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Abstract The emerging branch of Micro Aerial Vehicles (MAVs) has at-
tracted a great interest for their indoor navigation capabilities, but they re-
quire a high quality video for tele-operated or autonomous tasks. A common
problem of on-board video quality is the effect of undesired movements, so
different approaches solve it with both mechanical stabilizers or video stabi-
lizer software. Very few video stabilizer algorithms in the literature can be
applied in real-time but they do not discriminate at all between intentional
movements of the tele-operator and undesired ones. In this paper, a novel tech-
nique is introduced for real-time video stabilization with low computational
cost, without generating false movements or decreasing the performance of
the stabilized video sequence. Our proposal uses a combination of geometric
transformations and outliers rejection to obtain a robust inter-frame motion
estimation, and a Kalman filter based on an ANN learned model of the MAV
that includes the control action for motion intention estimation.

Keywords Video stabilization ·Micro aerial vehicles · Real-time · RANSAC ·
Modelling · Motion intention · Kalman filter

1 Introduction

Unmanned Aerial Vehicles (UAVs) are used in several applications like surveil-
lance, mapping, transport or rescue, for their versatility. Micro aerial vehicles
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(MAVs), a class of UAVs, has gained prominence for its flight maneuverability
in closed spaces, time and cost of manufacturing and maintenance, and safety
for application in human robot interaction. Robust guidance, navigation, and
control systems [21] are required for these platforms, and their performance
depends on the input data of on-board sensors and cameras.

One common problem in video sequences captured on aerial vehicles is
undesired motion generated during flight for their complex dynamic, and the
effect is higher in MAVs. Annoying rotations and translations due to aerody-
namic characteristics appear in the sequence of images, increasing the difficult
of, usually remote, control of micro aerial vehicles.

1.1 Related work

There are multiple techniques in the literature designed to compensate un-
desired movements of the camera [7,19,30]. Recently, the video stabilization
algorithm L1 Optimal provided by the YouTube editor was introduced in [16].
Another interesting just released proposal is the Parrot’s Director Mode, imple-
mented as an iOS application (iPhone Operative System) for post-processing
of videos captured with Parrot’s AR.Drones.

Most of the previous video stabilization techniques contain three phases:

– Inter-frame motion estimation
– Motion intention estimation
– Motion compensation

1.1.1 Inter-frame motion estimation

The approaches used to estimate the parameters relating two consecutive
frames are: optical flow [10] or geometric transformation models [22,34,32].

In both approaches, feature points are detected and described for being
used instead of all pixels from each image. A list of algorithms performing
this challenge can be found in the literature [17,9,27], but Binary Robust
Invariant Scalable Keypoints (BRISK) [23], Fast Retina Keypoint (FREAK)
[5], Oriented FAST and Rotated BRIEF (ORB) [29], Scale Invariant Feature
Transform [24] (SIFT) and Speed Up Robust Feature (SURF) [8,25] are com-
mon in the computer vision field.

The second phase is the matching of feature points between consecutive
frames, and the successful of the motion estimation process depends on the
correct pairing. An additional robust method is required to remove incorrectly
matched points (outliers). RANdom SAmple Consensus (RANSAC) is a reli-
able iterative technique for outliers rejection on a mathematical model [14,31,
11].
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1.1.2 Motion intention estimation

In order to obtain stable videos instead of static videos, the inter-frame motion
parameters are accumulated throughout the whole sequence. This accumula-
tive motion is composed by desired and undesired movements.

The intentional movements are estimated by suppressing high frequency jit-
ters from the accumulative global motion. Several motion smoothing methods
are available to find the motion intention, such as particle filter [34], Kalman
filter [32], or Gaussian filter [26].

These video stabilization algorithms are focus on the tracking of feature
points to compensate the movement respect to them. Based on this idea, the
objective of motion smoothing is to obtain the intentional movement of the
feature points to compute the inter-frame motion parameters after that.

An alternative option is [1], where we propose estimating the motion in-
tention of the motion parameters instead of the feature points.

1.1.3 Motion compensation

Finally, the current frame is warped using parameters obtained from the mo-
tion intention to generate a stable video sequence.

