344 research outputs found

    Cryptographic protocol for privacy-preserving integration of HAZOPs in modular process plants

    Get PDF
    Information which is contained in Hazard & Operability (HAZOP) studies is highly sensitive since it can reveal the vulnerabilities of a system and potential ways in which to bypass safeguards. Through the design of systems involving collaboration along a value chain, at some point this information is shared between several parties. In this paper, we propose a methodology for the secure exchange of safety information whilst preserving sensitive information for the application of modular Hazard & Operability (HAZOP) studies. We use homomorphic encryption in a workflow for the sharing of information between plant owners and operators as well as module vendors. We apply encryption to the risks from different modular HAZOPs (mHAZOPs), and combine and compare them without disclosing the risk level. Our contribution is a privacy-preserving protocol for mHAZOP comparison during the integration of modular process and equipment. We provide an exemplary implementation of the protocol and demonstrate the protocol’s privacy and correctness

    Computer support for conceptual process design

    Get PDF

    Computer-aided HAZOP of batch processes

    Get PDF
    The modern batch chemical processing plants have a tendency of increasing technological complexity and flexibility which make it difficult to control the occurrence of accidents. Social and legal pressures have increased the demands for verifying the safety of chemical plants during their design and operation. Complete identification and accurate assessment of the hazard potential in the early design stages is therefore very important so that preventative or protective measures can be integrated into future design without adversely affecting processing and control complexity or capital and operational costs. Hazard and Operability Study (HAZOP) is a method of systematically identifying every conceivable process deviation, its abnormal causes and adverse hazardous consequences in the chemical plants. [Continues.

    Computer-aided applications in process plant safety

    Get PDF
    Process plants that produce chemical products through pre-designed processes are fundamental in the Chemical Engineering industry. The safety of hazardous processing plants is of paramount importance as an accident could cause major damage to property and/or injury to people. HAZID is a computer system that helps designers and operators of process plants to identify potential design and operation problems given a process plant design. However, there are issues that need to be addressed before such a system will be accepted for common use. This research project considers how to improve the usability and acceptability of such a system by developing tools to test the developed models in order for the users to gain confidence in HAZID s output as HAZID is a model based system with a library of equipment models. The research also investigates the development of computer-aided safety applications and how they can be integrated together to extend HAZID to support different kinds of safety-related reasoning tasks. Three computer-aided tools and one reasoning system have been developed from this project. The first is called Model Test Bed, which is to test the correctness of models that have been built. The second is called Safe Isolation Tool, which is to define isolation boundary and identify potential hazards for isolation work. The third is an Instrument Checker, which lists all the instruments and their connections with process items in a process plant for the engineers to consider whether the instrument and its loop provide safeguards to the equipment during the hazard identification procedure. The fourth is a cause-effect analysis system that can automatically generate cause-effect tables for the control engineers to consider the safety design of the control of a plant as the table shows process events and corresponding process responses designed by the control engineer. The thesis provides a full description of the above four tools and how they are integrated into the HAZID system to perform control safety analysis and hazard identification in process plants

    A design-phase PSA of anuclear-powered hydrogen plant

    Get PDF
    A probabilistic safety assessment (PSA) is being developed for a steam-methane reforming hydrogenproduction plant linked to a high-temperature gas-cooled nuclear reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute's (JAERI) High Temperature Engineering Test Reactor (HTTR) prototype in Japan. The objective of this paper is to show how the PSA can be used for improving the design of the coupled plants. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The results of the PSA show that the average frequency of an accident at this complex that could affect the population is 7 × 10−8 year−1 which is divided into the various end states. The dominant sequences are those that result in a methane explosion and occur with a frequency of 6.5 × 10−8 year−1, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR

    Creating signed directed graph models for process plants

    Get PDF
    The identification of possible hazards in chemical plants is a very important part of the design process. This is because of the potential danger that large chemical installations pose to the public. One possible route for speeding up the identification of hazards in chemical plants is to use computers to identify hazards automatically. This will facilitate safe plant design and will avoid late design changes which can be very costly to implement. Previous research at Loughborough has concentrated on developing a model-based approach and an analysis algorithm for automating hazard identification. The results generated have demonstrated the technical feasibility of the approach. This approach requires a knowledge-base of unit models. This library of models describes how different plant equipment behaves in qualitative terms. The research described in this thesis develops a method for creating and testing the equipment models. The model library was previously achieved by an expert writing the models in a format that could be directly used by the system described above. An engineer unfamililar with the system would find this difficult. An alternative method would have been to use an intermediary (a knowledge engineer) to gather information from the engineer and convert it into the system format. This would be expensive. Both methods would take up a lot of the engineer's time. An engineer should be able to enter information personally in order to maintain efficiency and avoid information loss through the intermediary. A front end interface has been built to the system which enables an expert to enter information directly without needing to understand details of the application system. This interface incorporates ideas from the knowledge acquisition field in order to produce a tool that is simple to use. Unit-based qualitative modelling can lead to incorrect or ambiguous inference. The method developed here identifies situations where ambiguities may arise. A new modular approach is presented to overcome this type of problem. This method also presents a technique to verify that the models created are both complete and correct

