TRAIN
TEST

16 18 20 22 24 26 28 30 32
15

20

25

30

35

40

NUMBER OF PARAMETERS

C
O

S
T

Figure ��
��� Evolution of the relative entropy for the training and test set as the param�
eters of a chain initially having four hidden unit states are pruned to ��

error remains unchanged even though many parameters are pruned
 The explanation for
this is that only parameters super�uous to the implementation of the teacher HMM are
pruned and the retraining thus brings performance back to the same low level as before
the pruning

In Figure ��
�� is shown the �optimal� Boltzmann chain having �� parameters con�
verted into the corresponding HMM using Mackays recipe described in section F
 Optimal
is here de
ned as the smallest chain still able to account for the data
 HMM probabilities
of the converted chain with the value zero are omitted in Figure ��
�� and we note that
one of the hidden unit states of the chain has been completely pruned away
 Furthermore
the remaining non�zero probabilites of the converted chain bear close resemblance to the
probabilities of the teacher HMM

A detailed count of the parameters of the optimal HMM shown in Figure ��
�� reveals
that the number of actual parameters in the model is �� rather than the �� reported from
Figure ��
��
 The reason for this �bias� is that the emission parameters associated with

1

O1 : 0.914

O3 : 0.001
O2 : 0.085

O1 : 0.099
O2 : 0.799
O3 : 0.102

O1 : 0.000
O2 : 0.096
O3 : 0.904

0.893 10.891
0.1090.107

Figure ��
��� �Optimal� Boltzmann chain initially having four hidden unit states con�
verted into corresponding HMM after pruning parameters to ��

Sec� ���� Experiments using Boltzmann chains �
�

TRAIN
TEST

20 25 30 35 40 45
15

20

25

30

35

40

NUMBER OF PARAMETERS

C
O

S
T

Figure ��
��� Evolution of the relative entropy for the training and test set as the param�
eters of a chain initially having
ve hidden unit states are pruned to ��

the pruned hidden unit state were determined as still being actual parameters in the model
by the parameter count mechanism employed

It was then attempted to train and prune a Boltzmann chain having �ve hidden unit
states and the evolution of the cost when pruning is shown in Figure ��
��
 Again we note
that the initial level of the cost is the same as obtained in the right panel of Figure ��
��
and that the level of the cost remains unchanged as completely super�uous parameters
are being pruned

In Figure ��
�� is shown the �optimal� chain having �� parameters converted into the
corresponding HMM
We note that once more a single hidden unit state has been discarded

The resulting HMM thus has four hidden states compared to three for the teacher HMM

The leftmost and rightmost states of the HMM in Figure ��
�� are fairly good models of
the leftmost and rightmost states of the teacher HMM �Figure ��
��� but the middle state
of the teacher HMM is modeled by a construction involving two hidden unit states
 In this

1

0.890

10.110

0.783

0.217

1

O1 : 0.913
O2 : 0.087
O3 : 0.000

O1 : 0.146
O2 : 0.764
O3 : 0.090

O1 : 0.086
O2 : 0.782
O3 : 0.132

O1 : 0.000

O3 : 0.902
O2 : 0.098

Figure ��
��� �Optimal� Boltzmann chain initially having
ve hidden unit states converted
into corresponding HMM after pruning parameters to ��

�
	 Chapter ��� Boltzmann Chains � Zippers� A Tutorial

case it is not straightforward to assess whether the Boltzmann chain actually implements
the teacher HMM or not
 One way of assessing statistical equivalence between to models
is to compare the log�likelihoods obtained on sequences generated by one of the models	
using e
g
	 the entropic cost function �Rab���
 As the converted Boltzmann chain shown
in Figure ��
�� has the same level of cost as was obtained for the teacher HMM it thus
seems reasonable to believe that the two models are in fact statistically equivalent

���
���� Pruning to the value zero

It was then examined what the e�ect of pruning parameters to the value zero instead of��
would be
 A Boltzmann chain with four hidden unit states having the same initial weight
values as the chain from Figure ��
�� was pruned by setting parameters to zero� again	
the hidden�to�visible unit weights B were not pruned
 The evolution of the cost is shown
in the left panel of Figure ��
��
 Comparing Figure ��
�� and Figure ��
�� the evolution
of the costs are very similar
 The only di�erence is in the area where performance starts
to degrade
 When pruning weights to the value zero the performance is seen to degrade
more gracefully than when pruning to ��
 In this case the reason seems fairly obvious	 as
setting any more transition probabilities to zero in Figure ��
�� �i
e
	 pruning Boltzmann
chain parameters to ��� will have a great impact on the modeling capabilities
 On
the other hand	 pruning parameters to the value zero does not lead to zero transition
probabilities for the corresponding HMM parameters as discussed in section ��
�
�� they
are still in �the ball game� so to speak
 The actual values of the corresponding HMM
transition probabilities for the pruned parameters will depend upon the remaining free
parameters in the chain
 The consequences of pruning an �important� parameter to the
value zero can therefore be accounted for to some extent by manipulation of the remaining
free parameters in such a way that the pruned parameter approximates its �old� HMM
transition probability interpretation� thus	 pruning a Boltzmann chain parameter to zero
need not be as fatal to the modeling capabilities as pruning to ��	 resulting in a more
graceful degradation of performance

The right panel of Figure ��
�� illustrates the quality of the OBD saliencies
 For the

TRAIN
TEST

12 14 16 18 20 22 24 26 28 30 32
15

20

25

30

35

40

45

NUMBER OF PARAMETERS

C
O

S
T

10
−10

10
−5

10
0

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ESTIMATED SALIENCY

A
C

T
U

A
L

 S
A

LI
E

N
C

Y

Figure ��
��� Left panel� Evolution of the relative entropy cost function as the parameters
of a Boltzmann chain initially having four hidden unit states are pruned to the value zero

Right panel� Estimated versus actual saliencies for the fully connected Boltzmann chain

Sec� ���� Experiments using Boltzmann chains �

O1 : 0.285
O2 : 0.371
O3 : 0.344

O1 : 0.913

O3 : 0.001
O2 : 0.086

O1 : 0.098
O2 : 0.801
O3 : 0.101 O3 : 0.905

O1 : 0.000
O2 : 0.095

0.034

0.001

0.002

0.107

0.002

0.891

0.946

0.108

0.001

0.890 0.999

0.019

0.992 0.008

Figure ��
��� �Optimal� Boltzmann chain initially having four hidden unit states con�
verted into corresponding HMM after pruning parameters to the value zero

fully connected Boltzmann chain saliencies were estimated for parameters � and A using
Eq
 ���
��� and plotted against the actual saliencies computed by setting the parameters
to zero in turn and calculating the resulting change in training error
 It is seen that
the estimated saliencies approximates the actual saliencies very well indeed	 especially for
the low saliency parameters
 It is of importance to note that the rank ordering of the
low saliency parameters according to estimated saliency is consistent with rank ordering
according to actual saliency� and thus the correct parameters are selected for pruning

The model from the left panel of Figure ��
�� having �� free parameters was converted
into the corresponding HMM	 again using Mackays recipe
 The resulting �fully connected�
HMM is illustrated in Figure ��
��� however	 only transition probabilities of magnitude
greater than or equal to ����� are shown
 This model should be compared to the corre�
sponding converted Boltzmann chain when pruning to ��	 illustrated in Figure ��
��

Looking at Figure ��
�� we note that the leftmost state has a very small probability of
being entered and can be regarded as being pruned away
 The remaining rightmost three
states are seen to have transition probabilities close to the corresponding transitions in
Figure ��
��� consequently	 the super�uous transitions are very small
 In this experiment
we thus end up with very similar models even if using two di�erent concepts of pruning

������ Speech recognition

This section describes the results obtained when trying to create a small speech recog�
nition system using Boltzmann chains
 The system considered here is based on isolated
word recognition meaning that a model is trained speci
cally on each of the words to
be recognized
 When performing recognition on a new utterance it is presented to each
of the models within the recognition system and the utterance is recognized as the word
associated with the model having the maximum likelihood of the new utterance
 For an
introduction to speech recognition systems see e
g
	 �Rab���

In addition to do recognition using audio information only it will here be attemted
to incorporate visual information from the talker into the model as well	 in which case
the recognizer is denoted a speechreading system �HSP���
 The visual information might
include features describing the shape of the lips	 positioning of the tounge	 chin and jaw

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

etc
 Video information is incorporated into the system in the hope that it will improve
the recognition rate on e
g
	 similar sounding utterances like �me and �knee
 Incorporat�
ing video information is however especially advantageous in noisy environments where it
may lead to a dramatic improvement in recognition rates since audio�only systems are
likely to perform poorly in noisy conditions
 An informal introduciton to the concept of
speechreading can be found in �Sto��� and an in�dept description of the video processing
system that was used here to extract video information is found in �HSP��	 Hen���

For the recognition system considered here the task was to properly classify the three
nonsense utterances �asklee�	 �asklaa� and �askluu�
 Twenty repetitions of each ut�
terance were recorded �including video information� from a single talker in a low�noise
environment
 Each of the three sets of utterances was divided into a set of �� utterances
for training and
ve utterances for testing
 The audio part of each utterance consisted of a
sequence of �� feature vectors	 each feature vector consisting of �� log mel power spectrum
coe�cients �Hen���
 The feature vectors were converted into discrete observations using
the LBG algorithm �Gra���
 A codebook for vector quantization having eight entries was
generated for each of the three sets of �� training utterances
 Then	 both the training
and test sequences for each utterance �asklee�	 �asklaa� and �askluu� were quantized
using appropriate codebooks
 The small number of codebook entries used here was the
result of a tradeo�
 Generally	 the more entries there are in the codebook	 the better the
representation of the original data �the smaller the distortion�
 A large number of code�
book entries however leads to a large number of observations and thus parameters that
need to be estimated from the training data
 Thus	 the larger the codebook	 the more
data is needed for training
 Since the number of utterances available for this experiment
was extremely limited	 a number of eight codebook vectors was found to be appropriate

The video information for each utterance consisted of a sequence of �� feature vectors�
thus the video information was obtained at half the speed of the audio information
 Each
vector was a collection of ten visual parameters representing height and width of the
mouth opening	 thickness of the upper lip etc
� refer to �Hen��� for details
 As for the
audio information	 three codebooks were generated using the video information of the
three sets of �� training utterances each	 again using the LBG algorithm
 The number of
codebook entries were set to four� both training and test sequences were quantized using
appropriate codebooks

The
rst recognition system considered was based on audio information only
 For each
of the three utterances �asklee�	 �asklaa� and �askluu� a Boltzmann chain having eight
hidden unit states was trained on the corresponding training sequences using the second�
order damped Gauss�Newton method described in section ��
�
�
 As in the previous
example	 the
nal hidden unit state was constrained to be a particular one in order to
allow for conversion into HMMs using Mackays recipe
 Then	 pruning was performed on
each Boltzmann chain using the OBD pruning scheme
 The weights were pruned to ��
in order to put constraints into the model and this way allow for comparison between the
resulting chains and the left�to�right structure which has been found empirically to be the
optimal structure of an HMM for speech recognition �Rab���
 As before	 the value �����
was used as a �substitute� for �� and the saliencies were calculated by actually setting
the parameter in question to ����� and calculate the resulting change in cost
 The weights
B were once again left untouched due to the complications described in section ��
�
� that
were otherwise likely to arise

In Figure ��
�� is shown the evolution of the entropic cost �excluding the constant

Sec� ���� Experiments using Boltzmann chains ���

TRAIN
TEST

60 70 80 90 100 110 120 130 140
40

45

50

55

60

65

70

75

80

85

90

NUMBER OF PARAMETERS

C
O

S
T

Figure ��
��� Evolution of the relative entropy cost function for the model trained on the
�asklee� data as the parameters of a Boltzmann chain initially having eight hidden unit
states are pruned to the value ��

term of Eq
 ���
���� for the model trained on the �asklee� data as the parameters were
pruned away
 It is seen that the cost remains unchanged until �� parameters are left in
the model	 below which the cost starts to increase dramatically

The �optimal� model	 chosen as the smallest model still able to account for the data	
had �� parameters
 The parameters leading to and from three of the hidden unit states
were completely pruned away and the model was thus reduced to having
ve hidden unit
states
 In Figure ��
�� the model is illustrated after conversion to a corresponding HMM
using Mackays recipe� for convenience	 only the transition probabilities are illustrated
 The
HMM is seen to show slight signs towards the implementation of a left�to�right model
 The
rightmost state in Figure ��
�� is apparently very likely to model both the beginning as
well as the end �which it was forced to� of an utterance which corresponds to silence

The evolution of the cost for the models trained on the utterances �asklaa� and

0.953 0.808

0.108

0.071

0.165

0.084

0.053

0.583

0.391 0.609

0.047

0.876 0.799

0.288 0.036

0.129

Figure ��
��� Structure of the corresponding HMM for the �optimal� chain trained on the
�asklee� data when pruning parameters to ��

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

�askluu� was similar to Figure ��
��
 The number of hidden unit states for the chosen
models �just before the dramatic increase in training error� was six for the �asklaa�

model and seven for the �askluu� model	 even though the total number of parameters
was comparable to the optimal �asklee� model
 The three chosen models were then
combined into a recognizer and each presented with all the test utterances �all quantized
using the codebook associated with the model to which they were presented�
 Likelihoods
were computed and each test utterance was classi
ed as being the utterance associated
with the model having maximum likelihood
 This way	 the recognizer made only one error
on the �� test utterances

In order to improve the recognition	 utilization of video information was incorporated
into the model as well
 Three Boltzmann chains each having four hidden unit states were
trained on the video features alone for the utterances �asklee�	 �asklaa� and �askluu�

and pruned in the same way as the audio models
 The models were slightly reduced but
no hidden unit states were completely pruned away
 Using the resulting video models
a recognizer was created which made seven errors on the �� test utterances� recognition
based on video information only is a di�cult task

The audio and video models were then combined using a late integration strategy

The log�likelihoods of the acoustic models were multiplied with a constant � and the log�
likelihoods of the video models were multiplied with �� � ��
 After some experiments
� " ��� was found to be optimal and the complete speechreading system made zero errors
on the �� test utterances

���
���� Pruning weights to the value zero

As for the experiment identifying a teacher HMM it was also attempted to prune the
weights in the Boltzmann chains used for modeling speech to the value zero
 The left
panel of Figure ��
�� shows the evolution of the entropic cost for the model trained on
the �asklee� data as the parameters were pruned to zero
 The initial weights for the
model were the same as the initial weights for the model used in Figure ��
��
 The
evolution of the errors in Figure ��
�� and in the left panel of Figure ��
�� is seen to be
very similar
 As in the previous example	 the only di�erences occur in the area where
performance starts to degrade
 When pruning weights to the value zero the performance
is again seen to degrade more gracefully than when pruning to ��
 This is due to the
fact that the restrictions imposed on the model are less radical when setting parameters to
zero than when setting them equivalent to ��
 As long as there are plenty of parameters
in the model the e�ects of either pruning approach are easily handled by the remaining
parameters after retraining
 When model resources get scarce though	 the less restricted
model of Figure ��
�� is still capable of indirectly compensating for the lost degrees of
freedom as discussed in section ��
�
�
�

Once more the estimated saliencies were compared to the actual saliencies obtained by
setting the parameters to zero in turn and computing the change in cost
 The right panel
of Figure ��
�� illustrates the quality of the estimated saliencies by plotting them against
the actual saliencies for parameters � and A of the fully connected Boltzmann chain
 It
is seen that the estimated saliencies approximates the actual saliencies very well indeed	
and as before especially for the low saliency parameters
 Again the rank ordering of the
low saliency parameters according to estimated saliency is consistent with rank ordering
according to actual saliency leading to pruning of the correct parameters

The model from the left panel of Figure ��
�� having �� free parameters was converted

Sec� ���� Experiments using Boltzmann chains ���

TRAIN
TEST

60 70 80 90 100 110 120 130 140
40

45

50

55

60

65

70

75

80

85

90

NUMBER OF PARAMETERS

C
O

S
T

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ESTIMATED SALIENCY

A
C

T
U

A
L

 S
A

LI
E

N
C

Y

Figure ��
��� Left panel� Evolution of the relative entropy cost function for the model
trained on the �asklee� data as the parameters of a Boltzmann chain initially having
eight hidden unit states are pruned to the value zero
 Right panel� Estimated versus
actual saliencies for the fully connected Boltzmann chain

into an HMM using Mackays recipe	 for comparison with the resulting HMM when pruning
to ��
 The structure is illustrated in Figure ��
��	 again omitting the emission probabil�
ities for convenience of presentation
 Since the weights were pruned to the value zero the
corresponding HMM had non�zero transition probabilites only and thus no hidden states
were pruned away
 However	 it turned out that the transition probabilities leading to and
from three of the hidden states were extremely small and could thus be regarded as being
pruned away
 In Figure ��
��	 only transition probabilities of magnitude ����� or greater
are included
 The resulting HMM is seen to show great similarity to the structure of the
HMM in Figure ��
��� in fact	 several transition probabilities are close to being identical
in the two
gures

It was then investigated which weights that actually get pruned away
 One might sus�
pect that the weight to be pruned in each turn is simply the weight in the Boltzmann chain
with the lowest value or	 alternatively	 the weight for which the corresponding transition

0.947

0.008 0.101 0.141 0.147 0.602

0.002

0.001

0.049

0.802 0.888 0.597 0.794

0.275 0.036

0.087

0.014 0.072

0.157

0.0040.023

0.0090.015

0.096

0.115 0.012

Figure ��
��� Structure of the corresponding HMM for the �optimal� chain trained on the
�asklee� data when pruning parameters to the value zero

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

probability in an equivalent HMM is the smallest
 This was investigated for both the
example described in section ��
�
� identifying a teacher HMM as well as for the speech
recognition problem described in the present section
 The investigation incorporated ex�
amples where pruning was performed using both the value zero as well as ��
 In all
examples it turned out that there was no consistent pattern as to which weight that got
pruned away
 This was the case when looking at both weight magnitudes and when con�
verting into HMM transition probabilities
 In some cases it was even the largest weight
and the largest transition probability that got pruned away� this was however mostly the
case when an entire hidden unit state was pruned away
 The only �rule� that could be
deducted from the investigation was that when pruning parameters to the value zero it was
more likely to actually prune the weight closest in magnitude to zero than when pruning
to ��

���� Experiments using Boltzmann zippers

This section contains a description of the experiments performed using Boltzmann zippers�
the experiments focused on two problems
 The
rst problem was arti
cial and involved
determination of the nature of the correlation between two simple correlated HMMs
 The
second problem was once more the construction of a speechreading system based on both
audio and video information

������ Correlated HMMs

The
rst problem on which Boltzmann zippers were used involved identi
cation of the cor�
relation between two hidden unit states of two HMMs generating observations on disparate
time scales

Synthetic observation sequences were generated by two left�to�right HMMs
 In order
to generate observations on two di�erent time scales	 a fast model was iterated twice as
fast as a slow model
 The fast model had three hidden states and three observation sym�
bols	 the slow model had two hidden states and two observation symbols
 The rightmost
hidden states in the model were �connected� as illustrated in Figure ��
��	 increasing the
probability of making transitions to the rightmost hidden state in one model if the other
model was already in its rightmost state
 Thus	 the fast HMM was able to make direct
transitions from its leftmost to its rightmost state if the slow HMM was already in its
rightmost state
 The correlation!connection was obtained by having two separate sets of

Figure ��
��� Schematic of two �connected� left�to�right HMMs

Sec� ���
 Experiments using Boltzmann zippers ���

TRAINING AND TEST ERRORS WHEN PRUNING

NUMBER OF PARAMETERS

E
R

R
O

R

26 27 28 29 30 31 32

3.
4

3.
6

3.
8

4.
0

Train
Test

QUALITY OF SALIENCY ESTIMATES

ESTIMATED SALIENCY

A
C

T
U

A
L

S
A

LI
E

N
C

Y

10^-5 10^-4 10^-3 10^-2 10^-1 10^0 10^1

10
^-

5
10

^-
4

10
^-

3
10

^-
2

10
^-

1
10

^0
10

^1

Figure ��
��� Left panel� Cross�entropy error on training and independent test sets ����
patterns each� versus the number of bidirectional weights between units
 Pruning proceeds
from right to left	 and at the extreme left ��� weights�	 all cross connections have been
removed
 Right panel� The true saliences in a full network versus the saliencies estimated
to second order
 Note the excellent agreement over six orders of magnitude

transition probabilities for each of the HMMs	 the �original� left�to�right transitions and
an additional set of transitions with direct and increased probability connections to the
rightmost hidden state
 Whenever either the fast or the slow HMM entered its rightmost
hidden state	 the other model switched to the additional set of transition probabilities	
thus providing the correlation between the two rightmost states

Three hundred pairwise sequences of lengths �� and � �respectively� were generated	
and a fully connected Boltzmann zipper having the same number of hidden and visible
unit states as the underlying HMM models was trained	 using ��� examples for training
and ��� examples as a separate test set
 The Boltzmann zipper did not feature the hidden
unit bias weights �f and �s and the initial model thus had �� parameters
 It was trained
by gradient descent followed by the damped Gauss�Newton method
 In order to ensure
numerical stability �see section ��
�
��	 the entropic cost function was augmented by a
small quadratic weight decay term

In order to investigate the utilization of the cross�connections C only these six parame�
ters were pruned using the OBD pruning scheme
 It is not clear how the cross�connections
relate to the transition probabilities in HMMs
 Pruning all cross�connections to zero
leads to the equivalent of two independent models having their likelihoods multiplied	
whereas pruning them all to �� leads to a degenerated model
 Since the aim was to
investigate whether the cross�connections would have a signi
cant impact on the perfor�
mance or whether two separate models would do just as well it was chosen to prune the
cross�connection weights to the value zero
 After each weight elimination the remaining
parameters in the zipper were trained using the Gauss�Newton method

In the left panel of Figure ��
�� is shown the results of pruning
 Note that the errors
are left almost unchanged until the
nal cross�connection is pruned	 after which the errors

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

increase signi
cantly
 This is consistent with the model that generated the data and
indicates that the zipper has indeed captured the correlation between the two underlying
HMMs well
 This is emphasized by the fact that the test error using only one cross�
connection is slightly lower than when using more cross�connections

In �� pruning experiments such as just described it was found that in all �� cases the
value of the entropic cost was fairly constant until only a single cross�connection weight
was left	 after which the value of the entropic cost rose dramatically
 In all �� cases
the pruned zippers displayed improved generalization ability compared to the unpruned
zippers	 and of these it was found that � displayed best generalization using only a single
cross�connection weight	 as expected

In the right panel of Figure ��
�� is illustrated the quality of the saliency estimates

The estimated saliencies for the fully connected Boltzmann zipper are plotted versus actual
saliencies computed by setting parameters to zero in turn and calculating the resulting
change in training error
 Note that the estimates are in excellent agreement to the actual
saliencies even over six orders of magnitude

������ Speechreading

This section contains the results obtained when using Boltzmann zippers to create a small
speechreading system
 As described in section ��
�
�	 a speechreading system recognizes
speech based on both acoustic and visual information

As described in section ��
� the Boltzmann zipper allows for intermediate integration
of the two observation sequences �possibly on disparate time scales� from which the model
is built
 It is thus possible for the Boltzmann zipper to �discover� correlations between
observations in the two sequences and utilize this correlation to e
g
	 increase the likelihood
of being in hidden unit state a in the fast chain if the connected hidden unit in the slow
chain is in state b� refer to Figure ��
��

Intermediate integration is advantageous when building speechreading systems due
to a phenomenon known as coarticulation
 Coarticulation �Sto��� means the in�uence
of one utterance on the sound of another
 Coarticulation is also the term for the shap�
ing!rounding of the lips in a particular way in anticipation of a succeeding sound
 As an
example	 take the utterances �asklee� and �askluu�
 When pronouncing �asklee� the
lips are pulled back during the �skl� sound in anticipation of the �ee� sound that follows�
when pronouncing �askluu� the lips are rounded during the �skl� sound in anticipation
of the following �uu� sound
 By intermediate integration of the audio and video informa�
tion we can think of e
g
	 the hidden units in the acoustic chain being biased towards the
state �or states� modeling the �uu� sound of �askluu� once the hidden units are more
likely to be in the state �or states� modeling lip rounding
 Being able to utilize coartic�
ulation this way is naturally most e�ectful in noisy environments in which the quality of
the acoustic information su�ers

The speech recognition problem considered here is the same as described in sec�
tion ��
�
�	 i
e
	 constructing an isolated word recognizer for the three nonsense utter�
ances �asklee�	 �asklaa� and �askluu�
 The original aim was to create an intermediate
integration speechreading system and see whether it would be able to outperform the
corresponding late integration system	 thus verifying the theoretical advantages of inter�
mediate integration
 However	 the late integration system constructed in section ��
�
�
was able to correctly classify all the utterances in the test sets
 Therefore a signi
cantly

Sec� ���
 Experiments using Boltzmann zippers ���

larger and perhaps also more noise in�uenced data set needs to be available in order to
render the advantage of intermediate integration possible

Even though it was not possible to outperform the late integration system it was still
attempted to see if Boltzmann zippers implementing an intermediate integration system
could do just as well
 The structure chosen for the Boltzmann zippers was highly in�u�
enced by the results obtained using Boltzmann chains
 Pruning of the chains trained on
the acoustic information in section ��
�
� led to models for the three utterances with a
comparable number of parameters
 Of these	 the smallest number of hidden unit states
left in the chain was
ve	 thus the number of hidden unit states for the fast chain receiv�
ing audio information �see Figure ��
��� was set to
ve
 The chains trained on the video
information in section ��
�
� initially had four hidden unit states
 None of these were
pruned away but su�ciently many parameters were pruned away that it was decided to
try with only three hidden unit states in the slow chain of the zipper
 The motivation for
the reduction of the slow chain was mainly to keep the number of parameters in the model
as small as possible due to the limited number of training sequences

The Boltzmann zippers were trained from scratch �thus not utilizing the already op�
timized Boltzmann chains from section ��
�
�� using gradient descent followed by the
damped Gauss�Newton method� the entropic cost was augmented by a small weigth decay
term
 Then the Boltzmann zippers were pruned using the OBD pruning scheme
 Param�
eters were pruned to the value ����� equivalent to ��
 Boltzmann zippers can not be
converted into corresponding HMMs �and therefore the
nal states were not constrained
to be particular end states� but it seemed reasonable to prune to �� after all since any
�path� through the zipper involving a weight set to �� will occur with probability zero
as was found appropriate for Boltzmann chains!HMMs modeling speech
 As was the case
when pruning chains the weights connecting the hidden and visible units were not pruned

In Figure ��
�� is shown the evolution of the entropic cost �again excluding the reg�
ularization term� for the zipper trained on the �asklee� data as the parameters were

TRAIN
TEST

60 65 70 75 80 85 90 95 100 105 110
82

84

86

88

90

92

94

96

98

100

NUMBER OF PARAMETERS

C
O

S
T

Figure ��
��� Evolution of the relative entropy cost function for the model trained on the
�asklee� data as the parameters of a Boltzmann zipper initially having
ve fast and three
slow hidden unit states are pruned to ��

��	 Chapter ��� Boltzmann Chains � Zippers� A Tutorial

pruned away
 It is seen that the cost also in this case remains almost unchanged until
�� parameters are left in the model	 below which the cost starts to increase dramatically

The model having �� parameters is thus the �optimal� model as it is the smallest model
still able to account for the data
 Inspection of the resulting model revealed that two
hidden unit states in the fast chain as well as one hidden unit state in the slow chain were
completely pruned away
 The optimal Boltzmann zipper thus had only three hidden unit
states for the fast chain and two hidden unit states for the slow chain
 Due to the �biased�
parameter count mechanism explained previously we should subtract the hidden�to�visible
parameters corresponding to the pruned states and we arrive at �� active parameters for
the optimal model
 Compared to the late integration system described in section ��
�
�
the optimal Boltzmann zipper thus contains far fewer parameters
 E
g
	 the combined late
integration model for the �asklee� data contained �� parameters in total	 �� for the chain
modeling the audio information and �� for the chain modeling the video information

Similar results were obtained for the Boltzmann zippers optimized for the �asklaa�

and �askluu� data
 The three zippers were then combined into a recognition system and
presented with the �� test utterances
 As before	 the audio and video features of the test
utterances were quantized using the codebooks associated with the model to which they
were presented
 For each utterance the likelihood was computed for each of the models
and a test utterance was recognized as the utterance associated with the model having
maximum likelihood
 This way	 the Boltzmann zipper speechreading system made zero
errors on the �� test utterances

�������� Pruning weights to the value zero

As for the previous experiments it was also attempted to prune the Boltzmann zipper
parameters to the value zero
 The left panel of Figure ��
�� shows the evolution of the
entropic cost for the Boltzmann zipper trained on the �asklee� data as the parameters
were pruned to zero
 The initial weights for the zipper were the same as the initial weights
for the zipper used in Figure ��
��
 We note that both the training and test error actually

TRAIN
TEST

50 60 70 80 90 100 110
82

84

86

88

90

92

94

96

98

100

NUMBER OF PARAMETERS

C
O

S
T

10
−6

10
−4

10
−2

10
0

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ESTIMATED SALIENCY

A
C

T
U

A
L

 S
A

LI
E

N
C

Y

Figure ��
��� Left panel� Evolution of the relative entropy cost function for the model
trained on the �asklee� data as the parameters of a Boltzmann zipper initially having

ve fast and three slow hidden unit states are pruned to the value zero
 Right panel�
Estimated versus actual saliencies for the fully connected Boltzmann zipper

Sec� ���� Summary ��

decreased as parameters were removed
 This was caused by the Gauss�Newton algorithm
being able to locate lower�lying local minima during retraining of the reduced model

The interesting part of the curve is around �� free parameters left in the model
 The
training error has begun to increase again due to the restrictions imposed by pruning

However	 the test error suddenly drops to the lowest level obtained
 This is explained by
the zipper being su�ciently gracefully restricted and thereby reducing the possibilities of
over
tting the training sequences

In the right panel of Figure ��
�� is illustrated the quality of the estimated saliencies
for the fully connected Boltzmann zipper
 As previously	 the estimated saliencies are plot�
ted versus actual saliencies computed by setting parameters to zero in turn and calculating
the resulting change in training error
 As seen for the chains there is rather good cor�
respondance between the estimated and actual saliencies	 especially for the low�saliency
parameters
 Once more it is seen that for the low�saliency parameters rank ordering ac�
cording to estimated saliency is fairly consistent with ranking according to actual saliency	
thus ensuring that the correct parameter is chosen for pruning

���� Summary

This tutorial has provided an extensive description of Boltzmann chains and zippers as
well as an outline of Hidden Markov Models and Boltzmann networks	 the traditional
framework for stochastic time series modeling to which chains and zippers should be
compared
 A positive de
nite approximation to the second derivatives of the entropic cost
function was derived	 equivalent to the well�known Gauss�Newton approximation to the
second derivatives of the quadratic cost function

The second derivatives led to the introduction of second�order methods for training
of general Boltzmann networks
 The damped Gauss�Newton method was applied to both
Boltzmann chains and zippers and was found to signi
cantly speed up learning	 compared
to �batch mode� gradient descent with line search
 Central to the successful application
of second�order methods is however proper regularization of the Hessian matrix
 It was
shown how the Hessian matrix for the entropic cost function applied to Boltzmann chains
and zippers �and in fact also to general Boltzmann networks� is inherently rank�de
cient
due to the invariance of the Boltzmann distribution to changes in the overall level of the
parameters
 It was suggested to handle this problem by augmenting the entropic cost
function by a quadratic weight decay term
 The weight decay �drags� the parameters
towards a uniform value	 zero	 and biases the Boltzmann distribution towards a uniform
distribution� the weight decay thus has a smoothing e�ect on the Boltzmann distribution

Second derivatives for the entropic cost function furthermore opened up for the intro�
duction of algorithmic architecture optimization in the framework of general Boltzmann
networks	 in particular the pruning schemes Optimal Brain Damage and Optimal Brain
Surgeon
 It was discussed how we can now adopt two strategies when removing degrees
of freedom from Boltzmann networks	 namely freezing parameters at a
xed �nite value
or setting them equivalent to ��
 Pruning parameters to a
xed
nite value biases the
Boltzmann distribution towards a smoother	 uniform distribution and can thus be consid�
ered as an extreme form of weight decay� the value of pruned parameters should naturally
match the value to which parameters are �dragged� by the weight decay	 zero in this case

