
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 159–170
www.stacs-conf.org

WEAK MSO WITH THE UNBOUNDING QUANTIFIER

MIKO LAJ BOJAŃCZYK

University of Warsaw
E-mail address: bojan@mimuw.edu.pl

URL: www.mimuw.edu.pl/∼bojan

Abstract. A new class of languages of infinite words is introduced, called the max-

regular languages, extending the class of ω-regular languages. The class has two equivalent
descriptions: in terms of automata (a type of deterministic counter automaton), and in
terms of logic (weak monadic second-order logic with a bounding quantifier). Effective
translations between the logic and automata are given.

1. Introduction

This paper introduces a new class of languages of infinite words, which are called
max-regular languages, and include all ω-regular languages. Max-regular languages can be
described in terms of automata, and also in terms of a logic. A typical language in the class
is the property “the distance between consecutive b’s is unbounded”, i.e. the language

L = {an1ban2ban3 . . . : ∀m ∃i ni > m} . (1.1)

A practical motivation can be given for considering properties that speak of bounded
distance; e.g. a formula of the logic in this paper could specify that a system responds to
requests with bounded delay. We will begin, however, with a more fundamental motivation,
which is the question: what is a regular language of infinite words?

There is little doubt as to what is a regular language of finite words. For instance,
the requirement that the Myhill-Nerode equivalence relation has finitely many equivalence
classes uniquely determines which languages of finite words should be regular. Other no-
tions, such as finite semigroups, or monadic-second order logic also point to the same class.

For infinite words, however, there is more doubt. Of course, the class of ω-regular
languages has much to justify calling it regular, but some doubts remain as to its uniqueness.
Consider, for instance, the language L mentioned above, or the set K of ultimately periodic
words, i.e. words of the form wvω, say over alphabet a, b. None of these languages are
ω-regular. However, under the commonly accepted definition of Myhill-Nerode equivalence
for infinite words, given by Arnold in [2], both languages have exactly one equivalence class.

Should these languages be called regular? If yes, what is the appropriate notion of regu-
larity? In this paper we propose a notion of regular languages, which are called max-regular

Key words and phrases: automata, monadic second-order logic.
Author supported by Polish government grant no. N206 008 32/0810.

c© M. Bojańczyk
CC© Creative Commons Attribution-NoDerivs License

STACS 2009
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 159-170
http://drops.dagstuhl.de/opus/volltexte/2009/1834

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 M. BOJAŃCZYK

languages, that captures the language L, but not the language K. This new notion has many
properties that one would wish from regular languages. The class is (effectively) closed un-
der boolean operations, including negation. There is a finite index Myhill-Nerode relation,
and equivalence classes are regular languages of finite words. There is an automaton model,
there is a logical description, and translations between the two are effective. Emptiness
is decidable. Membership is decidable (although since we deal with infinite words, the
membership test is for certain finitely presented inputs, such as ultimately periodic words).

So, what is this new class? One definition is in terms of logic. The max-regular
languages are the ones that can be defined by formulas of weak monadic second-order logic
extended with the unbounding quantifier. The term “weak” means that only quantification
over finite sets is allowed. The unbounding quantifier UX.ϕ(X) was introduced1 in [3], it
says that the size of sets X satisfying ϕ(X) is unbounded, i.e.

UX.ϕ(X) =
∧

n∈N

∃X
(

ϕ(X) ∧ n ≤ |X| < ∞
)

. (1.2)

Monadic second-order logic with the unbounding quantifier for infinite trees was studied
in [3], where an emptiness procedure was presented for formulas with restricted quantifi-
cation patterns. This study was continued in [4], where the models where restricted from
infinite trees to infinite words, but the quantification patterns considered were more relaxed.
However, no decision procedure was given in [4] for full monadic second-order logic with the
unbounding quantifier, and the expressive power of the logic seemed to be far too strong
for the techniques used (no undecidability results are known, though).

The basic idea in this paper is to restrict the set quantification to finite sets (i.e. weak
quantification), while keeping the unbounding quantifier. It turns out that with this re-
striction, lots of the problems encountered in [4] are avoided, and the resulting class is
surprisingly robust. Note that for infinite words and without unbounding quantification,
weak monadic second-order logic has the same expressive power as full monadic second-
order logic; this is no longer true when the unbounding quantifier is allowed (we prove this
using topological techniques).

