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Abstract
Graph canonization is the problem of computing a unique representative, a canon, from the
isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their
canons are equal. We show that graphs of bounded tree width can be canonized in deterministic
logarithmic space (logspace). This implies that the isomorphism problem for graphs of bounded
tree width can be decided in logspace. In the light of isomorphism for trees being hard for the
complexity class logspace, this makes the ubiquitous classes of graphs of bounded tree width
one of the few classes of graphs for which the complexity of the isomorphism problem has been
exactly determined.
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1 Introduction

The graph isomorphism problem (isomorphism) – deciding whether two given graphs are
the same up to renaming vertices – is one of the few fundamental problems in NP for which
we neither know that it is solvable in polynomial-time nor that it is NP-complete. Since
NP-hardness would imply a collapse of the polynomial hierarchy to its second level [4, 24],
significant effort has been put into better understanding the graph-theoretic requirements
on input graphs that make isomorphism polynomial-time decidable. A classical result of
Bodlaender [3] shows that isomorphism is in P (deterministic polynomial time) for graphs
of bounded tree width [3]. It is also in P for other graph classes like planar graphs [15, 25] and
more general graphs with a crossing-free embedding into a fixed surface [12, 13, 21]. Since
isomorphism is hard for NL (nondeterministic logarithmic space) [26], a deeper complexity-
theoretic insight behind the polynomial-time algorithms for embeddable graphs is given by
the fact that isomorphism for graphs embeddable into the plane [7] or a fixed surface [10]
is in L (deterministic logarithmic space, also called logspace). So far, it has been an open
question whether for graphs of bounded tree width the isomorphism problem can also be
solved in logspace.

Guided by the goal to determine the complexity of the isomorphism problem for graphs of
bounded tree width, there has been a sequence of partial results. Bodlaender’s algorithm [3],
which places isomorphism for graphs of bounded tree width in P, was first refined to an
upper bound in terms of logarithmic-depth circuits with threshold gates (that means, circuits
defining the complexity class TC1) [14] and later improved to use semi-unbounded fan-in
Boolean gates (that means, circuits defining the complexity class SAC1) [6]. Since the chain
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32:2 Canonizing Graphs of Bounded Tree Width in Logspace

L ⊆ NL ⊆ SAC1 ⊆ TC1 ⊆ P is all we know about the relations of these classes, these works
leave the question for a logspace approach for graphs of bounded tree width open. Logspace
approaches are known for small constant bounds on the tree width. Indeed, Lindell’s [18]
classical approach to testing isomorphism of trees provides us with a logspace algorithm for
graphs of tree width at most 1. This was generalized to graphs of tree width at most 2 [2]
and results for graphs without K5 as a minor [8] apply to graphs of tree width at most 3.
Moreover, k-trees, the maximal graphs of tree width k, admit logspace isomorphism tests [1]
as well as graphs with a bounded tree depth [5]. While providing us with logspace algorithms
for ever larger classes of graphs, the general question remained open.

Results. Our first main result answers the above question in its most general way by
showing that the isomorphism problem for graphs of bounded tree width can be solved in
logspace. Together with a result of Jenner et al. [16], showing that the isomorphism problem
for trees is L-hard, this pinpoints the complexity of the isomorphism problem for graphs of
bounded tree width to be L-complete.

I Theorem 1. For every positive k ∈ N, the language isomorphism-tw-k, which contains
exactly the pairs of isomorphic graphs of tree width at most k, is complete for L under
first-order reductions.

For testing whether two graphs are isomorphic, it is in practice often helpful to perform
a two-step approach that first computes a canonical representative for each isomorphism
class, called the canon, and then declares the two graphs to be isomorphic exactly if their
canons are equal (rather than isomorphic). To also be able to construct an isomorphism
between the input graphs (that means, a bijective function between the vertex sets of given
graphs that preserves their edge relations), it is helpful to have additionally access to an
isomorphism from the input graphs to their canons. Such an isomorphism to the canon is
called a canonical labeling of a graph. An isomorphism between the input graphs can be
constructed by composing canonical labelings.

For most isomorphism algorithms that have been developed so far, it was possible, with
varying amounts of extra effort, to turn them into an algorithm that computes canons and
canonical labelings. Hence, deciding isomorphism and computing canons often have the
same known complexity. However, the current situation for graphs of bounded tree width is
different: While the approach from [6] puts the isomorphism problem for graphs of bounded
tree width into SAC1, this is not done by providing a canonization procedure. In fact, the
best known upper bound for canonizing graphs of bounded tree width uses logarithmic-depth
circuits with unbounded fan-in Boolean gates (that means, circuits defining the complexity
class AC1) [27]. Between these classes only the relation SAC1 ⊆ AC1 is known. Our second
main result clarifies this situation by canonizing graphs of bounded tree width in logspace.

I Theorem 2. For every k ∈ N, there is a logspace-computable mapping that turns a graph G
with tree width at most k into an isomorphism-invariant encoding of G (a canon) and an
isomorphism to it (a canonical labeling).