1.2 Phantom movements

This phenomenon was presented in a previous article [1]. The phantom move-
ments correspond mainly to false displacement generated by video stabilization
algorithm in the scale and/or translation parameters due to the compensation
of the eliminated high frequency movements in the motion smoothing process.
Real movements can be removed and/or delays can be introduced, but both
effects are defined as phantom movements.

Previous works on video stabilization achieve good results eliminating un-
desired movements in images captured with hand-held devices and complex
systems, but generate phantom movements. There is no problem for post-
processing applications, but for tele-operated system, phantom movements
represent a dangerous issue.

In the same paper [1], we presented a proposal based on a low pass filter
and the use of the control action as logical gate with hysteresis.

1.3 Our approach

In the present article, we propose a combination of the projective and affine
model to obtain a reliable transformation (robustness) with a lower computa-
tional cost (fastness) and a lower deformation.

Additionally, we propose an algorithm based on the approach of [1] for
estimating the intentional motion of parameters and no feature points. In



4 Wilbert G Aguilar, Cecilio Angulo

contradistinction to [1], we use Kalman filter and the model of the MAV, where
the intentional control actions are uncoupled from unintentional motion.

The model of the MAV includes the control action, solving the issue of
phantom movements and, at the same time, minimizing the number of previuos
frame to one. The algorithm depends only on the last frame and can be applied
in real time without delays or decreasing the performance

Our proposed technique can be applied in real-time for tele-operated mi-
cro aerial vehicles during indoor flights because the modeling was carried out
with data of indoor tests. Outdoor flights implicate additional problems as
turbulence out of the scope of this paper.

The rest of this paper is organized as follows: Our proposal for estimating
inter-frame motion parameters based on a combined transformation model and
an outliers rejection algorithm is explained in the next Section. In the Section
3, we introduce a novel technique of motion intention estimation based on the
model of the MAV that includes the input control action. Experimental results
and conclusions are finally in the Section 4 and 5. presented.

2 Proposal for inter-frame motion estimation

The geometric transformation [13,18,15] is used to describe the mathematical
relationship between every two consecutives images in the video. One image is
the reference and the other one is the frame to be processed. This mathematical
relationship can be represented as below:

Isp = Ht · It (1)

where Isp = [xsp, ysp, 1]T and It = [xt, yt, 1]T are the coordinates of the interest
points at the reference image and the uncompensated image, respectively, and
Ht is the geometric transformation matrix.

This matrix contains motion parameters that depend on the model used to
represent the warping effect generated between two frames during the move-
ment of the camera. Parametric motion models can be 2-D or 3-D. The 2-D
models are widely used in video stabilization algorithms and the most common
are: translation, affine, nonreflective similarity, and projective model. The last
one is known as homography. We use a combination of projective and affine
transformation to obtain a robust inter-frame motion.

2.1 Using the projective transformation

In the subsection 1.1, we cited several approaches for computing feature points.
Our video stabilization algorithm uses SURF and each detected point has an
associated 64-dimensional descriptor. The inter-frame geometric transforma-
tion is based on the computed interest points, represented in the 64-dimensional
space of the SURF descriptors, for both frames. The points of one frame must
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be matched with their correspondence in the other frame. The matching pro-
cess searches the nearest neighbors, i.e. the pair of feature points with the
minimum euclidean distance in this 64-dimensional space.

For images captured in uncontrolled conditions, the matched process gen-
erates false correspondences. One option to solve this issue is searching the
nearest neighbors, i.e. the pair of feature points with the minimum euclidean
distance between their descriptors, but this matched process is not reliable.

In [1], RANSAC is used for rejection of pair of points incorrectly matched.
We propose a similar approach but using the projective transformation in-
stead of the affine tranform as mathematical model of RANSAC. The affine
transformation is used later.

The projective transformation, so-called homography, contains six param-
eters, three rotations and three translations. The matrix transformation is
composed by eight linearly independent parameters.

