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Abstract— In this paper we present an optimization algorithm 

for simultaneously detecting video freeze and obtaining the 

minimum number of the frame required in motion intention 

estimation for real time robust video stabilization on multirotor 

unmanned aerial vehicles. A combination of a filter and a 

threshold is used to the video freeze detection, and for optimizing 

the algorithm, we find the minimum number of frames for motion 

intention estimation without decrease the performance. 
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I. INTRODUCTION 

In [1] [2] [3], we present video stabilization algorithms based 
on Low-pass and Kalman Filters that can compensate the effects 
of the undesired movements in real time for micro aerial 
vehicles. However, we have not considered the problem of video 
freeze. In this paper we present a proposal for video freeze 
detection and optimization of the motion intention process. 

In the approaches of video stabilization, three phases can be 
distinguished: Motion estimation, Robust cumulated motion 
estimation, Motion compensation. Motion estimation is the 
process for determining parameters that relate the frame 
uncompensated with frame defined as the reference. Previous 
works on this problem propose two main approaches: one based 
on the optical flow [4] and the other based on the geometric 
transformation model [5] [6] [7]. In this article, we use the 
second proposal. Independently from the approach, feature 
points detection and description are required, and there are 
several algorithms to perform these tasks [8] [9]. SIFT [10] 
(Scale Invariant Feature Transform) and SURF (Speed Up 
Robust Feature) [11] are the most widely used algorithms for 
detection, description, and almost computer vision problems 
[12]. 

In the robust cumulated motion estimation, a search of 
correspondences between feature points is carried out as a part 
of the motion estimation process. The estimated motion 
parameters is directly dependent on the reliability of computed 
matched points. RANSAC is a technique commonly used in the 
literature to estimate mathematical model parameters from a set 
of points with false correspondences [13] [14] [15]. Since the 
complete motion sequence must be coherent, it is important to 
validate the estimated parameters for the global movement and 
not just for the relative movement between consecutive frames. 

Finally, in the motion compensation process, the current 
frame is warped using parameters obtained by a robust 
estimation, and generating a stable video sequence. 

II. INTER-FRAME MOTION ESTIMATION 

Inter-frame motion estimation is a fundamental step in the 
video stabilization process, where local motion parameters 
between consecutives frames are calculated. This estimation 
process determines the mathematical model as a relation 
between the current frame and the reference frame. 

In spite of the several techniques for detecting and matching 
interest, results presented in [12] show that the computational 
cost for SURF is considerably lower than SIFT without a 
robustness reduction in the algorithm. Using the Hessian matrix 
and the space-scale function [16], SURF algorithm locates 
waypoints, and the characteristics are described using a 64-
dimensional vector. Once vectors descriptors are computed, 
feature point matching process selects pairs of points with the 
minimum vector difference between their 64-dimensional 
descriptors. 

The variations between two frames can be expressed 
mathematically by the geometric transformation that relates 
feature points from a frame with their correspondences in the 
second frame [17] [18] [19]. This geometric transformation has 



 

a parametric motion model, and is different depending on the 
used transformation. Common models are: Translation, Affine, 
Projective Model. 

Translation model is the simplest model, referred to the 
image movement when the capture device motion is only 
translation in a plane parallel to the image plane (pinhole camera 
model [20]). In the affine model, there are four parameters to be 
estimated: two displacements in the plane parallel to the image, 
as we described in translation model, roll rotation, and scale that 
is proportional to the motion in roll axis orientation. The 
projective model is the full motion model, with the mathematical 
expression for the three possible rotations and translations.  

In case of either hand-held digital camera, or monocular 
vision devices onboard complex dynamic robots, undesired 
movement and parasitic vibrations in the image are considered 
significant only about the roll axis. Therefore, the affine model 
is selected for motion parameters estimation. 

There are two additional advantages for this model. First one 
is referred to a lower computation time. This is because the 
model depends only on four parameters, compared to the 
projective model with eight independent parameters. A second 
advantage is the capability for direct extraction of relevant 
motion parameters: scale, rotation, roll, and translations in the 
𝑥𝑦 plane. 