The main contribution of this paper is Theorem 3.2, which shows that weak monadic
second-order logic with the unbounding quantifier has the same expressive power as deter-
ministic max-automata. A max-automaton is a finite automaton equipped with counters,
which store natural numbers. The important thing is that the counters are not read dur-
ing the run (and therefore do not influence the control of the automaton), which avoids
the usual undecidability problems of counter machines. The counters are only used in the
acceptance condition, which requires some counter values to be bounded, and some to be
unbounded.

To the best of the authors knowledge, quantifiers similar to the unbounding quantifier
have only been considered in [3, 4]. On the other hand, the idea to use automata with
quantitative acceptance conditions, has a long history, going back to weighted automata of
Schützenberger [11] (see [7] for a recent paper on weighted automata and related logics).

The max-automata used in this paper are closely related to an automaton model that
has been variously called a distance desert automaton in [10], a BS-automaton in [4], or an
R-automaton in [1]. One important application, see [10], of these automata is that they can

1The quantifier introduced in [3] was actually the negation of U , saying that the size is bounded.

WEAK MSO WITH THE UNBOUNDING QUANTIFIER 161

be used to solve the famous star-height problem2, providing simpler techniques and better
complexities than in the famous result of Hashiguchi [8]. (The reduction from the star-
height problem is not to emptiness of the automata, but to something called limitedness.)
Other problems that can be tackled using this type of automata include the star-height of
tree languages [5] or the Mostowski index of ω-regular languages [6].

2. The automaton

We begin our presentation with the automaton model.
A max-automaton has a finite set of states Q and a finite set of counters Γ. It also has

a finite set of transitions. Each transition reads an input letter, changes the state, and does
a finite sequence of counter operations. The counter operations are:

c := c + 1. Increment counter c.
c := 0. Reset counter c.
output(c). Output the value of counter c.
c := max(c, d). Store in counter c the maximal value of counters c, d.

A max-automaton is run on an infinite word w ∈ Σω. A run is an infinite sequence of
transitions, with the usual requirement on consistency with the letters in the input word.
Fix a run ρ. With each counter c ∈ C, we associate the sequence counter values ρc ∈ N

∗∪N
ω

that have been output by the instruction output(c). These outputs are used by the accepting
condition, which is a boolean combination of clauses: “the sequence ρc is bounded”.

Note that with this acceptance condition, it is only the set of values in ρc that matters,
and not their order or multiplicity. This is unlike the parity condition (where multiplicity is
important), or the S-condition of [4], where the sequence ρc is required to tend to infinity.

The toolkit of counter operations could be modified without affecting the expressive
power of max-automata. For instance, we could have an operation c := d, which is equivalent
to c := 0 followed by c := max(c, d). On the other hand, the output instruction can be
removed (in this case, ρc would contain all values of the counter during the run). The
output operation can be simulated by the others as follows: for every counter c, we add
a new output counter c′, which is never incremented. Instead of doing output(c), we do
c′ := c. This way, the counter c′ gets only the values that were output on the original
counter c.

Theorem 2.1. Emptiness is decidable for max-automata.

Proof. The difficulty in the proof is dealing with the max operation.
We will reduce the problem to a result from [4]. A direct and elementary proof can also

be given. A U-automaton is a max-automaton that does not use the max operation, and
where the acceptance condition is a positive boolean combination of clauses “counter c is
unbounded”.

Let A be a max-automaton that we want to test for emptiness. As is often the case,
we will be searching not for an input word accepted by A, but for an accepting run of A
(which is also an infinite word). Fix a single clause in the accepting condition, e.g. “counter
c is unbounded”. Below, we will show that the set of runs which satisfy this clause can be
recognized by a nondeterministic U-automaton. In particular, the set of accepting runs of

2This is the question of calculating the least number of nested stars in a regular expression (without
negation) that defines a regular language L ⊆ Σ∗.

162 M. BOJAŃCZYK

A is a boolean combination of languages accepted by U-automata. The result then follows
from [4], where emptiness is shown decidable for boolean combinations of nondeterministic
U-automata3.