Ht =

h11 h12 h13h21 h22 h23
h31 h32 1

 (2)

The Algorithm RANSAC, showed in 1, is applied after to match feature
points. In each iteration, the projective transformation Hj is estimated based
on four pairs of matched points randomly selected and employed to warp the
jth frame. We are using, as cost function Jj , the gray level difference between
the reference frame and the current frame warped by using Hj .

Finally, we select the parameters from the projective transformation with
the minimum cost function:

arg min
(φ,s,tx,ty)

∑
j

∣∣Frame′j − Framesp
∣∣ (3)

where Frame′j and Framesp are the warped and reference frame.

1: for j = 1 to N do
2: jth projective transformation estimation: Hj

3: jth warping of the ith frame: Frame′j

4: jth cost function computation: Jj =
∣∣∣Frame′j − Framesp

∣∣∣
5: end for
6: Selection of parameters of Hopt for cost function minimization:

arg min(φ,s,tx,ty)

∑
j

∣∣∣Frame′j − Framesp

∣∣∣
Algorithm 1: RANSAC algorithm based on cost function

∑
j Jj .

2.2 Defining the reference frame

It is important to specify the frame to be compensated and the frame to be
used as reference in the algorithm. The current frame will be warped by motion
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compensation obtaining a stable sequence in the output video, but there are
different alternatives for the reference.

An experimental comparative study has been carried out in [2] on three
candidates to reference frame: the initial frame (Framesp = Frame0), the
previous frame (Framesp = Framei−1), and the compensated previous frame
(Framesp = Frame′i−1). The analysis of the three proposed approaches was
conducted by using data obtained from an on-board camera of a micro aerial
vehicle. Based on mean square error (MSE) between monochromatic images
with size M ·N ,

MSE(k) =
1

M ·N

M−1∑
i=0

N−1∑
j=0

‖Ik(i, j)− Ik−1(i, j)‖2 (4)

the obtained results showed that the previous frame is the best candidate
to reference.

2.3 Using the affine transformation

For hand-held cameras and on-board monocular vision devices, most of the
undesired movements and parasitic vibrations in the image are considered
significant only around the roll axis. The affine model is the selected geometric
model of these movements for three reasons:

– The affine model represent the main undesired movements of cameras on
micro aerial vehicles.

– In spite of the reliability of the projective transformation is higher as model
of RANSAC, the deformation of the frame warped with the affine trans-
formation is lower and the final video is more stable.

– Relevant motion parameters can be extracted directly from the transfor-
mation matrix. This parameters are essential for estimating the motion
intention.

The motion parameters of the model are: two translations in the plane
parallel to the image, roll rotation φ about the axis perpendicular to the xy
plane, and scale s that is proportional to the motion in the roll axis orientation.

Ht =

s cos(φ) −s sin(φ) tx
s sin(φ) s cos(φ) ty

0 0 1

 (5)

In the affine model, there are two possible angles: arctan(Ht(2,1)
Ht(1,1)

) and

arctan(−Ht(1,2)
Ht(2,2)

). We estimate the mean angle adjustable to these values. This

model is called nonreflective similarity and is a particular case of the affine
model.
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2.4 Using a combination of transformations

Some techniques of fast video stabilization employ smoothing trajectories of
interest points, however this approach requires a continuous 3D pose estima-
tion. For real-time applications, this method is not recommendable due to the
high computational cost required to estimate the 3D pose in each point.

Instead, our approach use the affine transformation based on the projective
transformation.

Fig. 1 Reference and warped points.

On the one hand, the homography is more reliable in RANSAC than the
affine model, but, the ITF (Inter-frame fidelity) measured between consecu-
tive frames stabilized using this homography is lower than using the affine
model. The projective model contains three rotations that increases the image
deformation.

Therefore, our technique obtains the best homography matrix using RANSAC
as explained in the Section 2.1. Next, three reference points are selected to find
the angle and scale, and one more to obtain the translation in the 2D axis.
The projective transformation used to estimate the affine model lets compute
a mean rotation angle of the image, and reduces the cumulative error.