Techniques

The known logspace approaches for canonizing certain classes of bounded tree width graphs
are based on first computing an isomorphism-invariant tree decomposition for the given input
graph and then adjusting Lindell’s tree canonization approach to canonize the graph with
respect to the decomposition. For example, for k-trees [1] an isomorphism-invariant tree
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decomposition arises by taking a graph’s maximal cliques and their size-k intersections as the
bags of the decomposition and connecting two bags based on inclusion. The resulting tree
decomposition is both isomorphism-invariant, which is required for a canonization procedure
to be correct, and has width k, which enables the application of an extension of Lindell’s
approach by taking (the constant number of) orderings of the vertices of the bags into
account.

Technique 1: Isomorphism-invariant tree decomposition into bags without clique sepa-
rators. In general, for graphs of tree width at most k, there is no isomorphism-invariant
tree decomposition of width k. A simple example of graphs demonstrating this are cycles,
which have tree width 2, but no isomorphism-invariant tree decomposition of width 2. We
could hope to find an isomorphism-invariant tree decomposition by allowing approximate tree
decompositions (that means, allowing an increase of the width to some constant k′). Again,
cycles show that such tree decompositions do not always exist. To address this issue, we could
consider not just one tree decomposition, but an isomorphism-invariant and polynomial-size
collection of tree decompositions. However, for all k′ ∈ N, there are graphs of tree width
at most 3 for which the smallest isomorphism-invariant collection of tree decompositions of
width k′ has exponential size. Simple graphs demonstrating this fact are given by forming
the disjoint union of n cycles of length n, and adding a vertex that is adjacent to every other
vertex.

We work around this problem by considering isomorphism-invariant tree decompositions
that may have bags of unbounded size, but with bags that are easier from a graph-theoretic and
algorithmic perspective than the original graph. An algorithm developed recently [19] (which
refined the time complexity for isomorphism on graphs of tree width k from Bodlaender’s
nO(k) bound to g(k) · nO(1) for a function g) applies a technique from Leimer [17] that turns
the input graph into its isomorphism-invariant collection of maximal induced subgraphs
without clique separators called maximal atoms. (In the example above, the maximal atoms
are exactly the enriched cycles.) Conceptually, the first step of the proofs of our main
results is similar, but produces isomorphism-invariant tree decompositions into bags that are
maximal atoms instead of just the isomorphism-invariant collection whose arrangement as a
tree highly depends on the order in which subgraphs are considered. While it is sufficient to
have an isomorphism-invariant set of potential bags capturing a tree decomposition in order
to perform polynomial-time isomorphism tests (see [22]), in order to apply or work towards
logspace techniques it is necessary to have an isomorphism-invariant tree decomposition. Our
first main technical contribution consists of the graph-theoretic concepts and algorithmic
ideas that are needed to compute isomorphism-invariant tree decompositions into maximal
atoms for graphs of bounded tree width.

Technique 2: Nested tree decomposition and a quasi-complete isomorphism-based or-
dering. Lindell’s approach [18] for canonizing trees is based on using a weak order on
the class of all trees whose incomparable elements are exactly the isomorphic ones, and
showing that the order can be computed in logspace. Das, Torán, and Wagner [6] extended
this to also work for graphs with respect to given tree decompositions of bounded width.
This is done by adding the idea that, for bounded width, it is possible in logspace to guess
partial isomorphisms between bags and recursively check whether they can be extended to
isomorphisms between the whole graphs and the tree decompositions. When working with
the tree decompositions into maximal atoms described above, it is not possible to just guess
and check partial isomorphisms between bags since they have an unbounded width.

STACS 2016



32:4 Canonizing Graphs of Bounded Tree Width in Logspace

In order to handle the width-unbounded bags of the above decomposition, we use the
fact that (as shown in [19]), after appropriate preprocessing, the maximal atoms have
polynomial-size isomorphism-invariant families of approximate tree decompositions. To
compute these families, we combine an approach for constructing separator-based tree
decompositions from [9] to work with the isomorphism-invariant separators from [19]. If
we choose a bounded width tree decomposition for each atom, and replace each atom by
the chosen tree decomposition, we can turn the width-unbounded decomposition into a
width-bounded decomposition for the whole graph. However, since each maximal atom may
be associated with several decompositions, we need to consider for each atom a family of
decompositions. We call the structure that is obtained a nested tree decomposition. In order
to extend the approach that canonizes with respect to width-bounded decompositions to
nested tree decompositions, we incorporate a bag refinement step into the weak ordering.
It turns root bags of unbounded width into width-bounded tree decompositions. For each
candidate tree decomposition of the root bag this triggers a modification of the original tree
decomposition. However, it turns out that determining whether there is an isomorphism
between two graphs that respects two given nested tree decompositions is as hard as the
general graph isomorphism problem. Having a polynomial-time algorithm for this, let
alone a logspace algorithm, would thus put the general graph isomorphism problem into P.
Consequently, we do not generalize the idea of using isomorphism-based orderings with
respect to decompositions in a direct way to nested tree decompositions. Instead, we define
an approximation of the isomorphism-based ordering. This approximation has the property
that it is isomorphism-invariant (that means, graphs that are isomorphic with respect to
given nested decompositions are incomparable) but is only quasi-complete, by which we
mean that graphs that are incomparable must be isomorphic but not necessarily via an
isomorphism that respects the nested decompositions. Developing the notion of nested tree
decompositions along with just the right notion of a quasi-complete isomorphism-based
ordering is our second main technical contribution.

