
Annals of Pure and Applied Logic 106 (2000) 85–134
www.elsevier.com/locate/apal

Decidable fragments of �rst-order temporal logics
Ian Hodkinsona ; ∗, Frank Wolterb, Michael Zakharyaschevc

aDepartment of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
bInstitut f�ur Informatik, Universit�at Leipzig, Augustus-Platz 10-11, 04109 Leipzig, Germany

cDivision of Arti�cial Intelligence, School of Computer Studies, University of Leeds, Leeds LS2 9JT,
UK

Received 30 November 1999; accepted 21 December 1999

Communicated by S.N. Artemov

Abstract

In this paper, we introduce a new fragment of the �rst-order temporal language, called the
monodic fragment, in which all formulas beginning with a temporal operator (Since or Until)
have at most one free variable. We show that the satis�ability problem for monodic formulas in
various linear time structures can be reduced to the satis�ability problem for a certain fragment
of classical �rst-order logic. This reduction is then used to single out a number of decidable
fragments of �rst-order temporal logics and of two-sorted �rst-order logics in which one sort is
intended for temporal reasoning. Besides standard �rst-order time structures, we consider also
those that have only �nite �rst-order domains, and extend the results mentioned above to temporal
logics of �nite domains. We prove decidability in three di�erent ways: using decidability of
monadic second-order logic over the intended
ows of time, by an explicit analysis of structures
with natural numbers time, and by a composition method that builds a model from pieces in
�nitely many steps. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 03B25; 03B45; 68Q60; 68T30

Keywords: First-order temporal logic; Temporal databases; Classical decision problem;
Decidable fragments; Decidability; Undecidability

1. Introduction

Temporal logic has found numerous applications in computer science, ranging from
the traditional and well-developed �elds of program speci�cation and veri�cation [34,
30, 31], temporal databases [12, 13, 3, 42, 17], and distributed and multi-agent systems
[15], to more recent uses in knowledge representation and reasoning [6–8, 40, 46]. This

∗ Corresponding author. Tel.: +44-207-594-8219; fax: +44-207-581-8029.
E-mail addresses: imh@doc.ic.ac.uk (I. Hodkinson), wolter@informatik.uni-leipzig.de (F. Wolter),

mz@scs.leeds.ac.uk (M. Zakharyaschev).

0168-0072/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0168 -0072(00)00018 -X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82477139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

86 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

is true of both propositional and �rst-order temporal logic. However, the mainstream
of theoretical studies in the discipline has mostly been restricted to the propositional
case – witness the surveys [14, 43], or the two-volume monograph [16, 17] where only
one chapter is devoted to �rst-order temporal logics.
The reason for this seems clear. Though some axiomatizations of �rst-order tem-

poral logics are known (e.g. [38] presents axiomatizations for �rst-order logics with
Until and Since over the class of all linear
ows and over the rationals), a series of
incompleteness theorems [1, 4, 16, 19, 32, 44, 45], started by unpublished results of
Scott and Lindstr�om in the 1960s, show that many of the �rst-order temporal logics
most useful in computer science are not even recursively enumerable. But in contrast to
classical �rst-order logic, where the early undecidability results of Turing and Church
stimulated research and led to a rich and profound theory concerned with classifying
fragments of �rst-order logic according to their decidability (see, e.g. [9]), there were
no serious attempts to convert the ‘negative’ results in �rst-order temporal logic into
a classi�cation problem. Apparently, the extremely weak expressive power of the tem-
poral formulas required to prove undecidability left no hope that any useful decidable
fragments located ‘between’ propositional and �rst-order temporal logics could ever be
found. (See, e.g., Theorems 2 and 3 below.)
The main aim of this paper is to de�ne and investigate a new kind of sub-language

of the �rst-order temporal language which, on the one hand, is considerably more
expressive than the propositional language, yet on the other hand gives rise to decid-
able fragments of �rst-order temporal logics. Roughly speaking, these fragments are
obtained by:
(1) restricting the pure classical (non-temporal) part of the language to an arbitrary

