31 research outputs found

    Real-time model-based video stabilization for microaerial vehicles

    Get PDF
    The emerging branch of micro aerial vehicles (MAVs) has attracted a great interest for their indoor navigation capabilities, but they require a high quality video for tele-operated or autonomous tasks. A common problem of on-board video quality is the effect of undesired movements, so different approaches solve it with both mechanical stabilizers or video stabilizer software. Very few video stabilizer algorithms in the literature can be applied in real-time but they do not discriminate at all between intentional movements of the tele-operator and undesired ones. In this paper, a novel technique is introduced for real-time video stabilization with low computational cost, without generating false movements or decreasing the performance of the stabilized video sequence. Our proposal uses a combination of geometric transformations and outliers rejection to obtain a robust inter-frame motion estimation, and a Kalman filter based on an ANN learned model of the MAV that includes the control action for motion intention estimation.Peer ReviewedPostprint (author's final draft

    Sampling Methods for Unsupervised Learning

    Get PDF
    We present an algorithm to overcome the local maxima problem in estimating the parameters of mixture models. It combines existing approaches from both EM and a robust fitting algorithm, RANSAC, to give a data-driven stochastic learning scheme. Minimal subsets of data points, sufficient to constrain the parameters of the model, are drawn from proposal densities to discover new regions of high likelihood. The proposal densities are learnt using EM and bias the sampling toward promising solutions. The algorithm is computationally efficient, as well as effective at escaping from local maxima. We compare it with alternative methods, including EM and RANSAC, on both challenging synthetic data and the computer vision problem of alpha-matting

    Purposive sample consensus: A paradigm for model fitting with application to visual odometry

    Full text link
    © Springer International Publishing Switzerland 2015. ANSAC (random sample consensus) is a robust algorithm for model fitting and outliers' removal, however, it is neither efficient nor reliable enough to meet the requirement of many applications where time and precision is critical. Various algorithms have been developed to improve its performance for model fitting. A new algorithm named PURSAC (purposive sample consensus) is introduced in this paper, which has three major steps to address the limitations of RANSAC and its variants. Firstly, instead of assuming all the samples have a same probability to be inliers, PURSAC seeks their differences and purposively selects sample sets. Secondly, as sampling noise always exists; the selection is also according to the sensitivity analysis of a model against the noise. The final step is to apply a local optimization for further improving its model fitting performance. Tests show that PURSAC can achieve very high model fitting certainty with a small number of iterations. Two cases are investigated for PURSAC implementation. It is applied to line fitting to explain its principles, and then to feature based visual odometry, which requires efficient, robust and precise model fitting. Experimental results demonstrate that PURSAC improves the accuracy and efficiency of fundamental matrix estimation dramatically, resulting in a precise and fast visual odometry

    Real-time video stabilization without phantom movements for micro aerial vehicles

    Get PDF
    In recent times, micro aerial vehicles (MAVs) are becoming popular for several applications as rescue, surveillance, mapping, etc. Undesired motion between consecutive frames is a problem in a video recorded by MAVs. There are different approaches, applied in video post-processing, to solve this issue. However, there are only few algorithms able to be applied in real time. An additional and critical problem is the presence of false movements in the stabilized video. In this paper, we present a new approach of video stabilization which can be used in real time without generating false movements. Our proposal uses a combination of a low-pass filter and control action information to estimate the motion intention.Peer ReviewedPostprint (published version

    KALMANSAC: robust filtering by consensus

    Full text link
    We propose an algorithm to perform causal inference of the state of a dynamical model when the measurements are corrupted by outliers. While the optimal (maximum-likelihood) solution has doubly exponential complexity due to the combinatorial explosion of possible choices of inliers, we exploit the structure of the problem to design a sampling-based algorithm that has constant complexity. We derive our algorithm from the equations of the optimal filter, which makes our approximation explicit. Our work is motivated by real-time tracking and the estimation of structure from motion (SFM). We test our algorithm for on-line outlier rejection both for tracking and for SFM. We show that our approach can tolerate a large proportion of outliers, whereas previous causal robust statistical inference methods failed with less than half as many. Our work can be thought of as the extension of random sample consensus algorithms to dynamic data, or as the implementation of pseudo-Bayesian filtering algorithms in a sampling framework. © 2005 IEEE

    Learning Probabilistic Features for Robotic Navigation Using Laser Sensors

    Get PDF
    SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N2), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.This work has been supported by the Spanish Ministerio de Ciencia e Innovación (www.micinn.es), project TIN2009-10581

    Motion intention optimization for multirotor robust video stabilization

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper we present an optimization algorithm for simultaneously detecting video freeze and obtaining the minimum number of the frame required in motion intention estimation for real time robust video stabilization on multirotor unmanned aerial vehicles. A combination of a filter and a threshold is used to the video freeze detection, and for optimizing the algorithm, we find the minimum number of frames for motion intention estimation without decrease the performance.Peer ReviewedPostprint (author's final draft

    Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras

    Get PDF
    Actualmente, los vehículos aéreos de micros escala (MAVs) se han tornado populares para múltiples aplicaciones como rescate, vigilancia, mapeo, entre otras. Para todos los casos, es necesario un óptimo desempeño de los vídeos capturados a bordo, y uno de los principales problemas constituyen los movimientos indeseados entre fotogramas consecutivos. Para solventar esta problemática existes diferentes enfoques que, aplicados a post-procesamiento, consiguen una estabilización robusta en la imagen. Sin embargo, muy pocos algoritmos son capaces de ser aplicados en tiempo real. En este artículo se presenta un nuevo enfoque que puede ser implementado en tiempo real sin que se generen movimientos falsos. Nuestra propuesta usa una combinación de un filtro pasabajos, y la información de la acción de control para la estimación de la intención de movimiento. Adicionalmente, se presenta la aplicación de nuestra propuesta en el algoritmo de detección de caras, en el cual, la robustez se incrementa al ser implementado a partir de la secuencia estable de vídeo.Peer ReviewedPostprint (published version
    corecore