Technique 3: Recursive logspace algorithm implementing the quasi-complete ordering.
Trying all choices of a decomposition on all of the atoms yields exponentially many refined
decompositions in total. Avoiding this exponential blowup, our third main technical contri-
bution is a dynamic-programming approach along the tree decomposition that shows how to
cycle through candidate decompositions of the maximal atoms while, still, canonizing the
graph along the coarser tree decomposition in logspace.

Since recursively cycling through tree decompositions of a bag needs space, we cannot just
use the polynomial-size family of tree decompositions that we get from applying the results
of [9] to those of [19] as described above. In order to implement the recursion in logspace,
we compute nested tree decompositions that satisfy a certain additional property, which we
call p-boundedness. It allows us to maintain a trade-off between the number of candidate
tree decompositions chosen for each bag and the size of the subdecomposition sitting below
the bag. This makes a recursive algorithm that uses only logarithmic space possible.

Organization. Section 2 provides background on graphs and logspace. The remaining paper
is structured along the proofs of the theorems: Section 3 shows how to compute isomorphism-
invariant decompositions into clique-separator-free graphs, while Section 4 contains the
decomposition approach for graphs without clique separators. Section 5 defines the notion
of nested decompositions and a weak ordering defined along them, while Section 6 proves
that the ordering is logspace-computable for width-bounded and p-bounded decompositions.
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Section 7 proves the main theorems and Section 8 concludes the paper. Due to lack of space,
proofs are often sketched or omitted; see the paper’s preprint for details [11].

2 Background

The present section sketches the paper’s background on graphs, the isomorphism problem,
and logspace.

We denote the set of natural numbers, which start at 0, by N, and use shorthands
[n,m] := {n, . . . ,m} and [m] := [1,m] for every n ∈ N and m ∈ N \ {0}.

For a graph G = (V,E) with vertices V and edges E ⊆ V × V , we define V (G) := V and
E(G) := E. All graphs considered in the present paper are finite, undirected and simple
(neither parallel edges nor loops are present). We denote the class of all finite graphs by
G. To simplify later definitions, we define the coloring function colG : V (G) × V (G) → Z
of a graph G as follows. colG(u, v) equals −1 if v = w, 1 if v 6= w and {u, v} ∈ E(G), and
0 if v 6= w and {u, v} /∈ E(G). If G’s vertices or edges are colored, we extend the coloring
function to return natural number encodings of colors. We use standard definitions related
to connectivity functions and tree decompositions. We write a tree decomposition as a tuple
D = (T,B) where T is the tree underlying the decomposition and B is the family of bags
that implicitly defines the decomposition’s adhesion sets and torsos.

An isomorphism from a (colored) graph G to a (colored) graph H is a bijective mapping
ϕ : V (G) → V (H), such that colG(u, v) = colH(ϕ(u), ϕ(v)) holds for every u, v ∈ V (G).
Graphs G and H that admit an isomorphism between them are isomorphic. This gives rise to
an equivalence relation that partitions G into isomorphism classes. The graph isomorphism
problem is the language isomorphism := {(G,H) ∈ G × G | G and H are isomorphic}. A
mapping inv that associates an object inv(G) with every graph G ∈ G, for example a tree
decomposition or a family of tree decompositions, is isomorphism-invariant if for every
isomorphism ϕ between two graphs the result of applying ϕ and inv is independent of the
order in which they are applied. That means, for every isomorphism ϕ from a graph G to
a graph H, replacing all occurrences of vertices v ∈ V (G) in inv(G) by their image ϕ(v)
yields inv(H).

Two graphs G and G′ are isomorphic with respect to tree decompositions D = (T,B)
and D′ = (T ′,B′), respectively, if there exists an isomorphism ϕ from G to G′ and an
isomorphism ψ from T to T ′ satisfying B′ψ(n) = {ϕ(v) | v ∈ Bn} for every node n ∈ V (T ).
Under these conditions we say that ϕ respects D and D′. Based on this definition and the
way of how it refines the isomorphism equivalence relation among graphs, we also consider
canons of graphs with respect to tree decompositions.

A deterministic Turing machine whose working space is logarithmically bounded by
the input length is called a logspace dtm. The functions f : {0, 1}∗ → {0, 1}∗ computed
by such machines are logspace-computable (or in logspace). The complexity class L, called
(deterministic) logspace, contains all languages P ⊆ {0, 1}∗ whose characteristic functions
are in logspace.

3 Decomposing Graphs into Parts Without Clique Separators

A clique is a graph with an edge between every two vertices, including the empty graph by
definition. A separation (A,B) is a clique separation with clique separator A ∩B in a graph
G if it (1) separates two vertices x, y ∈ V (G), and (2) G[A ∩B] is a clique.

We construct isomorphism-invariant tree decompositions for graphs of bounded tree
width whose bags induce subgraphs without clique separators and whose adhesion sets are

STACS 2016



32:6 Canonizing Graphs of Bounded Tree Width in Logspace

cliques (that means, the torsos are exactly the subgraphs induced by the bags). These
tree decompositions serve as an intermediate decomposition step in the proofs of the main
theorems.

I Lemma 3. For every k ∈ N, there is a logspace-computable and isomorphism-invariant
mapping that turns a graph G with tree width at most k into a tree decomposition D for G in
which (1) subgraphs induced by the bags do not contain clique separators, and (2) adhesion
sets are cliques.