decidable fragment of �rst-order logic, and
(2) restricting the temporal part of the language to the monodic formulas whose sub-

formulas beginning with a temporal operator have at most one free variable.
Condition (1) allows the use of classical decidability results to select a suitable �rst-

order part of the language, while (2) leaves enough room for non-trivial interactions
between quanti�ers and temporal operators (as in the Barcan formula, ∃x�’(x)↔
�∃x’(x)). Thus, we can talk about objects in the intended domain using the full
power of the selected fragment of �rst-order logic; however, temporal operators may
be used to describe the development in time of only one object (two are enough to
simulate the behaviour of Turing machines or tilings; see below).
The bulk of the paper is devoted to showing that these two conditions do result

in decidable temporal fragments over various
ows of time. As a consequence, we
obtain for instance that the two-variable monodic fragment, and the temporal guarded
monodic fragment, are decidable where the
ow of time is arbitrary, �nite, 〈N;¡〉,
〈Z;¡〉, 〈Q;¡〉, or (for �nite domains at least) 〈R;¡〉. The obtained results and the
developed techniques can be applied to prove the decidability of various propositional
multi-dimensional modal logics, including some temporal epistemic logics close to
those in [15] and used in multi-agent systems, and temporal description logics used in
knowledge representation (cf. [46]). Thus, the results of the paper are of signi�cance

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 87

both for applications in CS and AI, and for theoretical studies in temporal logic.
Moreover, we hope that the discovery of natural decidable fragments of �rst-order
temporal logic will stimulate further research in this �eld.
In this paper, we con�ne ourselves to considering satis�ability of temporal formulas

without equality or function symbols, interpreted in models with constant �rst-order
domains and strictly linear
ows of time: in particular, the aforementioned 〈N;¡〉,
〈Z;¡〉, and 〈Q;¡〉. We are interested both in models with arbitrary domains and in
those with only �nite domains. Actually, none of the decidable fragments to be con-
structed below has the �nite domain property: the set of formulas (in these fragments)
satis�able in arbitrary temporal models properly contains the set of formulas satis�able
in models with �nite domains. We show, however, that the decidability results men-
tioned above hold for the temporal logics (on 〈N;¡〉, 〈Z;¡〉, 〈R;¡〉, etc.) with �nite
domains.
Our results also apply to two-sorted �rst-order languages in which one sort is spe-

cially intended for talking about time. The predicate temporal language, ‘TL’, provides
only ‘implicit’ access to time: quanti�cation over points in time in the sense of �rst-
order logic is not permitted, and the only means of expressing temporal properties is by
the operators Since and Until. A common alternative is to reason about time explicitly,
using �rst-order logic. Following this approach in the propositional case yields monadic
�rst-order logic interpreted in strict linear orders, while in the predicate case it leads
to a two-sorted �rst-order language, called ‘TS’ in what follows, one sort of which
refers to points in time and the other to the �rst-order domain. The relation between
TL and TS has been investigated intensively in the context of temporal databases
(see, e.g. [2, 3, 12, 13]). In the propositional case, both languages are known to have
the same expressive power over most classes of
ows of time – i.e., the temporal
propositional language is expressively complete, see [26, 16]. This turns out not to be
so in the �rst-order case: the formula

∃t1∃t2(t1¡t2 ∧ ∀x(P(t1; x)↔ P(t2; x)))

is not expressible in TL over any interesting class of
ows of time [2, 3, 12, 27].
However, it remained open in the literature on temporal databases whether there is a
natural characterization of the fragment ofTS for whichTL is expressively complete.
We will show that a natural such fragment – called TS1t – consists of all formulas in
which ‘domain’ quanti�ers ∀x are applied to formulas with at most one free temporal
variable (observe that this condition, approximately dual to monodicity, is violated in
the formula above). Moreover, the fragment TL1 of monodic TL-formulas turns out
to be expressively complete for the fragment TS1 of monodic TS1t-formulas. The
translation from TS1 into TL1 is e�ective, so all our decidability results for fragments
of TL1 carry over to the corresponding fragments of TS1.
We will give three di�erent decidability proofs for monodic fragments. They all rely

on representing a temporal model satisfying a given monodic formula ’ in the form
of a ‘quasimodel’, the most important feature of which is that the size of its domain
is �nitely bounded (in terms of ’). Our �rst algorithm expresses the existence of a

