865 research outputs found

    MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Get PDF
    Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate

    Antibody persistence and booster responses to split-virion H5N1 avian influenza vaccine in young and elderly adults

    Get PDF
    Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 mu g of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 mu g alum-adjuvanted vaccine or 7.5 mu g dose vaccine were lower than 21days after the primary course and waned further with time. Re-immunization with the clade 2, 30 mu g alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody crossreactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available

    H5N1 Vaccine-Specific B Cell Responses in Ferrets Primed with Live Attenuated Seasonal Influenza Vaccines

    Get PDF
    Live attenuated influenza H5N1 vaccines have been produced and evaluated in mice and ferrets that were never exposed to influenza A virus infection (Suguitan et al., Plos Medicine, e360:1541, 2006). However, the preexisting influenza heterosubtypic immunity on live attenuated H5N1 vaccine induced immune response has not been evaluated.Primary and recall B cell responses to live attenuated H5N1 vaccine viruses were examined using a sensitive antigen-specific B cell ELISpot assay to investigate the effect of preexisting heterosubtypic influenza immunity on the development of H5N1-specific B cell immune responses in ferrets. Live attenuated H5N1 A/Hong Kong/213/03 and A/Vietnam/1203/04 vaccine viruses induced measurable H5-specific IgM and IgG secreting B cells after intranasal vaccination. However, H5-specific IgG secreting cells were detected significantly earlier and at a greater frequency after H5N1 inoculation in ferrets previously primed with trivalent live attenuated influenza (H1N1, H3N2 and B) vaccine. Priming studies further revealed that the more rapid B cell responses to H5 resulted from cross-reactive B cell immunity to the hemagglutinin H1 protein. Moreover, vaccination with the H1N1 vaccine virus was able to induce protective responses capable of limiting replication of the H5N1 vaccine virus to a level comparable with prior vaccination with the H5N1 vaccine virus without affecting H5N1 vaccine virus induced antibody response. vaccine and the heterosubtypic immunity may be beneficial for pandemic preparedness

    H5N1 Whole-Virus Vaccine Induces Neutralizing Antibodies in Humans Which Are Protective in a Mouse Passive Transfer Model

    Get PDF
    BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines

    Matrix M Adjuvanted H5N1 Vaccine Elicits Broadly Neutralizing Antibodies and Neuraminidase Inhibiting Antibodies in Humans That Correlate With In Vivo Protection

    Get PDF
    The highly pathogenic avian influenza H5N1 viruses constantly evolve and give rise to novel variants that have caused widespread zoonotic outbreaks and sporadic human infections. Therefore, vaccines capable of eliciting broadly protective antibody responses are desired and under development. We here investigated the magnitude, kinetics and protective efficacy of the multi-faceted humoral immunity induced by vaccination in healthy adult volunteers with a Matrix M adjuvanted virosomal H5N1 vaccine. Vaccinees were given escalating doses of adjuvanted vaccine (1.5μg, 7.5μg, or 30μg), or a non-adjuvanted vaccine (30μg). An evaluation of sera from vaccinees against pseudotyped viruses covering all (sub)clades isolated from human H5N1 infections demonstrated that the adjuvanted vaccines (7.5μg and 30μg) could elicit rapid and robust increases of broadly cross-neutralizing antibodies against all clades. In addition, the adjuvanted vaccines also induced multifaceted antibody responses including hemagglutinin stalk domain specific, neuraminidase inhibiting, and antibody-dependent cellular cytotoxicity inducing antibodies. The lower adjuvanted dose (1.5µg) showed delayed kinetics, whilst the non-adjuvanted vaccine induced overall lower levels of antibody responses. Importantly, we demonstrate that human sera post vaccination with the adjuvanted (30μg) vaccine provided full protection against a lethal homologous virus challenge in mice. Of note, when combining our data from mice and humans we identified the neutralizing and neuraminidase inhibiting antibody titers as correlates of in vivo protection.publishedVersio

    Immunogenicity and safety of an AS03-adjuvanted H5N1 pandemic influenza vaccine in Korean adults: A phase IV, randomized, open-label, controlled study

    Get PDF
    AbstractBackgroundAS03-adjuvanted H5N1 pandemic influenza vaccines have been assessed in an extensive clinical development program conducted in North America, Europe, and Asia including children from 6 months of age, adults, and elderly adults. We evaluated AS03-H5N1 in Korean adults 18 through 60 years of age.MethodsThis Phase IV, randomized, study was conducted to assess the immunogenicity, reactogenicity, and safety of two doses (3.75μg of hemagglutinin antigen) of A/Indonesia/5/2005 (H5N1) adjuvanted with AS03 given 21 days apart in Korean adults. Antibody responses were assessed using hemagglutination-inhibition (HI) assays against the vaccine strain and a vaccine-heterologous strain (A/Vietnam/1194/2004) 21 days after the second dose. A control group (safety) received a licensed seasonal inactivated trivalent influenza vaccine (TIV). Reactogenicity was assessed for 7 days after each vaccination, and unsolicited adverse events were assessed for 182 days following vaccination in both study groups (NCT01730378).ResultsAS03-H5N1 was immunogenic and elicited robust HI antibody responses with seroconversion rates of 100% for the vaccine strain and 69.1% for the heterologous strain (N=81). HI antibody responses fulfilled the European licensure criteria for immunogenicity (primary endpoint). The incidence of local and systemic solicited adverse events (reactogenicity) was higher with AS03-H5N1 than TIV. There was no apparent difference in the rate of unsolicited adverse events in the AS03-H5N1 and TIV groups.ConclusionThe results indicate that AS03-H5N1 vaccine is immunogenic with reactogenicity and safety findings that are consistent with the established profile of AS03-H5N1 vaccine

    MF59®-Adjuvanted H5N1 Vaccine Induces Immunologic Memory and Heterotypic Antibody Responses in Non-Elderly and Elderly Adults

    Get PDF
    Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed.Healthy adults aged 18-60 and > 60 years (n = 313 and n = 173, respectively) were randomized (1:1) to receive two primary and one booster injection of 7.5 microg or 15 microg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 microg and 15 microg doses were comparable. The rates for seroprotection (HI>40; SRH>25 mm(2); MN > or = 40) after the primary vaccination ranged 72-87%. Six months after primary vaccination with the 7.5 microg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 microg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations.Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs.(ClinicalTrials.gov) NCT00311480

    Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity

    Get PDF
    Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity
    • …
    corecore