Before we define the U-automaton that tests if counter c is unbounded, we introduce
some auxiliary definitions. Let c, d be counters of the automaton A. Below we define what
it means for a finite sequence of counter operations ρ to transfer c to d, possibly with an
increment. (Formally, we are defining two ternary relations: T (ρ, c, d), for transfers, and
TI(ρ, c, d), for transfers with an increment.) The idea is that after executing the operations
ρ, the value of counter d is at least as big as the value of counter c before executing ρ. The
definition of transfers is by induction on the length of ρ:

• Every counter is transferred to itself by the empty sequence of operations, as well
as the operations c := c + 1 and output(c). Furthermore, c := c + 1 also transfers c

to itself with an increment.
• The operation c := 0 transfers every counter to itself, except c.
• The operation c = max(c, d) transfers every counter to itself, and also d to c.
• If a sequence of operations ρ1 transfers c to e, and a sequence of operations ρ2

transfers e to d, then their concatenation ρ1ρ2 transfers c to d. If either of the
transfers in ρ1 or ρ2 does an increment, then so does the transfer in ρ1ρ2.

Note that the transfer relation is regular in the following sense: for any counters c and d,
the set of words ρ that transfer counter c to d is a regular language of finite words, likewise
for transfers with an increment.

Let c be a counter. A finite sequence of positions x1 < · · · < xn in a run of A is
called a c-loop if for any i < n, counter c is transferred to itself with an increment by the
subrun between positions xi to xi+1. For a counter d, a d-trace is a sequence of positions
x1 < · · · < xn < y such that for some counter c, the positions x1 < · · · < xn are a c-loop,
and counter c is transferred to d by the subrun between positions xn and y.

Equipped with these definitions, we are ready to define a (nondeterministic) U-automaton
that tests if counter c is unbounded in an input run. The U-automaton has only one counter,
and it accepts if unbounded values are output to this counter. A run of this automaton
(which inputs a run of the automaton A) proceeds as follows. It uses nondeterminism to
guess a d-trace x1 < · · · < xn < y, and it increments its counter at each of the positions xi.
Once it sees position y, it outputs the counter value (which is n), and resets the counter.
It then finds another d-trace, and again outputs its length, and so on. It is not difficult to
verify the correctness of this construction.

In this paper, we will be mainly interested in deterministic max-automata.

3. The logic

We consider an extension of weak monadic second-order logic, called weak unbounding

logic. Recall that weak monadic second-order logic is an extension of first-order logic that
allows quantification over finite sets (the restriction to finite sets is the reason for the name
“weak”). In weak unbounding logic, we further add the unbounding quantifier UX, as
defined in (1.2).

3The result in [4] is for S-automata, which are more powerful than U-automata. It is shown that a boolean
combination of S-automata is equivalent to a BS-automaton, which has decidable emptiness.

WEAK MSO WITH THE UNBOUNDING QUANTIFIER 163

Example 3.1. Consider the set L from (1.1). This language is not regular, but defined by
the following formula of weak unbounding logic:

UX ∀x ≤ y ≤ z x, z ∈ X ⇒ a(y) ∧ y ∈ X

The main result of this paper is that the logic and automata coincide, i.e.

Theorem 3.2. Weak unbounding logic defines exactly the same languages as deterministic

max-automata.

The more difficult direction in Theorem 3.2 is presented in Section 4. The easier direc-
tion, where an automaton is simulated by the logic, can be shown by combining standard
techniques with the concepts from the proof of Theorem 2.1. The key idea is that a formula
of weak unbounding logic can test if a set of positions {x1 < · · · < xn < y} forms a d-trace.
It is important that the automata are deterministic, which allows a formula of weak logic
to uniquely decode the run that corresponds to the input word.

The formulas that are sufficient to simulate a deterministic max-automaton are of a
special type, which gives a normal form for weak unbounding logic:

Proposition 3.3. Each formula of weak unbounding logic is equivalent to a boolean com-

bination of formulas UXϕ(X), where ϕ(X) does not use the unbounding quantifier.

Proof. By translating a formula into an automaton and then back into a formula.

4. Weak bounding logic is captured by deterministic max-automata

We now turn to the more difficult part of Theorem 3.2, namely showing that for every
formula of weak unbounding logic there is an equivalent deterministic max-automaton.