88 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

quasimodel satisfying such a ’ by a formula of monadic second-order logic. This fact,
together with the B�uchi and Rabin decidability theorems, makes it possible to reduce
the satis�ability problem for monodic formulas in models based on 〈N;¡〉, 〈Z;¡〉,
〈Q;¡〉, and some other linear temporal structures to the satis�ability problem for a cer-
tain fragment of classical �rst-order logic. The complexity of the satis�ability-checking
algorithm supplied by such a reduction is non-elementary. To construct an algorithm
of better performance (at least for some
ows of time) we investigate the structure
of quasimodels on 〈N;¡〉 satisfying a given TL1-formula ’, and obtain a second,
more explicit and elementary satis�ability-checking algorithm for 〈N;¡〉, provided
of course that we have an ‘elementary’ oracle capable of deciding the satis�ability
problem for the classical �rst-order formulas mentioned above. A modi�ed algorithm
checks satis�ability in models with �nite domains. Our third algorithm covers the
ow
of time 〈R;¡〉 in the �nite-domain case, and is an adaptation of the second proof of
decidability of propositional temporal logic with Until and Since over 〈R;¡〉 given
in [11].
The paper is organized in the following way. In Section 2 we de�ne the syntax and

semantics of the temporal logics under consideration and prove that their monadic two-
variable fragments are undecidable. We then introduce the fragment TL1 of monodic
formulas. In Section 3 we introduce quasimodels. In Section 4 we give our �rst deci-
sion procedure for monodic formulas, using monadic second-order logic. In Section 5
we give the second one, and in Section 6 its modi�ed form for �nite domains. In
Section 7 we describe the third algorithm, for 〈R;¡〉 in the �nite-domain case. In Sec-
tion 8, we prove the expressive completeness of TL1 for TS1, and use the obtained
criteria to single out a number of decidable fragments of �rst-order temporal logics,
including fragments of TS1, and the two-variable, monadic, and guarded monodic frag-
ments of TL1. We show also some applications to temporal epistemic and description
(propositional) logics. Finally, in Section 9, we list some open problems.

2. First-order temporal logic

Denote by TL the �rst-order temporal language constructed in the standard way
from the following alphabet:

• predicate symbols P0; P1; : : : ; each of which is of some �xed arity,
• individual variables x0; x1; : : : ;
• individual constants c0; c1; : : : ;
• the booleans ∧; ¬;
• the universal quanti�er ∀x for each individual variable x,
• the temporal operators S (Since) and U (Until).

The set of predicate symbols in TL is assumed to be non-empty. 0-ary predicates,
i.e., propositional variables, are denoted by p0; p1; : : : : We will assume that there is a
su�cient supply of those variables, unary predicate symbols, and an in�nite set var of

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 89

individual variables. L is the classical (non-temporal) �rst-order language that results
from TL by omitting all formulas containing S or U.
We will use the following standard abbreviations:

∃x’=¬∀x¬’;

�’=>U’;

’=¬�¬’;

+’=’ ∧ ’;

�+’=’∨�’;

©’=⊥U’:

TL is interpreted in �rst-order temporal models of the form M= 〈F ; D; I〉, where
F = 〈W;¡〉, the underlying frame, is a strict linear order 1 representing the
ow of
time, D is a non-empty set, the domain of M, and I is a function associating with
every moment of time w∈W a �rst-order L-structure

I(w)= 〈D; P I(w)
0 ; : : : ; cI(w)0 ; : : :〉;

the state of M at moment w, in which P I(w)
i , for each i, is a predicate on D of the

same arity as Pi (for a propositional variable pi, the predicate pI(w)
i is simply one of

the propositional constants >, ‘truth’, or ⊥, ‘falsehood’), and cI(w)i is an element of D.
We require that cI(w)i = cI(v)i for any w; v∈W (‘rigid constants’). To simplify notation,
we will omit the superscript I and write Pw

i , p
w
i , c

w
i , etc., if I is clear from the context.