On the other hand	 setting parameters equivalent to �� biases the Boltzmann distribu�
tion towards a more sharply �peaked� distribution as certain state con
gurations will then
occur with probability zero
 This approach is consistent with the design of HMMs	 where

��� Chapter ��� Boltzmann Chains � Zippers� A Tutorial

certain transition probabilities are set to zero
 Both strategies can thus be theoretically
justi
ed and the choice must depend on the application in question

Both pruning strategies were applied to Boltzmann chains and zippers using the OBD
pruning scheme
 The experiments showed no signi
cant di�erence between the two ap�
proaches as long as resources in the models were plenty	 as the models were able to �re�
cover� from the pruning of completely super�uous parameters by retraining of the remain�
ing parameters
 The real di�erence was revealed in the fairly narrow interval where the
model undergoes the transition from having excess degrees of freedom to having too few

Pruning to �� led to very abrupt changes in performance as the restrictions imposed on
the model by this pruning strategy are very extreme	 whereas pruning to the
nite value
zero led to a more graceful degradation of performance on the training data
 The grace�
ful degradation is preferable as the over
tting capabilities of the model are then slowly

reduced	 thereby increasing the probability of improving generalization� abrupt changes
in performance on the training data are most likely to lead to decreased generalization
ability as well
 Successful pruning is a
ne balancing act between having slightly too many
and slightly too few degrees of freedom

Both Boltzmann chains and Boltzmann zippers were applied to a small real�world
speechreading application in order to compare the late integration strategy to the the�
oretically more appealing intermediate integration strategy
 By combining second�order
methods for training and architecture optimization by pruning	 optimally trained archi�
tectures were obtained for both model types
 In both cases the resulting speechreading
systems were able to correctly classify all utterances in a test set
 The good results us�
ing both integration strategies unfortunately render a meaningful comparison impossible

The dataset available was too small	 a larger and possibly more noise in�uenced dataset is
needed for proper comparison
 As the
eld of speechreading is still somewhat in its infancy	
no large standard databases of speechreading data exist yet
 Hopefully the near future will
bring large speechreading databases	 comparable to the TIMIT database for audio�only
based speech recognition	 enabling reliable comparisons between di�erent model types and
integration strategies

Chapter ��

Conclusion

This thesis has dealt with optimization of recurrent network structures applied to time
series modeling
 Training has been viewed as a nonlinear unconstrained function optimiza�
tion problem and architecture optimization has been obtained by pruning
 In particular
the thesis has focused on fully recurrent networks composed of a single external input	 one
layer of nonlinear hidden units and a linear output unit
 The networks have been applied
to time series prediction problems

The problem of training fully recurrent networks was analyzed from a numerical point
of view
 It was found that the training problem was rooted in ill�conditioning of the
Hessian matrix which leads to slow convergence for many training algorithms
 The causes
of ill�conditioning was found to be rooted in the modular structure of the networks leading
to a very small eigenvalue in the likely case that the outputs from two units become highly
correlated
 Further	 the high connectivity between the hidden units in a fully recurrent
network was found to cause a large eigenvalue in the case of large magnitude weights

The analysis of the training problem also explained why training is usually more di��
cult for recurrent networks than it is for feed�forward networks	 as recurrent networks are
more disposed to ill�conditioning
 The higher connectivity between recurrent network units
was found to lead to many more parameters a�ected by redundancy in case of correlated
hidden unit outputs� it was further found that the magnitude of the largest eigenvalue
grows with the number of hidden units whereas it remains unchanged for feed�forward
networks

In order to overcome the problem of ill�conditioning the cost function was augmented
by a simple quadratic weight decay term
 The simple regularizer was found to be very
e�ective as it bounded both the smallest eigenvalue as well as the largest eigenvalue of the
Hessian

Training of recurrent networks was performed using the damped Gauss�Newton method	
involving the full Hessian matrix
 Once the need for a small regularization term had been
recognized this second�order method was found to be much more e�cient than gradient
descent in terms of both quality of obtained solution and computation time required

The improvement in training was illustrated qualitatively as well as quantitatively for the
problem of predicting the laser series

Learning curves were generated for the laser and Mackey�Glass series in order to assess
the performance to expect from the applied recurrent networks
 A comparison was made
to similar learning curves for feed�forward networks and the two model types were found

���

��� Chapter ��� Conclusion

to have comparable performance� the small di�erences could possibly be eliminated by a

ne tuning of the employed weight decays

It was then examined whether single�input recurrent networks are capable of simulat�
ing the dynamics underlying the chaotic laser and Mackey�Glass series
 This was found
to be possible provided the networks had su�ciently many hidden units

A theoretical de
nition of the generalization error for dynamic systems like recurrent
networks was formulated
 It was found that in order to minimize the bias introduced
by transient e�ects when estimating the generalization error	 the test series should follow
immediately after the training series on which iterations should be initiated

In order to improve generalization ability the OBD pruning scheme was applied to
recurrent networks selected from the learning curves
 It was found that architecture opti�
mization by pruning is indeed a viable approach for fully recurrent networks as the OBD
scheme resulted in a signi
cant reduction of the estimated generalization error
 As anti�
cipated	 the largest reductions were obtained for the networks chosen from �the middle�
of the learning curves

Akaike�s Final Prediction Error estimate was tentatively applied as a stopping criterion
for the pruning procedure in order to empirically assess the relevance of this analytical
generalization error estimate for recurrent networks
 It was found that the estimator
consistently chose an architecture �close� to the one having the smallest training error
which is generally not the architecture with the best generalization ability
 Consequently	
the FPE�estimate cannot be recommended in the present context of time series prediction
using nonlinear recurrent networks
 Instead	 the choice of optimal network architecture
has to be made from the error on a validation set

The quality of the saliency estimates obtained from both the OBD and OBS pruning
schemes was examined
 It was found that OBD provides very accurate estimates of the
change in error resulting from pruning a weight
 However	 OBS was found to severely un�
derestimate the actual change in error if pruning a weight	 leading to inconsistent ranking
and thus pruning of important weights
 The underestimation was found to be caused by
ill�conditioning of the Hessian� as ill�conditioning is a commonly encountered problem for
recurrent networks OBS cannot be recommended for this network type

A novel operational tool for examination of the internal memory of recurrent networks
running in open�loop was suggested
 The tool allows for assessment of both the average
e	ective memory as well as the time�local e	ective memory of a recurrent network
 The
e�ective memory should conceptually be compared to the depth of the lag space for a feed�
forward network	 and thereby represents the time scale of the dynamics in the recurrent
network

The suggested memory measures were applied to selected networks from both the laser
and Mackey�Glass series learning curves
 The time�local memory measure revealed that
the internal memory of a recurrent network is indeed a dynamic quantity� in contrast	
the �memory� of a feed�forward network is
xed
 The average memory revealed that
there can be a large di�erence between the memories of recurrent networks having a
similar estimated generalization error� this corresponds to di�erent implementations of
the underlying dynamics

The average e�ective memory may also be seen as the average length of the transient
when initiating network iterations on a novel segment of the time series
 Consequently	
this memory measure represents the average number of iterations before predictions from

���

the network are reliable
 It is desirable that this number is small	 and the memory mea�
sure may thus be used to choose between recurrent networks having comparable estimated
generalization errors

This thesis has also dealt with the most general approach towards time series modeling	
namely modeling of the joint probability distribution function of observed	 discrete valued
time series
 In particular	 two recent recurrent network structures denoted the Boltzmann
chain and the Boltzmann zipper	 respectively	 were considered and a comprehensive tu�
torial was provided
 The derivation of an approximation to the second derivatives of the
entropic cost function lead to the successful application of second�order training by the
damped Gauss�Newton method as well as pruning by OBD to chains and zippers
 It was
discussed how two strategies can be adopted when pruning these models	 namely freezing
parameters at a
xed	
nite value or setting them equivalent to ��
 Pruning to a
nite
value �e
g
	 zero� biases the Boltzmann distribution towards a smooth uniform distribution�
on the other hand	 pruning to �� biases the Boltzmann distribution towards a sharply
�peaked� distribution
 Experiments on Boltzmann chains and zippers encompassed both
arti
cial problems as well as the construction of a small speechreading system

Suggestions to future work

The introduction of second�order methods for training and architecture optimization by
pruning has made fully recurrent networks a highly applicable model type for time series
prediction
 Single�input recurrent networks are easier to use than feed�forward networks as
it is not necessary to determine an externally provided lag space
 However	 there is still a
choice of signi
cant importance left to be made by the user	 namely the choice of a proper
weight decay�
 This choice should ideally be taken care of by an automated	 adaptive
procedure selecting the weight decay�s� as small as possible from a numerical point of
view� in order to handle the e�ects of ill�conditioning
 It was brie�y attempted during
this work to device such adaptive procedure based on ad hoc principles
 The attempts
were however not successful and the problem remains an extremely challenging task of the
future

The novel memory measure introduced in this work needs to be applied to additional
problems in order to examine its properties further and thereby hopefully establish its
relevance as a tool for characterization and interpretation of recurrent networks
 Further�
more a formally justi
ed criterion for selection of the threshold
	 indicating when the
di�erence between the estimated generalization errors is negligible	 should be developed
and tested

The examination of recurrent network memory may be taken further by attempting
to determine the structure of the memory	 i
e
	 the relative importance of each of the
input values x�t�� x�t� ��� � � � to the present network output y�t�
 Such analysis has been
dubbed the �pro
le� of the recurrent network memory
 Several approaches have been
attempted towards determination of the memory pro
le
 The attempts have included
examination of generalization ability with x�t� i� consistently set to zero when predictingbx�t#�� " y�t�	 setting x�t�i� " bx�t�i� when predicting bx�t#�� as well as making a
rst�
order approximation to the network output in each iteration	 obtained by di�erentiation

�This is the case for feed�forward networks as well�
�A proper model complexity is obtained by pruning�

��� Chapter ��� Conclusion

of the network output y�t� wrt
 the current and previous inputs
 However	 none of these
approaches have lead to clear	 interpretable results
 Future work might lead to a more
appropriate way in which to determine the memory pro
le

Finally	 preliminary experiments have indicated that the output of a recurrent network
is less sensitive to noise pertubations of the input series than the output of a feed�forward
network trained on the same problem to a comparable performance
 It would be interesting
to investigate this in more detail

Appendix A

Data set descriptions

This appendix contains a description of the two data sets on which the experiments re�
ported in this thesis are carried out
 Characteristic for both series is that they are chaotic
in nature	 relatively many data points are available and both are wellknown benchmark
series in the neural network community
 A consequence of the chaotic nature of the sys�
tems from which the series are generated is the property of sensitive dependence on initial
conditions �PC���
 This means that iterating the system from two di�erent but nearby
sets of initial conditions will lead to diverging observation sequences which eventually be�
come uncorrelated	 no matter how small the di�erence in initial conditions
 As this is a
property of the generating system itself one cannot hope for long term predictions over an
arbitrary time step no matter how accurate the model	 as even the slightest error possibly
due to
nite precision arithmetic will eventually scale up to most signi
cant decimal place

However	 accurate short term predictions are still feasible provided the time step for the
prediction does not extend too far into the future

Before introducing the series it is appropriate to describe the error measure in terms
of which results are reported in this work
 The performance of a model on a set S of
data fxtg� t � S is evaluated in terms of the Normalized Mean Squared Error according to
standard practice �WG��� 	 de
ned as

NMSE�S� �
�b��S �

jSj

X
t�S

�xt � bxt�� �A���

where b��S denotes the sample variance of the values ��targets�� in the set S	 jSj is the size
of the set and bxt is the prediction from the model to be evaluated
 Division by jSj makes
the error measure independent of the size of the set and normalization by b��S removes
the dependence on the dynamic range of the data
 This normalization implies that if
the estimated mean of the data is used as predictor	 a value of NMSE"� is obtained

The NMSE error measure has previously been denoted as the Average Relative Variance
�ARV� in the literature �WHR��	 WHR���

A�� The Santa Fe laser series

The Santa Fe laser series was part of the Santa Fe time series prediction competition
described in �WG��� where it was the series receiving the most attention
 The series is
apparently relieving the renowed sunspot data series as the benchmark series of choice in
the neural network community	 a welcomed renewal

���

��� Appendix A� Data set descriptions

Originally	 ���� points of the series were released and an object of the time series
prediction competition was to provide a prediction of the following ��� points
 Even
though originally a multi�step ahead prediction task	 this problem is gaining signi
cance
as a one�step ahead prediction problem as well which is also the problem considered in
this work
 In Figure A
� is illustrated the original ���� point training set followed by the
��� point test set which are separated by a vertical dotted line

0 500 1000
0

50

100

150

200

250

TIME

IN
T

E
N

S
IT

Y

Figure A
�� Originally provided Santa Fe laser series

The laser series was obtained as the measured intensity in an NH	 far�infrared �FIR�
laser	 which exhibit spontaneous periodic and chaotic pulsation
 The dynamics of the
intensity has been found to be described well by a set of three coupled nonlinear ordinary
�Lorenz like� di�erential equations similar to the so�called Lorenz equations
 The mea�
sured intensity of the laser was sampled at an interval of �� ns	 using an � bit resolution as
may be read from Figure A
�
 A thorough description of the Lorenz�like chaos in NH	�FIR
lasers as well as a numerical analysis of experimental data can be found in �H$ub���

After the Santa Fe time series competition had
nished a somewhat larger data set
was released	 comprising the original ���� point as well as the following ���� points	 �����
points in total
 The full series is illustrated in Figure A
�	 however scaled to zero mean
and unit variance as is common practice and performed prior to the experiments in this
work as well
 So far there has been no common agreement in the literature regarding how
to divide the extended series into a training set and a test set	 as usually only the original
shorter series is considered
 In the experiments performed on the extended series in this
work the
rst ���� points of the series have been set aside for training and the following
���� points have been used as a test set

A���� Attractor dimension for the laser series

Characteristic for chaotic systems is that as iterations progress	 the orbit!trajectory of
the internal state vector displays �chaotic� behaviour which from a practical point of view
may be de
ned as a steady�state behavior that is not an equilibrium point	 not periodic	
and not quasi�periodic as there is no widely accepted strict de
nition of chaos �PC���
 The
limit set of a chaotic system	 i
e
	 the geometrical object in state space to which chaotic

Appendix A� Data set descriptions ���

1 1000 2000 3000
−5

0

5
SANTA FE LASER SERIES

4000 5000 6000 7000
−5

0

5

7001 8000 9000 10000
−5

0

5

Figure A
�� The complete laser series	 scaled to zero mean and unit variance

orbits!trajectories of the state of the system are attracted is called a strange attractor
 As
of yet there is no generally agreed upon de
nition of a strange attractor �PC���	 as it is not
a simple geometrical object like a circle or a torus
 A characteristic of a strange attractor
is that it is a quite complex geometrical structure which possesses a fractal dimension
�PC���	 i
e
	 a dimension which is non�integer

A main e�ort in the literature attempting to characterize chaotic dynamic systems has
been put into the de
nition and determination of the dimension of the strange attractor

Usually it is not possible to access the state vector internal to the system directly	 but a
consequence of Takens theorem outlined in section �
� is that the orbit which is traced
out by a delay coordinate embedding of time�delayed measured outputs from the system �a
lag space vector of dimension L� preserves geometrical invariants of the system
 E
g
	 the
embedding has an attractor with the same dimension as that of the system itself	 provided
su�ciently many delay coordinates L are used �CEFG��	 PS���

Many de
nitions on how to determine the fractal dimension of a strange attractor
have been suggested in the literature	 see e
g
	 �PC��� for an overview
 The dimensions
considered here are a set of numbers Dq known as generalized dimensions �PS���	 obtained
by a box counting technique
 Consider an embedding in L�dimensional delay space
 If
the system attractor is covered by L�dimensional boxes having side length l in units of an
arbitrary side length l�	 then

Dq � �

q � �
lim sup
l��

log �
P

i p
q
i �

log�l�l��
� �A
��

where pi is the measure �i
e
	 the fraction� of the attractor in box i and the sum is only
over occupied boxes
 In practice	 the limit is not calculable with
nite data but it is usual
to assume that for small	
nite l�l� the sum will scale as �l�l��

�Dq
 For
nite data the
measure in the ith box is estimated as pi " ni�n	 where ni is the number of points in
the ith box and n is the total number of points
 The generalized dimension Dq is then
estimated as the slope of a straight�line region on a log�log plot of the sum in Eq
 �A
��
vs
 the relative box side length l�l�	 obtained for a range of decreasing box side lengths l

��	 Appendix A� Data set descriptions

The dimension D� is denoted the capacity dimension	 or simply the box�counting di�
mension	 D� is denoted the information dimension and D� is denoted the correlation

dimension� while Dq is de
ned for all real q �PS��� the interest is usually con
ned to these
three dimensions
 In this work an extremely fast and highly recommendable box count�
ing algorithm for estimation of Dq originally suggested in �LT��� and elaborated upon in
�PS��� has been implemented� refer to �PS��� for a detailed description of the algorithm

In practice when determining the dimension of a strange attractor the dimension de�

ned by Eq
 �A
�� is estimated for a series of increasing embedding dimensions L
 Once
L is su�ciently high Dq will saturate at the attractor dimension of the system
 This is
illustrated for the ����� point laser series in Figure A
�� in particular	 the correlation
dimension D� has been considered here in order to compare with results obtained in the
literature
 Further	 for the laser data the embedding was performed using a delay time
� " � between the data points in order to be consistent with �PS���
 From Figure A
�
it is seen that the correlation dimension saturates at embedding dimension L " � and is
estimated to D�
 ���� by averaging the values obtained at L " �� �� �
 These results are
equivalent to what was obtained and illustrated for the laser series in �PS���

As in �PS��� the attractor is illustrated in a phase space plot of dimension two in
order to visualize the nature of the attractor	 even though we cannot expect the ����
dimensional attractor to be embedded in less than
ve dimensions according to Takens
theorem
 Figure A
� shows the phase space plots for both the initial ���� points as well
as the full set of ����� points	 as the structure of the attractor shows more clearly using
fewer points	 possibly due to the measurement noise introduced by the ��bit sampling

Note the �wheel��like structure of the attractor with �spokes� emanating from the center

2.21

1 2 3 4 5 6 7 8 9
1.7

1.8

1.9

2

2.1

2.2

2.3

EMBEDDING DIMENSION

C
O

R
R

E
LA

T
IO

N
 D

IM
E

N
S

IO
N

SANTA FE LASER DATA SERIES

Figure A
�� Estimation of the correlation dimension D� for the laser series using an
increasing embedding dimension
 The series is embedded using a delay time � " �

Appendix A� Data set descriptions ��

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

X(t)

X
(t

−
2)

1000 POINTS

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

X(t)

X
(t

−
2)

10000 POINTS

Figure A
�� Phase space plots for the laser series
 Left panel� ���� data points
 Right
panel� ����� data points

A�� The Mackey�Glass series

The Mackey�Glass time series is a chaotic time series obtained by integration of a time�
delay di�erential equation	

d x�t�

d t
" �b x�t� # a

x�t� ��

a# x�t� ��c
� �A
��

where a	 b and c are constants and � is the delay parameter
 The equation was originally
proposed in �MG��� as a model of white blood cell production
 It is common practice to
take the constants as a " ���	 b " ��� and c " ��
 The nature of the behaviour of the
equation is determined by the delay � 	 for � � ���� the equation has a chaotic �strange�
attractor� the series used in this work were obtained using � " �� and a sampling period
of &t " �
 The data set that was available for this work comprised ���� data points	
extracted after the iterates had settled on the attractor� Figure A
� illustrates a section
of the data

For the Mackey�Glass series it is common practice �e
g
	 �SUH��	 MD��� and �SHLR��	
HRSL���� to implement a six step ahead predictor	 i
e
	 in the case of modeling using a
feed�forward network	 the prediction bx�t� of x�t� is obtained from a lag space x�t� "
�x�t� ��� x�t� ���� � � �� thus using a delay time of � " � between samples

A���� Attractor dimension for the Mackey�Glass series

As for the laser series the attractor correlation dimension D� de
ned by Eq
 �A
�� was
estimated on the ���� point Mackey�Glass series by use of the e�cient box counting
algorithm adopted from �PS���
 Figure A
� illustrates the correlation dimension estimates
obtained for increasing embedding dimension L	 using a delay time � " � between data
points
 It is seen that the dimension estimate saturates at embedding dimension L " �
and is etimated to D�
 ���� by averaging the values obtained at L " ���
 In �GP��� the
correlation dimension was estimated to D�
 ���� and in �Wul��� the result D�
 ���� was
obtained
 The small di�erence between these values and the value obtained in Figure A
�

��� Appendix A� Data set descriptions

0 200 400 600

0.5

1

TIME

V
A

LU
E

Figure A
�� A section of the Mackey�Glass chaotic time series

is probably due to the smaller data set used here and the fact that the estimates in �GP���
and �Wul��� were not obtained by use of a box counting technique but rather by use
of a correlation sum technique� refer to page ��� in �PS��� for a description of various
techniques
 Even if the dimension estimate obtained here might be slightly biased the
main purpose has not been to accurately determine the dimension of the attractor but
rather to provide a reference towards which the attractors generated by network models
can be compared	 using the same estimation tool

In Figure A
� the attractor for the Mackey�Glass series is illustrated in a phase space
plot	 using the ���� point data set embedded in three dimensions using a delay time � " �

Note the beautifully curled band�like structure

1.92

1 2 3 4 5 6 7
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

EMBEDDING DIMENSION

C
O

R
R

E
LA

T
IO

N
 D

IM
E

N
S

IO
N

MACKEY−GLASS SERIES

Figure A
�� Estimation of the correlation dimension D� for the Mackey�Glass series

Appendix A� Data set descriptions ���

0.4
0.6

0.8
1

1.2
1.4 0.4

0.6
0.8

1
1.2

1.4
0.4

0.6

0.8

1

1.2

1.4

X(t)
X(t−6)

X
(t

−
12

)

Figure A
�� Phase space plot for the Mackey�Glass data using ���� data points

���

Appendix B

Layered vs� non�layered update of
recurrent networks

As described in section �
�
� the recurrent networks considered in the present work are
layered	 i
e
	 the units are divided into a number of sequential layers
 In each iteration of
operation the units in the network are updated layer by layer	 feeding the outputs from
preceeding layers to the inputs of the following layers in the same way as is done for
feed�forward networks� this update may also be comprehended as an asynchronous update
as the units are not updated simultaneously
 In the present work the recurrent networks
considered are restricted to a single hidden layer followed by an output unit but the layered
concept may be extended to an arbitrary number of hidden layers as illustrated in e
g
	
�Ped���

In numerous presentations	 e
g
	 �WZ��	 RF��	 KZM���	 the update of the units in the
recurrent networks considered is performed in a synchronous manner	 i
e
	 all units in the
network are updated simultaneously in each iteration of operation
 This updating scheme
leads to non�layered networks meaning that all the units in the network	 including des�
ignated output units	 can be perceived as belonging to the same layer
 This non�layered
construction will however lead to reduced modeling capability of the resulting recurrent
networks	 compared to the layered construction
 This will be demonstrated in the follow�
ing

For convenience of presentation we will focus on recurrent networks receiving a single
external input x�t� and having a single output y�t�� for the layered networks a single
hidden layer will be assumed
 However	 the results of the following analysis will apply
generally

Whether working from a layered or non�layered construction	 the outputs sj�t� from
the Nh hidden units which are not producing externally available outputs are computed
as

si�t� " f

�� NhX
j��

wijsj�t� �� # wioy�t� �� # wixx�t� # wib

� � �B
��

i
e
	 based on �internal� information from the previous time step t � � only as well as
external information for the present time step t
 Here	 wij is the weight to hidden unit i
from unit j	 wio weights the previous output unit output	 wix weights the external input
and wib is the bias weight for unit i

���

��� Appendix B� Layered vs� non
layered update of recurrent networks

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

-1z -1z -1z

s (t-1) s (t-1)12s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........z-1

y(t-1) +1

y(t)

x(t)

Figure B
�� Non�layered recurrent network construction

Non�layered recurrent networks seem to be inspired from synchronous state machines
�Koh��� from the
eld of Finite State Automata as the output unit is updated �or �clocked��
at the same time as the hidden units	 thus at time step t also being updated from the states
of the units �the �state vector�� from the previous time step t� �
 Using the non�layered
construction	 the output unit output at time t is thus computed as

y�t� "

NhX
i��

woisi�t� �� # wob �B
��

where woi is the weight to the output unit from hidden unit i and wob is the output unit
output
 Figure B
� illustrates a non�layered recurrent network construction

Layered recurrent networks on the other hand are inspired from feed�forward networks
as the output of the output unit at time step t is based on the hidden unit outputs at the
same time step t	 which are computed prior to computing the output unit output
 Using
the layered construction	 the output unit output at time t is therefore computed as

y�t� "

NhX
i��

woisi�t� # wob �B
��

Figure B
� illustrates a layered construction of a recurrent network which is otherwise
similar to Figure B
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��
��
��

-1z -1z -1z

s (t-1) s (t-1)1 x(t)

+1

2

y(t)

s (t-1)Nh

s (t) s (t) s (t)1 2 Nh

..........z-1

y(t-1) +1

Figure B
�� Layered recurrent network construction

Appendix B� Layered vs� non
layered update of recurrent networks ���

When modeling using recurrent networks it is necessary to specify an initial value
for the units in the network when starting iterations at the
rst time step
 Assuming
that the
rst time step where the network produces an output is t " � it is customary
�WZ��� to set the previous values of the hidden units and the output unit to zero	 i
e
	
si��� " � � i " �� � � � Nh and y��� " �

If modeling using a non�layered recurrent network it is obvious from the initial value of
the hidden units inserted into Eq
 �B
�� that the initial output from the network at time
t " � will be identical to the output unit bias wob which will not be appropriate for most
modeling tasks
 Furthermore	 as the output y�t� at time step t is based on the hidden unit
outputs si�t� �� from the previous time step	 it is evident from Eqs
 �B
�� B
�� that the
output y�t� is not based on the most recent external input x�t�	 but rather the external
input x�t� �� from the previous time step
 This will be inappropriate for most modeling
tasks as well

When modeling using a layered recurrent network however	 it is straightforward to see
from the initial unit values inserted into Eq
 �B
�� and Eq
 �B
�� that the initial output
from the network at time t " � is identical to the output from a simple one�input feed�
forward network
 Furthermore	 as the output y�t� at time step t is based on the hidden
unit outputs si�t� from the same time step	 it is evident from Eq
 �B
�� inserted into
Eq
 �B
�� that the output y�t� is indeed based on the most recent external input x�t�
which seems appropriate for most modeling tasks

It should be evident from the observations described above that a non�layered con�
struction of the units in a recurrent network will lead to reduced modeling capability for
most tasks whereas the modeling abilities of a layered network are more appropriate
 In
the following the di�erences between the two updating schemes will be illustrated for a
time series prediction task

B�� Simple example for comparison

The di�erences between a layered update and a non�layered update of the units in a
recurrent network will now be illustrated for simple one hidden unit networks applied to
a one�step ahead time series prediction problem
 As above	 the networks receive only a
single external input x�t� and the network output y�t� at time step t corresponds to the
prediction bx�t# �� of the input series in the following time step

For the non�layered recurrent network	 the output at time step t is calculated as

bx�t# �� " y�t�

" wo�s��t� �� # wob �B
��

" wo�f �w��s��t� �� # w�oy�t� �� #w�xx�t� �� # w�b� # wob

as seen from Eqs
 �B
�� B
��
 Inserting initial values at time t " � we obtain an inital
prediction as bx��� " y��� " wob �B
��

which is likely to be a very poor prediction
 If using feedback connections from the output
unit back to the hidden units as in this example	 the poor initial prediction is fed back
into the network and used for future predictions� this might introduce a signi
cant error
in the following predictions as well
 By inspection of Eq
 �B
�� we furthermore note that
the predictions bx�t#�� are not based on the immediately preceeding value x�t� but rather

��� Appendix B� Layered vs� non
layered update of recurrent networks

on x�t � �� and earlier through the feedback
 The non�layered recurrent network is thus
implementing a two�step ahead predictor and not a one�step ahead predictor as intended

For the layered recurrent network the output at time step t is calculated as

bx�t# �� " y�t�

" wo�s��t� # wob �B
��

" wo�f �w��s��t� �� # w�oy�t� �� # w�xx�t� #w�b� # wob

as seen from Eq
 �B
�� and Eq
 �B
��
 Inserting initial values at time t " � into this
equation we obtain an inital prediction as

bx��� " y��� " wo�f �w�xx��� # w�b� # wob �B
��

which is recognized as the output from a simple one�input feed�forward network
 This
prediction is likely to be far better than the output unit bias in its own
 By inspection of
Eq
 �B
�� we note that the predictions bx�t#�� are indeed based on values x�t� and earlier	
implementing a one�step ahead preditor as desired

One may argue that if the output unit of the non�layered network in the example above
received the external input x�t� in line with the hidden units it would implement a one�step
ahead predictor as well
 This is indeed so but the modeling capabilities of the non�layered
network would in this case still be reduced compared to the layered network
 This is so
since the model output y�t� would be linear in x�t� and non�linear only in x�t � �� and
earlier external inputs
 In contrast	 the layered network is non�linear in x�t� and earlier
inputs	 allowing for implementation of more complex output functions	 making the layered
construction the preferable choice when modeling using recurrent networks

Appendix C

Iterative computation of the
inverse Hessian

This appendix contains an analysis of the computational complexity of a standard method
for iterative computation of the inverse Hessian of e
g
	 the quadratic cost function
 The
method involves the matrix inversion lemma and is central to the application of second
order methods for online training of adaptive models �Lju���	 which would otherwise be
computationally intractable

Iterative computation of the inverse Hessian may also be applied to o%ine model adap�
tion in order to avoid e
g
	 solving a linear system of equations when training using the
Gauss�Newton method
 Also	 when performing architecture optimization using the OBS
pruning scheme	 a seemingly computationally costly matrix inversion may be avoided if
the inverse is computed by the iterative method	 as suggested in �HS���
 However	 care�
ful accounting of the computational costs reveals that the iterative method will generally
require more operations than o%ine computation of the Hessian followed by a matrix in�
version
 This will be detailed in the following

In order to iteratively compute the inverse Hessian it is required that the Hessian
matrix itself is computed incrementally from a recursive expression of the form	

Ht " Ht�� # ut 	 gt gTt � t " �� � � � � T � H� "
 � �C
��

Here	 Ht denotes the Hessian of the cost function computed from the
rst example up
to example t	 T denotes the total number of training examples	 ut is a scalar and gt is a
vector
 If the HessianH to be computed is the Gauss�Newton approximation to the second
derivatives of the quadratic cost function then the vector gt denotes the partial derivatives
of the model output for example t and the scalar ut is constantly one� refer to Eq
 ��
���

Iterative computation of the inverse Hessian may also be applied to the approximation of
the second derivatives of the entropic cost function for Boltzmann networks Eq
 ���
���

In this case gt denotes the partial derivatives of the log likelihood of the model generating
example t and ut denotes the �target� probability for example t

Provided that the Hessian can be brought on a form equivalent to Eq
 �C
�� it is
possible to compute the inverse from a standard lemma for matrix inversion	

�A#BCD��� " A�� �A��B
�
C�� #DA��B

 ��
DA�� � �C
��

���

��	 Appendix C� Iterative computation of the inverse Hessian

Letting A " Ht��	 B " DT " gt and C " ut we obtain

H��
t " H��

t�� �
H��

t�� gt g
T
t H

��
t��

u��t # gTt H
��
t�� gt

� t " �� � � � � T � H��
� " ���I � �C
��

In order to �get the iterations going� we need to start from an initial inverse H��
� di�erent

from zero
 If the cost function is augmented by a simple weight decay Eq
 ��
��� the initial
inverse comes natural as the inverse of the second derivatives of the weight decay term	
���I	 where I denotes the identity matrix
 Otherwise	 � must be set to a small value	
thus introducing a small error in the inverse