Three reference points (points in the border of Figure 1) are situated in
strategic locations in order to maximize the captured area. If the points are
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near, the region enclosed by them is small, hence, it is desired the longest
distance between them. There are several options to locate three points in a
rectangular image with the maximum distance between them. Considering that
we are using an on board camera of a micro aerial vehicle, the triangular option
in Figure 2 has been chosen. The reason of this choice is that the on board
camera of the MAV should mainly be focus on the lower front region of the
scene when flying. Another option is to calculate the mean value between the
angles of the affine transformation estimated with each distribution of interest
points. However, depending on the sequence, it would generate a jitter effect
in the output.

Fig. 2 Area of interest.

After computing the affine parameters without cumulative error using the
homography as reference, we estimate the translation model from the fourth
point located in the center of the image as reference and its correspondence
estimated with the geometric transformation. The use of this fourth reference
point guarantees stabilization respect to the center of the image. By joining
the estimated transformations, the matrix of compensation is derived. When
applied on the current frame, a compensated frame similar to the reference
frame is obtained. Hence, inter-frame movements are minimized from the full
video sequence to obtain a scene as similar as possible to the reference frame,
compensating the undesired movement one frame at a time.
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3 Model based motion intention estimation

Our approach based on a combination of geometric transformations obtains a
reliable inter-frame motion estimation, and a high performance as video stabi-
lizer in static scenes [2,3]. However, our objective is to achieve this robustness
for real-time video stabilization in micro-aerial vehicles.

Fig. 3 Translation in the x-axis. Top: Motion intention signal estimated with the low-
pass filter. Down: High frequency signal to be compensated

During the tele-operated flight, the visual field of on-board camera is mov-
ing continuously and some movements of the capture device should not be
eliminated but softly compensated, generating a stable video instead of a
static scene. The intentional movements of the camera must be estimated
and removed from the cumulative motion parameters, obtaining a high fre-
quency signal. We use this signal for simultaneously compensating vibrations
and keeping intentional motion. The top plot in the Figure 3 shows the ac-
cumulative motion parameter (blue) and the motion intention (green). The
difference between the signals (down plot in the the Figure 3) is utilized for
warping the whole sequence.

There are several video stabilization algorithms, as mentioned in the Sec-
tion 1, that use smoothing methods for the motion intention estimation. In a
recent paper [1], a novel proposal for motion intention estimation has been in-
troduced based on a second-order Butterworth filter [6]. This technique allows
to compensate high frequency signals of the cumulative motion parameters
without decreasing video quality nor generating phantom movements.

Despite of the significant advances presented by the algorithm as a real-
time video stabilizer, the use of any filter always generate a delay in the output,
and the second-order Butterworth filter is not the exception. In order to avoid
the use of a motion smoothing technique and add an undesired delay in the
video stabilization process, we propose in this work to consider the mathemat-
ical model that relates control actions and motion parameters. This model can
be obtained off-line through experimentation with the MAV and its use in the
real-time video stabilization architecture is straightforward.



10 Wilbert G Aguilar, Cecilio Angulo

Table 1 Intentional and undesired movements of parameters due to control actions

Control/Parameter Angle Scale X Y

Roll undesired undesired INTENTIONAL undesired
Pitch undesired INTENTIONAL undesired undesired
Yaw undesired undesired INTENTIONAL undesired

Altitude undesired undesired undesired INTENTIONAL

3.1 Model estimation of the MAV

The platform used in the experimentation is the AR.Drone 1.0, a low-cost
MAV built by the French company Parrot. It has been selected for multiple
reasons: low cost, low energy consumption, safe flying, and vehicle size. The
AR.Drone can be controlled with hand-held devices as smartphones or tablets
with operative system iOS or Android. Additionally, Parrot has opened the
SDK (Software Develop Kit) for operating systems Linux and Windows, so it
can be controlled with a laptop/desktop computer. The control system of the
drone allows to manipulate four different control action: pitch, roll, yaw, and
altitude.

Data has been collected from the IMU (inertial measurement unit) of the
AR.Drone for several control actions for carrying out the aerial robot modeling.
Then, the direct model has been estimated considering control actions as input,
and MAV’s position and velocities as outputs1. Finally, our interest is the
estimation of the model relating the control action to the motion parameters
in the image, based on the model in [4].