The proof is by induction on the size of the formula. To simplify the proof, we use
the usual technique of removing first-order quantification, as in [13]. That is, first-order
quantification is replaced by three new predicates, all of which can be recognized by the
deterministic max-automata: “set X has one element”, “set X is included in set Y ” and
“all elements of set X are before all elements of set Y ”. Together with weak second-order
quantification, these new three predicates can be used to simulate first-order quantification,
so the logic is the same. However, since we have removed first-order quantification, in the
translation to automata we only have to deal with quantification over finite sets (weak
second-order quantification) and the new quantifier.

For purposes of the induction, we generalize the statement to formulas with free vari-
ables. What is the word language corresponding to a formula ϕ(X1, . . . ,Xn)? This language
contains words annotated with valuations for the free set variables. We use the usual en-
coding, where the label of a word position x ∈ N is extended with a bit vector in {0, 1}n

that says which of the sets X1, . . . ,Xn contain position x. More formally, for sets of word
positions X1, . . . ,Xn ⊆ N and an infinite word w ∈ Σω, we define the word

w[X1, . . . ,Xn] ∈ (Σ × {0, 1}n)ω

as follows. On position x, the new word has a tuple (a, b1, . . . , bn), with a the label of the
x-th position of the original word w, and the value of bit bi being 1 if and only if position
x belongs to the set Xi, for i = 1, . . . , n. With this notation, we can define the set of words
satisfying a formula ϕ(X1, . . . ,Xn) to be

Lϕ = {w[X1, . . . ,Xn] : w,X1, . . . ,Xn |= ϕ} .

164 M. BOJAŃCZYK

Equipped with the above definition, we can use induction to show that the logic is
captured by automata, as stated in the proposition below. This result is the main ingredient
in the proof of Theorem 3.2.

Proposition 4.1. For every formula ϕ of weak unbounding logic, the set Lϕ is recognized

by a deterministic max-automaton.

The proof is by induction on the size of the formula ϕ. The induction base, which
corresponds to the predicates “set X has one element”, “set X is included in set Y ” and
“all elements of set X are before all elements of set Y ” is easy, since all of these are ω-regular
languages, and we have:

Lemma 4.2. Deterministic max-automata capture all ω-regular languages.

Proof. By simulating a deterministic automaton with the Muller or parity condition. We
add a new counter cq for each state q of the automaton. Each time state q appears, counter
cq is incremented and output. The counters are never reset. In a run of this automaton, a
state appears infinitely often if and only if its counter is unbounded. Therefore, the Muller
acceptance condition can be encoded in the unbounding condition of a max-automaton.

The induction step for boolean operations—including negation—is no more difficult,
since the automata are deterministic and the accepting condition is closed under boolean
operations. We are left with weak second-order quantification and the unbounding quanti-
fier. We first deal with weak quantification, in Section 4.1, while the unbounded quantifier
is treated in Section 4.2.

4.1. Weak existential quantification

This section is devoted to showing:

Proposition 4.3. Languages recognized by deterministic max-automata are closed under

weak quantification. In other words, if L is a language over Σ × {0, 1} recognized by a

deterministic max-automaton, then there is a deterministic max-automaton recognizing

{w ∈ Σω : w[X] ∈ L for some finite set X} .

A convenient way to prove this result would be to use nondeterministic automata.
Unfortunately, as we will later show, adding nondeterminism to max-automata gives power
beyond that of weak unbounding logic, so we cannot use this strategy. We will have to do
the existential quantification directly in the deterministic automata.

The proof technique is actually very generic. It would work for any model of determin-
istic automata that all ω-regular languages and satisfies some relaxed assumptions, mainly
that the acceptance condition is prefix-independent.

Fix a deterministic max-automaton A that recognizes L, with state space Q.
A partial run in an infinite word w is a run that begins in any position of the word

(not necessarily the first position) and in any state (not necessarily the initial one). In
other words, this is a word in ⊥∗δω ∪ ⊥ω, where δ is the set of transitions of A, that is
consistent with the word w on those positions where it is defined (i.e. where it is not ⊥).
Since the automaton is deterministic, a partial run is uniquely specified by giving the first
configuration where it is defined, this is called the seed configuration. (There is also the
undefined partial run ⊥ω, which has no seed configuration.) Here, a configuration is a pair
(q, x), where q is a state and x is a word position. Note that we do not include the counter

WEAK MSO WITH THE UNBOUNDING QUANTIFIER 165

values in the seed configuration, since the acceptance condition is not sensitive to finite
perturbations.