We will now analyze the number of operations required to compute the inverse Hessian
from Eq
 �C
��
 For simplicity the analysis will focus on the number of multiplications and
divisions entering the fraction as these operations are computationally more costly than
additions and subtractions �Hay���
 As the total number of additions and subtractions
will be approximately equal to the total number of multiplications and divisions	 the
computing time required for the latter operation types will thus be dominating
 One
may argue that the subtraction in Eq
 �C
�� will amount to a substantial amount of
computation which ought to be included in the analysis
 However	 the resulting count of
subtractions is to be compared to Eq
 �C
�� involving an equivalent number of additions

When making the comparison the omitted computations will cancel out and thus not
in�uence the comparison	 justifying the focus on multiplications and divisions

In the analysis the symmetry of the Hessian will be taken into account	 i
e
	 H�� g "
�gTH���T
 This way	 the most e�cient way of computing the fraction entering Eq
 �C
��
is to initially compute the vectorH��

t�� gt " �gTt H
��
t���

T " v�
 From the resulting vector v�
we compute the term gTt H

��
t�� gt as the dot product vT� 	gt and calculate the denominator

which is denoted denom
 From the vector v� we form a vector v� as v� " H��
t�� gt�denom

and we
nally compute the fraction as the outer product between v� and v�	 naturally
utilizing the symmetry of the resulting matrix appropriately

If we let n denote the dimensionality of the Hessian corresponding to the number of
parameters in the model	 the operations needed to form the fraction in each iteration of
Eq
 �C
�� are distributed as follows�

H��
t�� gt � gTt H

��
t�� " n�

gTt �H��
t�� gt� " n

H��
t�� gt � denom " n

�H��
t��gt � denom� �gTt H

��
t��� " n�n# ����

�C
��

In total the iterative computation of the inverse Hessian matrix H�� amounts to T �	�n
�#

�
�n�	 where T as previously denotes the total number of training examples
 This number
is to be compared to the operations count for computing the Hessian H from Eq
 �C
��	
followed by a matrix inversion
 Assuming that the constant ut is di�erent from unity
the total number of operations required for computing the Hessian H amounts to T �n#
n�n#����� " T ���n

�# 	
�n�	 again utilizing symmetry
 Add to this the cost of inverting the

Hessian matrix by e
g
	 Gauss�Jordan elimination which costs approximately n	 operations
�PFTV���

Comparing the operations counts for the two approaches towards obtaining the inverse

Appendix C� Iterative computation of the inverse Hessian ��

Hessian matrix	 we see that the iterative method will be preferable provided that

n	 # T ���n
� # 	

�n� � T �	�n
� # �

�n�
m

n � �
�T

�
� #

p
� # ��T

�

 T

�C
��

i
e
	 if the number of parameters in the model exceeds the number of training examples

This will generally not be the case when training adaptive models	 as training in this
case forms an ill�posed problem
 Rather	 the number of parameters will generally be
signi
cantly less than the number of training examples in order to obtain better determined
parameters and thus improved generalization ability

The iterative method for computing the inverse Hessian is sometimes promoted based
on its cost scaling as O�n�� whereas the traditional matrix inversion scales as O�n	�

This argument is perfectly sound in the framework of online methods	 but for o%ine
computations the number of parameters n is no longer the dominating factor� the number
of training examples T is
 Therefore the iterative method will generally require more
computations than the �standard� method and is therefore not recommendable for o%ine
learning

���

Appendix D

Eigenvalue analysis in terms of the
Jacobian

This appendix provides the mathematical prerequisites for an analysis of the condition
number of a Hessian matrix as well as the magnitudes of the smallest and largest eigenval�
ues in terms of columns of the Jacobian matrix
 The material presented in this appendix
is an elaboration on material presented in �SBC���
 It will be demonstrated that an in�
creasing collinearity between columns of the Jacobian leads to a decrease of the smallest
Hessian eigenvalue and that an increasing disparity between the lengths of the Jacobian
columns leads to an increase of the largest Hessian eigenvalue

We start by formulating

Corollary D�� Let J " �j�� � � � � jn� be a column partitioning of J � �m	n � m � n� If

Jr " �j�� � � � � jr� then for r " �� � � � � n� �

���Jr��� � ���Jr� � ���Jr��� � � � � � �r�Jr��� � �r�Jr� � �r���Jr��� �

Proof
 This corresponds to Corollary ����� in �GL���
 �

The Corollary says that by adding a column to a matrix	 the largest singular value increases
and the smallest singular value is diminished
 This leads to the following Proposition	

Proposition D�� Let A be a submatrix of J consisting of columns of J� Then ��A� �
��J��

Proof
 This follows from repeated application of Corollary D
�
 �

The e�ects of Corollary D
� and Proposition D
� are the possibilities of investigating the
singular values and thus the condition number of a matrix J in terms of a submatrix A

From Propostition D
� it immediately follows that

��H� " ��JTJ� " ���J� � ���A� " ��ATA� �D
��

stating that the condition number of a matrix H " JTJ can be examined in terms of a
submatrix A consisting of columns of J
 We now formulate

���

��� Appendix D� Eigenvalue analysis in terms of the Jacobian

Proposition D�� Let A " �x y� � �m	� and suppose that the angle � between x and y

is small so that cos �
 ��
�

� � Then

���A� �
�

����� ���
	
�kxk�
kyk� #

kyk�
kxk� # �

�
�

Proof
 The square of the condition number of A is obtained as the condition number of
G " ATA
 The eigenvalues of G are non�negative and are obtained by solving

�� � �
�
xTx# yTy

�� �
yTx 	 xTy � xTx 	 yTy� " � �D
��

The solutions are obtained as

� "
�

�

�
xTx# yTy �

q
�xTx# yTy�� # � ��xTy�� � xTx 	 yTy�

�
�D
��

"
�

�

�
xTx# yTy �

q
�xTx� yTy�� # ��xTy��

�
�D
��

The condition number of G is calculated as ��G� " �max��min and we obtain

��G� "
xTx# yTy #

p
�xTx� yTy�� # ��xTy��

xTx# yTy �
p

�xTx# yTy�� # � ��xTy�� � xTx 	 yTy� �D
��

"

h
xTx# yTy #

p
�xTx� yTy�� # ��xTy��

i�
� �xTx 	 yTy � �xTy���

�D
��

�
� xTx# yTy ��

� �xTx 	 yTy� �xTy���
�D
��

where the square root is neglected for simplicity
 Since we assume that cos � " x
T
y

kxk
kyk "

��
�

� we have �xTy�� " ���
�

� �
�xTx 	 yTy
 Inserting into �D
�� leads to

��G� �
� xTx# yTy ��

�
h
�� ���
�

� �
�
i
xTx 	 yTy

"
�

����� ���
	
�kxk�
kyk� #

kyk�
kxk� # �

�
� �

Proposition D
� combined with �D
�� puts a lower bound on the condition number of
a matrix H " JTJ
 Taking A in Proposition D
� to be composed of two columns of J we
learn that the condition number will grow large if two �or more� columns of J grow nearly
collinear	 leading to a small �
 Furthermore	 we learn that the condition number will grow
if the length of some columns of J grow large compared to the length of other columns	
i
e
	 if a large column length disparity arise

The proposition in itself does however not inform us about how these situations will
a�ect the smallest and the largest eigenvalues of H individually as the proposition relates
to their ratio only
 We may however investigate these eigenvalues in terms the submatrix
A as well since

�max�H� � �max�A
TA� �D
��

�min�H� � �min�A
TA� �D
��

Appendix D� Eigenvalue analysis in terms of the Jacobian ���

which follows from the fact that the eigenvalues of H are obtained as the square of the
singular values of J �refer to section �
�� combined with Corollary D
�

In order to determine the e�ects of column collinearity and column length disparity
on the individual eigenvalues we must investigate �D
��D
�� during these situations
 We
will
rst consider the situation where � becomes small	 corresponding to two columns A
of J being nearly collinear
 In order to focus on the e�ects of a decreasing � only we will
assume that the lengths of the columns are equivalent	 xTx
 yTy
 In this case the square
root entering Eq
 �D
�� may be calculated as�

�xTx� yTy�� # ��xTy��
 �
� �D
���

"

�
�xTx�� � �xTx 	 yTy # �yTy�� # ��� � ��

�
��xTx 	 yTy

� �

�

�D
���

where we used �xTy�� " �� �
�

� �
�xTx 	 yTy
 Using xTx
 yTy and collecting terms we

obtain �
xTx 	 yTy

�
�xTx��

xTx 	 yTy #
�yTy��

xTx 	 yTy � � # ��� � ��

�
��
�� �

�

�D
���

�
�xTx 	 yTy��� ��

�
��
� �

�

�D
���

 xTx�� � ��� �D
���

Inserting this result into �D
�� we obtain

�max
 �

�

�
xTx# yTy # xTx��� ���

�D
���

 �xTx �D
���

and

�min
 �

�

�
xTx# yTy � xTx��� ���

�D
���

 ��

�
xTx �D
���

From these results we learn that the overall scale of the eigenvalues is determined by
kxk�
 kyk� and that the smallest eigenvalue scales as
�

�
 Thus	 assuming constant and
comparable column lengths in J and increasing collinearity	 the smallest eigenvalue of H
will decrease as
�

� while the largest eigenvalue will remain unchanged

The second situation that we learned from Proposition D
� would lead to a growing

condition number of H " JTJ is when an increasing disparity between the lengths of some
columns of J arise This situation corresponds to e
g
	 xTx� yTy
 In this case the square
root entering �D
�� may be calculated asq

�xTx# yTy�� # � ��xTy�� � xTx 	 yTy� �D
���

"
q

�xTx# yTy�� # � �xTx 	 yTy cos� � � xTx 	 yTy� �D
���

"
q

�xTx# yTy�� # �xTx 	 yTy �cos� � � �� �D
���

��� Appendix D� Eigenvalue analysis in terms of the Jacobian

where we used cos� � " �xTy��

xTx
yTy

 Using cos� � # sin� � " � we obtainq

�xTx# yTy�� � �xTx 	 yTy sin� � �D
���

" �xTx# yTy�

s
�� �xTx 	 yTy sin� �

�xTx# yTy��
� �D
���

As we are assuming xTx� yTy the fraction within the square root will be small	 and we
may use the approximation

p
� # x
 � # x

� to obtain

�xTx# yTy�

�
�� �xTx 	 yTy sin� �

�xTx# yTy��

�
�D
���

" xTx# yTy � �xTx 	 yTy sin� �

�xTx# yTy�
�D
���

 xTx# yTy � �yTy

�
�� � ��

�

�
�D
���

in which we once more used xTx � yTy as well as the expansion	 sin� �
 �� �
�

	

Inserting into �D
�� we obtain

�max
 �

�

�
xTx# yTy # xTx# yTy � �yTy

�
�� � ��

�

��
�D
���

 xTx �D
���

and

�min
 �

�

�
xTx# yTy � xTx� yTy # �yTy

�
�� � ��

�

��
�D
���

" yTy

�
�� � ��

�

�
�D
���

 yTy�� �D
���

From these results we learn that in the case of a large di�erence between column
lengths	 xTx� yTy	 the largest eigenvalue is determined by the largest magnitude vector
x and the smallest eigenvalue is determined by the smallest magnitude vector y
 Thus	
other factors being equal	 growth in the length of a column in J will lead to a growth in
the largest eigenvalue of H while the smallest eigenvalue will remain unchanged
 Further	
if at the same time the length of the shorter column and possibly the angle between the
two columns decrease	 then the smallest eigenvalue will decrease as well

The analysis in this appendix relates in a natural way to a Jacobian matrix J and
the corresponding �Gauss�Newton approximation to the� Hessian matrix H " JTJ
 To
summarize the analysis it has been demonstrated how near collinearity between some
columns of the Jacobian will lead to small eigenvalues of the Hessian while the largest
eigenvalue remains una�ected
 Furthermore it has been demonstrated how growth in the
length of some columns of the Jacobian compared to the length of other columns will lead
to an increase of the largest eigenvalue of the Hessian only
 The resulting e�ect of these
situations is naturally an increasing condition number of the Hessian

Appendix E

Perturbation analysis

This appendix contains an analysis of the in�uence of the condition number of a square
matrix on the solution when solving a system of linear equations in the presence of errors

The analysis is focused around the in�uence on the solution when the matrix or the right�
hand side are encumbered with small errors	 possibly due to
nite precision arithmetic
resulting in accumulated rounding errors during the formation of these quantities

The condition number of a �non�singular� square matrix A is de
ned generally as

��A� " kAk kA��k �E
��

where k 	 k denotes a matrix norm induced from a corresponding vector norm
 In the case
of the matrix norm being induced from the l��norm	 a
k
a
 the Euclidean norm	 and the
matrix A being symmetric	 this de
nition coincides with the de
nition of the condition
number de
ned in terms of an SVD decomposition for a general matrix	 as described in
section �
�
 The norm of a matrix multiplied by a vector satis
es

kAxk � kAk kxk �E
��

which will be made use of in the following
 Consider the system of linear equations

Ax " b �E
��

where A is assumed to be square and non�singular
 The exact solution to this system is
given by

x " A��b �E
��

We will now analyse the e�ects of small perturbations of A and b in terms of the condition
number
 Such perturbations might arise due to e
g
	
nite precision arithmetic and accu�
mulated rounding errors during the computation of these quantities
 In order to simplify
the analysis we will consider perturbations of the lefthand side A and the righthand side
b separately
 The subsequent perturbation analysis is adopted from �GMW��	 DS���

Suppose that the righthand side of Eq
 �E
�� is perturbed to b # �b and the exact
solution to the perturbed system is x# �x	 i
e
	

A�x# �x� " b# �b
m

A�x " �b
�E
��

���

��� Appendix E� Perturbation analysis

where ��� denotes a small change
 The solution to the reduced system is obtained as

�x " A���b � �E
��

By use of Eq
 �E
�� and corresponding vector and matrix norms we obtain

k�xk � kA��k k�bk � �E
��

From the �original� system Ax " b we similary obtain

kbk � kAk kxk � �

kxk �
kAk
kbk � �E
��

By combination of the inequalities in �E
�� and �E
�� we obtain

k�xk
kxk � kAk kA��k k�bkkbk " ��A�

k�bk
kbk �E
��

where k�xk�kxk is the relative error of the solution

Similary	 if instead the lefthand side of Eq
 �E
�� is perturbed by �A then the perturbed

system may be written as

�A# �A��x # �x� " b

m
A�x# �A�x# �x� " �

m
�x " �A���A�x # �x�

�E
���

where ��� once more denotes small changes
 Two applications of �E
�� using corresponding
vector and matrix norms lead to

k�xk � kA��k k�A�x # �x�k � kA��k k�Ak k�x # �x�k �E
���

which may be rearranged as

k�xk
k�x# �x�k � kA��k kAk k�AkkAk � �E
���

from which we obtain

k�xk
kxk
 k�xk

k�x# �x�k � kA��k kAk k�AkkAk " ��A�
k�Ak
kAk � �E
���

In both cases	 the relative change in the solution x to Eq
 �E
�� due to perturbations
of the data is bounded by the relative change in the data multiplied by the condition
number of A
 The results indicate that if the condition number is �large�	 the solution
may be changed substantially by even small changes in the data
 The condition number of
the matrix A is therefore a measure of the sensitivity of the system Eq
 �E
�� to changes
in the data	 in terms of the ratio of the maximum to the minimum stretch induced by
A
 In the case of a large condition number the system of linear equations is said to be
ill�conditioned

Note that the perturbation analysis above has concerned the exact solution of a system
of linear equations and therefore addresses an inherent characteristic of the mathematical

Appendix E� Perturbation analysis ���

problem
 In practice the system is however solved using
nite precision arithmetic which
may in itself lead to inaccuracies in the obtained solution
 The nature of the inaccuracies
introduced by the solver were analyzed in �Wil��� where it was shown that when using

nite precision arithmetic to solve a system Ax " b	 the inaccurate solution ex obtained is
equivalent to the exact solution to a perturbed system	 �A # �A�ex " b
 This analysis is
referred to as the Wilkinson backward error analysis in the literature
 The analysis shows
that k�Ak�kAk in �E
��� is limited to a constant k times the machine precision
 �de
ned
below� so that the relative error of the exact solution x is bounded by ��A� 	 k 	
� hence	
the condition number of the matrix is once more found to play a decisive r.ole

From the analyses above we learn that in order for the obtained solution to be consid�
ered trustworthy it is required that

��A�
k�Ak
kAk � � � �E
���

and it is consequently of interest to determine in practice when the system should be
considered too ill�conditioned for this to hold
 In order to determine a bound on the
condition number it is necessary to take the �oating point formats in which real numbers
are stored in computers into account� the reader is referred to �Gol��� for an excellent
introduction to �oating point formats and �oating point arithmetic
 A key measure of
any �oating point format is the machine precision
 The machine precision	 or the machine
epsilon
	 is de
ned as the largest relative rounding error with which a real number is
stored in a
nite precision �oating point representation
 For the widely adopted IEEE
��� ���bit �oating point standard using base � " � the signi�cand is �� bits wide and the
machine epsilon is obtained as
 " ����
 ���� 	 ����

From the de
nition of the machine precision combined with the expressions �E
��
and �E
��� we learn that if ��A� �
�� then the computed solution to a system of linear
equations is likely to be entirely unreliable as imprecision in the data corresponding to even
the smallest representable relative error
 may blow up to dominate the most signi
cant
digit of the solution	 leading to a relative error of order unity
 In �DS��� it is however
stated that it is �generally felt� �in the optimization community� that the solution may

not be trustworthy already if ��A� �
�
�

�
 The statement is not mathematically justi
ed
in terms of a rigorous systems analysis but rather seems to serve as a �rule of thumb�
based on experience as to when attention should be paid to the condition number
 For
the IEEE ���bit �oating point representation the rule of thumb reads

��A� � ��� 	 ��� � �E
���

The perturbation analysis provided in this appendix has been a �worst case� analysis
providing upper bounds on the e�ect of the condition number on small errors in the data
when solving a system of linear equations
 The upper bounds apply in general but may
turn out to be too pessimistic for some problems
 The exact in�uence of the condition
number is determined by the particular structure of the problem at hand and cannot be
accounted for in general terms

��	

Appendix F

Conversion of Boltzmann chains to
HMMs

This appendix contains the method given in �Mac��� for conversion of a Boltzmann chain
into an equivalent HMM
 In order to perform this conversion the
nal hidden unit state
of the Boltzmann chain must be constrained to be a particular end state iL
 Naturally	
the resulting HMM must obey the same constraint

For convenience the Boltzmann distribution is repeated below for a Boltzmann chain
modeling sequences of length L
 The probability of
nding the chain in visible states
� " fjtgLt�� and hidden states � " fitgLt�� is given by

P�� " P
�fit� jtgL� � "

�

Z
exp

�
-i� #

L��X
t��

Aitit�� #
LX
t��

Bitjt

�
�F
��

where Z is the partition function Eq
 ���
���
 For sequences of length L	 the joint distri�
bution of the sequences for an HMM is

P
�fit� jtgL� � " �i�

L��Y
t��

aitit��

LY
t��

bitjt �F
��

where �i is the prior probability for the initial hidden state	 aii� are the transition proba�
bilities between hidden states and bij are the observation probabilities
 These probabilities
satis
es the constraints X

i

�i " � �F
��X
i�

aii� " � � �i �F
��X
j

bij " � � �i �F
��

with indexes i� i� running over the n hidden states	 and index j running over the m visible
states

We now seek to manipulate the terms in the exponents for the Boltzmann distribution
Eq
 �F
�� to allow for conversion to the parameters of the HMM distribution Eq
 �F
��

��

��� Appendix F� Conversion of Boltzmann chains to HMMs

without changing the distribution itself
 In the following we use quantities �it and �it

These should not be confused with the notation � and � �no subscript� previously used
to denote visible and hidden unit state sequences

We note that the distribution Eq
 �F
�� is left unchanged if we subtract arbitrary
constants �� � from the energy functions entering as exponents in Eq
 �F
��	 since this
is equivalent to multiplying both the numerator and the denominator Z with the same
constants	 leaving the fraction unchanged
 The distribution is also unchanged if we add
arbitrary terms �it to every appearance of Bitjt 	 provided we also subtract �it again
from the corresponding appearance of Aitit��
 Similary	 we can add terms �it�� to every
appearance of Aitit�� without a�ecting the distribution	 provided we subtract the same
term �it�� from the following term Ait��it��
 By performing these manipulations	 we may
rewrite Eq
 �F
�� unchanged as

P
�fit� jtgL� � " �F
��

�

Z
exp

�
�-i� � �i� � �� #

L��X
t��

�Aitit�� # �it � �it�� # �it � ��

#

LX
t��

�Bitjt � �it� # �iL # �iL

�
where �� �� f�i� �ign� are arbitrary quantities
 This Boltzmann distribution is equivalent to
an HMM distribution Eq
 �F
�� if the following requirements are met �Mac����

� The quantities �i � exp �-i � �i � �� 	 aii� � exp �Aii� # �i � �i� # �i � �� and
bij �" exp �Bij � �i� satisfy the normalizing constraints Eqs
 �F
� � F
��

� The trailing term �iL #�iL can be treated as a constant	 so that they do not change
the probability distribution Eq
 �F
�� depending on the state of the last hidden unit
in the chain
 If we
x the last hidden unit state iL to a particular end state	 say
iL " n	 the trailing term will be the same for all possible sequences and can thus be
treated as a constant

The problem now is to
nd a solution over �� �� f�i� �ig so that the normalization require�
ments Eqs
 �F
� � F
�� are met
 For �i we
ndX

j

bij " �

m X
j

eBij � �i " �

m

ln

#$e��i
X
j

eBij

%A " �

m

�i " ln

#$X
j

eBij

%A

�F
��

From the above	 we see that the conditions that faii�g and � must satisfy isX
i�

exp �Aii� # �i � �i� # �i � �� " � � �i �F
��

Appendix F� Conversion of Boltzmann chains to HMMs ���

which can be rearranged into the system of equationsX
i�

�exp �W�
ii� # �i�� �exp ���i��� " exp��� �exp ���i�� � �i �F
��

These equations can be recognized as an eigenvector!eigenvalue equation for the matrix
Mii� � exp �Aii� # �i�	 with � � exp��� being the eigenvalue and vi � exp ���i� being the
eigenvector�

Mv " �v �F
���

We note that all the elements of M are positive� thus	 the above eigenproblem has a
solution according to the Perron�Frobenius theorem �Sen���	 which states that a positive
matrix �a matrix in which all elements Mii� are positive� has a positive eigenvector with a
positive eigenvalue
 Therefore	 a solution for f�ig and � exists and is straightforward to
determine from the positive eigenvalue and vector

Finally	 the constant � is determined asX
i

�i " �

m X
i

e-i � �i � � " �

m
ln

�
e��

X
i

e-i � �i

�
" �

m
� " ln

�X
i

e-i � �i

�
�F
���

From the above we see that if we have a prior over the
nal hidden unit state of
the Boltzmann chain	 we can convert any �fully connected� Boltzmann chain into an
equivalent HMM which must naturally have the same prior over the
nal hidden state

Constraining the
nal hidden state to a particular state is a commonly applied constraint
in the HMM literature �Mac���	 especially in speech recognition applications �Rab���

When implementing Boltzmann chains this constraint can be imposed by only including
the hidden unit weights AiL��n leading to a particular
nal state iL " n between the
hidden units at timestep L� � and L �refer to Figure ��
�� and thus only sum over these
weights when reducing the chain structure using clipping

As a
nal note	 it might seem to be of advantage if the exponents entering the distri�
bution of the Boltzmann chain could be manipulated in a way similar to the one employed
above so that the result is a prior on a particular initial state
 Unfortunately	 such
manipulation does not seem possible

���

Appendix G

NIPS��	 contribution

This appendix contains the paper �Recurrent Networks� Second Order Properties and
Pruning	� presented at the ���� Neural Information Processing Systems conference
 This
paper contains a description of the problems of synchronous update of the units in each
iteration of a recurrent network as well as a derivation of the second derivatives of the
network output
 The regularizing e�ects when augmenting the quadratic cost function by
a weight decay term are illustrated in terms of the complexity of the cost function surface
as well as the importance of the second derivative term which is neglected when employing
the Gauss�Newton approximation to the Hessian
 Finally	 a recurrent network trained on
the sunspot prediction problem is pruned using the OBS pruning scheme and the optimal
network structure is illustrated

Reference for the paper� �PH���

���

��� Appendix G� NIPS��� contribution

Recurrent Networks�

Second Order Properties and Pruning

Morten With Pedersen and Lars Kai Hansen
connect� Electronics Institute

Technical University of Denmark B���
DK���		 Lyngby� DENMARK
emails
 with�lkhansen�ei�dtu�dk

Abstract

Second order properties of cost functions for recurrent networks
are investigated� We analyze a layered fully recurrent architecture�
the virtue of this architecture is that it features the conventional
feedforward architecture as a special case� A detailed description of
recursive computation of the full Hessian of the network cost func�
tion is provided� We discuss the possibility of invoking simplifying
approximations of the Hessian and show how weight decays iron the
cost function and thereby greatly assist training� We present tenta�
tive pruning results� using Hassibi et al�
s Optimal Brain Surgeon�
demonstrating that recurrent networks can construct an e�cient
internal memory�

� LEARNING IN RECURRENT NETWORKS

Time series processing is an important application area for neural networks and
numerous architectures have been suggested� see e�g� �Weigend and Gershenfeld� ����
The most general structure is a fully recurrent network and it may be adapted using
Real Time Recurrent Learning �RTRL� suggested by �Williams and Zipser� ���� By
invoking a recurrent network� the length of the network memory can be adapted to
the given time series� while it is �xed for the conventional lag�space net �Weigend
et al�� �	�� In forecasting� however� feedforward architectures remain the most
popular structures� only few applications are reported based on the Williams�Zipser
approach� The main di�culties experienced using RTRL are slow convergence and

Appendix G� NIPS��� contribution ���

lack of generalization� Analogous problems in feedforward nets are solved using
second order methods for training and pruning �LeCun et al�� ��� Hassibi et al��
��� Svarer et al�� �	
� Also� regularization by weight decay signi�cantly improves
training and generalization� In this work we initiate the investigation of second order
properties for RTRL� a detailed calculation scheme for the cost function Hessian is
presented� the importance of weight decay is demonstrated� and preliminary pruning
results using Hassibi et al��s Optimal Brain Surgeon �OBS
 are presented� We �nd
that the recurrent network discards the available lag space and constructs its own
e
cient internal memory�

��� REAL TIME RECURRENT LEARNING

The fully connected feedback nets studied by Williams�Zipser operate like a state
machine� computing the outputs from the internal units according to a state vector
z�t
 containing previous external inputs and internal unit outputs� Let x�t
 denote
a vector containing the external inputs to the net at time t� and let y�t
 denote a
vector containing the outputs of the units in the net� We now arrange the indices
on x and y so that the elements of z�t
 can be de�ned as

zk�t
 �

�
xk�t
 � k � I
yk�t
 � k � U

where I denotes the set of indices for which zk is an input� and U denotes the set of
indices for which zk is the output of a unit in the net� Thresholds are implemented
using an input permanently clamped to unity� The k�th unit in the net is now
updated according to

yk�t� �
 � fk�sk�t
� � fk

�
�X
j�I

wkjxj�t
 �
X
j�U

wkjyj�t

�
� � fk

�
� X
j�I�U

wkjzj�t

�
�

where wkj denotes the weight to unit k from input�unit j and fk��
 is the activation
function of the k�th unit�

When used for time series prediction� the input vector �excluding threshold
 is
usually de�ned as x�t
 � �x�t
� � � � � x�t� L� �
� where L denotes the dimension of
the lag space� One of the units in the net is designated to be the output unit yo� and
its activating function fo is often chosen to be linear in order to allow for arbitrary
dynamical range� The prediction of x�t��
 is �x�t��
 � fo�so�t
�� Also� if the �rst
prediction is at t � �� the �rst example is presented at t � � and we set y��
 � ��
We analyse here a modi�cation of the standard Williams�Zipser construction that
is appropriate for forecasting purposes� The studied architecture is layered� Firstly�
we remove the external inputs from the linear output unit in order to prevent the
network from getting trapped in a linear mode� The output then reads

�x�t� �
 � yo�t� �
 �
X
j�U

wojyj�t
 � wthres�o ��

Since y��
 � � we obtain a �rst prediction yielding �x��
 � wthres�o which is likely
to be a poor prediction� and thereby introducing a signi�cant error that is fed
back into the network and used in future predictions� Secondly� when pruning

��� Appendix G� NIPS��� contribution

a fully recurrent feedback net we would like the net to be able to reduce to a
simple two�layer feedforward net if necessary� Note that this is not possible with
the conventional Williams�Zipser update rule� since it doesn�t include a layered
feedforward net as a special case� In a layered feedforward net the output unit is
disconnected from the external inputs� in this case� cf� �	
 we see that �x�t � 	
 is
based on the internal
hidden� unit outputs yk�t
 which are calculated on the basis
of z�t � 	
 and thereby x�t � 	
� Hence� besides the startup problems� we also get
a two�step ahead predictor using the standard architecture�

In order to avoid the problems with the conventional Williams�Zipser update
scheme we use a layered updating scheme inspired by traditional feedforward nets�
in which we distinguish between hidden layer units and the output unit� At time t�
the hidden units work from the input vector zh�t

zhk �t
 �

��
�

xk�t� 	
 � k � I

yhk �t� 	
 � k � U
yo�t� 	
 � k � O

where I denotes the input indices� U denotes the hidden layer units and O the
output unit� Further� we use superscripts h and o to distinguish between hidden
unit and output units� The activation of the hidden units is calculated according
to

yhk �t
 � fhk �s
h
k�t
� � fhk

�
� X
j�I�U�O

wkjz
h
j �t

�
� � k � U ��

The hidden unit outputs are forwarded to the output unit� which then sees the
input vector zok�t

zok�t
 �

�
yhk �t
 � k � U
yo�t� 	
 � k � O

and is updated according to

yo�t
 � fo�so�t
� � fo

�
� X
j�U�O

wojz
o
j �t

�
� ��

The cost function is de�ned as C � E�wT
Rw� R is a regularization matrix� w is

the concatenated set of parameters� and the sum of squared errors is

E �
	

�

TX
t��

�e�t
�� � e�t
 � x�t
� yo�t
� ��

where T is the size of the training set series� RTRL is based on gradient descent in
the cost function� here we investigate accelerated training using Newton methods�
For that we need to compute �rst and second derivatives of the cost function� The
essential di�culty is to determine derivatives of the sum of squared errors�

�E

�wij

� �

TX
t��

e�t

�yo�t

�wij

��

Appendix G� NIPS��� contribution ���

The derivative of the output unit is computed as

�yo�t�

�wij

�
�fo�so�t��

�so�t�
�
�so�t�

�wij

���

where
�so�t�

�wij

� �oiz
o
j �t� �

X

j��U

woj�
�yhj��t�

�wij

� woo

�yo�t� 	�

�wij

�
�

where �jk is the Kronecker delta� This expression contains the derivative of the
hidden units

�yhk �t�

�wij

�
�fhk �s

h
k�t��

�shk�t�
�
�shk�t�

�wij

� k � U ���

where
�shk�t�

�wij

� �kiz
h
j �t� �

X

j��U

wkj�
�yhj��t� 	�

�wij

� wko

�yo�t� 	�

�wij

�
�

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

1

2

3

4

WEIGHT VALUE

C
O

S
T

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

1

2

3

4

WEIGHT VALUE

C
O

S
T

Figure 	� Cost function dependence of a weight connecting two hidden units for
the sunspot benchmark series� Left panel� Cost function with small weight decay�
the �local� optimum chosen is marked by an asterix� Right panel� The same slice
through the cost function but here retrained with higher weight decay�

The complexity of the training problem for the recurrent net using RTRL is demon�
strated in �gure 	� The important role of weight decay �we have used a simple weight
decay R � ��� in controlling the complexity of the cost function is evident in the
right panel of �gure 	� The example studied is the sunspot benchmark problem
�see e�g� �Weigend et al��
�� for a de�nition�� First� we trained a network with
the small weight decay and recorded the left panel result� Secondly� the network
was retrained with increased weight decay and the particular weight connecting
two hidden units was varied to produce the right panel result� In both cases all
other weights remained �xed at their optimal values for the given weight decay� In
addition to the complexity visible in these one�parameter slices of the cost func�
tion� the cost function is highly anisotropic in weight space and consequently the
network Hessian is ill�conditioned� Hence� gradient descent is hampered by slow
convergence�

��	 Appendix G� NIPS��� contribution

� SECOND ORDER PROPERTIES OF THE COST

FUNCTION

To improve training by use of Newton methods and for use in OBS�pruning we
compute the second derivative of the error functional�

��E

�wij�wpq

� �

TX

t��

�
e�t�

��yo�t�

�wij�wpq

�

�yo�t�

�wij

�

�yo�t�

�wpq

�
����

The second derivative of the output is

��yo�t�

�wij�wpq

�
��fo	so�t�

�so�t��
�

�so�t�

�wij

�

�so�t�

�wpq

�
�fo	so�t�

�so�t�
�

��so�t�

�wij�wpq

����

with

��so�t�

�wij�wpq

� �oi
�zoj �t�

�wpq

�
X
j��U

woj�
��yhj��t�

�wij�wpq

� woo

��yo�t� ��

�wij�wpq

� �op
�zoq �t�

�wij

����

This expression contains the second derivative of the hidden unit outputs

��yhk �t�

�wij�wpq

�
��fhk 	s

h
k�t�

�shk�t�
�

�

�shk�t�

�wij

�

�shk�t�

�wpq

�
�fhk 	s

h
k�t�

�shk�t�
�

��shk�t�

�wij�wpq

��
�

with

��shk�t�

�wij�wpq

� �ki
�zhj �t�

�wpq

�
X
j��U

wkj�
��yhj� �t� ��

�wij�wpq

�wko

��yo�t� ��

�wij�wpq

� �kp
�zhq �t�

�wij

����

Recursion in the �ve index quantity ���� imposes a signi�cant computational bur�
den� in fact the �rst term of the Hessian in ����� involving the second derivative� is
often neglected for computational convenience �LeCun et al�� ���� Here we start by
analyzing the signi�cance of this term during training� We train a layered architec�
ture to predict the sunspot benchmark problem� In �gure � the ratio between the
largest eigenvalue of the second derivative term in ���� and the largest eigenvalue
of the full Hessian is shown� The ratio is presented for two di�erent magnitudes of
weight decay� In line with our observations above the second order properties of the
�ironed� cost function are manageable� and we can simplify the Hessian calcula�
tion by neglecting the second derivative term in ����� i�e�� apply the Gauss�Newton
approximation�

� PRUNING BY THE OPTIMAL BRAIN SURGEON

Pruning of recurrent networks has been pursued by �Giles and Omlin� ��� using
a heuristic pruning technique� and signi�cant improvement in generalization for a
sequence recognition problem was demonstrated� Two pruning schemes are based
on systematic estimation of weight saliency� the Optimal Brain Damage �OBD�
scheme of �LeCun et al�� ��� and OBS by �Hassibi et al�� �
�� OBD is based
on the diagonal approximation of the Hessian and is very robust for forecasting
�Svarer et al�� �
�� If an estimate of the full Hessian is available OBS can be used

Appendix G� NIPS��� contribution ��

0 10 20 30 40 50 60 70 80
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

ITERATION #

R
A

T
IO

0 10 20 30 40 50 60 70 80
10

-3

10
-2

10
-1

10
0

ITERATION #

R
A

T
IO

Figure �� Ratio between the largest magnitude eigenvalue of the second derivative
term of the Hessian �c�f� equation ����� and the largest magnitude eigenvalue of
the complete Hessian as they appeared during ten training sessions� The connected
circles represent the average ratio� Left panel� Training with small weight decay�
Right panel� Training with a high weight decay�

for estimation of saliencies incorporating linear retraining� In �Hansen and With
Pedersen	
�� OBS was generalized to incorporate weight decays� we use these
modi
cations in our experiments� Note that OBS in its standard form only allows
for one weight to be eliminated at a time� The result of a pruning session is a
nested family of networks� In order to select the optimal network within the family
it was suggested in �Svarer et al�	
��� to use the estimated test error� In particular
we use Akaike�s Final Prediction Error �Akaike	 �
� to estimate the network test

error bEtest � ��T �N���T �N�� � �E�T �	 and N is the number of parameters
in the network� In
gure � we show the results of such a pruning session on the
sunspot data starting from a ������� network architecture� The recurrent network
was trained using a damped Gauss�Newton scheme� Note that the training error
increases as weights are eliminated	 while the test error and the estimated test error
both pass through shallow minima showing that generalization is slightly improved
by pruning� In fact	 by retraining the optimal architecture with reduced weight
decay both training and test errors are decreased in line with the observations in
�Svarer et al�	
��� It is interesting to observe that the network	 though starting
with access to a lag�space of four delay units	 has lost three of the delayed inputs�
hence	 rely solely on its internal memory	 as seen in the right panel of
gure �� To
further illustrate the memory properties of the optimal network	 we show in
gure
� the network response to a unit impulse� It is interesting that the response of the
network extends for approximately �� time steps corresponding to the �period� of
the sunspot series�

�The use of Akaike�s estimate is not well justi�ed for a feedback net� test error estimates
for feedback models is a topic of current research�

��� Appendix G� NIPS��� contribution

TEST
TRAIN
FPE

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

NUMBER OF PARAMETERS

E
R

R
O

R

X(t-4)

OUTPUT

X(t-1) X(t-2) X(t-3)

Figure �� Left panel� OBS pruning of a ������� recurrent network trained on sunspot
benchmark	 Development of training error
 test error
 and Akaike estimated test
error �FPE�	 Right panel� Architecture of the FPE�optimal network	 Note that the
network discards the available lag space and solely predicts from internal memory	

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

TIME

R
E

S
P

O
N

S
E

0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

TIME

R
E

S
P

O
N

S
E

Figure �� Left panel� Output of the pruned network after a unit impulse input at
t � �	 The internal memory is about �
 time units long which is
 in fact
 roughly
the period of the sunspot series	 Right panel� Activity of the four hidden units in
the pruned network after a unit impulse at time t � �	

� CONCLUSION

A layered recurrent architecture
 which has a feedforward net as a special case
 has
been investigated	 A scheme for recursive estimation of the Hessian of the fully
recurrent neural net is devised	 It�s been shown that weight decay plays a decisive
role when adapting recurrent networks	 Further
 it is shown that the second order
information may be used to train and prune a recurrent network and in this process
the network may discard the available lag space	 The network builds an e�cient

Appendix G� NIPS��� contribution ���

internal memory extending beyond the lag space that was originally available�

Acknowledgments

We thank Jan Larsen� Sara Solla� and Claus Svarer for useful discussions� and Lee
Giles for providing us with a preprint of �Giles and Omlin� ���� We thank the
anonymous reviewers for valuable comments on the manuscript� This research is
supported by the Danish Natural Science and Technical Research Councils through
the Computational Neural Network Center �connect��

References

H� Akaike� Fitting Autoregressive Models for Prediction� Ann� Inst� Stat� Mat�
��� 	�
�	��� �
�����

Y� Le Cun� J�S� Denker� and S�A� Solla� Optimal Brain Damage� In Advances
in Neural Information Processing Systems 	� �Ed� D�S� Touretzsky� Morgan Kauf�
mann� �������� �
�����

C�L� Giles and C�W� Omlin� Pruning of Recurrent Neural Networks for Improved
Generalization Performance� IEEE Transactions on Neural Networks� to appear�
Preprint NEC Research Institute �
�����

L�K� Hansen and M� With Pedersen� Controlled Growth of Cascade Correlation
Nets� International Conference on Arti�cial Neural Networks ICANN��� Sorrento�
�Eds� M� Marinaro and P�G� Morasso� Springer� ������
� �
�����

B� Hassibi� D� G� Stork� and G� J� Wol�� Optimal Brain Surgeon and General
Network Pruning� in Proceedings of the
��
 IEEE International Conference on
Neural Networks� San Francisco �Eds� E�H� Ruspini et al� � IEEE� 	�
�	�� �
��
��

C� Svarer� L�K� Hansen� and J� Larsen� On Design and Evaluation of Tapped Delay
Line Networks� In Proceedings of the
��
 IEEE International Conference on Neural
Networks� San Francisco� �Eds� E�H� Ruspini et al� � ����
� �
��
��

A�S� Weigend� B�A� Huberman� and D�E� Rumelhart� Predicting the future� A
Connectionist Approach� Int� J� of Neural Systems ��
�
�	�� �
�����

A�S� Weigend and N�A� Gershenfeld� Eds�� Times Series Prediction� Forecasting the
Future and Understanding the Past� Redwood City� CA� Addison�Wesley �
�����

R�J� Williams and D� Zipser� A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks� Neural Computation �� 	���	��� �
�����

���

Appendix H

NIPS��
 contribution

This appendix contains the paper �Pruning with generalization based saliencies� �OBD	
�OBS	� presented at the ���� Neural Information Processing Systems conference
 In this
paper it is suggested to generally de
ne the saliency of a weight in terms of estimated
change in generalization error if the weight is pruned away	 instead of the traditional
change in training error
 In particular	 the approach is exempli
ed by the FPE general�
ization error estimate	 combined with the pruning schemes OBD and OBS� the resulting
pruning schemes are named �OBD and �OBS	 respectively
 Furthermore	 attention is
directed towards the problem of so�called nuisance parameters when pruning	 and it is de�
scribed how this problem can be handled for the OBS	 �OBS pruning schemes by invoking
Schur�s matrix inversion lemma
 �OBD and �OBS are applied to a feed�forward network
trained on the Mackey�Glass time series and it is illustrated how the saliency obtained by
an OBS�type pruning scheme often severely underestimates the actual change in error if
a parameter is pruned away

Reference for the paper� �PHL���

���

��� Appendix H� NIPS��� contribution

Pruning with generalization based

weight saliencies� �OBD� �OBS

Morten With Pedersen

Lars Kai Hansen

Jan Larsen

connect� Electronics Institute
Technical University of Denmark B���

DK����� Lyngby� DENMARK
emails	 with�lkhansen�jlarsen
ei�dtu�dk

Abstract

The purpose of most architecture optimization schemes is to im�
prove generalization� In this presentation we suggest to estimate
the weight saliency as the associated change in generalization error
if the weight is pruned� We detail the implementation of both an
O�N
�storage scheme extending OBD� as well as an O�N�
 scheme
extending OBS� We illustrate the viability of the approach on pre�
diction of a chaotic time series�

� BACKGROUND

Optimization of feed�forward neural networks by pruning is a well�established tool�
used in many practical applications� By careful �ne tuning of the network archi�
tecture we may improve generalization� decrease the amount of computation� and
facilitate interpretation�

The two most widely used schemes for pruning of feed�forward nets are	 Optimal
Brain Damage �OBD
 due to �LeCun et al�� ��
 and the Optimal Brain Surgeon
�OBS
 �Hassibi et al�� ��
� Both schemes are based on weight ranking according
to saliency de�ned as the change in training error when the particular weight is
pruned� In OBD the saliency is estimated as the direct change in training error�
i�e�� without retraining of the remaining weights� while the OBS scheme includes
retraining in a local quadratic approximation� The rationale of both methods is that
if the least signi�cant weights �according to training error
 are deleted� we gracefully
relieve the danger of over�tting� However� in both cases one clearly needs a stop
criterion� As both schemes aim at minimal generalization error an estimator for this
quantity is needed� The most obvious candidate estimate is a test error estimated
on a validation set� Validation sets� unfortunately� are notoriously very noisy �see�

Appendix H� NIPS��� contribution ���

e�g�� the discussion in Weigend et al�� ������ Hence� an attractive alternative is to
estimate the test error by statistical means� e�g�� Akaike�s FPE 	Akaike�
��� For
regression type problems such a pruning stop criterion was suggested in 	Svarer et
al�� ����

However� why not let the saliency itself re�ect the possible improvement in test
error� This is the idea that we explore in this contribution�

� GENERALIZATION IN REGULARIZED NEURAL

NETWORKS

The basic asymptotic estimate of the generalization error was derived by Akaike
	Akaike� ��
��� the so
called Final Prediction Error 	FPE�� The use of FPE
theory
for neural net learning has been pioneered by Moody 	see e�g� 	Moody� ����� who
derived estimators for the average generalization error in regularized networks�

Our network is a feed
forward architecture with nI input units� nH hidden sigmoid
units and a single linear output unit� appropriate for scalar function approximation�
The initial network is fully connected between layers and implements a non
linear
mapping from input space x	k� to the real axis� by	k� � Fu 	x	k��� where u �
�w�W� is the N
dimensional weight vector and by	k� is the prediction of the target
output y	k�� The particular family of non
linear mappings considered can be written
as�

Fu 	x	k�� �

nHX
j��

Wj tanh

�
nIX
i��

wjixi	k� � wj�

�
�W�� 	��

Wj are the hidden
to
output weights while wij connect the input and hidden units�

We use the sum of squared errors to measure the network performance

Etrain �
�

p

pX
k��

�y	k�� Fu	x	k���
�
� 	��

where p is the number of training examples� To ensure numerical stability and to
assist the pruning procedure we augment the cost function with a regularization
term�� The resulting cost function reads

E � Etrain �
�

�
u
T
Ru 	��

The main source of uncertainty in learning is the shortage of training data� Fitting
the network from a �nite set of noisy examples means that the noise in these parti

cular examples will be �tted as well and when presented with a new test example the
network will make an error which is larger than the error of the �optimal network�
trained on an in�nite training set� By careful control of the �tting capabilities� e�g��
by pruning� such over�tting may be reduced�

The generalization error is de�ned as the average squared error on an example from
the example distribution function P 	x� y�� The examples are modeled by a teacher
network with weights u�� degraded by additive noise� y	k� � Fu� 	x	k����	k�� The
noise samples �	k� are independent identically distributed variables with �nite� but
unknown variance ��� Further� we assume that the noise terms are independent of
the corresponding inputs� The quantity of interest for model optimization is the
training set average of the generalization error� viz�� the average over an ensemble

�
R will be a positive de�nite diagonal matrix�

��� Appendix H� NIPS��� contribution

of networks in which each network is provided with its individual training set� This
averaged generalization error is estimated by

bEtest �

�
� �

Ne�

p

�
�� �O

�
���p��

�
� ���

with the e	ective number of parameters being Ne� � tr�HJ��HJ��� �Larsen and
Hansen
 ���� The Hessian
 H
 is the second derivative matrix of the training error
with respect to the weights and thresholds
 while J is the regularized Hessian�
J � H�R� An asymptotically unbiased estimator of the noise level is provided by�
�� � Etrain����Ne��p�� Inserting
 we get

bEtest �
p�Ne�

p�Ne�

Etrain �

�
� �

Ne�

p

�
Etrain� ���

While OBD and OBS are based on estimates of the change in Etrain we see that in
order to obtain saliencies that estimate the change in generalization we must gener�
ally take the prefactor into account� We note that if the network is not regularized
Ne� � tr�HJ��HJ��� � tr��� � N
 in which case the prefactor is only a function
of the total number of weights� In this case ranking according to training error
saliency is equivalent to ranking according to generalization error�

However
 in the generic case of a regularized network this is no more true �Ne� � N�

and we need to evaluate the change in the prefactor
 i�e�
 in the e	ective number of
parameters
 associated with pruning a weight� Denoting the generalization based
saliency of weight ul as Etest�l
 we �nd

�Etest�l � �Etrain�l �

 �Ne� �Ne��l�

p
Etrain ���

Where the number of parameters after pruning of weight l is Ne��l
 and �Etrain�l is
the training error based saliency�

To proceed we outline two implementations
 the major di	erence being the computa�
tional complexity involved� In the �rst
 which is an elaboration on the OBD scheme

the storage complexity is proportional to the number of weights and thresholds �N�

while in the second scheme the complexity scales with N�
 and is a generalization of
the OBS� To emphasize that we use the generalization error for ranking of weights
we use the pre�x �� �OBD and �OBS�

� �OBD� AN O�N� IMPLEMENTATION

Our O�N� simulator is based on batch mode
 second order pseudo�Gauss Newton
optimization which is described in �Svarer et al�
 ���� The scheme
 being based on
the diagonal approximation for the Hessian
 requires storage of a number of variables
scaling linearly with the number of parameters N � As in �Le Cun et al�
 ��� we
approximate the second derivative matrix by the positive semi�de�nite expression�

	�Etrain

	u�j
�

p

pX
k��

�
	Fu�x�k��

	uj

��

� ���

In the diagonal approximation we �nd

Ne� �

NX
j��

�

j

j � �j�p

��

� ���

Appendix H� NIPS��� contribution ���

where �j � ��Etrain

�
�u�j � Further� �j�p are the weight decay parameters �diagonal

elements of the regularization matrix R��

The OBD method proposed by �Le Cun et al�� ��� was successfully applied to reduce
large networks for recognition of handwritten digits� The basic idea is to estimate
the increase in the training error when deleting weights� Expanding the training
error to second order in the pruned weight magnitude it is found that

�Etrain�l �

�
�l

p
	

�

��Etrain

�u�l

�
u�l � ���

This estimate takes into account that the weight decay terms force the weights
to depart from the minimum of the training set error� The �rst derivative of the
training error is non
zero� hence� the �rst term in ���� Computationally� we note
that the diagonal Hessian terms are reused from the pseudo Gauss
Newton training
scheme�

Using ��� and the diagonal form of Ne� � we �nd the following approximative ex

pression for generalization saliency ��OBD��

�Etest�l � �Etrain�l �
�

p

�
�l

�l 	 �l�p

��

Etrain �
��

From this expression we learn that of two weights inducing similar changes in train

ing error we should delete the one which has the largest ratio of training error
curvature ��� to weight decay� i�e�� the weight which has been least in�uenced by
weight decay� However� from a computational point of view we also want to reduce
the number of parameters as far as possible� so we might in fact accept to delete
weights with small positive generalization saliency �in particular considering the
amount of approximation involved in the estimates��

� �OBS� AN O�N�� IMPLEMENTATION

In the Optimal Brain Surgeon �Hassibi et al�� ��� the increase in training error is
estimated including the e�ects of quadratic retraining� This allows for pruning of
more general degrees of freedom� e�g�� situations where the training error induces
linear constraints among two or more weights� The price to be paid is that we need
to operate with the full N �N Hessian matrix of second derivatives� The O�N��
simulator� hence� is based on full Gauss Newton optimization� When eliminating
the l�th weight retraining is determined by

�ul � �
ul

�J���ll
J
��
el �

�

where el is the l�th unit vector� We need to modify the OBS saliencies when working
from a weight decay regularized cost function� The modi�ed saliencies were given
in �Hansen and With� ����

�Etrain�l �

�

u�l
�J���ll

	
�

p

�
ul�e

T

l J
��
u�

�J���ll
�

�

u�l �J
���ll

��J���ll��

�
�
��

Whether using the generalization based �OBS or standard OBS� we want to point to
an important aspect of OBS that seems not to be generally appreciated� namely the

�The expression is for the case of all weight decays being equal� see �Hansen and With�
��� for the general expression�

��	 Appendix H� NIPS��� contribution

problem of �nuisance� parameters �White� ���� �Larsen� �	�
 When eliminating an
output weight uo� all the weights to the corresponding hidden unit are in e�ect also
pruned away
 Such a situation is well�known in the statistics literature on model
selection where such �ghost� input weights are known as nuisance parameters
 It is
important to remove these parameters from the network function before estimating
the saliency �Etrain�o and the resulting e�ective number of parameters Ne� � as they
would otherwise give �spurious� contributions to these estimates
 Applying OBS
without taking this fact into consideration often results in sudden jumps in the level
of the network error due to pruning of an important weight based on a corrupted
saliency estimate
 Removing the super
uous weights from the weight vector u and
the corresponding rows and columns in J to form the reduced �regularized� Hessian
J� is straightforward� but it is computationally expensive to invert each of the
resulting �sub��matrices J� for use in ���� and ����
 This cost can be considerably
reduced by rearranging the rows and columns of J as

J �

�
J� J�

J� J�

�
� J

�� �

�
�J���� �J����
�J���� �J����

�
��	�

where J�� J� and J� are the rows and columns corresponding to the nuisance pa�
rameters
 Using a standard lemma for partitioned matrices� we obtain

�J��
�� � �J���� � �J������J

�����
���J���� ����

which only calls for inversion of the �small� submatrix �J����
 In �Hassibi et al
� �	�
it was argued that one might save on computation by using an iterative scheme for
calculation of the inverse Hessian J��
 However� since standard matrix inversion is
an O�N�� operation while the iterative scheme scales as O�pN��� a detailed count
shows that that it is only bene�cial to use the iterative scheme in the atypical case
N � p��

� EXPERIMENT

We will illustrate the viability of the proposed methods on a standard problem
of nonlinear dynamics viz
 the Mackey�Glass chaotic time series
 The series is
generated by integration of the di�erential equation

dz�t�

dt
� �bz�t� � a

z�t� ��

� � z�t� ����
����

where the constants are a � ���� b � ��� and � � ��
 The series is resampled
with sampling period � according to standard practice
 The network con�guration
is nI � �� nH � �� and we train to implement a six step ahead prediction
 That
is� x�k� � �z�k � ��� z�k � ���� � � � � z�k � �nI�� and y�k� � z�k�
 In Fig
 � we show
pruning scenarios based on the two di�erent implementations
 The training errors�
test errors and FPE errors are plotted for a training set size of ��� examples� the
test set comprises ���� examples
 In the left panel we show the results of pruning
according to �OBD and similarly in the right panel we show the results of pruning
as it occurred using �OBS
 In this example we do not �nd signi�cant improvement
in performance by use of �OBS

To illustrate the ability of the estimators for predicting the e�ects of pruning on
the test error we plot in �gure � the estimated test errors versus the actual test
errors after pruning
 In the OBD case this means the test error resulting from
pruning the parameters without retraining� while in the OBS case it means the
test error following pruning and retraining in the quadratic approximation
 We
note that the �OBD estimates of the test error approximately equal the actual

Appendix H� NIPS��� contribution ��

TRAIN
TEST
FPE

0 10 20 30 40 50 60 70 80 90
10

−5

10
−4

10
−3

10
−2

10
−1

γOBD

NUMBER OF PARAMETERS

E
R

R
O

R

TRAIN
TEST
FPE

0 10 20 30 40 50 60 70 80 90
10

−5

10
−4

10
−3

10
−2

10
−1

γOBS

NUMBER OF PARAMETERS

E
R

R
O

R

Figure �� The evolution of training and test errors during pruning for the Mackey�
Glass time series for a training set of size ���� In the left panel is shown pruning
by �OBD	 while in the right we show pruning by �OBS� The vertical solid line
indicates the network for which the estimated test error is minimal�

test error	 o
set by a constant corresponding to the FPE�o
set in the left panel of
�gure �� The most important feature of this plot is that ranking according to the
estimated test error is consistent with ranking according to the actual test error�
In the right panel of �gure �	 however	 we see that �OBS highly underestimates
the actual errors resulting from the quadratic retraining� It is not clear how the
ranking inconsistencies a
ect the overall performance of �OBS� The weight selected
for pruning �indicated by a circle
 is clearly not the optimal according to the actual
test error� However	 as depicted in the �gure	 after full Gauss�Newton retraining
for �� epochs the measured actual test error is comparable to the estimated value
�retraining is indicated by the arrow
� Hence	 one may say that �OBS �recovers�
after retraining	 while the initial estimate based on quadratic retraining is rather
poor�

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3 γOBD

ACTUAL TEST ERROR

E
ST

IM
A

T
E

D
 T

E
ST

 E
R

R
O

R

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3 γOBS

<

ACTUAL TEST ERROR

E
ST

IM
A

T
E

D
 T

E
ST

 E
R

R
O

R

Figure �� Left panel� Estimated test errors for fully connected network using �OBD
and the actual test errors computed by actual deletion of the weight and computing
the test error on the ���� members test set� Right panel� Errors for fully connected
network using �OBS� The weight selected for pruning is indicated by a circle	 the
result of further retraining is indicated by an arrow�

��� Appendix H� NIPS��� contribution

� CONCLUSION

Since a main objective of pruning algorithms is to improve generalization we sug�
gest that weight saliencies are estimated from the test error rather than the training
error� We have shown how this might be carried out for scalar function approxima�
tion� in which case we have a rather simple test error estimate �based on Akaike�s
FPE�� We provided implementation details for a scheme of linear complexity� �OBD�
which is the generalization of OBD and a scheme of quadratic complexity �OBS
which is the generalization of OBS� Furthermore� we provided a way to signi�cantly
reduce the computational overhead involved in the handling of nuisance parameters�
An application within time series prediction showed the viability of the suggested
approach�

Acknowledgements

We thank Peter Magnus N	rgaard for valuable discussions� This research is sup�
ported by the Danish Natural Science and Technical Research Councils through the
Computational Neural Network Center �connect�� JL acknowledge the Radioparts
Foundation for �nancial support�

References

H� Akaike� Fitting Autoregressive Models for Prediction� Ann� Inst� Stat� Mat� ���
������	�
��
���

Y� Le Cun� J�S� Denker� and S�A� Solla� Optimal Brain Damage� In Advances in Neural
Information Processing Systems �� Morgan Kaufman� ����
���
������

L�K� Hansen and M� With Petersen� Controlled Growth of Cascade Correlation Nets�
Proceedings of ICANN��� International Conference on Neural Networks� Sorrento� Italy�
����� Eds� M� Marinaro and P�G� Morasso� 	�	�����
������

B� Hassibi� D� G� Stork� and G� J� Wol�� Optimal Brain Surgeon and General Network
Pruning� in Proceedings of the ���� IEEE International Conference on Neural Networks�
San Francisco
Eds� E�H� Ruspini et al� � ��������
������

J� Larsen� Design of Neural Network Filters� Ph�D� Thesis� Electronics Institute� Technical
University of Denmark�
������

J� Larsen and L�K� Hansen� Generalization Performance of Regularized Neural Network
Models� �Neural Networks for Signal Processing IV� Proceedings of the IEEE Workshop�
Eds� J� Vlontzos et al�� IEEE Service Center� Piscataway NJ� ������
������

J�E� Moody� Note on Generalization� Regularization and Architecture Selection in Nonlin�
ear Systems� In Neural Networks For Signal Processing� Proceedings of the ���� IEEE�SP
Workshop�
Eds� B�H� Juang� S�Y� Kung� and C� Kamm�� IEEE Service Center� �����

������

C� Svarer� L�K� Hansen� and J� Larsen� On Design and Evaluation of Tapped Delay Line
Networks� In Proceedings of the ���� IEEE International Conference on Neural Networks�
San Francisco�
Eds� E�H� Ruspini et al� � �
����
������

A�S� Weigend� B�A� Huberman� and D�E� Rumelhart� Prediction the future� A Connec�
tionist Approach� Int� J� of Neural Systems �� ��������
������

H� White� Learning in Arti�cial Neural Networks� A Statistical Perspective� Neural Com�
putation �� �����
��
������

Appendix I

ICFMHB��� contribution

This appendix contains the abstract �A Concordance Correlation Coe�cient for Repro�
ducibility of Spatial Activation Patterns� presented at Second International Conference
on Functional Mapping of the Human Brain
 Various data analysis methods were applied
to a set of fMRI time series from a ��
�� voxel area of the brain of a person performing a
simple
nger�tapping motor task	 in order to locate the activated areas in the brain
 The
application of arti
cial neural networks for this task was based on the pragmatic consider�
ation that the lower the prediction error on a test set for a particular voxel	 the less likely
it would be that the signal for the voxel was only �background noise�	 thus the more likely
it would be that the area in the brain corresponding to the particular voxel was activated

This approach appeared to correlate rather well with other data analysis methods applied

Reference for the paper� �LHP����

���

��� Appendix I� ICFMHB��� contribution

A Concordance Correlation Coefficient for
Reproducibility of Spatial Activation Patterns

N. Lange1,2, L. K. Hansen3, M. W. Pedersen3, R. L. Savoy4, S. C. Strother5

1National Institutes of Health, Bethesda, MD, USA; 2Brain Imaging Center, McLean Hospital,
Belmont, MA, USA; 3Technical University of Denmark, Lyngby, Denmark; 4MGH-NMR Center,
Charlestown, MA, USA; 5University of Minnesota and VA Medical Center, Minneapolis, MN, USA

Objective. We develop and apply a quantitative measure of image reproducibility for the comparison of spatial
activation patterns derived from fMRI time series or PET datasets. An fMRI experiment involving a simple motor
task and five different statistical models demonstrates the measure’s utility.

Method. For spatial activation patterns �� and ��, the concordance correlation coefficient for reproducibility (1)
is defined as:

�
�
� ��

�
�
��� � ���

�

�

��
�
� ��

�
� ��� � ���

�
�

������

��
�
� ��

�
� ��� � ���

�
� [1]

In [1], images ��� �� have means ��� ��, standard deviations ��� �� and Pearson product-moment correlation
coefficient �. The paired t-test, intraclass correlation coefficient, coefficient of variation and simple least-squares
analyses can all fail in a variety of actual situations (1). The statistic �

�
provides a more direct measure of

agreement using the line of identity as the point of departure and equals � if and only if �� � �� and �� � ��,
so that �� � ���� � �� � ��� � �. We have investigated �� for five voxel-by-voxel data analytic strategies
of varying complexity applied to fMRI time series collected from a healthy female subject (see Figure caption):
(A) Student’s t; (B) Kolmogorov-Smirnov statistic [2]; (C) principal components/canonical variables [3,4]; (D) an
artificial neural network [5]; (E) a nonlinear Fourier method that allows spatially varying shapes and scales for
estimated hemodynamic response functions modeled as gamma densities [6].

 A B C D E

 .48 .45 .34 .22

 .43

 A

 B .72 .28 .33 .20

 C .48 .47 .26 .19

 D .35 .44 .28

 E .25 .23 .24 .46

A Student’s t B Kolmogorov-
 Smirnov

C PCA/Canonical
 Variables Analysis

E Nonlinear
 Fourier

D Artificial
Neural Networks

L R

Figure 1. fMRI activation images of a single subject performing a left-
handed finger-to-thumb opposition task. Multiple runs of 72 2.5-second
whole-brain echo planar images were aligned, and a 16 x 16 voxel slab
(3.1 x 3.1 x 8 mm voxels) of contralateral sensorimotor cortex (white box)
was extracted; images A-E were obtained by five different data analytic
strategies. Voxel intensity is displayed using a linear grayscale. The 5 x 5
correlation matrix (lower left: Pearson product-moment correlation; upper
right: concordance correlation coefficient for reproducibility) provides
quantitative measures of spatial activation pattern similarity.

Results. Figure 1 indicates that all models appear to reproduce coarse features of activated foci, yet images B
to E become progressively dissimilar from A (see correlation matrix). A permutation test of A vs. B indicates
that these two spatial activation patterns are not significantly different (� 	 ����) and that, under this model pair,
the spatial activation pattern is reproducible. However, differences in model complexity appear to alter the local
structure of activated foci. Multivariate and nonlinear models (C-E) may capture spatio-temporal effects in fMRI
time series that are averaged out or otherwise obscured by simpler models (A, B).

Conclusion. Superficial similarity between fMRI summary images can belie complex spatio-temporal behaviors
of underlying signal and noise. Modern, locally-adaptive statistical techniques attempt to capture these behaviors
and reflect their important effects. The concordance correlation coefficient for reproducibility has advantages over
traditional similarity measures and can be used to compare spatial activation patterns in functional neuroimages
derived from different data analytic strategies. The concordance measure may also be useful in other contexts, such
as in comparisons of replications across time for single subjects, between multiple subjects, groups of subjects and
functional neuroimaging modalities.

Acknowledgment. Funded in part by Human Brain Project grant R01 DA09246.
References
1. Lin LIK. Biometrics 1989, 45: 255-268.
2. Press WH et al. Numerical Recipes. Cambridge University Press, 1989.
3. Strother SC et al. J. Cereb. Blood Flow Metab. 1995, 15: 738-775.
4. Mardia KV, Kent JT, Bibby JM. Multivariate Analysis. London: Academic Press, 1979.
5. Svarer C, Hansen LK, Larsen J. Proc IEEE Int Conf Neural Networks 1993, 46-51.
6. Lange N, Zeger SL. Submitted, J. Roy. Stat. Soc. 1996.