The tree decomposition we construct to prove the lemma is a refined version of a
decomposition of Leimer [17] of graphs into their collections of maximal induced subgraphs
without clique separators. The crucial point is that we need to adjust his method to not
only output the collection of maximal induced subgraphs without clique separators, which
suffices for its application in [19], but also an isomorphism-invariant tree decomposition
that is based on it. In order to do that, we replace the approach of [17], which is based on
finding clique-separator-free parts in a single phase via computing elimination orderings, by
an approach that consists of k + 1 steps, where k ∈ N is the (constant) tree width of the
input graph: Given a connected graph G, step 1 finds the maximal induced subgraphs of G
that do not contain clique separators of size at most 1. Then we build a tree decomposition
whose bags are the computed subgraphs without clique separators of size 1 and adhesion sets
are the computed size-1 clique separators. Each following step c ∈ {2, . . . , k+ 1} continues in
a similar way: We already know (from the previous step) that the subgraphs induced by the
bags do not contain clique separators of size at most c− 1. For each bag, we find the clique
separators of size at most c in its induced graph, compute a tree decomposition whose bags
are the induced subgraphs without size-c clique separators and adhesion sets are size-c clique
separators. In order to proceed with a single tree decomposition that satisfies the above
mentioned precondition, we merge the tree decompositions for the bags into the already
computed decomposition. This results in a tree decomposition whose bags induce graphs
without clique separators of size at most c and adhesions are clique separators of size at most
c. Since graphs of tree width at most k contain only cliques of size at most k + 1, step k + 1
finishes with a tree decomposition whose bags induce graphs without clique separators and
adhesion sets induce cliques. Implementing this approach both in an isomorphism-invariant
and logspace-computable way requires to refine the classical connection between clique
separators and candidate tree representations of chordal completions of a graph in terms of
size-bounded clique separators and uniquely-defined tree representations of graphs that arise
by a refined notion of chordal completions.

4 Decomposing Graphs Without Clique Separators

The decomposition procedure from the previous section provides us with a tree decomposition
whose bags are clique-separator-free. In the present section, we decompose clique-separator-
free graphs further into isomorphism-invariant tree decompositions of bounded width (for-
malized by Lemma 4). This needs two additional assumptions that we later meet during
the proofs of the main theorems. First, the decomposition is based on two distinguished
nonadjacent vertices from the graph. Second, we assume that the given graph is improved as
defined next.

Let impr: G → G be the mapping that takes a graph G and adds edges between all
vertices u, v ∈ V (G) with κ(u, v) > tw(G), where κ(u, v) is the size of a smallest separator
that separates u from v. The impr-operator improves the graph by adding edges to G
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based on its tree width. To avoid losing information, we introduce a function colimpr(G) that
colors edges that appear originally in the inputs with a different color than those coming
from the improvement. The mapping impr is isomorphism-invariant by definition. Besides
this, we use three further properties of the mapping impr. First, the graph we get from
applying impr is saturated in the sense that a second application of it does not add new edges.
Formally, this means impr(G) = impr(impr(G)) for every graph G as proved in [20, Lemma
2.5]. Second, the tree decompositions of a graph G are exactly the tree decompositions
of impr(G). This implies tw(G) = tw(impr(G)) and is proved in [20, Lemma 2.6]. Third, the
mapping impr is logspace-computable for graphs of bounded tree width. This follows from
Reingold’s algorithm for undirected-reachability, and the fact that the tree width of a
graph bounds the size of the separators we need to consider in order to compute impr.

I Lemma 4. For every k ∈ N, there is a k′ ∈ N and a logspace-computable and isomorphism-
invariant mapping that turns every graph G with a distinguished non-edge {u, v} /∈ E(G),
where G (1) has tree width at most k, (2) does not contain clique separators, and (3) is
improved (that means, G = impr(G)), into a width-k′ tree decomposition D = (T,B) for G.

The construction of the decomposition is based on recursively splitting the graph into
smaller subgraphs using size-bounded and isomorphism-invariant separators. In order to do
this, we adapt in a first step the isomorphism-invariant separators from [19] and show their
logspace-computability. Then we combine this with a logspace approach for handling the
recursion involved in this approach from [9].

5 Isomorphism-Based Ordering of Nested Tree Decompositions

We develop the notion of nested tree decompositions to later combine the decomposition that
we get from Lemma 3 with the candidate decompositions we get from Lemma 4. Nested tree
decompositions are tree decompositions whose parts are not just bags, but where every bag
is associated with a family of tree decompositions for the bag’s torso. We use polynomial-size
nested tree decompositions to represent exponential-size families of width-bounded tree
decompositions that arise by replacing bags with tree decompositions from their families.
In order to solve the isomorphism problem with the help of nested tree decompositions, we
use a recursively defined weak ordering on pairs of graphs and nested tree decompositions.
Incomparable elements in this weak ordering represent isomorphic graphs. In the following
we first define nested tree decompositions and, then, the weak ordering for them.