3.2 Hypothesis in the model

In order to solve some modeling concerns, two hypotheses based on the data
have been considered [4]:

– The models for each motion parameter between frames are decoupled, and
defined by the following relations: scale depends on pitch control, transla-
tion in the y-axis depends on altitude control, and translation in the x-axis
depends on roll and yaw control.

– The relation between control action and motion parameters is a static
nonlinear model combined with a linear model.

In the first hypothesis, the motion parameter angle is not considered be-
cause we are estimating the intentional motion. In the same way, there are
movements in the y-axis that depends on pitch control, and in the x-axis de-
pends on the roll control. But, in both cases, the movements are undesired.
The table 1 shows the intentionality of movements of parameters depending
on each control action.

1 The complete experimentation and associated results can be checked in [4]
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Considering the second hypothesis, the modeling process has been sepa-
rated into two parts:

– Static nonlinear model estimation
– Dynamic linear model estimation

3.3 Neural network based static nonlinear model estimation

The nonlinearity is due to a saturation effect in the angle control system. For
angles higher than the saturation limit, the acceleration is constant. One of
the configuration parameters of the AR.Drone is the maximum angle for each
rotation. For this reason, it is important to explain that the nonlinear model
is necessary for application where the acceleration of the action control is not
constant.

In [4], the nonlinear part of the model is estimated as an static system,
using a fifth degree polynomial that relates the action control with the motion
parameters.

P(q) = aq5 + bq4 + cq3 + dq2 + eq + f (6)

For improving the input-output model of the MAV, we are using a feed-
forward neural network that consists of one hidden layer with five neurons.

The neural network is trained a thousand times reducing the root-mean-
square error (RMSE). We have obtained a RMSE = 0.0251 with the neural
network, lower than using the approximating polynomial (RMSE = 0.2072).

In Figure 4, the polynomial and the approximate stationary values are
plotted and compared.

Fig. 4 Static nonlinear model. Real data (Green), Polinomy (Red) RMSE = 0.2072,
Neural Network (Blue) RMSE = 0.0251
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3.4 Identification of the dynamic linear model

Once the nonlinearity has been estimated, we can identify the model that re-
lates the action control with the motion parameter for a constant acceleration.
In the Figure 5, there is a graphic of control action data for roll (top) and the
filtered motion parameter for x-translation (down).

Fig. 5 Dynamics model estimation. Top: Input. Down: Output

Using a model identification tool for dynamics linear, we obtain the transfer
function:

G(S) =
Kp

1 + Tp ∗ S
∗ exp(−Td∗S) (7)

with a process gain Kp, process time constant Tp and a time delay Td.

In Figure 6, the filtered motion parameter (Black) and the output of the
estimated model (Blue) are shown. Compared to the real motion, the perfor-
mance of the estimated model is better than the motion parameter estimated
off-line with the filter. Our approach is focused on indoor flight application,
but the model for outdoor flight is proposed as a future work.

Fig. 6 Dynamics model estimation. Results
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3.5 Kalman Filter

In literature we can find some algorithms that use Kalman filter for motion
intention estimation. However, these algorithms employ Kalman filter as for
feature point tracking previous to the motion parameters estimation.

Our approach uses the Kalman filter as a motion smoothing technique.
The Kalman filter is applied after computing the motion parameters and is
based on the mathematical model of the MAV. The model has two parts: A
static nonlinear model and a Dynamic linear model.

Estimating the inverse of the static nonlinear model, and applying to the
input, we obtain the input of the dynamic linear model. In the Kalman filter,
we use the state space representation of the dynamic linear model. Therefore
G(S) is representing as:

xk = Axk−1 + Buk−1

zk = Cxk + D

Most of the video stabilization algorithms that use Kalman filter have not
consider the input uk−1. Our algorithm is based on the input for eliminating
phantom movements.

One of advantages of the Kalman filter is that can be applied in real-time
because depends only on the last frame. In Figure 7 we can see a comparison
of the motion parameters, intentional motion based on low-pass filter (using 6
previous frames), and intentional motion based on Kalman filter.