We say that two partial runs converge if they agree from some position on. Equivalently,
they converge if they share some configuration, or both are undefined. We say a set of
partial runs spans a word w if every partial run over w converges with some run from the
set. Usually, we will be interested in finite sets of spanning runs.

Lemma 4.4. For every word w, there is a set of at most |Q| spanning runs.

Proof. We begin with some arbitrary configuration, and take the partial run ρ1 that begins
in that configuration. If {ρ1} is spanning, then we are done. Otherwise, we take some
partial run ρ2 that does not converge with ρ1, and see if the set {ρ1, ρ2} is spanning. If it
is not, we add a third partial run ρ3, and so on. This process terminates after at most Q

steps, because if two partial runs do not converge, then they must use different states on
each position where they are both defined. So |Q| partial runs that do not converge will
use up all the states.

To prove Proposition 4.3, we use a result stronger than Lemma 4.4. We will show that
not only the spanning set of runs exists, but it can also be computed by a (deterministic,
letter-to-letter) transducer. By transducer we mean a finite deterministic automaton where
each transition is equipped with an output letter, from an output alphabet Γ. Therefore,
the transducer defines a function f : Σω → Γω. The transducer does not have any accepting
conditions (using bounds or even parity or Muller), it just scans the word and produces its
output. It is easy to see that deterministic max-automata are closed under preimages of
transducers, as shown in the following lemma.

Lemma 4.5. If f is a transducer and A is a deterministic max-automaton, then there is

a deterministic max-automaton recognizing the set of words w such that f(w) is accepted

by A.

We now describe how the spanning partial runs will be encoded in the output of the
transducer. When speaking of spanning partial runs, we mean spanning partial runs of the
automaton A in Proposition 4.3. A single partial run can be encoded as an infinite word
over the alphabet Q × {0, 1}. The idea is that {0, 1} is used as a marker, with 0 meaning
“ignore the prefix until this position”, and 1 meaning “do not ignore”. Formally, an infinite
word

(q1, a1)(q2, a2), . . . ∈ (Q × {0, 1})ω

is interpreted as the partial run which on position i has ⊥ if aj = 0 for some j ≥ i, otherwise
it has qi. Note that if the word above has infinitely many positions j with aj = 0, then the
partial run is nowhere defined, i.e. it is ⊥∞. If we want to encode n partial runs, we use n

parallel word sequences, encoded as a single sequence over the product alphabet

(Q × {0, 1})n .

With the encoding of spanning runs defined, we are now ready to present the stronger
version of Lemma 4.4.

Lemma 4.6. Let n = |Q|. There is a transducer

f : Σω → ((Q × {0, 1})n)ω

such that for any word w, the output f(w) encodes n spanning partial runs.

166 M. BOJAŃCZYK

Proof. The idea is to implement the proof of Lemma 4.4 in a transducer. The states of the
transducer will be permutations of the state space, i.e. tuples from Qn where each state
appears exactly once. The initial state is any arbitrarily chosen permutation. When reading
an input letter a in state π = (q1, . . . , qn), the transducer does the following operations.
First, it transforms each state in π according to the letter a, giving a tuple x = (q1a, . . . , qna).
This tuple is not necessarily a permutation, i.e. there are may be some coordinates i ∈
{1, . . . , n} such that the state qia appears already in {q1a, . . . , qi−1a}. Let I = {i1, . . . , ik}
be these coordinates, and let {p1, . . . , pm} be the states that do not appear in the new tuple
x. These two sets have the same size, i.e. k = m. We can now correct x to be a permutation
σ, by replacing its coordinate i1 with the state p1, the coordinate i2 with state p2, and so
on. Note that on a the coordinates from I, the new permutation σ has a value unrelated
to the one from π (i.e. σ begins a new run), while on coordinates from outside I, the new
permutation σ simply continues the runs from π. This is signified in the output of the
transducer, which is decorates each coordinate i of the permutation σ with a bit, which is
0 when i ∈ I and 1 otherwise.