A nested (tree) decomposition D̄ = (T,B,D) for a graph G consists of a tree decomposition
(T,B) for G, and a family D = (Dn)n∈V (T ) where every Dn is a family of tree decompositions
D ∈ Dn for the torso of n. Normal tree decompositions can be viewed as nested decompo-
sitions where Dn is empty for every n ∈ V (T ). We adjust some terminology that usually
applies to tree decompositions for the use with nested decompositions. Let D̄ = (T,B,D) be
a nested decomposition. The definition of the width of a bag Bn in a nested decomposition
depends on whether Dn is empty or contains a set of tree decompositions. If |Dn| = 0, we
set tw(Bn) := |Bn| − 1 and tw(Bn) := max {tw(D) | D ∈ Dn}, otherwise. The width of D̄
is tw(D̄) := max{tw(Bn) | n ∈ V (T )}. The size of D̄ is |D̄| :=

∑
n∈V (T )(1 + max {|D|+ 1 |

D ∈ Dn}), where |Dn| = 0 implies max {|D| + 1 | D ∈ Dn} = 0. An (unordered) root
set M of a nested decomposition D̄ = (T,B,D) is a subset M ⊆ Br of the root bag Br
of D̄ with (1) M = Br in case |Dr| = 0, and (2) every D ∈ Dr has a bag B with M ⊆ B

in case |Dr| > 0. An ordered root set σ is an ordering of an unordered root set. Refining a
nested decomposition D̄ = (T,B,D) with respect to a tree decomposition D ∈ Dr for the
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root r ∈ V (T ) and an ordered root set σ is done as follows. First, we decompose G[Br]
using D. Then, for each child bag Bc of Br in D̄, we find the highest bag in D that contains
the adhesion set B{r,c} = Br ∩Bc and make Bc adjacent to it. A bag of this kind exists since,
by definition, D is a tree decomposition of the torso of Br. We add a new bag containing
the elements of σ. This bag is the new root of the obtained decomposition and adjacent
to the highest bag in D that contains all elements of σ (in particular, this operation may
change which bag of D is highest). The newly constructed nested decomposition is said
to be obtained by refining D̄ and denoted by D̄D,σ. The size of a nested decomposition
decreases when it is refined. That means |D̄D,σ| < |D̄| holds. We use this property for proofs
by induction.

To be able to distinguish original bags and bags from refining decompositions, we could
mark the bags of D, which arise from the refinement step. We circumvent the need to mark
the bags by assuming that the bags Bn with empty Dn are exactly the marked ones. In turn,
we require from all nested decompositions D̄ we consider that the set of bags Bn with empty
Dn form a connected subtree in D̄ containing the root.

I Proposition 5. The mapping that turns a nested decomposition D̄ = (T,B,D) with
decomposition D ∈ Dr and an ordered root set σ into D̄D,σ is logspace-computable and
isomorphism-invariant.

In order to define the isomorphism-based ordering for nested decompositions, we start to
review notions related to composed orderings and define an ordering of graphs with given
vertex sequences.

Let ≺ be a weak ordering on a set M , and a ≡ a′ denote that two elements a, a′ ∈M are
incomparable with respect to ≺. That means, neither a ≺ a′ nor a′ ≺ a holds. We define
the weak ordering on sequences from M∗ := ∪n∈NMn with respect to ≺ as follows. We
set a = a1 . . . as ≺ a′1 . . . a

′
t = a′ for a, a′ ∈ M∗ if s < t, or s = t and there is an i ∈ [s]

with ai ≺ a′i while aj ≡ aj holds for every j ∈ [i − 1]. The weak ordering on tuples from
M1 × · · · ×Mk with respect to weak orderings ≺i for sets Mi, respectively, is defined in the
same way except that tuples always have the same length. We denote it by ≺(1,...,k). We
define a weak ordering on finite subsets of M by setting M1 ≺M2 for two finite M1,M2 ⊆M
based on comparing the sequences we get by sorting their elements to be monotonically
increasing with respect to ≺.

We write the concatenation of sequences σ and τ as στ . Suppose that (G, σ) and (G′, σ′)
are pairs consisting of graphs G and G′ with sequences of vertices σ = v1 . . . vs and σ′ =
v′1 . . . v

′
t from the respective graphs. We set (G, σ) ≺seq (G′, σ′) if sequence colG(v1, v1) . . .

colG(v1, vs) colG(v2, v1) . . . colG(vs, v1) . . . colG(vs, vs) is smaller than sequence colG′(v′1, v′1)
. . . colG′(v′1, v′t) colG′(v′2, v′1) . . . colG′(v′t, v′1) . . . colG′(v′t, v′t) with respect to the (standard) or-
dering < of N. We write (G, σ) ≡seq (G′, σ′) if (G, σ) and (G′, σ′) are incomparable with
respect to ≺seq. The ordering ≺seq is logspace-computable by enumerating all pairs of vertices
in lexicographic order of the indices.

Graphs G and G′ are isomorphic with respect to sequences of vertices σ = v1 . . . vs
and σ′ = v′1 . . . v

′
t from the respective graphs if s = t and there is an isomorphism ϕ from G

to G′ with ϕ(vi) = v′i for every i ∈ [s]. We say that ϕ respects σ and σ′ in this case. Based
on this definition, we also consider canons of graphs with respect to vertex sequences. Due
to the following statement, which we immediately get from the definition, we call ≺seq an
isomorphism-based ordering of graphs with vertex sequences.
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I Proposition 6. Let G and G′ be graphs with sequences of vertices σ = v1 . . . vs and σ′ =
v′1 . . . v

′
t from the respective graphs.

(“invariance”-property) If G and G′ are isomorphic with respect to σ and σ′, then
(G, σ) ≡seq (G′, σ′).
(“quasi-completeness”-property) If (G, σ) ≡seq (G′, σ′), then the (induced subgraphs)
G[{v1, . . . , vs}] and G′[{v′1, . . . , v′t}] are isomorphic with respect to σ and σ′.