Fig. 7 Intentional motion. Motion parameters (Green), low-pass filter (Red), Kalman
filter (Blue)

In Figure 8 we present our full video stabilization algorithm.

4 Results and discussion

We have carried out experiments using a MAV with an on-board camera in four
different scenarios, all of them indoor. The employed MAV is the AR.Drone
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Fig. 8 Flow chart. Our proposal for video stabilization

2.0, described on the Section 4.1. Our video stabilization algorithm is imple-
mented in a ground station, a laptop with a Processor Intel Core i7-2670QM
2.20GHz, Turbo Boost up to 3.1GHz and RAM 16.0 Gb. We use ROS (Robot
Operative System) to comunicate the ground station with the MAV. The on-
board camera is 720p (resolution = 1280x720) and records up 30 monocular
frames per second (sample frequency = 25 Hz).

4.1 Metrics of evaluation

In the literature, the video stabilization algorithms use subjective (Mean Opin-
ion Score [28]) and objective metrics (bounding boxes, referencing lines, and
synthetic sequence [20]) to evaluate performance.

Focus on the quality of the final stable video, we use the Inter-frame Trans-
formation Fidelity (ITF) [33], a widely used evaluation metric of effectiveness
and performance,

ITF =
1

Nf − 1

Nf−1∑
k=1

PSNR(k) (8)

where Nf is the number of video frames and

PSNR(k) = 10 log10

I2MAX

MSE(k)
(9)

is the peak signal-to-noise ratio between two consecutive frames, with IMAX

being the maximum pixel intensity in the frame and MSE being the mean
square error mentioned in subsection 2.2.
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Focus on the motion realism of the final stable video, we use the root
mean square error (RMSE) [12]. RMSE evaluates the difference between the
estimated motion from the stabilized video and the real motion of the flight
robot in the xy-plane. A lower RMSE means a estimated motion intention
more similar to the real motion.

RMSE =
1

2F

√√√√ F∑
j=0

(Ex,j − Tx,j)2 +

√√√√ F∑
i=0

(Ey,i − Ty,i)2

 (10)

where Ex,j , Ey,j are the estimated, and Tx,j , Ty,j are the observed motions
in the axes for the jth frame. F denotes the number of frames in the sequence.

A tracker based on optical flow [35], and camera calibration for radial
distortion [36] are used to computed the real motion from the video recorded
with a zenith camera.

4.2 Comparison with other algorithms

Our approach has been compared with three algorithm from the literature:

– L1-Optimal off line method [16], applied in the YouTube Editor as a video
stabilization option

– Our last algorithm based a low-pass filter as motion smoothing technique
[1]

– Subspace video stabilization, utilized in the commercial software Adobe
After Effects.

The performance evaluation of these video stabilization approaches, focus
on ITF and RMSE, was carried out using each technique to stabilize different
videos. We used the follow class of videos:

– Four videos without moving objects (30fps)
– Four videos without moving objects (10fps)
– Four videos with moving objects (30fps)

Fig. 9 Video 4. Top: Original video. Down: Stabilized video
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Table 2 Evaluation Metrics: Videos without moving objects (30fps).

Algorithm Evaluation Metric Video 1 Video 2 Video 3 Video 4

Original ITF(dB) 14.09 13.43 14.65 16.96
Our Approach ITF(dB) 19.49 19.55 19.89 21.20
Our Approach RMSE 0.021 0.018 0.024 0.015

L1-Optimal ITF(dB) 19.62 19.57 20.16 20.24
L1-Optimal RMSE 0.046 0.051 0.047 0.036

Motion Smoothing ITF(dB) 19.48 19.52 19.89 21.12
Motion Smoothing RMSE 0.028 0.023 0.029 0.017

Subspace ITF(dB) 19.58 19.59 20.12 20.91
Subspace RMSE 0.049 0.053 0.048 0.034

In Table 2, we present experimental result of four videos recorded in scenar-
ios without moving objects, and stabilized with four different methods includ-
ing our algorithm. In the Figure 9, we can see three frames from the original
and stabilized video 1. Results show that our approach, applied in real-time,
achieves ITF values as high as using other approach from the literature, ap-
plied off-line.