    New trends for conducting hazard & operability (HAZOP) studies in continuous chemical processes

    Get PDF
    Identifying hazards is fundamental for ensuring the safe design and operation of a system in process plants and other facilities. Several techniques are available to identify hazardous situations, all of which require their rigorous, thorough, and systematic application by a multi-disciplinary team of experts. Success rests upon first identifying and subsequently analyzing possible scenarios that can cause accidents with different degrees of severity. While hazard identification may be the most important stage for risk management, it depends on subjectivity issues (e.g., human observation, good judgment and intuition, creativity, expertise, knowledge) which introduce bias. Without a structured identification system, hazards can be overlooked, thus entailing incomplete risk-evaluations and potential loss. The present Thesis is focused on developing both managerial and technical aspects intended to standardize one of the most used techniques for hazard identification; viz. HAZard & Operability (HAZOP) study. These criteria have been carefully implemented not only to ensure that most of the hazardous scenarios will be identified, but also that US OSHA PSM Rule, EPA RMP, and Seveso Directive requirements will be accomplished. Chapter I pioneers the main research topic; from introducing the process safety concept up to the evidence of more detailed information is required from related regulations. A review of regulations (i.e., US, Europe legislation) focused on Hazard Identification has been conducted, highlighting, there is an absence of specific criteria for performing techniques intended to identify what can go wrong. Chapter II introduces the risk management system required to analyze the risk from chemical process facilities, and justifies that hazard identification stage is the Process Safety foundation. Hereafter, an overview of the key Process Hazard Analyzes (PHA) has been conducted, and the specific HAZOP weaknesses and strengths have been highlighted to establish the first steps to focus on. Chapter III establishes the scope, the purpose and the specific objectives that the research covers. It answers the following questions on the spot: why the present research is performed, which elements are included, and what has been considered for acquiring the final conclusions of the manuscript. Chapter IV gathers HAZOP-related literature from books, guidelines, standards, major journals, and conference proceedings with the purpose of classifying the research conducted over the years and finally define the HAZOP state-of-the-art. Additionally, and according to the information collected, the current HAZOP limitations have been emphasized, and thus, the research needs that should be considered for the HAZOP improvement and advance. Chapter V analyzes the data collected while preparing, organizing, executing and writing HAZOPs in five petroleum-refining processes. A statistical analysis has been performed to extract guidance and conclusions to support the established criteria to conduct effectively HAZOP studies. Chapter VI establishes the whole set of actions that have to be taken into account for ensuring a wellplanned and executed HAZOP study. Both technical and management issues are addressed, criteria supported after considering the previous chapters of the manuscript. Chapter VI itself is the result of the present research, and could be used as a guideline not only for team leaders, but also for any related party interested on performing HAZOPs in continuous chemical processes. Chapter VII states the final conclusions of the research. The interested parties should be released about the hazard identification related-gaps present in current process safety regulations; which are the key limitations of the HAZOP study, and finally, which are the criteria to cover the research needs that have been found Annex I proposes the key tools (tables, figures and checklists "ready-to use'') to be used for conducting HAZOPs in continuous chemical processes. The information layout is structured according to the proposed HAZOP Management System. This information is intended to provide concise and structured documentation to be used as a reference book when conducting HAZOPs. Annex II is intended to overview the most relevant petroleum refining processes by highlighting key factors to take into account in the point of view of process safety and hazard identification, i.e. HAZOP. In this sense, key health and safety information of specific petroleum refining units is provided as a valuable guidance during brainstorming sessions. Annex III illustrates the complete set of data collected during the field work of the present research, and also analyzed in Chapter V of the manuscript. Additionally, it depicts a statistical summary of the key variables treated during the analysis. Finally, the Nomenclature, References, and Abbreviations & Acronyms used and cited during the manuscript have been listed. Additionally, a Glossary of key terms related to the Process Safety field has been illustrated.La present Tesis doctoral té com a objectiu estandarditzar l'aplicació d'una de les tècniques més utilitzades a la industria de procés per a la identificació de perills; l'anomenat HAZard & OPerability (HAZOP) study, específicament a processos complexes, com per exemple, unitat de refineria del petroli.El capítol I defineix el concepte de Seguretat de Processos, i progressivament analitza les diferents regulacions relacionades amb la temàtica, detallant específicament les mancances i buits d'informació que actualment hi ha presents a la primera etapa de la gestió del risc en industries de procés: la identificació de perills.El capítol II defineix el sistema de gestió del risc tecnològic que aplica a les industries de procés, i es justifica que l'etapa d'identificació de perills és el pilar de tot el sistema. Finalment, es mencionen algunes de les tècniques d'identificació més utilitzades, els anomenats Process Hazard Analysis (PHA), i es detallen les seves mancances i fortaleses, característiques que han acabat definint la temàtica específica de la Tesis. Concretament, es dóna èmfasis a la tècnica anomenada HAZard & OPerability (HAZOP) study, objecte principal de la recerca.El capítol III defineix l'abast, el propòsit i els objectius específics de la recerca. La intenció d'aquest capítol és donar resposta a les següents qüestions: el perquè de la recerca, quins elements han estat inclosos i què s'ha considerat per tal d'assolir les conclusions de la Tesis.El capítol IV descriu l'estat de l'art de la literatura relacionada amb el HAZOP. Aquesta revisió no només permet classificar les diferents línies de recerca relacionades amb el HAZOP, sinó que també permet assolir un coneixement profund de les diferents particularitats de la pròpia tècnica. El capítol finalitza amb un conjunt de mancances tant de gestió com tècniques, així com les necessitats de recerca que poden millorar l'organització i execució dels HAZOPs.El capítol V analitza la informació que ha estat recopilada durant la fase experimental de la tesis. Les dades procedeixen de la participació en cinc estudis HAZOP aplicats a la industria de refineria del petroli.En aquest sentit, el capítol V desenvolupa una anàlisi estadística d'aquestes dades per extreure'n conclusions quant a la preparació, organització i execució dels HAZOPs.El capítol VI estableix el conjunt d'accions que s'ha de tenir en compte per tal d'assegurar que un estudi HAZOP estigui ben organitzat i executat (la metodologia). Es defineix un Sistema de Gestió del HAZOP, i a partir de les seves fases, es desenvolupa una metodologia que pretén donar suport a tots aquells punts febles que han estat identificats en els capítols anteriors. Aquesta metodologia té la intenció de donar suport i guia no només als líders del HAZOP, sinó també a qualsevol part interessada en aquesta temàtica.El capítol VII descriu les conclusions de la recerca. En primera instància s'enumeren les mancances quant a la definició de criteris a seguir de diferents regulacions que apliquen a la Seguretat de Processos.Seguidament, es mencionen les limitacions de la pròpia tècnica HAZOP, i finalment, es descriuen quins són els criteris establerts per donar solució a totes aquestes febleses que han estat identificades.L'Annex I és una recopilació de diferents criteris que han estat desenvolupats al llarg de l'escrit en forma de taules i figures. Aquestes han estat ordenades cronològicament d'acord amb les diferents fases que defineixen el Sistema de Gestió HAZOP. L'annex I es pot utilitzar com a una referència concisa i pràctica, preparada i pensada per ésser utilitzada directament a camp, amb la intenció de donar suport a les parts interessades en liderar estudis HAZOP.L'annex II recopila informació relacionada amb aspectes clau de seguretat i medi ambient en diferents unitats de refineria. Aquest informació és un suport per tal de motivar el "brainstorming" dels diferents membres que conformen l'equip HAZOP.L'Annex III recopila les dades de les diferents variables que han estat considerades a la fase experimental de la recerca, juntament amb un conjunt de figures que mostren la seva estadística bàsica

    Implementation of functional safety in a robotic manufacturing cell using iec 61508 standard and siemens technology

    Get PDF
    The past 50 years have seen a staggering amount of change in the technology and the business of process automation. The programmable logic controller (PLC) based control and monitoring system is a proven technology used to not only control processes but also to perform safety functions for processes in many industrial applications. There are many opportunities for improvements in any process or manufacturing system. One of the opportunities is achieving accurate safety function for measurement and process control to prevent human injury or death. The programmable electronic systems (PES) such as PLC systems are increasingly being used to perform safety functions as an integral part of the process or plant control system. A Robotic Manufacturing Cell is an example of a PES system and is used as an experimental setup for this work. The IEC 61508 standard defines various phases involved in the overall safety lifecycle for the PES system. This thesis study concentrates on such phases that include safety analysis methods, selection of an appropriate safety control system, implementation of safety as per the standard and safety validation. In this study four test cases are selected to perform safety analysis and implementation. It is verified how the conventional safety analysis method (FMEA) can be used to estimate the risk associated with each test case. As recommended by IEC 61508, a Risk-Graph method is used to calculate the Safety Integrity Level (SIL) requirement for each test case. A number of factors are required to be considered for selecting the appropriate safety control system architecture. After studying these factors and the safety analysis results, the Siemens safety PLC-based control system with SIL 3 configuration is selected for this application. IEC 61508 also recommends implementation of independent control systems for normal operation and safety. This study demonstrates how two independent PLC based control systems, one for normal operations and other for safety-related functions, are implemented to offer the most effective solution for this application. This is achieved by using PLCs from two different manufacturers, a non-safety PLC for normal operations and a Siemens safety PLC for safety-related functions. This study focuses on Machine Safety, and it can be used as a guideline for implementation of functional safety in real-life manufacturing environment

    Knowledge based techniques in plant design for safety

    Get PDF
    • …
    corecore