993 research outputs found

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System

    Exploring glass as a novel method for hands-free data entry in flexible cystoscopy

    Get PDF
    We present a way to annotate cystoscopy finding on Google Glass in a reproducible and hands free manner for use by surgeons during operations in the sterile environment inspired by the current practice of hand-drawn sketches. We developed three data entry variants based on speech and head movements. We assessed the feasibility, benefits and drawbacks of the system with 8 surgeons and Foundation Doctors having up to 30 years' cystoscopy experience at a UK hospital in laboratory trials. We report data entry speed and error rate of input modalities and contrast it with the participants' feedback on their perception of usability, acceptance, and suitability for deployment. The results are supportive of new data entry technologies and point out directions for future improvement of eyewear computers. The findings can be generalised to other endoscopic procedures (e.g. OGD/laryngoscopy) and could be included within hospital IT in the future

    The selection and evaluation of a sensory technology for interaction in a warehouse environment

    Get PDF
    In recent years, Human-Computer Interaction (HCI) has become a significant part of modern life as it has improved human performance in the completion of daily tasks in using computerised systems. The increase in the variety of bio-sensing and wearable technologies on the market has propelled designers towards designing more efficient, effective and fully natural User-Interfaces (UI), such as the Brain-Computer Interface (BCI) and the Muscle-Computer Interface (MCI). BCI and MCI have been used for various purposes, such as controlling wheelchairs, piloting drones, providing alphanumeric inputs into a system and improving sports performance. Various challenges are experienced by workers in a warehouse environment. Because they often have to carry objects (referred to as hands-full) it is difficult to interact with traditional devices. Noise undeniably exists in some industrial environments and it is known as a major factor that causes communication problems. This has reduced the popularity of using verbal interfaces with computer applications, such as Warehouse Management Systems. Another factor that effects the performance of workers are action slips caused by a lack of concentration during, for example, routine picking activities. This can have a negative impact on job performance and allow a worker to incorrectly execute a task in a warehouse environment. This research project investigated the current challenges workers experience in a warehouse environment and the technologies utilised in this environment. The latest automation and identification systems and technologies are identified and discussed, specifically the technologies which have addressed known problems. Sensory technologies were identified that enable interaction between a human and a computerised warehouse environment. Biological and natural behaviours of humans which are applicable in the interaction with a computerised environment were described and discussed. The interactive behaviours included the visionary, auditory, speech production and physiological movement where other natural human behaviours such paying attention, action slips and the action of counting items were investigated. A number of modern sensory technologies, devices and techniques for HCI were identified with the aim of selecting and evaluating an appropriate sensory technology for MCI. iii MCI technologies enable a computer system to recognise hand and other gestures of a user, creating means of direct interaction between a user and a computer as they are able to detect specific features extracted from a specific biological or physiological activity. Thereafter, Machine Learning (ML) is applied in order to train a computer system to detect these features and convert them to a computer interface. An application of biomedical signals (bio-signals) in HCI using a MYO Armband for MCI is presented. An MCI prototype (MCIp) was developed and implemented to allow a user to provide input to an HCI, in a hands-free and hands-full situation. The MCIp was designed and developed to recognise the hand-finger gestures of a person when both hands are free or when holding an object, such a cardboard box. The MCIp applies an Artificial Neural Network (ANN) to classify features extracted from the surface Electromyography signals acquired by the MYO Armband around the forearm muscle. The MCIp provided the results of data classification for gesture recognition to an accuracy level of 34.87% with a hands-free situation. This was done by employing the ANN. The MCIp, furthermore, enabled users to provide numeric inputs to the MCIp system hands-full with an accuracy of 59.7% after a training session for each gesture of only 10 seconds. The results were obtained using eight participants. Similar experimentation with the MYO Armband has not been found to be reported in any literature at submission of this document. Based on this novel experimentation, the main contribution of this research study is a suggestion that the application of a MYO Armband, as a commercially available muscle-sensing device on the market, has the potential as an MCI to recognise the finger gestures hands-free and hands-full. An accurate MCI can increase the efficiency and effectiveness of an HCI tool when it is applied to different applications in a warehouse where noise and hands-full activities pose a challenge. Future work to improve its accuracy is proposed

    Educational applications of augmented reality: A bibliometric study

    Full text link
    [EN] Augmented Reality (AR) has been used successfully in several industries; one of these is education. A systematic understanding of how AR contributes to education still lacks studies about the content type and its effects on learning outcomes. This article systematically analyzes the AR state-of-the-art in education, determines productivity and publication indicators in this field, and identifies research works that have studied how content type affects the learning outcomes. The methodology was performed through a bibliometric analysis using the Scopus database, focusing on AR's educational uses. Engineering education is the primary research trend, followed by simulation, tracking, and virtual reality. Education and e-learning also have leading roles within this analysis, along with gamification and human-computer interaction, whose impacts are further explored. There is no preferred design methodology for creating AR content. In its absence, most of the works suggest a design based on the developers' and researchers' experience.The authors thank the editors and two anonymous reviewers for their highly constructive feedback. The authors also would like to acknowledge the technical support of Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Mexico, in the production of this workHincapiĂ©, M.; DĂ­az, C.; Valencia, A.; Contero, M.; GĂŒemes-Castorena, D. (2021). Educational applications of augmented reality: A bibliometric study. Computers & Electrical Engineering. 93:1-11. https://doi.org/10.1016/j.compeleceng.2021.1072891119

    Projection-based Spatial Augmented Reality for Interactive Visual Guidance in Surgery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Gesture Recognition System Application to early childhood education

    Get PDF
    One of the most socially and culturally advantageous uses of human-computer interaction is enhancing playing and learning for children. In this study, gesture interactive game-based learning (GIGL) is tested to see if these kinds of applications are suitable to stimulate working memory (WM) and basic mathematical skills (BMS) in early childhood (5-6 years old) using a hand gesture recognition system. Hand gesture is being performed by the user and to control a computer system by that incoming information. We can conclude that the children who used GIGL technology showed a significant increase in their learning performance in WM and BMS, surpassing those who did normal school activities
    • 

    corecore