We are now ready to prove Proposition 4.3. By properties of spanning sets of runs,
a word w ∈ Σω belongs to the language of the proposition if and only if there is some
i = 1, . . . , n such that the following two properties hold:

(A) The i-th run encoded by f(w) is defined (i.e. the encoding does not contain infinitely
many cancelling 0s) and satisfies the accepting condition in the automaton A.

(B) There is some finite set X ⊆ N such that the run of A over w[X] converges with the
i-th run encoded by f(w).

Since deterministic max-automata are closed under union, it suffices to show that for each
fixed i, both properties (A) and (B) are recognized by deterministic max-automata. For
property (A), we use Lemma 4.5 on preimages. Property (B), on the other hand, is an
ω-regular property, which can be recognized by a deterministic max-automaton thanks to
Lemma 4.2.

4.2. Unbounding quantification

We now turn to the more difficult part of Proposition 4.1, namely that deterministic
max-automata are closed under unbounding quantification.

Proposition 4.7. Languages recognized by deterministic max-automata are closed under

unbounding quantification. In other words, if L is a language over Σ × {0, 1} recognized by

a deterministic max-automaton, then so is

UL = {w ∈ Σω : w[X] ∈ L for arbitrarily large finite sets X} .

Fix a deterministic max-automaton A recognizing the language L in the proposition.
Given a finite prefix w ∈ Σ∗ and a state q of A, let max(q, w) be the maximal size of a set X

of positions in w such that the automaton A reaches state q after reading w[X]. We claim
that the sets max(q, w) can be computed in the counters of a deterministic max-automaton
(not surprisingly, using the max operation).

Lemma 4.8. There is a deterministic max-automaton with counters {cq}q∈Q such that the

value of cq after reading a prefix a1 · · · an of the input is exactly max(q, a1 · · · an).

WEAK MSO WITH THE UNBOUNDING QUANTIFIER 167

We will use the values from the above lemma to capture the unbounding quantifier.
However, some more effort is needed: it is not the case that an input word w = a1a2 · · ·
belongs to UL if and only if the values max(q, a1 · · · an) are unbounded. In general, only
the left to right implication holds. The right to left implication may fail since a value
max(q, a1 · · · an) is relevant only if the run of A over w that begins in configuration (q, n)
can be extended to an accepting one over the rest of the word. The correct characterization
is given below:

Lemma 4.9. A word a1a2 · · · ∈ Σω belongs to UL if and only if for some state q, the

following values are unbounded

{max(q, a1 · · · an) : an+1an+2 · · · [∅] ∈ (Σ × {0, 1})ω is accepted by A when starting in q}

As suggested by the above lemma, to recognize the language UL it would be conve-
nient to have an extension of max-automata, where the automaton would have the abil-
ity to output max(q, a1 · · · an) only in case a certain property was satisfied by the suffix
an+1an+2 · · · . Below, we introduce such an extension of max-automata, which we call a
guarded max-automaton. We then show that this extension can be simulated by a standard
max-automaton, thus completing the proof of Proposition 4.7.

An guarded max-automaton is like a max-automaton, except that it is also allowed to
use the following counter operation:

if L then output(c). Output the value of counter c, but only if the suffix of the
input beginning at the next position belongs to L ⊆ Σω .

In the above operation, the language L—called the guard of the transition—must be a
language recognized by a max-automaton (without guards, although allowing guards would
give the same result). This new operation is all we need to recognize the language UL:

Lemma 4.10. If a language L is recognized by a deterministic max-automaton, then UL

is recognized by a deterministic guarded max-automaton.

We will show that guarded outputs are redundant, and can be simulated by non-guarded
outputs. This completes the proof Proposition 4.7. The difficulty in the proof below is that
we are dealing with deterministic automata, while a guard looks to the future.

Proposition 4.11. For every deterministic guarded max-automaton there is an equivalent

deterministic max-automaton.

Proof. Let A be a deterministic guarded max-automaton. To simplify notation, we assume
that only one guarded operation,

o = if L then output(c) ,

is used. The general case is done the same way. Let B be a deterministic max-automaton
recognizing the guard language L.