We define an ordering of graphs with nested decompositions by recursively ordering the
child decompositions and combining this with the root bags. If a root bag has no refining
tree decompositions, this is done by trying all possible orderings of the vertices of the bag. If
the root bag has refining tree decompositions, this is done by first refining it before going
into recursion.

For each child c of the root node r of a nested decomposition D = (T,B,D), we define a
set Π(c) of orderings of a vertex set as follows. If |Dc| = 0, then Π(c) contains all orderings
of the vertices of Bc. If |Dc| > 0, then Π(c) is the set of orderings of the adhesion set
B{r,c} = Br ∩ Bc. We use the sequences from Π(c) as ordered root sets for the child
decomposition of D̄ rooted at c.

For all tuples (G, D̄, σ) and (G′, D̄′, σ′) of graphs with nested decompositions and ordered
root sets, we define whether (G, D̄, σ) ≺dec (G′, D̄′, σ′) holds based on a case distinction:
“size”-comparison. If |D̄| < |D̄′|, or |D̄| = |D̄′| and |Dr| < |D′r′ |, then set (G, D̄, σ) ≺dec

(G′, D̄′, σ′).
“bag”-comparison. If |D̄| = |D̄′| = 1 (which implies |Dr| = |D′r′ | = 0), then set (G, D̄, σ) ≺dec

(G′, D̄′, σ′) if (G, σ) ≺seq (G′, σ′).
“recursive”-comparison. If |D̄| = |D̄′| > 1, and |Dr| = |D′r′ | = 0, we compare the de-

compositions recursively. Let c1, . . . , cs be the children of r in D̄ with respective child
decompositions D̄1, . . . , D̄s and subgraphs G1, . . . , Gs. Let c′1, . . . , c′t be the children
of r′ in D̄′ with respective child decompositions D̄′1, . . . , D̄′t and subgraphs G′1, . . . , G′t.
Set (G, D̄, σ) ≺dec (G′, D̄′, σ′) if the following relation holds, which compares sets of sets
that contain tuples to which ≺(dec,seq) applies directly:{

{((Gi, D̄i, τ), (G, στ)) | τ ∈ Π(ci)}
∣∣ i ∈ [s]

}
≺(dec,seq)

{
{((G′i, D̄′i, τ ′), (G′, σ′τ ′)) | τ ′ ∈ Π(c′i)}

∣∣ i ∈ [t]
}
.

“refinement”-comparison. If |D̄| = |D̄′| > 1, and |Dr| = |D′r′ | > 0, then set (G, D̄, σ)
≺dec (G′, D̄′, σ′) if {(G, D̄D,σ, σ) | D ∈ Dr)} ≺dec {(G′, D̄′D′,σ′ , σ′) | D′ ∈ D′r′)} holds.

Graphs G and G′ are isomorphic with respect to nested decompositions D̄ = (T,B,D)
and D̄′ = (T ′,B′,D′) as well as ordered root sets σ and σ′, respectively, if there exists an
isomorphism ϕ from G to G′ that (1) respects the (normal) tree decompositions (T,B) and
(T ′,B′), (2) respects the sequences σ and σ′, and (3) for every n ∈ V (T ) there is a bijection πn
from Dn to Dn′ , such that ϕ restricted to Bn respects D and π(D) for all D ∈ Dn. Based on
how this definition refines the isomorphism equivalence relation among graphs, we consider
canons of graphs with respect to nested decompositions. We call ≺dec an isomorphism-based
ordering of graphs with nested decompositions, which is justified by the following lemma.

I Lemma 7. Let (G, D̄, σ) and (G′, D̄′, σ′) be tuples consisting of graphs with respective
nested decompositions and ordered root sets.

(“invariance”-property) If G and G′ are isomorphic with respect to D̄ and D̄′ as well as
σ and σ′, then (G, D̄, σ) ≡dec (G′, D̄′, σ′).
(“quasi-completeness”-property) If (G, D̄, σ) ≡dec (G′, D̄′, σ′), then G and G′ are isomor-
phic with respect to σ and σ′.
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The ordering ≺dec is defined in order to satisfy the “quasi-completeness”-property, but
not a “completeness”-property saying that (G, D̄, σ) ≡dec (G′, D̄′, σ′) implies that G and G′
are isomorphic with respect to σ and σ′ as well as D̄ and D̄′, too. The reason behind this
lies in the fact that deciding an ordering of this kind for nested decompositions of a bounded
width is as hard as (general) isomorphism. (This can be proved by a reduction that turns
graphs into pairs of independent sets and nested decompositions, which encode the edges).

6 Computing the Ordering for Nested Tree Decompositions in
Logspace

We now investigate methods to space-efficiently evaluate the isomorphism-based ordering
described in the previous section. The nested decompositions we are working with always
have a bounded width. This makes it possible to implement the “recursive”-comparison of the
isomorphism-based ordering space-efficiently. If the child decompositions are small enough
(more precisely, they are smaller by a constant fraction in comparison to their parent), then
it is possible to store a constant amount of information, and in particular to store orderings
of the size-bounded root bag, before descending into recursion, without exceeding a desired
logarithmic space bound. If there is a large child decomposition, of which there can be only
one, then we can use Lindell’s classic technique of precomputing the recursive information
before storing anything at all. However, for the “refinement”-comparison, a space-efficient
approach turns out to be more challenging. In this case, the ordering asks us to compare
various refinements of the root bag. Cycling through these refinements as part of a recursive
approach requires too much space, even if the number of decompositions is bounded by a
polynomial in the size of the root bag. While it is not clear how to remedy this difficulty in
general, the nested decompositions we construct in the proofs of our main theorems satisfy
an additional technical condition, called p-boundedness below. This makes it possible to
find a trade-off between the recursive space requirement and the space required for cycling
through the refinements.

Let D̄ be a nested decomposition. Consider a bag n with |Dn| > 1. Let c1, . . . , ct be the
children of n sorted by monotonically decreasing size of the respecting subdecompositions
D1, . . . , Dt. If it exists, let j ∈ [t] be maximal such that G[An] with An := (Bn ∩Bc1)∪ · · · ∪
(Bn ∩ Bcj

) is a clique, and |Dj | > |Dj+1| holds or j = t holds. Otherwise, set j := 0 and
An := ∅. We call the children c1, . . . , cj of n the special children and An is the attachment
clique of the special children. A nested decomposition D̄ is p-bounded for a polynomial
p : N → N if for every n ∈ V (T ) and non-special child c of n we have |Dn| ≤ p(|D̄|/|D̄c|).
For non-special nodes we use the p-boundedness condition to trade the number of candidate
refining decompositions with the size of subdecompositions. This enables an overall space-
efficient recursion leading to a proof of the following lemma.

I Lemma 8. For every k ∈ N and polynomial p : N→ N, there is a logspace dtm that, on
input of graphs G and G′ along with respective nested decompositions D̄ and D̄′ and ordered
root sets σ and σ′ where D̄ and D̄′ (1) have width at most k, and (2) are p-bounded, decides
(G, D̄, σ) ≺dec (G′, D̄′, σ′).

7 Testing Isomorphism for and Canonizing Bounded Tree Width
Graphs

We first show how to compute isomorphism-invariant width-bounded and p-bounded nested
decompositions and, then, apply this to prove Theorems 1 and 2.
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I Lemma 9. For every k ∈ N, there is a k′ ∈ N, a polynomial p : N → N, and a logspace-
computable and isomorphism-invariant mapping that turns every graph G of tree width at
most k into a nested decomposition D̄ for G that (1) has width at most k′, and (2) is
p-bounded.

Proof. Instead of the original input graph G, we work with its improved version, which we
can compute in logspace since the tree width of G is bounded. Mapping the input graph to
its improved version is isomorphism-invariant and the improved version has the same tree
decompositions. In the following, we denote the improved version of the input graph by G.

Let D = (T,B) be the isomorphism-invariant tree decomposition we get from G by
applying Lemma 3. Since the lemma guarantees that in D the adhesion sets are cliques, the
torso of each bag is equal to the bag itself. To turn D into a nested decomposition it thus
suffices to find a family of tree decompositions of width at most some constant k′ ∈ N for
each bag. We will apply Lemma 4 to find such a family. Since D decomposes an improved
graph and the adhesion sets are cliques, every G[Bn] for n ∈ V (T ) is also improved.

Thus, based on D, we construct a nested decomposition D̄ by considering every node
n of D and defining an isomorphism-invariant family Dn of tree decompositions of the bag
Bn. If Bn has size at most k + 1, we let the family Dn consist of a single tree decomposition
that is just Bn. Note that by this choice, the bag Bn satisfies both the width bounded
and the p-boundedness restriction (for every polynomial p with p(i) ≥ 1 for all i ∈ N). If
the size of Bn exceeds k + 1, we would like to apply Lemma 4 to further decompose Bn.
However, for the lemma, we need a pair {u, v} /∈ E(G) in Bn to serve as the root of the
decomposition. We cannot simply iterate over all {u, v} /∈ E(G) in Bn since the result may
violate the p-boundedness condition. We proceed as follows: Let c1, . . . , ct be the children of
n sorted by decreasing size of the respecting child decompositions Dc1 , . . . , Dct . If it exists,
let j ∈ [t] be the maximum, such that G[An] with An := (Bn ∩ Bc1) ∪ · · · ∪ (Bn ∩ Bcj

)
is a clique, and |Dcj

| > |Dcj+1 | holds or j = t holds. Otherwise, set j := 0 and An := ∅.
Thus, An is the attachment clique of the special children as defined above. We construct
a collection of tree decompositions Dn for Bn based on whether we have j < t or j = t. If
j < t, let m ≥ 1 be the largest integer with |Dcj+1 | = |Dcj+m |. By construction, we can find
at least one and at most ((k + 1)(m+ 1))2 pairs of nonadjacent vertices {u, v} in G[A′n] for
A′n := An ∪ (Bn ∩Bcj+1) ∪ · · · ∪ (Bn ∩Bcj+m).

