216 research outputs found

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids

    Modal mu-calculi

    Get PDF

    Decidability of Querying First-Order Theories via Countermodels of Finite Width

    Full text link
    We propose a generic framework for establishing the decidability of a wide range of logical entailment problems (briefly called querying), based on the existence of countermodels that are structurally simple, gauged by certain types of width measures (with treewidth and cliquewidth as popular examples). As an important special case of our framework, we identify logics exhibiting width-finite finitely universal model sets, warranting decidable entailment for a wide range of homomorphism-closed queries, subsuming a diverse set of practically relevant query languages. As a particularly powerful width measure, we propose Blumensath's partitionwidth, which subsumes various other commonly considered width measures and exhibits highly favorable computational and structural properties. Focusing on the formalism of existential rules as a popular showcase, we explain how finite partitionwidth sets of rules subsume other known abstract decidable classes but -- leveraging existing notions of stratification -- also cover a wide range of new rulesets. We expose natural limitations for fitting the class of finite unification sets into our picture and provide several options for remedy

    Finite-Cliquewidth Sets of Existential Rules: Toward a General Criterion for Decidable yet Highly Expressive Querying

    Get PDF
    In our pursuit of generic criteria for decidable ontology-based querying, we introduce finite-cliquewidth sets (fcs) of existential rules, a model-theoretically defined class of rule sets, inspired by the cliquewidth measure from graph theory. By a generic argument, we show that fcs ensures decidability of entailment for a sizable class of queries (dubbed DaMSOQs) subsuming conjunctive queries (CQs). The fcs class properly generalizes the class of finite-expansion sets (fes), and for signatures of arity ? 2, the class of bounded-treewidth sets (bts). For higher arities, bts is only indirectly subsumed by fcs by means of reification. Despite the generality of fcs, we provide a rule set with decidable CQ entailment (by virtue of first-order-rewritability) that falls outside fcs, thus demonstrating the incomparability of fcs and the class of finite-unification sets (fus). In spite of this, we show that if we restrict ourselves to single-headed rule sets over signatures of arity ? 2, then fcs subsumes fus

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    Weak Mso with the Unbounding Quantifier

    Get PDF
    A new class of languages of infinite words is introduced, called the max-regular languages, extending the class of ω\omega-regular languages. The class has two equivalent descriptions: in terms of automata (a type of deterministic counter automaton), and in terms of logic (weak monadic second-order logic with a bounding quantifier). Effective translations between the logic and automata are given

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    • 

    corecore