Appendix J

NNSP ��� contribution

This appendix contains the paper �Design and Evaluation of Neural Classi
ers	� presented
at the IEEE ���� workshop on Neural Networks for Signal Processing
 The focus of this
paper is feedforward networks applied to classi
cation by transforming the network out�
puts into probabilities by the �SoftMax� transformation and training by minimizing the
entropic cost function augmented by a regularization term
 A Gauss�Newton like approx�
imation to the Hessian is derived and used for second�order training as well as pruning
by the OBD scheme� generalization ability is estimated using an analytical test error es�
timate
 The resulting algorithmic framework is applied to the contiguity problem as well
as to the �glass� classi
cation problem from the PROBEN� benchmark problem collection

Reference for the paper� �HMPHL���

���

��� Appendix J� NNSP ��� contribution

DESIGN AND EVALUATION OF NEURAL

CLASSIFIERS

Mads Hintz�Madsen� Morten With Pedersen�
Lars Kai Hansen� and Jan Larsen

CONNECT� Dept� of Mathematical Modeling� B� ���
Technical University of Denmark

DK��	

 Lyngby� Denmark

Phone� �
��� ���� �		�� Fax� �
��� ��		
���
Email� hintz� with� lkhansen� jlarsen�ei�dtu�dk

Abstract � In this paper we propose a method for design of feed�forward

neural classi�ers based on regularization and adaptive architectures� Us�

ing a penalized maximum likelihood scheme we derive a modi�ed form

of the entropic error measure and an algebraic estimate of the test er�

ror� In conjunction with Optimal Brain Damage pruning the test error

estimate is used to optimize the network architecture� The scheme is

evaluated on an arti�cial and a real world problem�

INTRODUCTION

Pattern recognition is an important aspect of most scienti�c �elds and indeed
the objective of most neural network applications� Some of the by now clas�
sic applications of neural networks like Sejnowski and Rosenbergs �NetTalk�
concern classi�cation of patterns into a �nite number of categories� In modern
approaches to pattern recognition the objective is to produce class probabil�
ities for a given pattern� Using Bayes decision theory� the �hard� classi�er
selects the class with the highest class probability� hence minimizing the prob�
ability of error� The conventional approach to pattern recognition is statistical
and concerns the modeling of class probability distributions for patterns pro�
duced by a stationary stochastic source by a certain set of basis functions�
e�g�� Parzen windows or Gaussian mixtures�

In this paper we de�ne and analyze a system for design and evaluation
of feed�forward neural classi�ers based on regularization and adaptive archi�
tectures� The proposed scheme is a generalization of the approach we have
suggested for time series processing ��� �� and for binary classi�cation in the

Appendix J� NNSP ��� contribution ���

context of a medical application ���� The key concept of the new methodology
for optimization of neural classi�ers is an asymptotic estimate of the test error
of the classi�er providing an algebraic expression in terms of the training error
and a complexity estimate� Our approach is a penalized maximum likelihood
scheme� The likelihood is formulated using a simple stationary noisy channel
model of the pattern source� For any �xed input pattern there can be de�ned
a �xed probability distribution over a �xed �nite set of classes� The training
set involves simple labelled data� i�e�� for each input vector we are provided
with a single class label� The task of the network is to estimate the relative
frequencies of class labels for a given pattern� In conjunction with SoftMax
normalization of the outputs of a standard� computationally universal� feed�
forward network we recover a slightly modi�ed form of the so�called entropic
error measure �	�� For a �xed architecture the neural network weights are
estimated using a Gauss�Newton method �
�� while the model architecture is
optimized using Optimal Brain Damage ���� The problem of proper selection
of regularization parameters is also brie�y discussed� see also �
��

The salient features of the approach are� E�cient Newton optimization�
pruning by Optimal Brain Damage and evaluation of network architectures
by an algebraic test error estimate�

NEURAL CLASSIFIERS

Let us assume that we have a training set� D� consisting of q input�output
pairs

D � f�x�� y��j� � �� ���� qg ���

where x is an input vector consisting of nI elements and y is the corresponding
class label� In this presentation we will assume that the class label is of
the de�nite form y � �� ���� nO� with nO being the number of classes� An
alternative soft target assignment might be relevant in some practical contexts
where the target could be� e�g�� an estimate of class probabilities for the given
input�

We aim to model the posterior probability distribution

p�y � ijx�� i � �� � � � � nO� ���

In some applications it might be desirable to use a rejection threshold when
classifying� that is if all of the posterior probabilities fall below this threshold
then no classi�cation decision is made� see e�g�� ����

To represent these distributions we choose the following network architec�
ture�

hj�x
�� � tanh

�
nIX
k��

wjkx
�
k � wj�

�
���

��� Appendix J� NNSP ��� contribution

�i�x
�� �

nHX

j��

Wijhj�x
�� �Wi� ���

with nI input units� nH hidden units� nO output units� and parameters u �
�w�W�� where wj� and Wi� are thresholds� To ensure that the outputs�
�i�x

��� can be interpreted as probabilities� we use the normalized exponential
transformation known as SoftMax ��	

�p�y� � ijx
�
� �

exp��i�x
���PnO

i��� exp��i��x
���

���

where �p�y� � ijx�� is the estimated probability� that x� belongs to class i�

Assuming that the training data are drawn independently� the likelihood
of the model can be expressed as

P �Dju� �

qY
���

nOY
i��

�p�y� � ijx
�
��i�y� �
�

where �i�y� � � if i � y�� otherwise �i�y� � ��

Training is based on the minimization of the negative log�likelihood

E�u� � �
�

q
logP �Dju� �

�

q

qX
���

��x�� y��u� ���

where

��x�� y��u� � �

nOX
i��

�i�y�

�
�i�x

��� log

�
nOX
i���

exp��i� �x
���

��
� ���

In order to eliminate over�tting and ensure numerical stability� we aug�
ment the cost function by a regularization term� e�g�� a simple weight decay�

C�u� � E�u� �
�

�
u
T
Ru ���

where R is a positive de�nite matrix� In this paper we consider a diagonal
matrix with elements ��j�q�

The gradient of ��� is

�E�u�

�uj
� �

�

q

qX
���

nOX
i��

��i�y� � �p�y� � ijx��	
��i�x

��

�uj
� ����

The matrix of second derivatives �the Hessian� can be expressed as

Hjk �
��E�u�

�uj�uk
�

�

q

qX
���

nOX
i��

nOX
i���

�p�y� � ijx�� ��i�i� � �p�y� � i�jx��	

��i��x
��

�uk

��i�x
��

�uj
����

Appendix J� NNSP ��� contribution ���

where we have used a Gauss�Newton like approximation�

Using matrix�vector notation the Gauss�Newton paradigm of updating
the weights can now be computed as ���

u
new � u� � 	H
R���

�
�E

�u

Ru

�
	�
�

where Ru and R are the �rst and second derivatives of the regularization
term� respectively� and � is a parameter� that may be used to ensure a decrease
in the cost function� e�g�� by line search�

A natural approach for determining the regularization parameters is by
minimizing the test error with respect to the regularization parameters� Here
one may use an estimate of the test error as derived in the next section� Let us
now consider the case with only two di�erent weight decays� �w for the input�
to�hidden weights and �W for the hidden�to�output weights� By sampling
the space spanned by �w and �W with e�g�� a �x� grid and computing the
estimated test error� it is possible to �t e�g�� a paraboloid� in a least�square
sense to the sample points� locate the minimum� of the paraboloid and use
the weight decays found for the design of the network�

A di�erent approach using a validation set for determining the regular�
ization parameters is described in ����

Test Error Estimate

One of the main objectives in our approach is to estimate a network model
with a high generalization ability� In order to obtain this we need an estimate
of the generalization ability of a model� The generalization or test error for
a given network u may be de�ned as

Etest	u� �

Z
dxdyP 	x� y��	x� y�u� 	���

where P 	x� y� is the true underlying distribution of examples and �	x� y�u�
is the error on example 	x� y�� Since the test error involves an average over
all possible examples� it is in general not accessible� but it can be estimated
by using additional statistical assumptions� see e�g�� ��� and ���� thus giving
us the following estimate for the average test error of a network u estimated
on a training set D ����

dhEtesti � Etrain	u	D��

Ne�

q
	���

�Paraboloid� �z � z�� � �x� x����a� � �y � y����b��
�In case the minimum is located outside the sample�grid	 one should relocate the grid

and
nd a new minimum�

��	 Appendix J� NNSP ��� contribution

where Etrain�u�D�� is the training error of the model� The e�ective number
of parameters is given by Ne� � Tr�H�H � R���	
 where R is the second
derivative of the regularization term� This estimate of the test error averaged
over all possible training sets may be used to select the optimal network e�g�

among a nested family of pruned networks� hence
 be used as a pruning stop
criterion similarly to our procedure for evaluation of function approximation
networks ��

	�

Pruning with Optimal Brain Damage

In order to reduce and optimize a networks architecture
 we recommend to
apply a pruning scheme such as Optimal Brain Damage �OBD� ��	� The aim
of OBD is to estimate the importance of the weights for the training error
and rank the weights according to their importance� If the importance is
estimated using a second order expansion of the training error around its
minimum
 the saliency for a weight ui is ��	

si �

�
Rii �

�

Hii

�
u
�

i
����

where the Hessian Hii is given by ���� and Rii is i�th diagonal element of R�

By repeatedly removing weights with the smallest saliencies and retraining
the resulting network
 a nested family of networks is obtained� Here we may
use the previously derived test error estimate to select the �optimal� network�

EXPERIMENTS

The proposed methodology for designing neural classi�ers has been evaluated
on the arti�cial contiguity problem and the real world glass classi�cation prob�

lem� The latter is a part of the Proben� neural network benchmark collection
��	�

The Contiguity Problem

The contiguity problem has in several cases been used for evaluating opti�
mization schemes
 see e�g�
 ���	� The boolean input vector ���� is interpreted
as a one�dimensional image and connected clumps of ���s are counted� Two
classes are de�ned� those with two and three clumps� We consider the case

where nI � ��� In this case there are ��
 legal input patterns consisting of
��
 patterns with three clumps and ��� with two clumps� We use a randomly
selected training set with ��� patterns and a test set with ��� patterns both
containing an even split of the two classes�

Appendix J� NNSP ��� contribution ��

0.01
0.1

1
10

0.00001
0.0001

0.001
0.01

0.1
0.4

0.6

0.8

E
st

im
at

ed
 te

st
 e

rr
or

αW αw 0.01
0.1

1
10

0.00001
0.0001

0.001
0.01

0.1
0

2

4

E
st

im
at

ed
 te

st
 e

rr
or

αW αw

Figure �� Left� The estimated test error for the contiguity problem as function of
the weight decay parameters� Right� Paraboloid �tted to the �x� grid shown in
the left panel� Minimum located at ��w� �W � 	 �
����
�� � �
����

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Test error

R
el

at
iv

e
fr

eq
ue

nc
y

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Test error

R
el

at
iv

e
fr

eq
ue

nc
y

Figure
� Left� The distribution of the test error for �
 fully connected contiguity

networks combined� Notice the �long tail� of the distribution resulting in a high
mean error �
���� and a small median error �
�

� i�e�� the mean is predominantly
driven by a few examples with high error� Right� The distribution of the test error
for �
 pruned networks selected by the minimum of the estimated test error com�
bined� The mean error is
��� and the median error is
�

�� showing a signi�cant
performance improvement as result of pruning�

Initially a network architecture consisting of �� input units� � hidden units
and � output units was chosen� The weight decay parameters were estimated

by using the previously described sample�grid technique� This is shown in 	g�
ure �� Next ten fully connected networks were trained� using the estimated
weight decay parameters� subsequently pruned using the OBD saliency rank�
ing� removing one weight per iteration� In 	gure � the distribution of the test
error is shown� The error distribution shows that the mean error is predomi�
nantly driven by a few examples with a high error� thus suggesting that one
should monitor the median error as well in order to get a good indication of
a network
s performance� Seven of the ten pruned networks had a classi	ca�
tion� error on the test set between �� and ����� while three networks had

�Training was stopped when the ��norm of the gradient vector was below �����
�Following Bayes decision theory� the network output with the highest probability de�

��� Appendix J� NNSP ��� contribution

Training error
Mean test error
Median test error
Test error estimate

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

No. of weights

E
rr

or

Training error
Test error

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

No. of weights

C
la

ss
ifi

ca
tio

n
er

ro
r

Figure �� Pruning of a glass classi�cation network using the small training set�

The vertical line indicates the �optimal� network selected by the minimum of the

estimated test error� Notice the similarity in the development of the median error

and the classi�cation error on the test set�

an error of ������� In ��	
 seven of ten networks had an error of ����� using
the same size of training set
 while three networks had errors around 	��
Compared with these results
 our classi�er design scheme has a signi�cantly
higher yield�

The Glass Classi�cation Problem

The task in the glass classi�cation problem is to classify glass splinters into six
classes� The glass splinters have been chemical analyzed and nine di�erent
measures have been extracted from the analysis
 see ��
 for details� The
original dataset �glass�� consists of ��� examples divided into a training set
��	��
 a validation set ���� and a test set ����� Since our approach doesn�t
require a validation set
 we have used two di�erent training scenarios� one
using the original training set and one using a new training set consisting of
the original training and validation set�

The initial network architecture chosen consisted of � input units
 � hidden
units and � output units� We estimated the regularization parameters using
the sample�grid technique and the small training set� The parameters were
found to be �w � ��� � �	�� and �W � ��� � �	���

In �gure � and � we show the pruning results of networks trained with the
small and large training set
 respectively
 using the estimated regularization
parameters� The �optimal� network found with the small training set had a
classi�cation error of ��� on the test set
 while the �optimal� network found
with the large training set had an error of ���� In ��
 Prechelt reports a
test error of ��� for a �xed network architecture using the small training
set� The validation set is used to stop training
 thus he e�ectively uses both
the training and validation set for training ���
� Our approach using the

termines the class label�

Appendix J� NNSP ��� contribution ���

Training error
Mean test error
Median test error
Test error estimate

0 20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

No. of weights

E
rr

or

Training error
Test error

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

No. of weights

C
la

ss
ifi

ca
tio

n
er

ro
r

Figure �� Pruning of a glass classi�cation network using the large training set� The

vertical line indicates the �optimal� network selected by the estimated test error�

Notice the overall lower classi�cation error on the test set compared to �gure ��

estimated test error for model selection eliminates the need for a validation
set� thus allowing us to use more data for the actual training resulting in a
better generalization performance� In a forthcoming paper the problem of
comparing the performance of neural network models is addressed �����

For comparison a standard k�Nearest�Neighbor� �k	N	N
 classi�cation was
performed using the large training set� The training error may be computed
from the training set by including each training pattern in the majority vote�
A leave�one�out �validation
 error on the training set may be computed by
excluding each training pattern from the vote� Finally� the test patterns
may be classi�ed by voting among the k nearest neighbors found among the
training patterns� Using the leave�one�out validation error we found that
k � � was optimal for this data set� The �	N	N scheme had a classi�cation
error of ��� on the test set� Thus the performance of the optimized k	N	N
scheme cannot match Prechelt�s or our networks�

CONCLUSION

We have developed a methodology for design and evaluation of neural classi	
�ers� The approach was applied to the contiguity problem and the glass clas�

si�cation problem� It was shown that the test error estimator for classi�ers
could be used to select optimal networks among families of pruned networks�
thus increasing the generalization ability compared to non	pruned networks�
Currently� the aim is to establish more empirical data for the validation of
the neural classi�er design approach�

�Within k�N�N a pattern is classi�ed according to a majority vote among its k nearest

neighbors using the simple Euclidean metric�

��� Appendix J� NNSP ��� contribution

ACKNOWLEDGMENT

This research is supported by the Danish Research Councils for the Natural
and Technical Sciences through the Danish Computational Neural Network
Center� Jan Larsen thanks the Radio�Parts Foundation for �nancial support�

REFERENCES

��� C� Svarer� L�K� Hansen� and J� Larsen� 	On Design and Evaluation
of Tapped�Delay Neural Network Architectures	� Proceedings of the
���� IEEE International Conference on Neural Networks� pages

��
�� �����

��� C� Svarer� L�K� Hansen� J� Larsen� and C�E� Rasmussen� 	Designer
Networks for Time Series Processing	� Proceedings of the ���� IEEE
Workshop on Neural Networks for Signal Processing III� pages
������ �����

��� M� Hintz�Madsen� L�K� Hansen� J�Larsen� E� Olesen� and K�T�
Drzewiecki� 	Design and Evaluation of Neural Classi�ers � Application
to Skin Lesion Classi�cation	� Proceedings of the ���� IEEEWork�

shop on Neural Networks for Signal Processing V� pages
�
�
���
���
�

�
� J�S� Bridle� 	Probabilistic Interpretation of Feedforward Classi�cation
Network Outputs with Relationships to Statistical Pattern Recognition	�
Neurocomputing � Algorithms� Architectures and Applications�
���������� �����

�
� G�A�F� Seber and C�J� Wild� Nonlinear Regression� John Wiley �
Sons� New York� New York� ���
�

��� Y� Le Cun� J� Denker� and S� Solla� 	Optimal Brain Damage	� Ad�

vances in Neural Information Processing Systems� ��
�����
�
�����

��� J� Larsen� L�K� Hansen� C� Svarer� and M� Ohlsson� 	Design and Reg�
ularization of Neural Networks� The Optimal Use of A Validation Set	�
Proceedings of the ���� IEEE Workshop on Neural Networks

for Signal Processing VI� �����

��� S� Amari and N� Murata� 	Statistical Theory of Learning Curves under
Entropic Loss Criterion	� Neural Computation�
��
���
�� �����

��� Lutz Prechelt� 	PROBEN� � A set of benchmarks and benchmark�
ing rules for neural network training algorithms	� Technical Report

Appendix J� NNSP ��� contribution ���

������ Fakult�at f�ur Informatik� Universit�at Karlsruhe� Ger�
many� ����� Available via anonymous ftp ftp�ira�uka�de�pub�pa�

pers�techreports��������������ps�Z�

���� J� Gorodkin� L�K� Hansen� A� Krogh� C� Svarer� and O� Winther� 	A
Quantitative Study of Pruning by Optimal Brain Damage	� Interna�
tional Journal of Neural Systems� �
�����
�� �����

���� J� Sj�oberg� 	Non�Linear System Identi�cation with Neural Networks	�
Ph	D	 Thesis no	
��� Department of Electrical Engineering�
Link�oping University� Sweden� �����

���� J� Larsen et al� 	Empirical Comparison of Neural Network Models	� In
preparation� ���
�

���

Appendix K

Asilomar ��� contribution

This appendix contains the paper �Pruning Boltzmann Networks and Hidden Markov
Models	� presented at the Asilomar ���� Conference on Signals	 Systems	 and Comput�
ers
 In this paper a Gauss�Newton like approximation to the Hessian is derived for the
relative entropy cost function applied to general Boltzmann networks and the application
of second�order training as well as the OBD and OBS pruning schemes are suggested for
this model type
 It is discussed how Hidden Markov Models may be pruned by converting
them into equivalent Boltzmann chains	 and the viability of pruning Boltzmann networks
is illustrated for a Boltzmann zipper applied to an arti
cial problem

Reference for the paper� �PS���

���

��� Appendix K� Asilomar ��� contribution

PRUNING BOLTZMANN NETWORKS AND

HIDDEN MARKOV MODELS

Morten With Pedersen
�

David G� Stork
�

� Section for Digital Signal Processing� Department of Mathematical Modelling
Technical University of Denmark B���� DK����� Lyngby� DENMARK

mwp�imm�dtu�dk

�Machine Learning and Perception Group� Ricoh California Research Center
���� Sand Hill Road Suite ��	 � Menlo Park� CA
���	����� USA

stork�crc�ricoh�com

ABSTRACT

We present sensitivity�based pruning algorithms for
general Boltzmann networks
 Central to our methods
is the e�cient calculation of a second�order approxi�
mation to the true weight saliencies in a cross�entropy
error
 Building upon recent work which shows a formal
correspondence between linear Boltzmann chains and
Hidden Markov Models �HMMs�� we argue that our
method can be applied to HMMs as well
 We illustrate
pruning on Boltzmann zippers� which are equivalent to
two HMMs with cross�connection links
 We verify that
our second�order approximation preserves the rank or�
dering of weight saliencies and thus the proper weight
is pruned at each pruning step
 In all our experiments
in small problems� pruning reduces the generalization
error� in most cases the pruned networks facilitate in�
terpretation as well

�� INTRODUCTION

There is an enormous body of simulation work demon�
strating the value of architecture optimization for net�
works for pattern classi�cation� and this has properly
led to great interest in both theoretical foundations and
in new algorithms
 There are two basic viewpoints to�
ward this issue� regularization �or penalty based� and
sensitivity based
 According to the viewpoint of regu�
larization� one seeks to impose some desired property
in the �nal solution� for instance smoothness
 Thus in
weight decay one penalizes large weights and therefore
favors smoother decision boundaries
 According to the
viewpoint of sensitivity� one seeks to eliminate those pa�
rameters �e
g
� weights� that have the smallest e�ect on
the training error� thereby restricting the model with�
out severely penalizing the training error
 For instance�
Optimal Brain Damage �OBD� ��� and Optimal Brain
Surgeon �OBS� ��� eliminate weights that are predicted
to have the least e�ect on the training error

In fact both views stem from a deeper notion con�

cerning the incorporation of model priors or structural
risk minimization ���
 Despite their fundamental unity�
in computational practice it is convenient to adopt one
or the other of these views
 For instance� regularization
by weight decay is easy to incorporate during learning�
pruning by sensitivity�based methods is traditionally

performed after training with examples
 �We note too
that in practice one can use both methods when cre�
ating networks
� In this paper we mention brie�y the
application of weight decay but our primary contribu�
tion is a new sensitivity�based pruning algorithm for
Boltzmann networks

Most pruning methods have been developed for net�

works of nonlinear units � feed�forward or recurrent �
typically trained by backpropagation or second�order
methods
 However pruning in another class of network�
Boltzmann networks� has not received adequate atten�
tion
 Though typically slower and a bit more di�cult
to train than feedforward neural networks� Boltzmann
networks nevertheless have some desirable properties�
natural handling of missing data �during training or re�
call�� pattern completion� and superior avoidance of lo�
cal energy minima during training
 Based on the close
relationship between certain Boltzmann networks and
Hidden Markov Models ���	�� we now know that such
Boltzmann networks can posess bene�ts of HMMs too�
most particularly dynamic time adjustment

Our paper is organized as follows� In Section �
 we

provide a short review of Boltzmann networks
 In Sec�
tion �
� we show a second�order expansion of the cross�
entropy cost function and present our sensitivity based
pruning algorithm
 In Section �
 we apply our method
to a Boltzmann architecture that is of particular inter�
est for integration of two channels having di�erent time
scales
 We conclude in Section 	
 with some thoughts
on future directions

�� BOLTZMANN NETWORKS

Boltzmann networks are stochastic networks with both
visible and hidden units �cf
� ��� for an introduction
and the notation we use here�
 We let the subscript �
denote the states of the visible units and � the states of
the hidden units
 The superscript � denotes iterating
the network with the visible units clamped to a desired
pattern� and � denotes the visible units running freely�
or unclamped
 The energy function for the Boltzmann
network is usually de�ned as

E � �

�

�

X

ij

wijsisj � ���

Appendix K� Asilomar ��� contribution ���

where wij is the �bi�directional� weight connecting
units i and j� and si is the �binary� state of unit i� At
thermal equilibrium the probability of �nding the units
in a given state con�guration �� when the visible units
are unclamped is given by the Boltzmann distribution

P��� �
	

Z
e�E�� � �
�

where Z is the normalizing partition function and E��

is the energy �dependent on the weights� when the vis�
ible units are in states � and the hidden units are in
states �� for clarity in the following� we have incor�
porated the temperature into the energy term� Thus�
the probability P�� of �nding the visible units in joint
states � is found by summing over the possible hidden
unit con�gurations ��
When training Boltzmann networks we want the

probabilities of the freely running network P�� to match
those of the environment�training examples P�

� � As a
measure of the di
erence between the two probability
distributions we use the Kullback�Leibler measure� or
relative entropy� as our cost function�

H�w� �
X

�

P�
� ln

P�
�

P��
���

� �

X

�

P�
� lnP�� � const �

where const is a constant determined solely by the en�
vironment� and is hence independent of the weights
w� When training using gradient descent we need the
derivatives of H�w� with respect to the bi�directional
weights wij connecting units i and j�

�H�w�

�wij

� �

X

�

P�
�

� lnP��
�wij

���

� �

X

�

P�
�

�
�

�E��

�wij

��
�

�

�
�

�E��

�wij

�
�

� � sisj �
�

� � sisj �
��

where � � � � ��
� is the mean value given that the visible

units are clamped in states �� and � � � � �� is the mean
when all units are free running�

�� PRUNING

The �rst derivatives lead to the traditional �rst�order
training methods ���� However� for training using
second�order methods and for our pruning algorithm
we need the second derivatives of the entropic cost�
These second derivatives are calculated as�

��H�w�

�wij�wpq

� ���

�

�X
�

P�
�

P��
�

��P��
�wij�wpq

�

X
�

�P��
�wij

�
P�
��

P��
�� � �P���wpq

�

�
X
�

� lnP��
�wij

� P�
� �

� lnP��
�wpq

�

X
�

P�
�

P��
�

��P��
�wij�wpq

�

X
�

� lnP��
�wij

� P�
� �

� lnP��
�wpq

�

The approximation in Eq� � is justi�ed if we assume
that the problem at hand is realizable� i�e�� there exists
a set of optimal weights w�� for which P�� � P�

� � ��
���� For these weights� the term in Eq� � involving
second derivatives of the unclamped probabilities P��
reads

X
�

P�
�

P��
�

��P��
�wij�wpq

�
X
�

��P��
�wij�wpq

���

�
��

�wij�wpq

�X
�

P��

�

� ��

where in the �rst step we used the fact that P�
� � P��

at w � w�� and in the last step that
P

� P
�

� � 	� Thus�
close to the optimal weights w� the term in Eq� � in�
volving second derivatives vanish� The remaining term
involves terms of a form calculated from Eq� ��

� lnP��
�wij

�

�
�
�E��

�wij

��
�

�

�
�
�E��

�wij

�
�

���

� � sisj �
�
� � � sisj �

� �

Thus we obtain the second derivatives�

��H�w�

�wij�wpq

�

X
�

� lnP��
�wij

� P�
� �

� lnP��
�wpq

���

�
X
�

P�
� � sisj �

�
�� spsq �

�
�

� � spsq �
�

X
�

P�
� � sisj �

�
�

� � sisj �
�

X
�

P�
� � spsq �

�
�

� � sisj �
�� spsq �

�

� � sisjspsq �
�
� � spsq �

�� sisj �
�

� � sisj �
�� spsq �

�

� � sisj �
�� spsq �

� �

We note that the second derivatives involves only terms
already computed when calculating the gradient� thus
implementation is straightforward and yields little com�
putational burden beyond that needed for gradient de�
scent learning�

���� Pruning using OBD and OBS

Two well�known methods for pruning traditional feed�
forward and recurrent networks are Optimal Brain
Damage �OBD� �	� and Optimal Brain Surgeon �OBS�

��	 Appendix K� Asilomar ��� contribution

���� Both methods use second�order expansions of the
error to estimate the importance of the parameters�
OBD uses a diagonal approximation to the Hessian to
calculate the saliency of a weight by estimating the
change in error when the weight is set to zero� OBS
uses the full Hessian� and the change in training error
is estimated including the e�ect of reestimating the re�
maining parameters in the model to a new minimum
within the quadratic approximation� The rationale be�
hind both methods is that if we remove the least salient
weights according to training error� we gracefully re�
lieve the danger of over�tting� and thereby improve
generalization�
The method we present here is �rmly rooted in the

logic of OBD	OBS
 the key novelty is the equation
for second derivatives� Eq� �� We note that for tra�
ditional Boltzmann networks� removing a weight from
the model is equal to setting it to zero� since the weight
no longer provides contribution to the energy �Eq�
��
Thus� the logic of OBD and OBS can be applied di�
rectly for these models as well� though using the sec�
ond derivatives derived above� Even though it is usu�
ally intractable to compute the numerical value of the
entropic cost �Eq� ��� this does not a�ect the prun�
ing methods since they only measure the change in
cost� working from approximations using information
already provided by the learning algorithms�

���� Pruning Hidden Markov Models

It has been shown that for certain tree�like connectivity
of Boltzmann networks it is possible and computation�
ally tractable to compute the expressions in Section ��
and �� exactly ���
 this� therefore� provides greater accu�
racy for the saliency estimates provided by our method�
Such computations have been used to a speci�c topol�
ogy of Boltzmann networks called Boltzmann chains
���� It was shown that any �rst�order HMM can be
represented by an equivalent Boltzmann chain ���� It
was furthermore shown that under the condition that
all state sequences have a mandatory end state� Boltz�
mann chains can be represented by �rst�order HMMs
as well ����
In traditional research on HMMs� the topology of

HMMs for a given task has been chosen by hand or
found by �exhaustive� search� However we suggest that
the topology can be optimized by converting the HMM
into a corresponding Boltzmann chain and performing
pruning on this model� The resulting chain is then con�
verted back into an HMM for reestimation of the re�
maining parameters or� alternatively� the reestimation
is done for the Boltzmann chain� only converting back
the optimal model�
Pruning a weight in a Boltzmann chain represent�

ing an HMM should be equivalent to setting the cor�
responding transition probability in the HMM to zero�
thus preventing hidden state sequences including the
transition in question from contributing to the proba�
bility of a given observation sequence� This means that

the weight should be set equal to �� if pruned in the
Boltzmann chain� yielding zero contribution to the par�
tition function for state sequences including the transi�
tion in question� This is consistent with the expressions
in ��� for converting the parameters in an HMM into the
weights of a Boltzmann chain� which is accomplished by
applying the natual logarithm to the transition proba�
bilites�
When pruning Boltzmann chains representing

HMMs we must modify our algorithms somewhat how�
ever� since these methods estimate the e�ect on the cost
when a parameter in the chain is set to zero� Instead
we are forced to set the weights to �� one by one and
compute the resulting change in error� This is possible
since we are able to perform exact calculations of the
entropic cost function for this special topology of Boltz�
mann networks� Also� we should be careful if	when
pruning weights representing observation probabilities�
since this means that the observation is no longer pos�
sible when in a particular hidden state�

�� EXPERIMENT

It has been shown how to model correlated dis�
crete time series on disparate timescales using cross�
connected parallel Boltzmann chains ���� which we call
Boltzmann zippers �Fig�
�� These models can be in�
terpreted as interconnected HMMs� Such models are
of particular interest where one must integrate infor�
mation from two time series having di�erent inherent
time scales� as for instance speechreading� where the
fast acoustic information must be integrated with the
slow visual information ���� Here we use pruning to
investigate the utilization of the cross�connection links�

b b b b b b

J
J

J
J

J
J�

�
�
�

�
�J

J
J
J

J
J�

�
�
�

�
�

t t t t t t

t t t

b b b

Figure �� Topology of a Boltzmann zip�
per� White circles represent groups of visible
units�states� dark circles represent groups of
hidden units�states�

We generated synthetic patterns by two left�right
HMMs� In order to generate observations on two dif�
ferent time scales� a fast model was iterated twice as
often as a slow model� The fast model had three hid�
den states and three observation symbols� the slow had
two hidden states and two observation symbols� The
last states in the models were connected� increasing
the probability of making transitions to the last hid�
den state in one model if the other model was already
in its last state� Thus� the fast model was able to make
direct transitions to its last state if the slow model was
already in its last state�
Three hundred pairwise sequences of lengths
� and

� �respectively� were generated� and a fully connected

Appendix K� Asilomar ��� contribution ��

TRAINING AND TEST ERRORS WHEN PRUNING

NUMBER OF PARAMETERS

E
R

R
O

R

26 27 28 29 30 31 32

3.
4

3.
6

3.
8

4.
0

Train
Test

QUALITY OF SALIENCY ESTIMATES

ESTIMATED SALIENCY
A

C
T

U
A

L
S

A
LI

E
N

C
Y

10^-5 10^-4 10^-3 10^-2 10^-1 10^0 10^1

10
^-

5
10

^-
4

10
^-

3
10

^-
2

10
^-

1
10

^0
10

^1

Figure �� Left panel� Cross�entropy error on
training and independent test sets ���	 patterns
each
 versus the number of bidirectional weights
between units� Pruning proceeds from right to
left� and at the extreme left ��� weights
� all
cross connections have been removed� Right
panel� The true saliences in a full network ver�
sus the saliencies estimated to second order�
Note the excellent agreement over six orders of
magnitude�

Boltzmann zipper having the same number of hid�
den and visible states as the underlying HMM�models
was trained� using ��� examples for training and ���
examples as a separate test set� The model� ini�
tially having �	 parameters� was trained using gradi�
ent descent followed by a second�order damped Gauss�
Newton method� In order to ensure numerical stability
and facilitate training� the entropic cost function was
augmented by a small quadratic weight decay term�

In order to investigate the utilization of the cross�
connections in the zipper� we used our method
in the
diagonal Hessian approximation� on these six weights�
Since it is not clear how these weights relate to the
transition probabilities in the HMMs we chose to limit
the degrees of freedom by setting the weights to zero
when pruned� The remaining weights were retrained
by the second�order method after each weight elimina�
tion� In the left panel of Fig� 	 we show the results of
pruning� We note that the errors are left almost un�
changed until we prune the �nal cross�connection� after
which the errors increase signi�cantly� This is consis�
tent with the model from which the data was generated�
and indicates that the zipper has captured the under�
lying structure well� In fact� the lowest test error was
obtained using only one cross connection� and the error
rises dramatically if this last connection is also pruned�

In the right panel of Fig� 	 we illustrate the qual�
ity of the saliency estimates� For the fully connected
zipper� we plot the estimated saliency for the cross con�
nections versus the actual saliency computed by setting
the weight to zero and calculating the resulting change
in training error� We note that the estimates are ap�
proximately equal to the actual saliencies� Note that
the rank ordering of the estimated saliency is the same
as the actual saliencies
 and thus the correct weight is
deleted�

In �	 pruning experiments such as just described

in which the generating model had a single cross�
connection link�� we found that all �	 resulting net�
works displayed better generalization than the un�
pruned network� Of these� we found that � displayed
best generalization using a single link� as expected�

�� CONCLUSION AND FUTURE WORK

We have derived the second derivatives of the en�
tropic cost function and shown how to use these for
sensitivity�based pruning of general Boltzmann net�
works� We have described how to extend this approach
to Hidden Markov Models by transforming these into
equivalent Boltzmann chains� Finally� we illustrated
the viability of pruning on the cross�connections of
Boltzmann zippers�
Clearly our method must be further demonstrated

on large and realistic problems� such as speechreading�
It will be interesting to see if our method� when applied
to Boltzmann chains� is computationally more e�cient
than the exhaustive search method used throughout
speech research for highly trained models�

Acknowledgements

This work was completed during a visit to the Ricoh
California Research Center� supported by the Dan�
ish Natural Science and Technical Research Councils
through the Computational Neural Network Center

connect�� The authors would like to thank Lars Kai
Hansen and Greg Wol� for support� and Lawrence Saul
for valuable discussions and for making available his
Boltzmann zipper code�

References
��� Y� Le Cun� J� S� Denker � S� A� Solla ����	
 �Optimal Brain
Damage�� in D� S� Touretzky �ed�
� Advances in Neural Infor�

mation Processing Systems � �� pp�
����	
� San Mateo� CA�
Morgan�Kaufmann�
��� B� Hassibi � D� G� Stork �����
 �Second order derivatives for
network pruning� Optimal Brain Surgeon�� in S� J� Hanson� J�
D� Cowan � C� L� Giles �eds�
 Advances in Neural Information

Processing Systems � �� pp� �������� San Mateo� CA� Morgan�
Kaufmann�
��� V� Vapnik �����
 Estimation of Dependences Based on

Empirical Data New York� Springer�Verlag�
��� L� K� Saul � M� I� Jordan ����

 �Boltzmann Chains and
Hidden Markov Models�� in G� Tesauro� D� Touretzky � T� Leen
�eds�
� Advances in Neural Information Processing Systems � ��
pp� ��
����� Cambridge� MA� MIT Press�
�
� D� J� MacKay �����
 �Equivalence of Linear Boltzmann
Chains and Hidden Markov Models�� Neural Computation ���

��������
��� S� Haykin �����
 Neural Networks� A Comprehensive

Foundation New York� Macmillan�
��� L� K� Hansen �����
 unpublished manuscript�
��� L� K� Saul � M� I� Jordan �����
 �Learning in Boltzmann
trees�� Neural Computation ���
 ����������
��� D� G� Stork � M� E� Hennecke �eds�
 �����
 Speechreading
by Humans and Machines New York� Springer�Verlag�

�	�

Appendix L

NNSP ��
 contribution �a�

This appendix contains the paper �Training Recurrent Networks	� accepted for presenta�
tion at the IEEE ���� workshop on Neural Networks for Signal Processing
 This paper
directs the attention towards the numerical aspects of recurrent network training
 It is
described how ill�conditioning may arise during training of recurrent networks	 and how
such numerical problems are reduced when augmenting the quadratic cost by a simple
weight decay term
 Examples of ill�conditioning and the e�ects of weight decay are given
for a small recurrent network trained on the Santa Fe laser series
 Furthermore a compar�
ison between training methods is provided for a larger recurrent network	 illustrating the
superiority of the damped Gauss�Newton method over gradient descent once the need for
regularization has been recognized

Reference for the paper� �Ped���

�	�

�	� Appendix L� NNSP ��	 contribution �a�

TRAINING RECURRENT NETWORKS

Morten With Pedersen
connect� Department of Mathematical Modelling� Building ���
Technical University of Denmark� DK����� Lyngby� Denmark

Phone	
 �� �����
�� Fax	
 �� ������

email	 mwp�imm�dtu�dk

Abstract � Training recurrent networks is generally believed to be a

di�cult task� Excessive training times and lack of convergence to an

acceptable solution are frequently reported� In this paper we seek to

explain the reason for this from a numerical point of view and show

how to avoid problems when training� In particular we investigate ill�

conditioning� the need for and e�ect of regularization and illustrate the

superiority of second�order methods for training�

INTRODUCTION

Recurrent neural networks are an interesting class of models for signal pro�
cessing as they are able to build up internal memory suited for the task at
hand and thus often lead to compact model representations� However� it is
generally believed to be a di�cult task to train this type of networks� Several
authors have addressed the learning problem for recurrent networks� e�g�� in
the context of sequence classi�cation when required to store information for
an arbitrary period of time ��� �� but to the best of the authors knowledge no
one have treated the problem from a general numerical point of view�

Feedforward networks were treated extensively from a numerical point
of view in ��� where it was illustrated how training forms an extremely ill�
conditioned optimization problem� In this contribution we extend this analy�
sis to include recurrent networks� In particular we identify redundant connec�
tions and illustrate how ill�conditioning may otherwise arise� which motivates
the use of regularization�

Having acknowledged the need for regularization makes way for the highly
e�ective second�order methods for training� In this contribution we partic�
ulary focus on the damped Gauss�Newton method and illustrate how this
method by far outperforms gradient descent on a time series prediction prob�
lem� namely the Santa Fe laser data� The focus in this contribution is on
time series prediction� but the results generalize to other applications as well�

ARCHITECTURE

The general architecture of the networks considered here are fully connected
feedback networks with one hidden layer of nonlinear units and a single linear

Appendix L� NNSP ��	 contribution �a� �	�

output unit� The output y�t� of the network is linear in order to allow for
arbitrary dynamical range� and is given by

y�t� �

NhX

i��

woisi�t� � wob ���

where Nh is the number of hidden units� woi is the weight to the output unit
from hidden unit j and wob is a bias weight� The output si�t� from hidden
unit i at time t is computed as

si�t� � f

�
�NhX

j��

wijsj�t� �� � wioy�t� �� �

NIX
k��

wikxk�t� � wib

�
A �	�

where wij is the weight to hidden unit i from hidden unit j� wio is the weight
to hidden unit i from the output unit and wib is the bias weight for hidden
unit i� xk�t� is the k
th element in the external input vector x�t� at time t
and NI is the total number of external inputs� f��� is the nonlinear activation
function� in this work we use f�x� � tanh�x��

Note that the update of the recurrent network presented above is layered�
as the outputs si�t� from the hidden units are computed immediately before

the computation of the output unit output� This is opposed to the update
presented in e�g� ���
 where all the units are updated simultaneously� In ��
 it
was shown that when using fully recurrent networks for forecasting� layered
update is preferable since synchronous update of the units e�ectively results
in a two�step ahead predictor� Note also that the linear output unit does not
have feedback of its own previous value� This is in order to avoid stability
problems that are otherwise likely to occur�

Training

In this work we focus on time series prediction in which case the input vector
contains delayed elements of the time series� x�t� � �x�t�� � � � � x�t�NI � ��
�
and the network output is a prediction of the next value in the series� bx�t��� �
y�t�� Training the network means adjusting the weights so as to minimize a
cost function� Most applications are based on the sum of squared errors�

E�w� �
�

	

TX
t��

�e�t�
� � e�t� � x�t� ��� y�t� ���

where T denotes the number of training examples and w is the concatenated
set of parameters� The adjustment of the parameters is done o� line by an
iterative sheme� wk�� � wk � ��wk � where �wk indicates the direction of
change and � is the �adaptive� size of the step� When training recurrent
neural networks the most commonly used scheme is gradient descent� where
the direction �wk is equal to the gradient g� gi � �E�wk���wi� Unfortu�
nately this method su�ers from extremely slow convergence� and the quality
of resulting solutions is often not satisfactory�

�	� Appendix L� NNSP ��	 contribution �a�

Experiments have shown that much more e�cient training can be obtained
by using second�order methods ���� Here we focus on the damped Gauss�
Newton method ���	 in which the search direction
wk is determined by

wk �H��g �
�

where H is the positive semide�nite approximation to the Hessian	

Hij �

TX

t��

�y�t�

�wi

�y�t�

�wj
�

��E�wk�

�wi�wj
�

TX

t��

�
�y�t�

�wi

�y�t�

�wj
� e�t�

��y�t�

�wi�wj

�
���

In each iteration k the step size � is determined by line search which makes
the method globally convergent ���� here we recommend a simple approach
where � is halved until a decrease in the cost is obtained ���� The iterations are
continued until convergence	 determined by a su�ciently small length of the
gradient	 kgk� � �� The Gauss�Newton method involves �nding the solution
to a linear system of equationsH
wk � g in each iteration	 but the increased
computational burden is justi�ed by a dramatic increase in convergence and
thus reduction of overall training time	 even for large networks as we shall see�
However	 the success of the damped Gauss�Newton method relies heavily on
the conditioning of the training problem	 as is the case for gradient descent�

ILL�CONDITIONING

When training using either gradient descent or the Gauss�Newton method	
a measure of great importance for the convergence is the condition number
of the Hessian H� For a symmetric positive de�nite matrix H	 the condition
number is de�ned as ��H� � �max��min	 the ratio between the largest and
smallest eigenvalue of H� If the condition number is large	 the Hessian be�
comes ill�conditioned� The convergence rate will su�er and the solution to the
linear system of equations �
� in the Gauss�Newton method becomes unreli�
able� As a rule of thumb the solution may not be trustworthy if ��H� 	
����	
where
 denotes the machine precision ���� For the IEEE �
�bit �oating point
representation this is equivalent to ��H� 	 ��� ����� This may seem as a large
number	 but this order of magnitude is not uncommon in the framework of
either feedforward networks ��� or recurrent networks as we shall see�

In ��� it was shown that an eigenvalue of the order of the number of
input variables could be avoided if the mean was subtracted from each of the
input variables xk�t� and if a symmetric activation function is used� However	
these simple countermeasures are not adequate for avoiding ill�conditioning
in recurrent networks	 as the analysis in the following will show�

The Hessian ��� can also be written as

H � JTJ � Jti �
�y�t�

�wi
���

where J is the Jacobian matrix	 whose columns are the partial derivatives
of the network output at each timestep in the training series� If J is rank�
de�cient some of the columns are linearly dependent	 which is indicated by

Appendix L� NNSP ��	 contribution �a� �	�

singular values with the value zero in an SVD analysis� This again leads to a
singular Hessian and thus an in�nite condition number� In practice it is rare to
�nd columns in J that are exactly dependent and thus singular values that are
exactly zero ���� However� it is often the case that columns are nearly linearly
dependent� which leads to very small singular values of J and thus large
condition numbers for the Hessian H� In the following sections we describe
situations leading to ill�conditioning of J for recurrent networks� arising from
both exact and approximate linearly dependencies between columns in J�

Exact dependency

For the type of recurrent networks de�ned by 	
� and 	�� there is built�in rank
de�ciency in the Jacobian since it is easy to show that some of the columns
in J will always be linear combinations of each other� This is illustrated by
an example for a small network� but the result apply for networks with an
arbitrary number of hidden units� The network considered here involves only
one external input and one hidden unit� and the output is thus de�ned as

y	t�
 wo�s�	t� � wob 	��

s�	t�
 f 	w��s�	t�
� � w�oy	t�
� � w�xx	t� � w�b� 	��

 f 		w�� � w�owo��s�	t�
� � w�xx	t� � 	w�b � w�owob�� 	��

where 	�� is obtained by insertion of 	�� in 	��� We see that the network
output will remain unchanged as long as the total weighting k� of s�	t �
��
k�
 w�� � w�owo�� and the total bias k� on the hidden unit� k�
 w�b �
w�owob� remains constant� wo� and wob can not be changed without directly
a�ecting the network output 	�� and are therefore kept �xed which we denote
by �� However� changes in w��� w�o and w�b that satis�es both expressions

w�� � w�

o�
� w�o � �
 k�

� � w�

ob
� w�o � w�b
 k�

	
��

will leave the network output unchanged� The expressions 	
�� form hyper�
planes in parameter space spanned by w��� w�o and w�b and their line of
intersection is computed as 	w��� w�o� w�b�
 	k�� �� k�� � t	�w�

o�
�
��w�

ob
��

parametrized by t� The line de�nes a direction in parameter space in which
the network output is constant� The constant network output means that
derivatives are zero in this direction� Thus� columns in the Jacobian corre�
sponding to 	w��� w�o� w�b� are linearly dependent�

When investigating Jacobians for the dependency problem outlined above
it is however uncommon to encounter singular values exactly equal to zero�
but according to the derivations this clearly ought to be the case� The rea�
son for this is the initialization of previous state values when starting up the
network� If the recurrent network starts iteration at time t

 it is common
practice �
�� to set the previous states of the hidden units as well as their
derivatives to zero� si	��
 � � �si	����w
 �� This startup procedure
clearly marks an initial discontinuity in the recursive equations 	�� and 	��

�	� Appendix L� NNSP ��	 contribution �a�

governing the feedback network� Thus initially the partial derivatives wrt�
the involved weights in the Jacobian will generally not be linearly dependent�
But after a few iterations indicating a transient� the dependency arises with
increasing accuracy� The linear dependency is eliminated if we omit the feed�
back weights wio from the output to the hidden units i� as the degeneracy
can then no longer occur� This elimination has no in�uence on the modeling
capabilities of the network since the remaining weights can be adjusted so
that the network output remains una�ected�

Approximate dependency

Even though removal of the feedback weights wio leading from the linear out�
put to the hidden units removes the problem of almost exact rank�de�ciency
in the Jacobian for recurrent networks it does not eliminate ill�conditioning
as experiments show� In �	
 the problem of ill�conditioning was analyzed for
feedforward networks by careful examination of the components entering the
partial derivatives �y�t���wi of the network output and it was found that
ill�conditioning in the Jacobian can arise from at least these three reasons
�assuming that the external inputs are not proportional�

�� The output from a hidden unit is saturated and constant �� ����

�� The outputs from two hidden units are approximately proportional�

�� The derivatives of two hidden unit outputs wrt� their activations are
approximately proportional�

Theoretical and empirical examinations of the components entering the par�
tial derivatives for recurrent networks reveal that ill�conditioning may arise
here from the same reasons� such analysis is however not included here�

Situation � where the outputs of two hidden units are proportional and
thus highly correlated often occurs in practice� e�g�� in ��
 high correlation
between hidden unit outputs was found and studied for feedforward networks�

The e�ects of situation � are similar to the e�ects of exact dependen�
cies described above� as we can determine directions in parameter space in
which the cost function is approximately constant� For recurrent networks
this situation is much more severe than for feedforward networks since the
degeneracy will not only a�ect weights leading to the output� but also many
weights connecting the hidden units as the experiments will show�

The scenarios listed above lead to nearly linearly dependencies between
the columns of J and thus to small eigenvalues in H� However� the condition
number of a matrix is determined by the ratio between the largest and smallest
eigenvalues� thus problems do not only arise from small singular values but
also from large values� As mentioned� the situations described above will lead
to directions in parameter space where the cost is approximately constant�
thus when training using the Gauss�Newton method the search direction will
be dominated by these directions leading to an unrestrained growth in the
magnitude of the a�ected weights� This again leads to a signi�cant growth in

Appendix L� NNSP ��	 contribution �a� �	�

the magnitude of several of the columns in the Jacobian since many derivatives
are dominated by terms of the form ����

�sk�t�

�wpq

�

NhX

j��

wkj

�sj�t� ��

�wpq

����

which becomes large if the weights wkj become large� The large elements in
the Jacobian lead to an overall upward scale of the elements in JTJ and thus
to an upward shift of the eigenvalues�

REGULARIZATION

A traditional method for handling ill	conditioning is by regularizing the cost
function �
� ��� A simple yet highly e
ective regularization can be obtained
by augmenting the cost function by a simple quadratic weight decay ����

C�w� � E�w� �
�

�
w
T
w ����

Simple weight decay is often primarily considered as a means for avoiding
over�tting as it puts constraints on the parameters and thus reduces the
degrees of freedom� Weight decay should however also be considered from
its regularizing e
ects� The immediate e
ect is that � gets added to the
diagonal of the Hessian which puts a lower bound on the smallest eigenvalues�
since it is easy to show that ��H � ��� � ��H� � �� Another e
ect is the
limit imposed on the growth of the weights which prevents near singular
directions in parameter space from dominating the search directions obtained
by the Gauss	Newton method� thus greatly improving the e�ciency of the
optimization� The constraints put on the weights by the regularization has
a smoothing e
ect on the cost function which was clearly illustrated in ����
Here it was also demonstrated that the signi�cance of the second order term
ignored in ��� diminishes when using simple weight decay as regularization�

EXPERIMENTS

In the �rst experiment we illustrate how ill	conditioning results from some of
the situations described herein and how regularization improves training� For
this experiment we used a simple recurrent network to predict the laser data
from the Santa Fe time series prediction competition ���� The data were scaled
so that the �rst ���� points used for training had zero mean and unit variance
and the following ��� values were used as a test set� The network used had
one external input and three hidden units� there were no feedback from the

linear output unit to the hidden units as found appropriate above� Training
was performed initially using �ve iterations of gradient descent followed by
the damped Gauss	Newton method� In the left panel of Figure � is shown the
evolution of the mean squared errors normalized by the variance of the sets
�NMSE� ���� when training without regularization� It seems that training is
converging to a solution� but this is not the case as the evolution of the weights

�		 Appendix L� NNSP ��	 contribution �a�

TRAIN
TEST

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

ITERATION #

N
M

S
E

0 20 40 60 80 100 120
−50

−40

−30

−20

−10

0

10

ITERATION #

W
E

IG
H

T
 V

A
LU

E

Figure �� Training without regularization� Left panel� Evolution of training and

test errors� Right panel� Evolution of the weight values�

in the right panel of Figure � shows� What happens is that the outputs of
two hidden units become almost proportional� this is revealed by the cosine
to the angle � between vectors containing their outputs on the training set
which at iteration ��� is cos � � ������� This corresponds to situation 	 listed
above� The weights that grow in magnitude are the pairs of weights leading
from these two units to every unit in the network including the output� Note
that the error and thus the network output is una
ected since the e
ects of
the changes in the growing weights cancel out due to the dependency between
the hidden units�

The condition number during training is shown in the left panel of Fig�
ure 	 and is seen to grow enormously� The rapid increase occurs shortly after
the initiation of the second�order method which quickly �discovers
 the depen�
dency between the hidden unit outputs� The near singular Hessian H leads
to very large weight changes in some directions when solving ���� The large
steps are however handled by the line search which returns very small step
sizes� indicated by the smooth increase in the weight magnitudes� In the right
panel of Figure 	 is shown the eigenvalues of the Hessian after iterations �� 	�
and ���� At each of the iterations it is seen that the condition number results
from both very small as well as very large eigenvalues and we note that as

0 10 20 30 40 50 60 70 80 90 100
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

7
20
100

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure �� Training without regularization� Left panel� Evolution of the condition

number for H� Right panel� Eigenvalues after iterations �� �� and ����

Appendix L� NNSP ��	 contribution �a� �	

TRAIN
TEST

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

0 20 40 60 80 100 120
−25

−20

−15

−10

−5

0

5

10

ITERATION #

W
E

IG
H

T
 V

A
LU

E

Figure �� Training with regularization� � � ����� Left panel� Evolution of training

and test errors� Right panel� Evolution of the weight values�

training progresses the eigenvalues extend both upward and downward�
The training was then repeated using the exact same initial weights and

the same training approach� but now with a regularization term added to the
cost function� using � � ����� In the left panel of Figure � is shown the
resulting evolution of the errors� The positive e�ect of the regularization is
evident� as the 	nal errors are several orders of magnitude below the levels
shown in Figure � obtained without regularization� Furthermore the stopping
criterion kgk� � ���� was satis	ed
 in the previous experiment using no
regularization the gradient norm grew proportional to the condition number�

In the right panel of Figure � we see that the regularization term limits the
growth of the weights compared to Figure �� Some however still grow large as
does the condition number shown in the left panel of Figure �� Even though
the condition number grows to ��� the damped Gauss�Newton method still
manages to 	nd a minimum� Experience shows that for this method successful
training to a
local� minimum can be obtained for condition numbers up to
about ��� in magnitude� This may depend on the decomposition algorithm
used when solving
��� here we use the fast and stable Cholesky factorization
���� From the right panel of Figure � we learn that the reduction in condition
number is obtained only from an increase in the smallest eigenvalues resulting

0 20 40 60 80 100 120
10

4

10
5

10
6

10
7

10
8

10
9

ITERATION #

C
O

N
D

IT
IO

N
 N

U
M

B
E

R

7
20
100

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

EIGENVALUE NUMBER

V
A

LU
E

Figure 	� Training with regularization� � � ����� Left panel� Evolution of the

condition number for H� Right panel� Eigenvalues after iterations
� �� and ����

�
� Appendix L� NNSP ��	 contribution �a�

from the regularization� The largest eigenvalues are of the same order of
magnitude as when training without weight decay� see Figure �� This is due
to the still fairly large weight magnitudes� If the regularization term � is
further increased the larger eigenvalues will also be a�ected� but so will the
modeling capabilities of the network� leading to increased errors�

In the �nal experiment we compare the performance of damped Gauss�
Newton with a gradient descent algorithm also using the step�size halving
line search� The problem is still prediction of the laser series but using larger
networks with a single input and nine hidden units� 	
� weights in total �no
feedback from the output to the hidden units
� Thus� each iteration using
damped Gauss�Newton involved solution of a 	
� by 	
� linear system of
equations� Six initial networks were generated by initializing their weights
with values drawn from a uniform distribution over the interval ��
���
����
The training algorithms were then compared when starting from the same six
initial networks� both using regularization � �
�
�� The resulting evolution
of errors is shown in Figure �� in the left panel we see the resulting errors
using the damped Gauss�Newton method� in the right panel using gradient
descent� Using both methods the stopping criteria was set to kgk� � 	
�� or
maximum 	

 iterations�

TRAIN
TEST

0 50 100 150 200 250 300 350 400 450
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

TRAIN
TEST

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−4

10
−3

10
−2

10
−1

10
0

ITERATION #

N
M

S
E

Figure �� Evolution of errors using di�erent optimization methods� Left panel�

Damped Gauss�Newton method� Right panel� Gradient descent with line search�

For the damped Gauss�Newton method the stopping criterion was met in
all six runs� The average training error �Normalized Mean Squared Error
 was
����	
��� the average test error was ����	
��� The average time for a complete
training run was �

 seconds� For gradient descent the stopping criterion was
never met� the termination of the algorithm in each run was due to maximum
number of iterations reached� The average training error obtained after the
maximum allowed 	

 iterations was ��
 � 	
��� the average test error was
��� � 	
��� The average time used for obtaining these error levels was �	�

seconds� Note that the levels of both training and test errors obtained using
gradient descent are much higher than the levels obtained using the damped
Gauss�Newton method even though gradient descent used a factor of �
 times
more iterations and a factor of �
 times more computer time� Thus� even
though an iteration of the damped Gauss�Newton method is computationally

Appendix L� NNSP ��	 contribution �a� �
�

more costly than an iteration of gradient descent� the additional cost is highly
justi�ed by the vastly increased convergence rate� Similar justi�cation has
been observed for networks with up to ��� parameters�

CONCLUSION

In this paper we have focused on sources of ill�conditioning and thus the need
for regularization when training recurrent networks especially using second�
order methods� Once this need is recognized dramatic improvement in con�
vergence rate and quality of solution is obtained� even for large size problems�

ACKNOWLEDGMENTS

The author would like to thank Lars Kai Hansen and Jan Larsen for support�
This research is supported by the Danish Natural and Technical Research
Coucils through the Computational Neural Network Center �connect	�

REFERENCES

��� Y� Bengio� P� Simard and P� Frasconi� �Learning long�term dependencies with
gradient descent is di�cult�	 IEEE Transactions on Neural Networks�
vol�
� no� �� pp� �
�
���� �����

��� Y� L� Cun� I� Kanter and S� A� Solla� �Eigenvalues of covariance matrices�
Application to neural�network learning�	 Physical Review Letters� vol� ���
no� ��� pp� ����
����� �����

��� J� E� Dennis and R� B� Schnabel� Numerical Methods for Unconstrained

Optimization and Nonlinear Equations� Englewood Cli�s� NJ� Prentice�
Hall� �����

��� S� Haykin� Neural Networks� A Comprehensive Foundation� New York�
NY� Macmillan� �����

�
� S� Hochreiter and J� Schmidhuber� �Long short termmemory�	 Tech� Rep� FKI�
�����
� Fakultat fur Informatik� Technische Universitat Munchen� Munchen�
���
�

��� M� W� Pedersen and L� K� Hansen� �Recurrent networks� Second order proper�
ties and pruning�	 in G� Tesauro� D� Touretzky and T� Leen� eds�� Advances
in Neural Information Processing Systems� The MIT Press� ���
� vol� ��
pp� ���
����

��� S� Saarinen� R� Bramley and G� Cybenko� �Ill�conditioning in neural network
training problems�	 SIAM Journal on Scienti�c Computing� vol� ���
pp� ���
���� �����

��� A� S� Weigend and N� A� Gershenfeld� eds�� Time Series Prediction� Fore�

casting the Future and Understanding the Past� Reading� MA� Addison�
Wesley� �����

��� A� S� Weigend and D� E� Rumelhart� �The e�ective dimension of the space
of hidden units�	 in E� Keramides� ed�� Proceedings of INTERFACE����
Computing Science and Statistics� Springer Verlag� �����

���� R� J� Williams and D� Zipser� �A learning algorithm for continually running
fully recurrent neural networks�	 Neural Computation� vol� �� pp� ���
����
�����

�
�

Appendix M

NNSP ��
 contribution �b�

This appendix contains the paper �Interpretation of Recurrent Neural Networks	� accepted
for presentation at the IEEE ���� workshop on Neural Networks for Signal Processing
 In
this paper it is suggested to measure the memory of a recurrent network applied to time
series prediction on a test set
 Expressions are provided for both an �average� memory
measure as well as a �short term� memory measure
 As the network memory is de
ned
in terms of generalization error	 attention is directed towards the generation of a learning
curve
 Learning curves are generated for recurrent networks trained on the Santa Fe laser
series as well as the Mackey�Glass series	 and average memory as well as short term mem�
ory is measured for selected networks

Reference for the paper� �PL���

�
�

�
� Appendix M� NNSP ��	 contribution �b�

INTERPRETATION OF RECURRENT NEURAL

NETWORKS

Morten With Pedersen and Jan Larsen
connect� Department of Mathematical Modelling� Building ���
Technical University of Denmark� DK����� Lyngby� Denmark
Phones	
 �� ����
 ext
 ��������� Fax	
 �� ��������

emails	 mwp�imm
dtu
dk� jl�imm
dtu
dk

Abstract � This paper addresses techniques for interpretation and char�

acterization of trained recurrent nets for time series problems� In parti�

cular� we focus on assessment of e�ective memory and suggest an opera�

tional de�nition of memory� Further we discuss the evaluation of learning

curves� Various numerical experiments on time series prediction prob�

lems are used to illustrate the potential of the suggested methods�

INTRODUCTION

It is widely recognized that recurrent neural networks �RNNs� are �exible
tools for time series processing� system identi�cation and control problems�
see e
g
� ���
 Feed�forward networks can accommodate dynamics by having
a lag space of past input and target values� however� a fully recurrent net�
work with internal feedbacks allows for even more sophisticated dynamics

While fully RNN architectures are the ultimate tool for modeling dynamic
relations� the comprehension of the networks is a challenging subject of on�
going research
 Theoretical investigations of modeling capabilities of RNNs
have been reported� see e
g
� ���� ���� ���
 However� to the authors knowledge�
there is no general theory of the dynamic behavior of a general RNN except
for very special models like the Hop�eld network� see e
g
� ���
 This indeed
indicates that theoretical analysis of RNNs is extremely complicated
 On
the other hand� one might pursue a more computational approach
 The gen�
eral computational tools from non�linear dynamic systems analysis like phase
portraits� stability analysis� measurement of fractal dimensions or Lyapunov
exponents �see e
g
� ���� ���� may be applied to the analysis of RNNs

The motivation for this paper is evaluation and interpretation of trained
recurrent networks� and to suggest and discuss simple operational techniques

In particular� we focus on the learning curve and present a new method to
determine the e�ective memory of a recurrent network which conveys the
relevant time scale of the dynamics

Appendix M� NNSP ��	 contribution �b� �
�

NETWORK ARCHITECTURE

The objective is to model a non�linear dynamic relation among a discrete�
time input signal x�t� and a discrete time target signal� d�t�� The general
architecture of the RNN considered in this presentation is based on ��	 and
consists of a single hidden layer of fully connected nonlinear units and one
output unit� In particular� we focus on a network with only one external input�
viz� the most recent value� x�t�� That is� the only information available about
previous inputs stems from the memory build up internally in the net� The
advantage using these networks is that the tedious problem of determining
the optimal lag space of previous inputs is converted into determining the
optimal network architecture in terms of connections and number of hidden
neurons�

The network has a linear output in order to allow for arbitrary dynamic
range� and at time t the prediction of the target d�t� is given by�

y�t�

NhX

i��

woi � si�t� � wob ���

where Nh is the number of hidden units� woi is the weight to the output unit
from hidden unit i and wob is the output bias weight� The ith state� si�t�� is
the output of a hidden unit computed as

si�t�
 f

�
�

NhX
j��

wij � sj�t� �� � wix � x�t� � wib

�
A �
�

where wij is the weight to hidden unit i from hidden unit j� wix is the weight
from the external input x�t�� and wib is the bias weight� f��� is the nonlinear
activation function tanh�x�� Note that the update of the units is layered ��	�
at each time step the hidden units are updated before the output unit�

TRAINING AND GENERALIZATION

Suppose we have a training set of related values of inputs and targets T

fx�t�� d�t�gTt�� where T is the number of training samples� Training is done
by adjusting the weights so as to minimize a cost function� Here we employ
the sum of squared errors augmented by a simple weight decay regularization
term

C�w�

�

TX
t��

e��t� �
�

jwj� � e�t�
 d�t�� y�t� ���

where w is the concatenated set of weights and � is a small regularization
parameter� Training aims at minimizing the cost function C�w� and is thor�
oughly treated for RNNs in ��	�

�
� Appendix M� NNSP ��	 contribution �b�

Suppose that training provides the estimated weight vector bw� Let � be an
initial state vector� of the �true� data generating system leading to the train�
ing set T and de�ne an associated probability distribution� p���� Further	
de�ne x�t�
 �x�t�� x�t� ��� � � �x�T
���� and let p �d�t��x�t� j T ��� � t � T�

be the true joint probability density function of �d�t��x�t�� conditioned on
the initial state � and the training set T � The true joint p�d�f� is assumed
to be time�independent �i�e�	 stationary�� The generalization error of the
trained net is de�ned as the expected squared prediction error on future data
immediately succeeding the training data	 i�e�	 for t � T 	

G�bw�

Z
�d�t�� y�t� bw��� � p �d�t��x�t� j T ��� � p��� dd�t�dx�t�d� ���

Thus the generalization error is the ensemble average of the squared error
over �� possible realizations of �d�t��x�t�� due to inherent stochastic processes
in the data generating system	 and �� over possible initial states leading to
the particular training set�

We estimate the generalization error by	

bG�bw�
 �

V

T�VX
t�T��

e��t� bw� ���

where V is the number of test samples�

LEARNING CURVE

The learning curve expresses the average generalization error over all possible
training sets of a particular size T as a function of T and is an important
tool for verifying whether enough data is available for proper training of the
network� Moreover	 the shape of the curve provides insight into the nature
of the problem as demonstrated in the experimental section�

Practical considerations may lead to more restricted de�nitions� Here we
compute the learning curve as the estimated generalization error when grad�
ually expanding the training set� That is	 there is no average over di�erent
sets of a particular size�

NETWORK MEMORY

A characteristic of recurrent neural networks is their ability to build up an
internal memory representing the �history� of previous inputs on which the
predictions of future values is based� The signi�cance of this internal memory
is especially clear when using RNNs having only one external input� Without
the ability to create internal memory this class of networks would be useless�

Once a recurrent network is trained	 the basic idea here is to de�ne an
integer variable M which expresses the e�ective memory of past values of

�The initial state captures the all information about the time series for t � ��
�E�g�� that all initial states are equally likely�

Appendix M� NNSP ��	 contribution �b� �
�

the input signal x�t�� The memory thus provides a partial insight into the
functionality and dynamics of the network� The experimental section gives
examples of interpreting the dynamics using this simple concept� Recurrent
networks with only one external input can not give individual contribution to
each previous input x�t �m� but must store their own representation� Con�
sequently� the RNN has a certain memory pro�le� We are currently pursuing
the idea of determining the memory pro�le�

A feed�forward network does not possess any internal memory� i�e�� the
memory is explicitly determined by the memory contained in the preprocess�
ing of the input signal� The standard approach is to feed the signals from a
tapped delay line �x�t�� x�t�	�� � � � x�t�M�
 into the network and the memory
thus equals M �

The capacity of the internal memory of a recurrent network increases when
the number of hidden units �i�e�� the dimension of the state vector� increases
as the state vector contains all information about previous inputs� However�
to our knowledge� there is no reports on quantizing the notion of memory in
recurrent networks� In the following we attempt to provide a de�nition of the
memory of a speci�c trained recurrent network�

The output from the RNN de�ned in �	�� ��� is based on the current and
� in principle � in�nitely many previous inputs�� as shown by�

y�t�
 y �tjbw� x�t�� x�t � 	�� � � � � x����� � ���

In order to determine the e�ective average memory of the recurrent network
we suggest to evaluate an estimate of the generalization error� i�e�� prediction
error on a test set� using predictions based on only a limited number of
previous inputs� This generalization error is then compared to the error
obtained using all � in principle in�nitely many � previous inputs�

In particular� when evaluating the generalization error using only the m
most recent inputs� we compute�

bGm�bw�

	

V

T�VX
t�T��

�d�t�� y �tjbw� x�t�� x�t � 	�� � � � � x�t�m��
�� m � � ���

where V is the size of the test set� y �tjbw� x�t�� x�t � 	�� � � � � x�t�m�� is
computed for each t � �T � 	�T � V
 by resetting� the states si�t �m� 	��
i
 	� �� � � � � Nh� to zero and then iterate the network from time t �m until
time t� using the output y�t� at this time as the prediction of d�t�� In the
�rst iteration� calculating y �t�mjbw� x�t�m��� the network thus functions
as a feed�forward network since the previous states of the hidden units �
and thereby all previous external inputs � have no in�uence on the network
output� Then� the network gradually builds up a representation of the past in

�This is also true for a RNN in which previous values of the output is fed back to the
input�

�Setting the hidden unit states si�t�m��� to zero is equivalent to erasing the memory
of the network regarding inputs before time t�m�

�
	 Appendix M� NNSP ��	 contribution �b�

the hidden units during the nextm�� iterations before it makes its prediction
at time t�

The resulting errors bG��bw�� bG��bw�� � � � are then compared to bG��bw� de�
noting the error obtained when using all available previous inputs� i�e�� no
resetting of the hidden unit states at any time� The memory M is now de�
	ned as�

M
 inf

�
m

������m� � m�
j bGm��bw�� bG��bw�jbG��bw� � �

�
���

where � is a small number� Thus� the memory� M � denotes the minimal
number of previous inputs beyond which additional inputs are insigni	cant�

The memory measure outlined above determines the number of previous
inputs that the network needs knowledge about in order to obtain good pre�
dictions on all samples in the test set� Thus the measure can be interpreted
as the average memory of the network� A recurrent network� however� is a
dynamic system whose internal characteristics can be highly in�uenced by
the nature of the input series� Especially� if the input series exhibits regions
of non�stationary behavior� the network dynamics including memory must
clearly be a
ected� Such changes in dynamics are not captured by the aver�
age memory measure and we may de	ne a local memory � in accordance with
���� using a local generalization error estimate�

bGm�t� bw�
 �

K

tX
t��t�K��

�d�t��� y �t�jbw� x�t��� x�t� � ��� � � � � x�t� �m����� ���

wherem � �� t � T � and � � K � V is the size of a smaller test set� Choosing
K too small gives rise to a very noisy measure of the generalization error�
however� in principle a good resolution of changes in memory requirement�
On the other hand� increasingK improves generalization accuracy but reduces
the resolution of changes in memory�

EXPERIMENTS

The proposed methods for estimating the learning curves and memory are
evaluated on two chaotic time series prediction problems� viz� the laser series
from the Santa Fe time series competition ��� and the arti	cially generated
Mackey�Glass series ����

The laser series is illustrated in the left panel of Figure �� Let z�t� denotes
the series� then identi	cation is done by training the network to perform a one
step ahead prediction� i�e�� we use x�t�
 z�t� and d�t�
 z�t���� All available
����� samples are used and scaled to zero mean and unit variance� From
these data we construct a learning curve� The training series are obtained by

�Notice� by de�ning this measure for all t � T some of the �rst values are based partly

on training examples�

Appendix M� NNSP ��	 contribution �b� �

1 1000 2000 3000
−5

0

5
SANTA FE LASER SERIES

4000 5000 6000 7000
−5

0

5

7001 8000 9000 10000
−5

0

5

0 1000 2000 3000 4000 5000 6000 7000
10

−3

10
−2

10
−1

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �� Left panel� The Santa Fe laser series� Right panel� Learning curve for

the laser data� Dots denote error for individual nets� the connected circles indicate

the average�

extending backwards in time from point ���� and the last ���� points in the
series are used as test series� For instance� a training set of size ���� involves
training using z	
���� through z	������ The employed nets have one external
input and ten hidden units� For each number of increasing training set sizes�
we train ten networks using di�erent random initial weights and compute the
resulting normalized mean squared error 	NMSE� on the test set� NMSE is
de
ned by

NMSE �
jSj��

P
t�S

e
�	t� bw�

cvar	d	t�� 	���

where t runs over the set S in question 	i�e�� either training or test set�� jSj
is the size of the set� and cvar	�� denotes the empirical variance�

The learning curve is shown in the right panel of Figure �� Initially the test
error drops as the size of the training set is increased� but from training set size
���� to ���� the average test error is fairly constant� This can be explained by
visual inspection of the laser series as the �shape� of many collapses between
the corresponding points ��������� seems atypical for the test series� We see
a signi
cant drop in test error when increasing the training set size from ����
to
��� points which might be explained by the fact that the training set now
incorporates an additional collapse very similar in shape to the ones in the
test series� These observations suggest that for the laser series� the concept of
an example should be conceived on several time scales� there are the pointwise
examples corresponding to each single input presented to the network� but
more important� there obviously exists �super examples� consisting of a whole
section of the time series� If additional super examples or sections are not
similar to the sections encountered in the test series� generalization will not
improve as seen in the right panel of Figure ��

We now examine the memory of selected networks� The left panel of
Figure � depicts the normalized version of Eq� 	�� for increasing values of
lag space m when evaluating one of the networks with low test error trained
on ���� examples� The horizontal dotted line indicates the normalized level

��� Appendix M� NNSP ��	 contribution �b�

0 20 40 60 80 100 120 140 160 180 200
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

Figure �� Left panel� Measuring average memory for one of the networks with low

generalization error trained on ���� examples from the laser series� Right panel�

Measuring average memory for another of the networks trained on ���� examples�

bG��bw� using all available previous inputs� It seems that the network has
a memory somewhere between ��� and ���� The precision � in ��� denotes
a level below which we consider the two errors as equivalent� The value of
the memory thus naturally depends on the choice of � as shown in Table ��
In the right panel of Figure � the normalized test error for increasing lag

� ���� ����� ����
M ��� ��	 �
�

Table �� The value of the memory dependence on � for curve in the left panel of

Figure ��

space m for another of the nets trained on ���� points is shown� We note
that for this network the memory M is less sensitive to �� as it is between
�	
�� for � � ����� We also note that the memory is much shorter than for
the previous network even though the test errors are almost identical� Note�
since the network complexity� is restricted� a network with short memory is
able to allow for more individual contribution of each of the previous inputs
x�t � n� than a network with long memory� The memory pro�le of a short
term memory net is thus more �ne grained than that of a long term memory
net �with the same complexity�� One might claim that a compact memory
model is better tuned to the problem�

In the left panel of Figure 	 we illustrate the average memory of the
network with lowest test error when training on only ��� examples� We notice
that by limiting the memory the error can actually become lower than bG��
This e�ect often occurs for overtrained networks which is also the case here�
The memory of the network is highly specialized on the training set� limiting
the memory acts as regularization and actually improves the performance on
the test set�

We now illustrate that the memory of a recurrent network indeed is a

�E�g�� measured by the number of hidden neurons�

Appendix M� NNSP ��	 contribution �b� ���

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E 7000 7500 8000 8500 9000 9500 10000

0

50

100

150

200

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME

Figure �� Left panel� Measuring average memory for best network trained on ���

examples from the laser series� Right panel� Measuring local memory with threshold

� � ���� using 	ve point average
 K � ��

dynamic quantity by examining the local memory de�ned by Eq� ��� and ���
for the network whose average memory is shown in the left panel of Figure ��
The right panel of Figure 	 and the left panel of Figure
 illustrate the
dynamic memory measure using precision � � ���
 and averaging over K � �
andK � �� examples� respectively� The memory is seen to be very dependent
upon where in the laser series it is measured� the closer to a collapse� the
larger� The memory required around the last collapse is signi�cantly larger
than around the previous collapses� This may be explained by the observation
that the characteristics of the laser series just before the last collapse is highly
atypical from the rest of the test series� The memory in the right panel of
Figure 	 averaging over only K � � previous errors is seen to be a very noisy
quantity� As K is increased the error measure becomes smoother� Recall
from Table
 that the average memory for � � ���
 is M �
��� however� the
illustrations of the local memory shows that by omitting the last collapse the
average memory would be measured to
��� approximately�

The Mackey�Glass series is a standard problem of nonlinear dynamics and
results from the integration of a di�erential equation� see e�g�� ���� Standard

7000 7500 8000 8500 9000 9500 10000
0

50

100

150

200

M
E

M
O

R
Y

7000 7500 8000 8500 9000 9500 10000
−2

0

2

4

TIME
0 200 400 600 800 1000 1200 1400 1600

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

NUMBER OF TRAINING EXAMPLES

T
E

S
T

 E
R

R
O

R
 (

N
M

S
E

)

Figure �� Left panel� Measuring local memory with threshold � � ���� using 	fty

point average
 K � ��� Right panel� Learning curve for the Mackey�Glass series�

��� Appendix M� NNSP ��	 contribution �b�

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

PREVIOUS # OF SAMPLES, m

N
M

S
E

Figure �� Measuring average memory for networks trained on ���� examples from

the Mackey�Glass series� Left Panel� Network having short memory� Right panel�

Network having long memory�

practice is to implement a six step ahead predictor� i�e�� modeling z�t� from a
lag space vector x�t� � �z�t� ��� z�t� 	
�� � � � � z�t� �nI�� using feed�forward
networks� Here we implement the six step ahead predictor with target value
d�t� � z�t� using a recurrent network with only one external input� x�t� �
z�t���� and ten hidden units� In the right panel of Figure
 is shown a learning
curve for the Mackey�Glass series when training on up to 	��� samples and
testing on the following ���� samples� For each training set size ten networks
were trained� The learning curve indicates that more than 	��� examples are
needed in order to obtain consistently good results on the test set� We then
determined the average memory de�ned by Eq� ��� for the properly trained
networks with the lowest errors on the test set� Using the threshold � � ���	
we found that the networks implemented a memory in the range of 		��
���
as seen from Figure ��

The memories implemented by the recurrent networks are surprisingly
long� In order to obtain comparable performance using feed�forward networks
six external inputs are needed� thus spanning a total of only �	 previous sam�
ples� This is the minimal memory neccessary for good performance provided
weighting of individual lags is possible� however� a RNN�s memory pro�le is
more coarse grained reducing the possibilty of individual weighting� Further�
more� maintaining information about all previous input values seems to bias
recurrent networks towards the implementation of a long e�ective memory�

The long memory implemented by the recurrent networks seems to be
of prime importance for the robustness of these models� Preliminary experi�
ments indicate that recurrent networks are far more resilient to noise pertuba�
tions of the input data than comparable feed�forward networks� Examination
of the robustness of recurrent networks is a topic of ongoing research�

CONCLUSION

In this paper we have focused on determining the e�ective memory of re�
current neural networks when used for time series processing� equivalent to

Appendix M� NNSP ��	 contribution �b� ���

the span of the externally provided lag space for feed�forward networks� In
particular� we have suggested an operational de�nition which measures the
memory of a fully trained RNN on a test set� The viability of the method is
illustrated on two chaotic time series problems�

ACKNOWLEDGMENTS

This research was supported by the Danish Natural Science and Technical
Research Councils through the Computational Neural Network Center �con�
nect�� JL furthermore acknowledge the Radio Parts Foundation for �nancial
support� Lars Kai Hansen is acknowledged for stimulating discussions�

REFERENCES

��� H�D�I� Abarbanel� Analysis of Observed Chaotic Data� New York� NY�
Springer�Verlag� ���	�

�
� M� Casey� �The Dynamics of Discrete�Time Computation� with Application
to Recurrent Neural Networks and Finite State Machine Extraction�� Neural

Computation� vol�
� pp� ��������
� ���	�
��� S� Haykin� Neural Networks� A Comprehensive Foundation� New

York� New York� Macmillan College Publishing Company� �����
��� T� Lin� B�G� Horne� P� Tino � C�L� Giles� �Learning Long�term Dependencies

with NARX Recurrent Neural Networks�� IEEE Transactions on Neural

Networks� vol� �� no� 	� p� ��
�� ���	�
��� M�W� Pedersen � L�K� Hansen� �Recurrent Networks� Second Order Proper�

ties and Pruning�� in G� Tesauro� D� Touretzky � T� Leen �eds�� Advances

in Neural Information Processing Systems �� Cambridge� MA� The MIT
Press� ����� pp� 	���	
��

�	� M�W� Pedersen� �Training Recurrent Networks�� in Proceedings of the

IEEE Workshop on Neural Networks for Signal Processing VII� Pis�
cataway� New Jersey� IEEE� �����

��� H�T� Siegelmann� B�G� Horne � C�L� Giles� �Computational Capabilities of
Recurrent NARX Neural Networks�� Technical Report UMIACS�TR�

�����	 IEEE Transactions on Systems	 Man and Cybernetics� ����
�in press��

�
� C� Svarer� L� K� Hansen� J� Larsen � C� E� Rasmussen� �Designer Networks for
Time Series Processing�� in C� A� Kamm� G� M� Kuhn� B� Yoon� R� Chellappa
� S� Y� Kung �eds��� Proceedings of the IEEE Workshop on Neural

Networks for Signal Processing
� Piscataway� New Jersey� IEEE� pp�
�
�
�� �����

��� A�S� Weigend� � N�A� Gershenfeld �eds��� Time Series Prediction� Fore�

casting the Future and Understanding the Past� Santa Fe Institute
Studies in the Sciences of Complexity� Reading� MA� Addison�Wesley� �����

���

Appendix N

NIPS��
 submission

This appendix contains the paper �Second�Order Methods in Boltzmann Learning� An
Application to Speechreading	� submitted to the ���� Neural Information Processing Sys�
tems conference
 The focus of this paper is once more the application of second�order
methods for training and pruning of general Boltzmann networks
 An approximation to
the Hessian is derived for the relative entropy cost function applied to general Boltzmann
networks
 The improvement in training when employing second�order methods is illus�
trated for Boltzmann chains applied to the identi
cation of an HMM	 and attention is
directed towards the importance of regularization
 Pruning is illustrated for Boltzmann
zippers applied to a real�world speechreading problem
 It is illustrated how pruning by
OBD reduces the model complexity and improves the generalization ability
 Furthermore
the accuracy of the saliency estimates is illustrated	 indicating the quality of the Hessian
approximation

Reference for the paper� �PS���

���

��� Appendix N� NIPS��	 submission

Second�Order Methods in Boltzmann

Learning� An Application to

Speechreading

Morten With Pedersen
�

Section for Digital Signal Processing
Department of Mathematical Modelling
Technical University of Denmark B���

DK����� Lyngby� DENMARK
mwp�imm�dtu�dk

David G� Stork

The MLP Group
Ricoh Silicon Valley

���� Sand Hill Road Suite ��	
Menlo Park� CA
���	����� USA

stork�crc�ricoh�com

Abstract

We introduce second�order methods for training and pruning of
general Boltzmann networks trained with cross�entropy error
 In
particular� we derive the second derivatives for the entropic cost
function
 We illustrate pruning on Boltzmann zippers� applied to
real�world data � a speechreading �lipreading� problem

� INTRODUCTION

Second�order methods for training feed�forward neural networks� such as Gauss�
Newton� Levenberg�Marquardt and quasi�Newton algorithms ���� can greatly reduce
learning time compared to �rst�order methods such as backpropagation
 Boltzmann
networks are among the slowest networks to train� and thus it is natural that we
apply second�order methods to them as well
 While there are several di�erences
between traditional feed�forward networks and Boltzmann networks� at a su�ciently
abstract level these networks are similar enough that the approaches developed for
traditional networks can be taken over to Boltzmann networks� as we shall see

Second�order methods have another important use in neural networks� pruning

There is an enormous body of simulation work demonstrating the value of archi�
tecture optimization for networks for pattern classi�cation� and this has properly
led to great interest in both theoretical foundations and in new algorithms
 There
are two basic viewpoints toward this issue� regularization �or penalty based� and
sensitivity based
 According to the viewpoint of regularization� one seeks to impose

�Corresponding author� Category� Algorithms and Architectures� Presentation� Oral�

Appendix N� NIPS��	 submission ���

some desired property in the �nal solution� for instance smoothness� Thus in weight
decay one penalizes large weights and therefore favors smoother decision boundaries�
According to the viewpoint of sensitivity� one seeks to eliminate those parameters
�e�g�� weights� that have the smallest e�ect on the training error� thereby restricting
the model without severely penalizing the training error� Recent methods �special
cases of the Wald statistic� eliminate weights that are predicted to have the least
e�ect on the training error �	�
�� In this work we introduce these methods �OBD
and OBS� in the context of Boltzmann networks�

� BOLTZMANN NETWORKS

Though typically slower and a bit more di�cult to train than feedforward neural
networks� Boltzmann networks nevertheless have some desirable properties
 natural
handling of missing data �during both training and application�� pattern comple�
tion� and superior avoidance of local energy minima during training� Boltzmann
networks are stochastic networks with both visible and hidden units �cf�� ��� for
an introduction and the notation we use here�� We let the subscript � denote the
states of the visible units and � the states of the hidden units� The superscript �
denotes iterating the network with the visible units clamped to a desired pattern�
and � denotes the visible units running freely� or unclamped� The energy function
for the Boltzmann network is usually de�ned as

E � �

	

�

X

ij

wijsisj � �	�

where wij is the �bi�directional� weight connecting units i and j� and si is the
�binary� state of unit i� At thermal equilibrium the probability of �nding the units
in a given state con�guration �� when the visible units are unclamped is given by
the Boltzmann distribution

P��� �
	

Z
e�E�� � ���

where Z is the normalizing partition function and E�� is the energy �dependent
on the weights� when the visible units are in states � and the hidden units are in
states �� for clarity in the following� we have incorporated the temperature into the
energy term� Thus� the probability P�� of �nding the visible units in joint states �
is found by summing over the possible hidden unit con�gurations ��

When training Boltzmann networks we want the probabilities of the freely running
network P�� to match those of the environment�training examples P�� � As a measure
of the di�erence between the two probability distributions we use the Kullback�
Leibler measure� or relative entropy� as our cost function

H�w� �
X

�

P�� ln
P��

P��
� �

X

�

P�� lnP�� � const� �
�

where const is a constant determined solely by the environment� and is hence in�
dependent of the weights w� When training using gradient descent we need the
derivatives of H�w� with respect to the bi�directional weights wij connecting units
i and j

�H�w�

�wij

� �

X

�

P��
� lnP��
�wij

� �
X

�

P��

�
�

�E��

�wij

��
�

�

�
�

�E��

�wij

�
�

� � sisj �
�

� � sisj �
�� ���

where � � � � ��� is the mean value given that the visible units are clamped in states
�� and � � � � �� is the mean when all units are free running�

��	 Appendix N� NIPS��	 submission

� SECOND�ORDER METHODS

The �rst derivatives lead to the traditional �rst�order training methods ���� How�
ever� for faster training methods and for pruning algorithms we need the second
derivatives of the entropic cost� These second derivatives are calculated as	

��H
w�

�wij�wpq

� �

�X
�

P�
�

P��
�

��P��
�wij�wpq

�

X
�

�P��
�wij

�
P�
��

P��
�� � �P���wpq

�

�

X
�

� lnP��
�wij

� P�
� �

� lnP��
�wpq

�

�

The approximation in Eq�
 is equivalent to that made in Fisher�s method of scoring
��� and also corresponds to the Gauss�Newton approximation to the Hessian of a
quadratic cost in which the term with second derivatives is ignored� As is the case
for the quadratic cost function� the approximation becomes exact in the limit of
in�nitely many examples� provided the network is not underparametrized� In that
limit� the parameters that minimize the entropic cost function will converge towards
a set of optimal weights w� for which P�

� � P�
� � ��� For these weights the term in

Eq�
 involving second derivatives of the unclamped probabilities P�

� reads

X
�

P�
�

P�

�

�
��P�

�

�wij�wpq

�
X
�

��P�

�

�wij�wpq

�
��

�wij�wpq

�X
�

P�

�

�
� ��
��

where in the �rst step we used the fact that P�
� � P�

� at w � w
�� and in the

last step that
P

� P
�

� � �� Thus for weights su�ciently �close� to the optimal� w��
the term in Eq�
 involving second derivatives will be �small� and the rest involves
terms of a form calculated from Eq� �	

� lnP�

�

�wij

�

�
�
�E��

�wij

��
�

�

�
�
�E��

�wij

�
�

� � sisj �
�
� � � sisj �

� �
��

Thus we obtain the simpli�ed form of the second derivatives	

��H
w�

�wij�wpq

�

X
�

� lnP�

�

�wij

� P�
� �

� lnP�

�

�wpq

��

�
X
�

P�
� � sisj �

�
�� spsq �

�
� � � spsq �

�

X
�

P�
� � sisj �

�
�

� � sisj �
�

X
�

P�
� � spsq �

�
� � � sisj �

�� spsq �
� �

We note that the approximation to the second derivatives is positive de�nite which
is an advantage when using the second derivatives for second�order training� The
approximation involves only terms already computed when calculating the gradient�
and thus implementation is straightforward� requiring little computation beyond
that needed for computing the gradient�

��� Learning� The damped Gauss�Newton method

Learning in Boltzmann networks can be sped up if a more e�cient optimization
technique than gradient descent is used� Here we suggest the damped Gauss�Newton
method���� in which the direction of weight changes in iteration k is computed as

�wk � ���H ��
wk��
��H �
wk��
��

Appendix N� NIPS��	 submission ��

This corresponds to the direction towards the minimum of a second�order expansion
of the entropic cost function around the current iteration point� The term �damped�
refers to the use of a line search such as simple bisection in order to determine the
step size �� The line search makes the method globally convergent and is simple
if the Boltzmann network has a structure that allows for exact computation of
likelihoods�

TRAIN
TEST

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

50

ITERATION #

C
O

S
T

TRAINING WITH GRADIENT DESCENT

TRAIN
TEST

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50

ITERATION #

C
O

S
T

TRAINING USING GAUSS−NEWTON METHOD

Figure �� Learning in a Boltzmann chain �see text	� Left panel� Training using
gradient descent� Right panel� Training using the Gauss�Newton method�

Figure � compares the performance between gradient descent and the damped
Gauss�Newton method when training a Boltzmann chain
�� from the same ini�
tial weights� The problem was identi
cation of a left�to�right HMM having three
observation states and three hidden states from
xed�length observation sequences
generated by the HMM� In this example we observed a ��� increase in computation
time per iteration when using the Gauss�Newton method� the increase is however
highly justi
ed by a much more rapid convergence� In ten runs� only once did
gradient descent reach the level of error obtained using the Gauss�Newton method
within ���� iterations� the Gauss�Newton method only needed ������� iterations�

Regularization is crucial for the application of second�order training methods to es�
pecially Boltzmann chains as the Hessian for the entropic cost function is inherently
rank�de
cient for this model type� This is so since addition of an arbitrary constant
to all the weights in these networks will not in�uence the Boltzmann distribution
Eq� � and therefore leaves the entropic cost unchanged� Augmentation by a simple
quadratic weight decay term� ���wTw� solves this problem�

��� Pruning� Saliency based methods

Saliency based pruning algorithms developed for feed�forward nets include Opti�
mal Brain Damage �OBD	
�� and Optimal Brain Surgeon �OBS	
��� Both use
second�order expansions of the error to estimate the importance� or saliency� of the
parameters if these are reset to zero� The rationale behind both methods is that if
we remove the least salient weights according to training error� we gracefully relieve
the danger of over
tting� and thereby simplify the network and �often	 improve
generalization�

Having derived the second derivatives for the entropic cost function allows for the
application of OBD and OBS to Boltzmann networks� For simplicity� we here focus
on the analog of OBD� for which the saliency for parameter j is then computed as

�HOBD

j �

�
��

�

�

��H�w	

�w�j

�
w�j ���	

��� Appendix N� NIPS��	 submission

when working from a cost function augmented by a quadratic weight decay term�
We note that the pruning methods only requires information already provided by
the learning algorithms� Both pruning as well as the weight decay will bias the
parameters towards the value zero and thus bias the Boltzmann distribution towards
a smooth uniform distribution�

� SPEECHREADING PROBLEM

Speechreading � audio�visual speech recognition� or more colloquially �lipreading�
� refers to the use of both visual and audio signals for speech recognition �	
�
There is ample evidence� from a number of independent research groups� that the
incorporation of visual information can improve recognition accuracy� especially in
noisy environments��	

��� Sensory integration

The central novel problem in speechreading is sensory integration � how to best
integrate �and learn� information from the acoustic and visual channels� There
are three principal methods
 early� intermediate and late integration� In early
integration� the �preprocessed� audio and video features are e�ectively concatenated
to provide an expanded feature vector� which is then recognized� In late integration�
there are� e�ectively� two separate classi�ers
 one for the video information� one for
the audio information� The probability estimates of the categories� provided by the
two channels� are then pooled for overall classi�cation� Intermediate integration is
a somewhat vague term which depends upon the fundamental recognition engine in
question �HMMs� neural nets� Dynamic Time Warping� ����� but has come to mean
any integration scheme �between� early and late integration�

Any speech recognition architecture must be insensitive to the variable rate of natu�
ral speech� and for this reason Hidden Markov Models have enjoyed great popularity
in the speech community� However� both early and late integration using HMMs
seem to be suboptimal for the automatic speechreading problem� In early integra�
tion� the acoustic and visual features are concatenated and input to a single HMM�
The problem is that� for the vast majority of words� the acoustic signal requires
more hidden states than the visual� and thus any single HMM represents a poor
compromise� In late integration� one has two separate HMMs� with the appropriate�
di�erent number of hidden states� and pool their probability estimates for the �nal
classi�cation� However� this precludes the learning of low�level bi�modal features�
for instance based on both the instantaneous visual shape of the mouth and the
sound�

In short� it appears that an HMM�based architecture supporting some form of
intermediate integration is needed � one where the number of hidden states can
di�er between the two channels� while also allowing cross�modal features to be
learned� Recent work has shown how two linked Boltzmann chains ��
 �which have
been dubbed �Boltzmann zippers� because of their architecture� have this ability�
It is for this reason we explored their use on a real�world speechreading problem�

��� Experiment

We constructed an isolated�word speechreading system using Boltzmann zippers
for classifying the three nonsense utterances �asklee�� �asklaa� and �askluu�

�Fig� ��� These were chosen because they illustrate well a vexing problem in speech
recognition
 co�articulation� The sound of the �s� phoneme di�ers dramatically in

Appendix N� NIPS��	 submission ���

b b b b b b

J
J

J
J

J
J�

�
�
�

�
�J

J
J
J

J
J�

�
�
�

�
�

t t t t t t

t t t

b b b

Figure �� Topology of a Boltzmann zipper� The white circles represent groups
of visible units�states� at the top for the �fast� 	in speechreading
 the acoustic
channel�
 at the bottom the �slow� 	visual� channel� Dark circles represent groups
of hidden units�states� This architecture is formally equivalent to two HMMs
 fully
cross�connected by trainable weights�

these utterances
 due to the in
uence of lip rounding associated with the di�erent
vowels coming �later�� We hypothesized that
 for the linked�HMM models for these
utterances
 interactions between the �later� visual states would have signi�cant
interactions with the �early� acoustic ones� Indeed
 an analysis of the trained
zipper weights con�rmed this hypothesis�

Repetitions of each word were recorded 	including video information� from a single
talker in a low�noise environment� Each of the three sets of utterances was divided
into two sets� �� utterances for training and �ve for testing� The audio part of
each utterance consisted of a sequence of �� feature vectors
 the video information
for each utterance consisted of a sequence of �� feature vectors� Thus
 the video
information was obtained at half the speed of the audio information� Each video
feature vector was a collection of visual parameters representing height and width
of the mouth opening
 thickness of the upper lip etc� The feature vectors were
converted into discrete observations using the LBG algorithm�

A Boltzmann zipper having �ve �fast� hidden unit states and three �slow� hidden
unit states was trained for each of the utterances using second�order methods com�
bined with OBD pruning� In the left panel of Fig� � is shown the evolution of the
entropic cost for the model trained on the �asklee� utterances as parameters were
pruned away� Initially both the training and test error decreased as parameters
were removed� This was caused by the Gauss�Newton algorithm being able to lo�
cate lower�lying local minima during retraining of the reduced model� As the zipper
was increasingly restricted by pruning the training error began to increase again

as is common in pruning experiments� Around �� parameters left in the model the
test error suddenly dropped to the lowest level obtained� This is explained by the

TRAIN
TEST

50 60 70 80 90 100 110
82

84

86

88

90

92

94

96

98

100

NUMBER OF PARAMETERS

C
O

S
T

10
−6

10
−4

10
−2

10
0

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ESTIMATED SALIENCY

A
C

T
U

A
L

 S
A

LI
E

N
C

Y

Figure �� Left� Evolution of the relative entropy cost function for the model trained
on the �asklee� data as the parameters of a Boltzmann zipper are pruned to the
zero� Right� Estimated versus actual saliencies for the fully connected Boltzmann
zipper�

��� Appendix N� NIPS��	 submission

zipper being su�ciently gracefully restricted and thereby reducing the possibilities
of over�tting the training sequences�

In the right panel of Fig� � we illustrate the quality of the saliency estimates� For
the fully connected zipper� we plot the estimated saliency versus the actual saliency
computed by setting the weight to zero and calculating the resulting change in
training error� We note that especially for low saliency weights the estimates are
approximately equal to the actual saliencies� Note that rank ordering of parameters
according to estimated saliency is consistent with rank ordering according to actual
saliency� and thus the correct weight is pruned at each step�

Similar results were obtained for the Boltzmann zippers optimized for the �asklaa�
and �askluu� utterances� The three optimal zippers were then combined into a
speechreading system� which was able to correctly classify the �	 test utterances�

� CONCLUSION AND FUTURE WORK

We have derived the second derivatives of the entropic cost function for Boltzmann
networks and have applied these for training using a damped Gauss
Newton method
as well as well as pruning by Optimal Brain Damage� We demonstrated the methods
on Boltzmann zippers �linked HMMs� on a limited� isolated
word speechreading
task� The improved speed and ease of implementation should remove some of the
criticisms of these methods� and lead to greater use of this powerful architecture�
Our results suggest that second
order methods� and Boltzmann zippers themselves�
can be employed on larger� more complex pattern recognition problems as well�

Acknowledgments

This work was completed partly during a visit to the Ricoh California Research
Center� supported by the Danish Natural Science and Technical Research Councils
through the Computational Neural Network Center �connect�� The authors would
like to thank Lars Kai Hansen and Greg Wol
 for support� and Lawrence Saul for
valuable discussions and for making available his Boltzmann zipper code�

References

��� Y� L� Cun� J� S� Denker and S� A� Solla� �Optimal Brain Damage�� in D� Touretzky�
ed�� Advances in Neural Information Processing Systems� Morgan Kaufmann�
San Mateo� CA� ���	� vol�
� pp� ���
�	��

�
� P� E� Gill� W� Murray and M� H� Wright� Practical Optimization� London� Aca�
demic Press� �����

��� B� Hassibi and D� G� Stork� �Second Order Derivatives for Network Pruning� Optimal
Brain Surgeon�� in S� J� Hanson� J� D� Cowan and C� L� Giles� eds�� Advances in
Neural Information Processing Systems� Morgan Kaufmann� San Mateo� CA�
����� vol� �� pp� ���
����

��� S� Haykin� Neural Networks� A Comprehensive Foundation� New York�
Macmillan College Publishing� �����

��� D� J� C� MacKay� �Equivalence of Linear Boltzmann Chains and Hidden Markov Mod�
els�� Neural Computation� vol� �� no� �� pp� ���
���� �����

��� L� K� Saul and M� I� Jordan� �Boltzmann Chains and Hidden Markov Models�� in
G� Tesauro� D� Touretzky and T� Leen� eds�� Advances in Neural Information
Processing Systems� The MIT Press� ����� vol� �� pp� ���
��
�

��� G� A� F� Seber and C� J� Wild� Nonlinear Regression� New York� John Wiley �
Sons� �����

��� D� G� Stork and M� E� Hennecke� eds�� Speechreading by Humans and Machines�
New York� Springer�Verlag� �����

Bibliography

�Aba��� H
 D
 I
 Abarbanel
 Analysis of Observed Chaotic Data
 Springer�Verlag	
New York	 NY	 ����

�AHS��� D
 H
 Ackley	 G
 E
 Hinton	 and T
 J
 Sejnowski
 A Learning Algorithm for
Boltzmann Machines
 Cognitive Science	 �����������	 ����

�AK��� E
 Aarts and J
 Korst
 Simulated Annealing and Boltzmann Machines
 John
Wiley	 Chichester	 ����

�Aka��� H
 Akaike
 Fitting Autoregressive Models for Prediction
 Annals of the In�

stitute of Statistical Mathematics	 ����������	 ����

�BGM��� M
 Bianchini	 M
 Gori	 and M
 Maggini
 On the Problem of Local Min�
ima in Recurrent Neural Networks
 IEEE Transactions on Neural Networks	
������������	 March ����

�Bis��� C
 M
 Bishop
 Neural Networks for Pattern Recognition
 Clarendon Press	
Oxford	 ����

�Bj$o��� �A
 Bj$orck
 Numerical Methods for Least Squares Problems
 SIAM	 Philadel�
phia	 PA	 ����

�BSF��� Y
 Bengio	 P
 Simard	 and P
 Frasconi
 Learning Long�Term Dependencies
with Gradient Descent is Di�cult
 IEEE Transactions on Neural Networks	
������������	 ����

�BT��� A
 D
 Back and A
 C
 Tsoi
 FIR and IIR Synapses	 a New Neural Network
Architecture for Time Series Modeling
 Neural Computation	 ������������	
����

�Cas��� M
 Casdagli
 A Dynamical Systems Approach to Modeling Input�Output
Systems
 In M
 Casdagli and S
 Eubank	 editors	 Nonlinear Modeling and

Forecasting	 volume XII of Santa Fe Institute Studies in the Sciences of Com�

plexity	 pages �������
 Addison�Wesley	 Redwood City	 ����

�CBD���� Y
 Le Cun	 B
 Boser	 J
 S
 Denker	 D
 Henderson	 R
 E
 Howard	 W
 Hubbard	
and L
D
 Jackel
 Handwritten Digit Recognition with a Backpropagation Net�
work
 In D
 S
 Touretzky	 editor	 Advances in Neural Information Processing

Systems	 volume �	 pages �������
 Morgan Kaufmann	 San Mateo	 CA	 ����

�CDS��� Y
 Le Cun	 J
 S
 Denker	 and S
 A
 Solla
 Optimal Brain Damage
 In D
 S

Touretzky	 editor	 Advances in Neural Information Processing Systems	 vol�
ume �	 pages �������
 Morgan Kaufmann	 San Mateo	 CA	 ����

���

��� BIBLIOGRAPHY

�CEFG��� M
 Casdagli	 S
 Eubank	 J
 D
 Farmer	 and J
 Gibson
 State Space Recon�
struction in the Presence of Noise
 Physica D	 ��������	 ����

�CFP��� G
 Castellano	 A
 M
 Fanelli	 and M
 Pelillo
 Pruning in Recurrent Neural
Networks
 In M
 Marinaro and P
 G
 Morasso	 editors	 International Con�
ference on Arti�cial Neural Networks ICANN�
� Sorrento	 pages �������

Springer	 ����

�CKS��� Y
 Le Cun	 I
 Kanter	 and S
 A
 Solla
 Eigenvalues of Covariance Ma�
trices� Application to Neural�Network Learning
 Physical Review Letters	
����������������	 ����

�Cyb��� G
 Cybenko
 Approximation by Superpositions of a Sigmoidal Function

Mathematics of Control Signals� and Systems	 ���������	 ����

�DS��� J
 E
 Dennis and R
 B
 Schnabel
 Numerical Methods for Unconstrained

Optimization and Nonlinear Equations
 Prentice�Hall	 Englewood Cli�s	 NJ	
����

�dVP��� B
 de Vries and J
 Principe
 The Gamma Model � A New Neural Network
for Temporal Processing
 Neural Networks	 ������������	 ����

�Elm��� J
 L
 Elman
 Finding Structure in Time
 Cognitive Science	 ����������	 ����

�FGS��� P
 Frasconi	 M
 Gori
	 and G
 Soda
 Local Feedback Multilayered Networks

Neural Computation	 ������������	 ����

�Fun��� K
 Funahashi
 On the Approximate Realization of Continuous Mappings by
Neural Networks
 Neural Networks	 ���������	 ����

�GBD��� S
 Geman	 E
 Bienenstock	 and R
 Doursat
 Neural Networks and the
Bias!Variance Dilemma
 Neural Computation	 ���������	 ����

�GHK���� J
 Gorodkin	 L
 K
 Hansen	 A
 Krogh	 C
 Svarer	 and O
 Winther
 A Quan�
titative Study of Pruning by Optimal Brain Damage
 International Journal
of Neural Systems	 ���������	 ����

�GL��� G
 Golub and C
 Van Loan
 Matrix Computations
 The Johns Hopkins
University Press	 Baltimore	 MD	 third edition	 ����

�GLH��� C
 L
 Giles	 T
 Lin	 and B
 G
 Horne
 Remembering the Past� The Role of
Embedded Memory in Recurrent Neural Network Architectures
 In Proceed�

ings of the IEEE Workshop on Neural Networks for Signal Processing VII	
Piscataway	 New Jersey	 ����
 IEEE
 To Appear

�GMW��� P
 E
 Gill	 W
 Murray	 and M
 H
 Wright
 Practical Optimization
 Academic
Press	 London	 ����

�GO��� C
 L
 Giles and C
 W
 Omlin
 Pruning Recurrent Neural Networks for Im�
proved Generalization Performance
 IEEE Transactions on Neural Networks	
������������	 September ����

�Gol��� D
 Goldberg
 What Every Computer Scientist Should Know About Floating�
Point Arithmetic
 ACM Computing Surveys	 ����������	 March ����

BIBLIOGRAPHY ���

�Gou��� C
 Goutte
 Extracting the Relevant Delays in Time Series Modelling
 In
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing

VII	 Piscataway	 New Jersey	 ����
 IEEE
 To Appear

�GP��� P
 Grassberger and I
 Procaccia
 Measuring the Strangeness of Strange At�
tractors
 Physica D	 ���������	 ����

�Gra��� R
 M
 Gray
 Vector Quantization
 IEEE ASSP Magazine	 pages ����	 April
����

�Hay��� J
 P
 Hayes
 Computer Architecture and Organization
 Computer Science
Series
 McGraw�Hill	 Singapore	 second edition	 ����

�Hay��� S
 Haykin
 Neural Networks� A Comprehensive Foundation
 Macmillan Col�
lege Publishing	 New York	 ����

�Hen��� M
 E
 Hennecke
 Audio�Visual Speech Recognition� Preprocessing� Learning

and Sensory Integration
 PhD thesis	 Stanford University	 ����

�HKP��� J
 Hertz	 A
 Krogh	 and R
 G
 Palmer
 Introduction to the Theory of Neural

Computation
 Addison�Wesley	 Redwood City	 CA	 ����

�HMPHL��� M
 Hintz�Madsen	 M
 W
 Pedersen	 L
 K
 Hansen	 and J
 Larsen
 Design and
Evaluation of Neural Classi
ers
 In Proceedings of the IEEE Workshop on

Neural Networks for Signal Processing VI	 pages �������	 Piscataway	 New
Jersey	 ����
 IEEE

�Hop��� J
 J
 Hop
eld
 Neural Networks and Physical Systems with Emergent Col�
lective Computational Abilities
 Proceedings of the National Academy of Sci�
ences� USA	 ������������	 ����

�HP��� L
 K
 Hansen and M
 W Pedersen
 Controlled Growth of Cascade Correlation
Nets
 In M
 Marinaro and P
 G
 Morasso	 editors	 International Conference
on Arti�cial Neural Networks ICANN�
� Sorrento	 pages �������
 Springer	
����

�HR��� L
 K
 Hansen and C
 E
 Rasmussen
 Pruning from Adaptive Regularization

Neural Computation	 ��������������	 ����

�HRSL��� L
 K
 Hansen	 C
 E
 Rasmussen	 C
 Svarer	 and J
 Larsen
 Adaptive Regular�
ization
 In Proceedings of the IEEE Workshop on Neural Networks for Signal

Processing IV	 pages �����	 Piscataway	 New Jersey	 ����
 IEEE

�HS��� B
 Hassibi and D
 G
 Stork
 Second Order Derivatives for Network Pruning�
Optimal Brain Surgeon
 In Stephen Jos/e Hanson	 Jack D
 Cowan	 and C
 Lee
Giles	 editors	 Advances in Neural Information Processing Systems	 volume �	
pages �������
 Morgan Kaufmann	 San Mateo	 CA	 ����

�HS��� S
 Hochreiter and J
 Schmidhuber
 Long Short Term Memory
 Technical Re�
port FKI�������	 Fakult$at f$ur Informatik	 Technische Universit$at M$unchen	
M$unchen	 ����

��� BIBLIOGRAPHY

�HSP��� M
 E
 Hennecke	 D
 G
 Stork	 and K
 V
 Prasad
 Visionary Speech� Look�
ing Ahead to Practical Speechreading Systems
 In D
 G
 Stork and M
 E

Hennecke	 editors	 Speechreading by Humans and Machines	 volume ��� of
NATO ASI Series� Series F� Computer and Systems Science	 pages �������

Springer Verlag	 Berlin	 ����

�HSW��� K
 Hornik	 M
 Stinchcombe	 and H
 White
 Multilayer Feedforward Networks
are Universal Approximators
 Neural Networks	 ���������	 ����

�H$ub��� U
 H$ubner
 Lorenz�like Chaos in NH	�FIR Lasers
 In A
 S
 Weigend and
N
 A
 Gershenfeld	 editors	 Time Series Prediction� Forecasting the Future

and Understanding the Past	 pages ������
 Addison�Wesley	 Reading	 MA	
����

�Jor��� M
 I
 Jordan
 Supervised Learning and Systems with Excess Degrees of Free�
dom
 In Proceedings of the �
�� Connectionist Models Summer School	 pages
�����	 San Mateo	 CA	 ����
 Morgan Kaufmann

�JR��� B
 Juang and L
 R
 Rabiner
 Hidden Markov Models for Speech Recognition

Technometrics	 �������������	 August ����

�KBM���� A
 Krogh	 M
 Brown	 I
 S
 Mian	 K
 Sj$olander	 and D
 Haussler
 Hidden
Markov Models in Computational Biology� Applications to Protein Modeling

Journal of Molecular Biology	 ���������������	 ����

�Koh��� Z
 Kohavi
 Switching and Finite State Automata
 Tata McGraw�Hill Pub�
lishing Company	 New Delhi	 second edition	 ����

�KZM��� G
 Kechriotis	 E
 Zervas	 and E
 S
 Manolakos
 Using Recurrent Neural
Networks for Adaptive Communication Channel Equalization
 IEEE Trans�

actions on Neural Networks	 ������������	 March ����

�Lar��� J
 Larsen
 Design of Neural Network Filters
 PhD thesis	 Technical University
of Denmark	 Electronics Institute	 March ����

�LB��� I
 J
 Leontaritis and S
 A
 Billings
 Input�Output Parametric Models for
Non�linear Systems
 International Journal of Control	 ����������	 ����

�LGHK��� T
 Lin	 C
 L
 Giles	 B
 G
 Horne	 and S
 Y
 Kung
 A Delay Damage Model Se�
lection Algorithm for NARX Neural Networks
 IEEE Transactions on Signal

Processing	 ����
 Accepted
 Special Issue on Neural Network Applications to
Signal Processing

�LH��� J
 Larsen and L
 K
 Hansen
 Generalization Performance of Regularized
Neural Network Models
 In J
 Vlontzos	 J
N
 Whang	 and E
 Wilson	 editors	
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing

IV	 pages �����	 Piscataway	 New Jersey	 ����
 IEEE

�LHG��� T
 Lin	 B
 G
 Horne	 and C
 L
 Giles
 How Memory Orders A�ect the Per�
formance of NARX Networks
 Technical Report UMIACS�TR������ and CS�
TR�����	 Institute for Advanced Computer Studies	 University of Maryland	
College Park	 Maryland	 ����

BIBLIOGRAPHY ���

�LHP���� N
 Lange	 L
 K
 Hansen	 M
 W
 Pedersen	 R
 L
 Savoy	 and S
 C
 Strother
 A
Concordance Correlation Coe�cient for Reproducibility of Spatial Activation
Patterns
 In A
 W
 Toga	 R
 S
 J
 Frackowiak	 and J
 C
 Mazziotta	 editors	
Second International Conference on Functional Mapping of the Human Brain	
number � in NeuroImage	 page S��
 Academic Press	 Orlando	 FL	 ����

�LHSO��� J
 Larsen	 L
 K
 Hansen	 C
 Svarer	 and M
 Ohlsson
 Design and Regulariza�
tion of Neural Networks� The Optimal Use of a Validation Set
 In S
 Usui	
Y
 Tohkura	 S
 Katagiri	 and E
 Wilson	 editors	 Proceedings of the IEEE

Workshop on Neural Networks for Signal Processing VI	 pages �����	 Piscat�
away	 New Jersey	 ����
 IEEE

�LHTG��� T
 Lin	 B
 G
 Horne	 P
 Ti(no	 and C
 L
 Giles
 Learning Long�Term De�
pendencies is not as Di�cult with NARX Networks
 In David S
 Touretzky	
Michael C
 Mozer	 and Michael E
 Hasselmo	 editors	 Advances in Neural

Information Processing Systems	 volume �	 pages �������
 The MIT Press	
����

�Lju��� L
 Ljung
 System Identi�cation� Theory for the User
 Prentice Hall	 Engle�
wood Cli�s	 New Jersey	 ����

�LSAH��� J
 Larsen	 C
 Svarer	 L
 N
 Andersen	 and L
 K
 Hansen
 Adaptive Regulariza�
tion in Neural Network Modeling
 In G
 B
 Orr	 K
 M$uller	 and R
 Caruana	
editors	 Book of Tricks
 Springer�Verlag	 ����
 In press

�LT��� L
 S
 Liebovitch and T
 Toth
 A Fast Algorithm to Determine Fractal Di�
mension by Box Counting
 Physics Letters A	 �����������	 ����

�Mac��� D
 J
 C
 MacKay
 Equivalence of Linear Boltzmann Chains and Hidden
Markov Models
 Neural Computation	 ������������	 ����

�MD��� J
 Moody and C
 J
 Darken
 Fast Learning in Networks of Locally�Tuned
Processing Units
 Neural Computation	 ������������	 ����

�MG��� M
 C
 Mackey and L
 Glass
 Oscillation and Chaos in Physiological Control
Systems
 Science	 �������	 ����

�M�l��� M
 M�ller
 E�cient Training of Feed�Forward Neural Networks
 PhD thesis	
Aarhus University	 Computer Science Department	 Denmark	 ����

�Moo��� J
 Moody
 Note on Generalization	 Regularization and Architecture Selection

In Proceedings of the First IEEE Workshop on Neural Networks for Signal

Processing	 pages ����	 Piscataway	 New Jersey	 ����
 IEEE

�Moo��� J
 E
 Moody
 The E�ective Number of Parameters� An Analysis of General�
ization and Regularization in Nonlinear Learning Systems
 In J
 E
 Moody	
S
 J
 Hanson	 and R
 P
 Lippmann	 editors	 Advances in Neural Information

Processing Systems	 volume �	 pages �������
 Morgan Kaufmann Publishers	
Inc
	 ����

�Moz��� M
 C
 Mozer
 Neural Net Architectures for Temporal Sequence Processing

In A
 S
 Weigend and N
 A
 Gershenfeld	 editors	 Time Series Prediction�

��	 BIBLIOGRAPHY

Forecasting the Future and Understanding the Past	 pages �������
 Addison�
Wesley	 Reading	 MA	 ����

�MP��� W
 S
 McCulloch and W
 Pitts
 A Logical Calculus of Ideas Immanent in
Nervous Activity
 Bulletin of Mathematical Biophysics	 ���������	 ����

�N�r��� P
 M
 N�rgaard
 System Identi�cation and Control with Neural Networks

PhD thesis	 Technical University of Denmark	 Department of Automation	
June ����

�NRRU���� O
 Nerrand	 P
 Roussel�Ragot	 D
 Urbani	 L
 Personnaz	 and G
 Dreyfus

Training Recurrent Neural Networks� Why and How, An Illustration in Dy�
namical Process Modeling
 IEEE Transactions on Neural Networks	 ���������
���	 March ����

�OS��� A
 V
 Oppenheim and R
 W
 Schafer
 Discrete�Time Signal Processing
 Pren�
tice Hall	 Englewood Cli�s	 New Jersey	 ����

�PA��� C
 Peterson and J
 R
 Anderson
 A Mean Field Theory Learning Algorithm
for Neural Networks
 Complex Systems	 ������������	 ����

�Pap��� A
 Papoulis
 Probability� Random Variables� and Stochastic Processes
 Mc�
Graw Hill	 New York	 ����

�Par��� J
 E
 Parkum
 Recursive Identi�cation of Time�Varying Systems
 PhD thesis	
Technical University of Denmark	 Department of Mathematical Modelling	
����

�PC��� T
 S
 Parker and L
 O
 Chua
 Practical Numerical Algorithms for Chaotic

Systems
 Springer�Verlag	 New York	 ����

�Ped��� M
 W
 Pedersen
 Tidsseriepr�diktion med Rekursive Neurale Netv�rk
 Mas�
ter�s thesis	 Technical University of Denmark	 Section for Digital Signal Pro�
cessing	 Department of Mathematical Modelling	 August ����
 In Danish

�Ped��� M
 W
 Pedersen
 Training Recurrent Networks
 In Proceedings of the IEEE

Workshop on Neural Networks for Signal Processing VII	 Piscataway	 New
Jersey	 ����
 IEEE
 To Appear

�PF��� G
 V
 Puskorius and L
 A
 Feldkamp
 Neurocontrol of Nonlinear Dynamical
Systems with Kalman Filter Trained Recurrent Networks
 IEEE Transac�

tions on Neural Networks	 ������������	 March ����

�PFTV��� W
 H
 Press	 B
 P
 Flannery	 S
 A
 Teukolsky	 andW
 T
 Vetterling
 Numerical
Recipes in C
 Cambridge University Press	 Cambridge	 second edition	 ����

�PH��� M
 W
 Pedersen and L
 K
 Hansen
 Recurrent Networks� Second Order
Properties and Pruning
 In G
 Tesauro	 D
 Touretzky	 and T
 Leen	 editors	
Advances in Neural Information Processing Systems	 volume �	 pages ����
���
 The MIT Press	 ����

BIBLIOGRAPHY ��

�PHL��� M
 W
 Pedersen	 L
 K
 Hansen	 and J
 Larsen
 Pruning with Generalization
Based Weight Saliencies� �OBD	 �OBS
 In David S
 Touretzky	 Michael C

Mozer	 and Michael E
 Hasselmo	 editors	 Advances in Neural Information

Processing Systems	 volume �	 pages �������
 The MIT Press	 ����

�PL��� M
 W
 Pedersen and J
 Larsen
 Interpretation of Recurrent Neural Networks

In Proceedings of the IEEE Workshop on Neural Networks for Signal Process�

ing VII	 Piscataway	 New Jersey	 ����
 IEEE
 To Appear

�PS��� C
 Peterson and C
 S$oderberg
 A New Method for Mapping Optimization
Problems onto Neural Networks
 International Journal of Neural Systems	
���������	 ����

�PS��� F
 J
 Pineda and J
 C
 Sommerer
 Estimating Generalized Dimensions and
Choosing Time Delays� A Fast Algorithm
 In A
 S
 Weigend and N
 A
 Ger�
shenfeld	 editors	 Time Series Prediction� Forecasting the Future and Under�

standing the Past	 pages �������
 Addison�Wesley	 Reading	 MA	 ����

�PS��� M
 W
 Pedersen and D
 G
 Stork
 Pruning Boltzmann Networks and Hidden
Markov Models
 In Proceedings of the ��th Asilomar Conference on Sig�

nals� Systems and Computers	 volume �	 pages �������	 Paci
c Grove	 CA	
November ����
 IEEE Press

�PS��� M
 W
 Pedersen and D
 G
 Stork
 Second�Order Methods in Boltzmann
Learning� An Application to Speechreading
 In Advances in Neural Informa�

tion Processing Systems	 volume ��
 The MIT Press	 ����
 Submitted

�Rab��� L
 R
 Rabiner
 A Tutorial on Hidden Markov Models and Selected Applica�
tions in Speech Recognition
 Proceedings of the IEEE	 �������������	 ����

�Ras��� C
 E
 Rasmussen
 Generalization in Neural Networks
 Master�s thesis	 Tech�
nical University of Denmark	 Electronics Institute	 August ����

�RF��� T
 Robinson and F
 Fallside
 A Recurrent Error Propagation Network Speech
Recognition System
 Computer Speech and Language	 ���������	 ����

�Rip��� B
 D
 Ripley
 Pattern Recognition and Neural Networks
 Cambridge Univer�
sity Press	 Cambridge	 UK	 ����

�RK��� S
 K
 Riis and A
 Krogh
 Hidden Neural Networks� A Framework for
HMM!NN Hybrids
 In Proceedings of the �

� IEEE International Con�

ference on Acoustics� Speech � Signal Processing	 pages ���������	 Munich	
Germany	 ����
 IEEE

�RM��� D
 E
 Rumelhart and J
 L
 McClelland	 editors
 Parallel Distributed Process�

ing� Explorations in the Microstructure of Cognition� Volume �� Foundations

The MIT Press	 Cambridge	 MA	 ����

�SBC��� S
 Saarinen	 R
 Bramley	 and G
 Cybenko
 Ill�Conditioning in Neural Net�
work Training Problems
 SIAM Journal on Scienti�c Computing	 ����������	
����

�Sen��� E
 Seneta
 Non�Negative Matrices
 Springer�Verlag	 New York	 ����

��� BIBLIOGRAPHY

�SHG��� H
 T
 Siegelmann	 B
 G
 Horne	 and C
 L
 Giles
 Computational Capabilities
of Recurrent NARX Neural Networks
 IEEE Trans� on Systems� Man and

Cybernetics	 ���������	 ����

�SHL��� C
 Svarer	 L
 K
 Hansen	 and J
 Larsen
 On Design and Evaluation of Tapped
Delay Line Networks
 In Proceedings of the �

� IEEE International Con�

ference on Neural Networks	 pages �����	 San Francisco	 ����

�SHLR��� C
 Svarer	 L
 K
 Hansen	 J
 Larsen	 and C
 E
 Rasmussen
 Designer Networks
for Time Series Processing
 In Proceedings of the IEEE Workshop on Neural

Networks for Signal Processing III	 pages �����	 Piscataway	 New Jersey	
����
 IEEE

�SJ��� L
 K
 Saul and M
 I
 Jordan
 Learning in Boltzmann Trees
 Neural Compu�
tation	 ��������������	 ����

�SJ��� L
 K
 Saul and M
 I
 Jordan
 Boltzmann Chains and Hidden Markov Mod�
els
 In G
 Tesauro	 D
 Touretzky	 and T
 Leen	 editors	 Advances in Neural

Information Processing Systems	 volume �	 pages �������
 The MIT Press	
����

�Sj$o��� J
 Sj$oberg
 Non�Linear System Identi�cation with Neural Networks
 PhD
thesis	 Link$oping University	 Division of Automatic Control	 Sweden	 ����

�SL��� D
 R
 Seidl and R
 D
 Lorenz
 A Structure by which a Recurrent Neural
Network Can Approximate a Nonlinear Dynamic System
 In Proceedings

of the International Joint Conference on Neural Networks �

�	 volume II	
pages �������	 July ����

�SL��� D
 G
 Stork and H
 Lu
 Speechreading by Boltzmann Zippers
 In Machines

that Learn	 Snowbird	 UT	 April ����

�S�r��� O
 S�rensen
 Neural Networks in Control Applications
 PhD thesis	 Aalborg
University	 Department of Control Engineering	 ����

�SSSD��� D
 B
 Schwartz	 S
 A
 Solla	 V
 K
 Samalam	 and J
 S
 Denker
 Exhaustive
Learning
 Neural Computation	 ������������	 ����

�Sto��� D
 G
 Stork	 editor
 HAL�s Legacy� �����s Computer as Dream and Reality

MIT Press	 New York	 ����

�SUH��� K
 Stokbro	 D
 K
 Umberger	 and J
 A
 Hertz
 Exploiting Neurons with
Localized Receptive Fields to Learn Chaos
 Complex Systems	 ���������	
����

�Sva��� C
 Svarer
 Neural Networks for Signal Processing
 PhD thesis	 Technical
University of Denmark	 Electronics Institute	 December ����

�SW��� G
 A
 F
 Seber and C
 J
 Wild
 Nonlinear Regression
 John Wiley 0 Sons	
New York	 ����

�SYC��� T
 Sauer	 J
 A Yorke	 and M
 Casdagli
 Embedology
 Journal of Statistical
Physics	 ����!����������	 ����

BIBLIOGRAPHY ���

�Tak��� F
 Takens
 Detecting Strange Attractors in Turbulence
 In Dynamical Sys�

tems and Turbulence� Warwick �
��	 volume ��� of Lecture Notes in Math�

ematics	 pages �������
 Springer�Verlag	 ����

�TB��� A
 C
 Tsoi and A
 D
 Back
 Locally Recurrent Globally Feedforward Net�
works� A Critical Review of Architectures
 IEEE Transactions on Neural

Networks	 ������������	 March ����

�Tho��� H
 H
 Thodberg
 Improving Generalization of Neural Networks Through
Pruning
 International Journal of Neural Systems	 ������������	 ����

�Wan��� E
 A
 Wan
 Temporal Backpropagation for FIR Neural Networks
 In Pro�

ceedings of International Joint Conference on Neural Networks� San Diego	
pages �������	 Piscataway	 NY	 ����
 IEEE Service Center

�Wan��� E
 A
 Wan
 Time Series Prediction by Using a Connectionist Network with
Internal Delay Lines
 In A
 S
 Weigend and N
 A
 Gershenfeld	 editors	 Time
Series Prediction� Forecasting the Future and Understanding the Past	 pages
�������
 Addison�Wesley	 Reading	 MA	 ����

�WG��� A
 S
 Weigend and N
 A
 Gershenfeld	 editors
 Time Series Prediction� Fore�
casting the Future and Understanding the Past
 Addison�Wesley	 Reading	
MA	 ����

�Whi��� H
 White
 Learning in Arti
cial Neural Networks� A Statistical Perspective

Neural Computation	 ������������	 ����

�WHR��� A
 S
 Weigend	 B
 A
 Huberman	 and D
 E
 Rumelhart
 Predicting the Future�
A Connectionist Approach
 International Journal of Neural Systems	 ������
���	 ����

�WHR��� A
 S
 Weigend	 B
 A
 Huberman	 and D
 E
 Rumelhart
 Predicting Sunspots
and Exchange Rates with Connectionist Networks
 In M
 Casdagli and S
 Eu�
bank	 editors	 Nonlinear Modeling and Forecasting	 pages �������	 Redwood
City	 CA	 ����
 Addison�Wesley

�Wil��� J
 H
 Wilkinson
 Rounding Errors in Algebraic Processes
 Prentice�Hall	
Englewood Cli�s	 NJ	 ����

�WM��a� L
 Wu and J
 Moody
 A Smoothing Regularizer for Feedforward and Recur�
rent Neural Networks
 Neural Computation	 ������������	 ����

�WM��b� L
 Wu and J
 Moody
 A Smoothing Regularizer for Recurrent Neural Net�
works
 In David S
 Touretzky	 Michael C
 Mozer	 and Michael E
 Hasselmo	
editors	 Advances in Neural Information Processing Systems	 volume �	 pages
�������
 The MIT Press	 ����

�WP��� R
 J
 Williams and J
 Peng
 An E�cient Gradient�Based Algorithm for
On�Line Training of Recurrent Network Trajectories
 Neural Computation	
������������	 ����

��� BIBLIOGRAPHY

�WR��� A
 S
 Weigend and D
 E
 Rumelhart
 The E�ective Dimension of the Space
of Hidden Units
 In Proceedings of International Joint Conference on Neural

Networks� Singapore	 pages ���������	 Piscataway	 NY	 ����
 IEEE Service
Center

�WS��� B
 Widrow and S
 D
 Stearns
 Adaptive Signal Processing
 Prentice�Hall	
Englewood Cli�s	 NJ	 ����

�Wu��� F
 Y
 Wu
 The Potts Model
 Rev� Mod� Phys�	 ������	 ����

�Wul��� N
 H
 Wul�
 Learning Dynamics with Recurrent Networks
 Master�s thesis	
Niels Bohr Institute	 Blegdamsvej ��	 ���� Copenhagen 1	 Denmark	 April
����

�WZ��� R
 J
 Williams and D
 Zipser
 A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks
 Neural Computation	 ���������	 ����

�Yul��� G
 Yule
 On a Method of Investigating Periodicity in Disturbed Series with
Special Reference to Wolfer�s Sunspot Numbers
 Phil� Trans� Roy� Soc� Lon�
don	 A �����������	 ����

