14,335 research outputs found

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d≥3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d−2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d≥5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex v∗v^*) are decompositions into dd spanning trees rooted at v∗v^* such that each edge not incident to v∗v^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n−1)×(n−1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n−22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    Symmetry adapted Assur decompositions

    Get PDF
    Assur graphs are a tool originally developed by mechanical engineers to decompose mechanisms for simpler analysis and synthesis. Recent work has connected these graphs to strongly directed graphs, and decompositions of the pinned rigidity matrix. Many mechanisms have initial configurations which are symmetric, and other recent work has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper explores how the decomposition and analysis of symmetric frameworks and their symmetric motions can be supported by the new symmetry adapted tools.Comment: 40 pages, 22 figure

    Even-cycle decompositions of graphs with no odd-K4K_4-minor

    Full text link
    An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5K_5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4K_4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that `odd-K4K_4-minor-free' cannot be replaced with `odd-K5K_5-minor-free.' The main technical ingredient is a structural characterization of the class of odd-K4K_4-minor-free graphs, which is due to Lov\'asz, Seymour, Schrijver, and Truemper.Comment: 17 pages, 6 figures; minor revisio

    Long path and cycle decompositions of even hypercubes

    Get PDF
    We consider edge decompositions of the nn-dimensional hypercube QnQ_n into isomorphic copies of a given graph HH. While a number of results are known about decomposing QnQ_n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if nn is even, â„“<2n\ell < 2^n and â„“\ell divides the number of edges of QnQ_n, then the path of length â„“\ell decomposes QnQ_n. Tapadia et al.\ proved that any path of length 2mn2^mn, where 2m<n2^m<n, satisfying these conditions decomposes QnQ_n. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2n+1/n2^{n+1}/n decompose QnQ_n. As a consequence, we show that QnQ_n can be decomposed into copies of any path of length at most 2n/n2^{n}/n dividing the number of edges of QnQ_n, thereby settling Erde's conjecture up to a linear factor
    • …
    corecore