III. VIDEO FREEZE DETECTION 

Several smoothing methods based on filters have been used 
in video stabilization algorithms, such as Kalman filtering [22], 
Gaussian filtering [23], and particle filtering [24]. Once we 
extract affine transformation parameters (scale, rotation, and 
translation XY), a low-pass filter is used to get the motion 
intention. 

a.  

Fig. 1. Video Freeze Detection 

The data collection for the experimental tests has been done 
with a flying robot. However, the algorithm was executed on a 
laptop, whose communication with the flying robot was through 
Wi-Fi. Therefore, video freezing was possible due to connection 
problems. There is possible to detect and correct freezing 
problems due to a bad connection, and it is important to 
eliminate these parameters data from frozen frames before the 
filter implementation.  

When the communication with the flying robot is lost, the 
estimated parameters increases considerably (Figure 1). After 
several test, we have set thresholds for to reject the values from 
frozen frames, which are out of the follow conditions: 

 𝑠 > 1.06 

 𝜃 > 0.08𝑟𝑎𝑑 

 𝑡𝑥 > 0.1 ∗ 𝑡𝑚𝑎𝑥𝑥  

 𝑡𝑦 > 0.1 ∗ 𝑡𝑚𝑎𝑥𝑦  

where 𝑡𝑚𝑎𝑥𝑥 and 𝑡𝑚𝑎𝑥𝑦  are the maximum number of pixel 

for 𝑥 and 𝑦.  

Once we have removed  the values from frozen screens, we 
estimate the motion intention using the low-pass filter to obtain 
a signal with the undesired high frequency movements. We use 
this signal in image warping to compensate the vibrations, and 
simultaneously, keep the intentional motions. In figure 2, it can 
be appreciated the motion intention signal estimated with the 
low-pass filter (top figure), and the high frequency signal to be 
compensated (down figure). The results is comparable with [1] 
[2] [3]. 

b.  

Fig. 2. Scale intention estimation 

IV. VIDEO STABILIZATION OPTIMIZATION 

It is important to define the evaluation metric for the 
optimization of video stabilization. 

A. Evaluation Metrics 

There are different evaluation metrics for determining the 
algorithm performance. In the literature, we can find subjective 
evaluation metrics such as the mean opinion square (MOS), 
common in the quality evaluation of the compressed multimedia 
[25]. Other option is to find objective evaluation metrics such as 
bounding boxes,  referencing lines, or synthetic sequences [26]. 
The advantage of all three objective metrics is that the estimated 
motion parameters can be directly compared with the ground-
truth global motion.  However, a widely used method to measure 
the motion smoothness is the inter-frame transformation fidelity 
(ITF) [27], whose mathematics expression is: 

 𝐼𝑇𝐹 =
1

𝑁𝑓𝑟𝑎𝑚𝑒−1
∑ 𝑃𝑆𝑁𝑅(𝑘)

𝑁𝑓𝑟𝑎𝑚𝑒−1

𝑘=1
 



 

where 𝑁𝑓𝑟𝑎𝑚𝑒  is the number of video frames and 𝑃𝑆𝑁𝑅(𝑘) 

is the peak signal-to-noise ratio between two consecutive frames 
(𝑘, 𝑘 + 1) which can be defined as: 

 𝑃𝑆𝑁𝑅(𝑘) = 10 log10
𝐼𝑀𝐴𝑋

𝑀𝑆𝐸(𝑘)
 

 𝑀𝑆𝐸(𝑘) =
1

𝑀∗𝑁
∑ ∑ ‖𝐻𝑐𝑢𝑟𝑟 ∗ 𝐼𝑐𝑢𝑟𝑟(𝑖, 𝑗) −𝑁−1

𝑗=0
𝑀−1
𝑖=0

𝐼𝑙𝑎𝑠𝑡(𝑖, 𝑗)‖2 

where 𝐼𝑀𝐴𝑋 is the maximum pixel intensity and 𝑀𝑆𝐸(𝑘) is 
the mean square error between monochromatic image with size 
𝑀 ∗ 𝑁.  