Additionally, the RMSE of our algorithm is lower because phantom move-
ments are not generated, i.e., the motion of the video with our technique is
more real without decreasing the video stability. [1] is also able to compen-
sate the image without generating phantom movements, but required 6 last
frames. On the other hand, our approach depends only on the last frame, and
the computational time of the Table 2 means that there is no problem to apply
our algorithm for stabilizing a 30fps video.

The effect of phantom movements is graphically compared between in Fig-
ure 10 to L1-Optimal and our approach. Our algorithm reduces the phantom
movements as good as [1].

Fig. 10 Comparison of the Scale. L1-Optimal (Blue), Our Approach (Green), Observed
(Red),

The approach presented in this paper is robust to the presence of moving
objects, and low frequency videos.
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Table 3 Evaluation Metrics: Videos without moving objects (10fps).

Algorithm Evaluation Metric Video 1 Video 2 Video 3 Video 4

Original ITF(dB) 12.27 12.12 12.28 13.43
Our Approach ITF(dB) 17.47 17.08 17.96 18.20
Our Approach RMSE 0.022 0.020 0.023 0.019

L1-Optimal ITF(dB) 17.64 17.42 17.15 18.22
L1-Optimal RMSE 0.057 0.059 0.054 0.046

Motion Smoothing ITF(dB) 17.40 17.07 17.92 18.14
Motion Smoothing RMSE 0.023 0.020 0.025 0.019

Subspace ITF(dB) 17.57 17.39 17.11 18.12
Subspace RMSE 0.057 0.060 0.058 0.049

Fig. 11 Video 4. Top: Original video. Down: Stabilized video

Table 4 Evaluation Metrics: Videos with moving objects (30fps)

Algorithm Evaluation Metric Video 5 Video 6 Video 7 Video 8

Original ITF(dB) 12.46 12.27 12.82 14.48
Our Approach ITF(dB) 17.31 17.03 17.95 18.43
Our Approach RMSE 0.026 0.022 0.025 0.018

L1-Optimal ITF(dB) 17.49 17.44 17.94 18.47
L1-Optimal RMSE 0.060 0.057 0.059 0.046

Motion Smoothing ITF(dB) 17.21 16.96 17.90 18.34
Motion Smoothing RMSE 0.024 0.022 0.027 0.018

Subspace ITF(dB) 17.42 17.39 17.51 18.40
Subspace RMSE 0.059 0.058 0.063 0.047

In the Table 3, we present experimental result of the four last videos
recorded at 10fps.

The Table 4 corresponds to results obtained from videos recorded in sce-
narios with moving objects. In the Figure 11, we can see three frames from
the original and stabilized video 5 with moving objects.

L1-Optimal and Subspace are two of the best video stabilization algo-
rithms, and are applied off-line in two of the most famous video edition soft-
ware. Our algorithm works in real-time but shows a robustness, to moving
objects and low frequency (Table 3, 4), as good as L1-Optimal and Subspace.
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5 Conclusions

In this paper, we have presented a novel video stabilization algorithm able to
be applied in real-time, robust to scenes with moving objects and complex dy-
namic movements generating by on-board cameras of micro aerial vehicles. We
can achieve a stable video sequence without generating phantom movements
to compensate unintentional motion. In this way, our algorithm provides a
reliable tool for tele-operated systems.

Our technique is based on the MAV model estimation including the control
action, and the application of this model in the Kalman filter to smoothing mo-
tion without generating false movements. For post-processing applications the
algorithm from the literature are sufficient, but our aim is the tele-operation
and autonomous task of MAVs. In this sense, solving the issue of phantom
movements could mean the difference that prevents an accident.

Our algorithm obtains a high performance for indoor flight. In the future,
we plan to evaluate our video stabilization method in aggressive environments
with turbulence and communication problems, as well as to apply it for in-
creasing the performance of tracking algorithms.
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