In the construction, we will use a concept of thread. A thread consists of a state of
the automaton B, as well as a number, which corresponds to the value of counter c output
by the guarded operation o. Note that a thread does not contain information about values
of the counters of automaton B. The idea is that threads will be alive for only finitely
many steps, so the counters of B are not relevant. We will denote threads by τ . If a ∈ Σ
is an input letter, then we write τa for the thread obtained from τ by updating the state
according to a (and leaving the number unchanged).

168 M. BOJAŃCZYK

The (non-guarded) max-automaton C that simulates A works as follows. At each point,
the simulating automaton contains a finite set {τ1, . . . , τi} of active threads. There will be
at most one thread per state of B, so the set of threads can be stored using finitely many
counters and the finite memory of the automaton. This set of active threads is initially
empty. Whenever A does the guarded output operation o, a new active thread is created,
with the initial state of B, and the number set to the value of counter c. Furthermore, after
reading an input letter a ∈ Σ, the set of active threads is updated to {τ1a, . . . , τia}. If two
active threads have the same state, then they are merged, and only the greater number is
kept (using the max operation).

Similarly to the proof of Proposition 4.3, the automaton C will also read the output of a
transducer f that computes spanning partial runs of the automaton B used for the guards.
Recall that the transducer f outputs n spanning partial runs of the automaton B, where n

is the number of states in B.
The automaton C accepts a word w if and only if there is some i = 1, . . . , n such that:

(A) The i-th run encoded by f(w) is defined (i.e. the encoding does not contain infinitely
many cancelling 0s) and satisfies the accepting condition in the automaton B.

(B) For every m, some thread storing a number greater than m converges with i-th run
encoded by f(w).

Since deterministic max-automata are closed under finite union, we only need to show
the construction for some fixed i. As in the previous section, property (A) is recognized by
a deterministic max-automaton. For property (B), it suffices to output the number stored
in a thread τ whenever its state is the same as in ρi. The automaton then accepts if the
numbers thus produced are unbounded.

5. Problems with nondeterminism

In this section we show that nondeterministic max-automata are more expressive than
deterministic ones.

Theorem 5.1. Nondeterministic max-automata recognize strictly more languages than de-

terministic ones.

Contrast this result with the situation for Muller or parity automata, which are equally
expressive in the deterministic and nondeterministic variants. Since full monadic second-
order can capture nondeterministic automata by existentially quantifying over infinite sets,
the above theorem immediately implies:

Corollary 5.2. Full monadic second-order logic with the unbounding quantifier is stronger

than weak monadic second-order with the unbounding quantifier.

The separating language in Theorem 5.1 is

L = {an1ban2ban3b . . . : some number appears infinitely often in n1, n2, . . .} . (5.1)

This language is captured by a nondeterministic max-automaton. The automaton uses
nondeterminism to output a subsequence of n1, n2, . . . and accepts if this subsequence is
bounded. Clearly, if it is bounded, then it contains an infinite constant subsequence.

It remains to show that the language L cannot be recognized by a deterministic max-
automaton. For this, we will use topological complexity. In Lemmas 5.3 and 5.4, we

WEAK MSO WITH THE UNBOUNDING QUANTIFIER 169

will show that every language recognized by a deterministic max-automaton is a boolean
combination of sets on level Σ2 in the Borel hierarchy, while the language L is not.

Below we briefly describe the Borel hierarchy, a way of measuring the complexity of
a subset of a topological space. The topology that we use on words is that of the Cantor
space, as described below. A set of infinite words (over a given alphabet Σ) is called open

if it is a union
⋃

i∈I

wiΣ
ω wi ∈ Σ∗ ,

with the index set I being possibly infinite. In other words, membership of a word w in
an open set is assured already by a finite prefix of w. For the Borel hierarchy, as far as
max-automata are concerned, we will only be interested in the first two levels Σ1,Π1,Σ2,Π2.
The open subsets are called Σ1, the complements of these (the closed subsets) are called Π1.
Countable intersections of open subsets are called Π2, the complements of these (countable
unions of closed subsets) are called Σ2.

Lemma 5.3. Any language accepted by a deterministic max-automaton is a boolean com-

bination of Σ2 sets.