An assignment in D is a function a from var to D. The truth-relation (M; w) |=a ’
(or simply w |=a ’, if M is understood) in the model M under the assignment a is
de�ned inductively in the usual way:

• w |=a Pi(y1; : : : ; y‘) i� Pw
i (a(y1); : : : ; a(y‘)) is true in I(w) (we write this also as

I(w) |=a Pi(y1; : : : ; y‘), or I(w) |= Pi [a(y1); : : : ; a(yl)], or indeed as (a (y1); : : : ;
a(yl))∈P I(w)

i);
• w |=a ’ ∧ i� w |=a ’ and w |=a ;
• w |=a ¬ i� w 6|=a ;
• w |=a ∀x i� w |=b for every assignment b in D that may di�er from a only on

x;
• w |=a ’S i� there is v¡w such that v |=a and u |=a ’ for every u in the interval
(v; w)= {u∈W : v¡u¡w};

• w |=a ’U i� there is v¿w such that v |=a and u |=a ’ for every u∈ (w; v).

1 I.e., ¡ is irre
exive, transitive and ∀x; y∈W (x¡y ∨ y¡x ∨ x= y).

90 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

It follows, in particular, that

• w |=a �’ i� there is v¿w such that v |=a ’;
• w |=a �+’ i� there is v¿w such that v |=a ’;
• w |=a �’ i� v |=a ’ for all v¿w;
• w |=a �+’ i� v |=a ’ for all v¿w;
• w |=a ©’ i� there exists an immediate successor v of w (i.e., v¿w and (w; v)= ∅)
such that v |=a ’.

For a class F of strict linear orders, we let TL(F), ‘the temporal logic of F’,
denote the set of TL-formulas that are valid in F:

TL(F)= {’∈TL: (M; w) |=a ’ for all M= 〈F ; D; I〉 with F ∈F;
all w∈D; and all assignments a in D}:

TL�n(F) stands for the set of those TL-formulas that are valid in all models based
on linear orders in F and having �nite domains. Instead of TL({〈N;¡〉}),
TL�n({〈N;¡〉}) we write TL(N) and TL�n(N), respectively; similar notation is used
for 〈Z;¡〉, 〈Q;¡〉, and 〈R;¡〉.

Remark 1. In this paper we consider only models with constant domains. Satis�ability
in models with expanding domains is known to be reducible to satis�ability in models
with constant domains (see [47]).

2.1. Undecidable fragments of TL

The following two theorems indicate some limits outside which one cannot hope to
�nd decidable fragments of �rst-order temporal logics.
For ‘¡!, let TL‘ be the ‘-variable fragment of TL (i.e., every formula in TL‘

contains at most ‘ distinct individual variables). And by TLmo we denote the monadic
fragment of TL (i.e., the set of formulas which contain only unary predicates and
propositional variables).

Theorem 2. Let F be either {〈N;¡〉} or {〈Z;¡〉}. Then the set TL2 ∩TLmo ∩
TL(F) is not recursively enumerable.

Proof. We show this by reducing the recurrent tiling problem for N × N (which is
�11-complete; see [24]) to the satis�ability problem for the monadic TL2-formulas in
F. Recall that a tile t is a 1 × 1 square with �xed orientation and coloured edges
right(t), left(t), up(t), and down(t). The N×N recurrent tiling problem is formulated
as follows: given a �nite set T of tiles and a tile t0 ∈T , determine whether there
is a tiling of N ×N by T such that t0 occurs in�nitely often in the �rst row. More
precisely, the problem is to �nd out whether there exists a function f from N × N
into T such that, for all m; n∈N,
• right(f(n; m))= left(f(n+ 1; m)),

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 91

• up(f(n; m))= down(f(n; m+ 1)),
• the set {n∈N :f(n; 0)= t0} is in�nite.
With a given set T = {t0; : : : ; tn} of tiles we associate unary predicates P0; : : : ; Pn.