We define Dn to be the collection of tree decompositions we obtained by applying Lemma 4
to G[Bn] with pairs {u, v} of nonadjacent vertices in G[A′n]. We have |Dn| ≤ ((k+1)(m+1))2.
This set of decompositions satisfies the p-boundedness restriction with the polynomial
p(m) = ((k + 1)(m + 1))2. If j = t, we consider every pair of nonadjacent vertices {u, v}
in Bn. Again, for every such {u, v}, we construct a decomposition for G[B] using Lemma 4.
We have 1 ≤ |Dn| ≤ |Bn|2 in this case, satisfying the p-boundedness condition, since Bn only
has special children. Since the construction of the collections Dn is isomorphism-invariant,
the entire construction is isomorphism-invariant. J

Proof of Theorem 1. Given two graphs G and G′, by Lemma 9 we can compute in log-
arithmic space isomorphism-invariant p-bounded nested decompositions D̄ and D̄′. By
Lemma 7, the graphs are isomorphic if and only if there exist ordered root sets σ and σ′
with (G, D̄, σ) ≡dec (G′, D̄′, σ′). By Lemma 8, this can be checked in logarithmic space by
iterating over all suitable choices of σ and σ′. The L-hardness for every positive k ∈ N follows
from the L-hardness of the isomorphism problem for trees (connected graphs of tree width at
most 1) proved by Jenner et al. [16]. J
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Proof of Theorem 2. We use the isomorphism-invariant mapping from Lemma 9 to turn G
into a width-bounded and p-bounded nested decomposition D̄ = (T,B,D). The canonical
sequence of G’s vertices is based on (G, D̄, σ) where σ is the empty vertex sequence. In
order to compute a canonical sequence with respect to ≺dec in logspace, we repeatedly apply
Lemma 8.

If |Dr| = 0, let D̄1, . . . , D̄s be the child decompositions of G containing at least one vertex
that is not in σ. We obtain an order on them by defining D̄i < D̄j if {((Gi, D̄i, τ), (G, στ)) |
τ ∈ Π(ci)} ≺(dec,seq) {((Gj , D̄j , τ), (G, στ)) | τ ∈ Π(cj)}. Ties are broken arbitrarily, for
example by considering the smallest vertex in the child according to the input ordering. For
each child D̄i we compute an ordering τi ∈ Π(ci) that minimizes (Gi, D̄i, τi). We recursively
create a canonical sequence outputting the canonical sequence of (Gi, D̄i, τi) for each child
in the order of children just defined. If |Dr| > 0, we iterate over all decompositions in Dr
choosing a tuple from {(G, D̄D,σ, σ) | D ∈ DB)} that is minimal with respect to ≺dec. Ties
are, again, broken based on the input ordering. For computing the canonical sequence we
continue recursively on a minimal (G, D̄D,σ, σ) only. In order to obtain a canonical sequence,
we alter the nested decomposition slightly whenever we go into the recursion using colored
edges. More specifically, Lemma 9 constructs D based on two vertices u and v that form a
distinguished non-edge. We insert an edge between u and v and color it with a color that
does not appear in G (for example, we use −2). In other words, we set colG(u, v) := −2. This
modification is isomorphism-invariant based on the choice of D. The new edge is covered by
a bag of D by construction. Inserting the edge only depends on D and, thus, it is stored
recursively in an implicit way. The modification has the consequence that distinguished
edges are preserved under isomorphism.

To prove that the sequence is canonical, we show that whenever a tie is broken arbitrarily
between two options, then the two options are equivalent. There are two situations when a tie
can occur: First, assume {((Gi, D̄i, τ), (G, στ)) | τ ∈ Π(ci)} ≡(dec,seq) {((Gj , D̄j , τ), (G, στ)) |
τ ′ ∈ Π(cj)} for two child decompositions both containing a vertex not in σ. By Lemma 7,
there is an isomorphism from the graph induced by the vertices in D̄i to the graph induced
by the vertices in D̄j fixing σ. This extends to an automorphism of G by fixing all vertices
neither in D̄i nor D̄j . Since D̄ is isomorphism-invariant this automorphism respects D̄
therefore mapping D̄i to D̄j . Second, assume (Gi, (D̄i)D,σ, σ) ≡(dec,seq) ((Gj), (D̄j)D′,σ, σ).
By Lemma 7, there is an isomorphism from Gi to Gj , which preserves the distinguished edge.
It extends to an automorphism of G that fixes all vertices that neither appear in (D̄i)D,σ
nor in (D̄j)D′,σ. Since D̄ is isomorphism-invariant, this automorphism of G respects D̄ and
since the distinguished edge is preserved it maps (D̄i)D,σ to (D̄j)D′,σ. J

8 Conclusion

We showed how to canonize and compute canonical labelings for graphs of bounded tree width
in logspace, and this implies that deciding isomorphic graphs and computing isomorphisms
can be done in logspace for graphs of bounded tree width. For the proof we first developed a
tree decomposition into clique-separator-free subgraphs that is isomorphism-invariant and
logspace-computable. Then we showed how to compute, for each bag, an isomorphism-
invariant family of width-bounded tree decompositions in logspace. Finally, we combined
both decomposition approaches to construct nested tree decompositions and developed a
recursive canonization procedure that works on nested tree decompositions.

Deciding isomorphism for graphs embeddable into the plane [7] or fixed surfaces [10]
is in logspace. These graph classes can be described in terms of forbidding fixed minors,
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which also holds for classes of graphs with bounded tree width. This opens up the question
of whether these logspace results generalize to any class of graphs excluding fixed minors.
For these classes polynomial-time isomorphism procedures are known [23]. Partial results
are known for graphs that exclude the minors K5 or K3,3 [8].
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