Proof. Fix a max-automaton A, and a counter c of this automaton. We will examine the
topological complexity of the set of runs of this automaton (here, a run is an infinite sequence
of transitions). For any fixed n, the following set of runs is clearly open:

A value of at least n is output at least once on counter c.

In particular, its complement

All values of counter c are at most n.

is a closed set of runs. By taking a countable union of the above over n ∈ N, we deduce
that the property

The values of counter c are bounded.

is a Σ2 property. In particular, the set of accepting runs of any max-automaton is a boolean
combination of Σ2 sets. Since the automata are deterministic, the function that maps an
input word to its run is continuous, i.e. preimages of open sets are also open. Since preimages
of continuous functions preserve the levels of the hierarchy, we conclude that any language
accepted by a deterministic max-automaton is a boolean combination of Σ2 sets.

Lemma 5.4. The language L is not a boolean combination of Σ2 sets.

Proof. Consider the mapping from N
∗ to {a, b}∗ω defined by

n1, n2, 7→ an1ban2ban3b . . .

This is a continuous mapping. The language L is the image, under this mapping, of the set
X of sequences in N

ω that have a bounded subsequence. The set X is known not to be a
boolean combination of Σ2 sets, see Excercise 23.2 in [9].

170 M. BOJAŃCZYK

6. Conclusion

This paper is intended as a proof of concept. The concept is that ω-regular languages
can be extended in various ways, while still preserving good closure properties and decid-
ability. The class presented in this paper, max-regular languages, is closed under boolean
operations, inverse morphisms, and quotients. It is not closed under morphic images (which
corresponds to nondeterminism on the automaton side).

Some questions on max-automata are left unresolved. Is the max operation necessary
in the automaton? In our construction, we use the max twice: when defining the values
max(q, a1 · · · an), and in Proposition 4.11. While in the first case, the max operation can
be avoided by a subtle use of factorization forests [12], it is not clear how to show Propo-
sition 4.11 without using the max operation. Another question is the exact complexity of
emptiness. It would be nice to get matching upper and lower bounds, even more so if the
lower bound would use acceptance conditions in DNF.

There are several other possibilities of future work. One is to investigate weak bounding
logic for infinite trees (note that we will not capture all regular languages of infinite trees
in this case). Another possibility would be to investigate full monadic-second order logic,
or possibly other quantifiers that can be added to weak monadic second-order logics. The
techniques used in this paper are fairly generic, so it seems plausible that such quantifiers
can be found.

References

[1] P. A. Abdulla, P. Krcál, and W. Yi. R-automata. In CONCUR, pages 67–81, 2008.
[2] A. Arnold. A syntactic congruence for rational omega-language. Theor. Comput. Sci., 39:333–335, 1985.
[3] M. Bojańczyk. A bounding quantifier. In Computer Science Logic, volume 3210 of Lecture Notes in

Computer Science, pages 41–55, 2004.
[4] M. Bojańczyk and T. Colcombet. Omega-regular expressions with bounds. In Logic in Computer Sci-

ence, pages 285–296, 2006.
[5] T. Colcombet and C. Löding. The nesting-depth of disjunctive mu-calculus for tree languages and the

limitedness problem. In Computer Science Logic, volume 5213 of Lecture Notes in Computer Science,
2008.

[6] T. Colcombet and C. Löding. The non-deterministic mostowski hierarchy and distance-parity automata.
In International Colloquium on Automata, Languages and Programming, volume 5126 of Lecture Notes

in Computer Science, pages 398–409, 2008.
[7] M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput. Sci., 380(1-2):69–86,

2007.
[8] K. Hashiguchi. Algorithms for determining relative star height and star height. Inf. Comput., 78(2):124–

169, 1988.
[9] A. S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics. Springer,

1995.
[10] D. Kirsten. Distance desert automata and the star height problem. Theoretical Informatics and Appli-

cations, 39(3):455–511, 2005.
[11] M. P. Schützenberger. On the definition of a family of automata. Information and Control, 4:245–270,

1961.
[12] I. Simon. Factorization forests of finite height. Theoretical Computer Science, 72:65–94, 1990.
[13] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Language Theory, volume III, pages 389–455. Springer, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