A second performance objective evaluation metric is the 
difference between estimated global motion and ground-truth 
global motion (RMSE):  

 𝑅𝑀𝑆𝐸 =
1

2𝐹
(√∑ (𝐸𝑥,𝑗 − 𝑇𝑥,𝑗)

2𝐹
𝑗=0 +

√∑ (𝐸𝑦,𝑖 − 𝑇𝑦,𝑖)
2𝐹

𝑗=0 ) 

where 𝐸𝑥,𝑗  and 𝐸𝑦,𝑖  are the estimated global motion of 𝑗𝑡ℎ 

frame in 𝑥 -axis and 𝑦-axis, respectively. 𝑇𝑥,𝑗  and 𝑇𝑦,𝑖  are the 

ground-truth global motion of the 𝑗𝑡ℎ frame in the 𝑥-axis and 𝑦-
axis, respectively. 𝐹  denotes the number of frames in a 
sequence. 

Actually, the evaluation criterion is the ratio of translation 
jitter attenuation defined as:  

 𝐽𝑐 =
1

𝐹
∑ 𝑒𝑗

2𝐹
𝑗=1  

 𝐽𝑖𝑡𝑡𝑒𝑟 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =
𝐽𝑐_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑

𝐽𝑐_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 

where 𝐽𝑐 represent jitters of a sequence, 𝐹 is the number of 
frames in a sequence, and 𝑒𝑗 denotes the difference between the 

derived and optimal translation parameters of the 𝑗𝑡ℎ  frame. 
Moreover 𝐽𝑐_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒𝑑  and 𝐽𝑐_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is referred to the jitter of a 

sequence after and before stabilization respectively. 

B. Optimization 

In order to get a high performance for video stabilization 
method using a minimum number of frames from a video 
sequence, we have performed an exhaustive searching by an 
algorithm that iteratively increase the number of frames used for 
the motion intention estimation, whose results are plotted in 
figure 3. 

Based on the objective evaluation metric ITF, we have 
gotten a comparable performance estimating the motion 
intention with only eleven previous and eleven posterior frames 
than using the complete sequence. 

c.  

Fig. 3. Minimization of inter-frame transformation fidelity ITF 

We modify the criterion for RMSE comparing the N-sample 
based estimated global motion, with the estimation of the global 
motion based on all the samples. 

 𝑅𝑀𝑆𝐸 =
1

2𝐹
(√∑ (𝑁𝑥,𝑗 − 𝐴𝑥,𝑗)

2𝐹
𝑗=0 +

√∑ (𝑁𝑦,𝑖 − 𝐴𝑦,𝑖)
2𝐹

𝑗=0 ) 

where the estimated global motion of 𝑗𝑡ℎ frame in 𝑥-axis 
and 𝑦-axis, are respectively represented by: 𝑁𝑥,𝑗 and 𝑁𝑦,𝑖 when 

we use N-samples, and 𝐴𝑥,𝑗 and 𝐴𝑦,𝑖 for All-samples. 

Using the modified RMSE as a second objective evaluation 
metric, we have gotten similar results (The four parameters of 
global motion are separated in Figure 4). 

d.  

Fig. 4. Minimization of four affine parameters performance 

Using the dataset from [1], we can obtain a visual perception 
of the results obtained for each experimental environment. Since 
motion estimation is based on feature points, video stabilization 
is performed around the regions with an agglomeration of these 
points. Consequently, scene regions remain virtually stationary 
despite the unstable dynamic motion of capture device.  

V. CONCLUSIONS AND FUTURE WORKS 

The optimized approach based on motion intention 
estimation, with video freeze detection, presented in this paper 
is robust to: Presence of nearby objects, Scenes with moving 
objects, Scenes frame by frame, Significant displacements, Low 
frequency videos, High speed displacement, Video freeze. 



 

The low-pass filter for motion estimation is robust into 
several complex scenes. Matching feature points based on 
RANSAC is not only referenced to moving objects but to the 
whole image. 

For scene frame to frame, low frequency videos or high 
speed displacement, the change between two consecutives 
frames could be considerable, generating a critical problem in 
video stabilization results. When feature points disappear on the 
new scene, the algorithm has not reference points or creates false 
matches.  

In the global motion estimation, the algorithm eliminates the 
data over a threshold generated by video freeze before the filter 
implementation, becoming robust to considerable changes in the 
images. 

As a future work, we extrapolate video freeze detection to 
onboard applications as people detection [28] [29], navigation 
[30] [31] [32], obstacle avoidance [33] [34] [35], and mapping 
[36]. 
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