We also require two unary predicates, Q1 and Q2, which will be used in the formula

R(x; y)=�(Q1(x) ∧ Q2(y)):

Now de�ne a �rst-order temporal formula ’T in TL2 ∩TLmo as the conjunction of
the following formulas:

∃x�� (P0(x)∧�>);
∀x∃yR(x; y);
∀x; y((R(x; y)→�R(x; y)) ∧ (¬R(x; y)→�¬R(x; y)));

�+∀x
 n∨

i=0

Pi(x) ∧
∧
i 6=j

(Pi(x)→¬Pj(x))
 ;

�+∀x; y
Pi(x) ∧ R(x; y)→

∨
up(ti)=down(tj)

Pj(y)

 ;

�+∀x
Pi(x)→ ©

∨
right(ti)=left(tj)

Pj(x)

 :

Let us show that ’T is satis�able in a model based on the frame in F i� there is a
recurrent tiling of N×N by T :
Suppose �rst that f :N×N→T de�nes a recurrent tiling. Put D=N,

P I(n)
i = {m∈D : f(n; m)= ti};

for n∈N, and select for every i∈N an in�nite set Mi ⊆N such that Mi ∩ Mi′ = ∅
whenever i 6= i′. Now put, for i∈D and n∈N, i∈QI(n)

1 and i + 1∈QI(n)
2 i� n∈Mi.

Also specify that 0 =∈ QI(n)
2 . It should be clear that ’T is satis�ed in 〈〈N;¡〉; D; I〉. It

follows that ’T is satis�able in F.
Conversely, suppose ’T is satis�ed in a model M= 〈F ; D; I〉, for F ∈F. Then

F = 〈W;¡〉 contains an in�nite ascending chain, say 0; 1; 2; : : : such that 0 |=’T and
i+1 is the immediate successor of i. By the �rst conjunct of ’T , we �nd an a0 ∈D for
which 0 |=P0[a0] and the set {n∈N : n |=P0[a0]} is in�nite. Let RI(n) = {〈a; b〉 ∈D2 :
n |=�(Q1 ∧Q2)[a; b]}. According to the second conjunct, we have an R-ascending
chain a0RI(0)a1RI(0)a2 : : : of elements in D. By the third conjunct, for all n; i; j∈N,
we have aiRI(n)aj i� aiRI(0)aj. Now de�ne a function f by putting, for all i; j∈N,

92 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

f(i; j)= tk whenever i |=Pk [aj]. It is straightforward to check that f is a recurrent
tiling of N×N.

It follows, in particular, that if F is any one of the classes mentioned in the for-
mulation of Theorem 2 then TL(F) is not recursively axiomatizable (cf. [16]).

Theorem 3. Let F be one of the following classes of temporal frames: {〈N;¡〉};
{〈Z;¡〉}; the class of all strict linear orders. Then TL2 ∩TLmo ∩TL�n(F) is not
recursively enumerable.

Proof. We are going to reduce the following undecidable problem to the satisfaction
problem for the monadic TL2-formulas in models with �nite domains: given a Turing
machine, determine whether it comes to a stop having started from the empty tape.
Let A be a single-tape right-in�nite deterministic Turing machine with state space S,
initial state s0, halt state s1, tape alphabet A (b∈A stands for blank) and transition
function �. The con�gurations of A will be represented by in�nite words of the form
$a0 : : : ai : : : anb!, where $ marks the left side of the tape, all a0; : : : ; an save one,
say ai, are in A, while ai belongs to S × A and represents the active cell and the
current state. The start con�guration, for instance, is represented by $(s0; b)b!. Let
A′=A∪{$}∪ (S × A), and A′′=A′ \ {$}.
We want to construct a monadic TL2-formula ’A which is satis�able in a model

with a �nite domain D (based on a frame in F) i� A comes to a stop (i.e., reaches the
halt state) having started from $(s0; b)b!. Roughly, the idea is to codify con�gurations
of A by elements x∈D using the behaviour of x over time.
First, with every �∈A′ we associate a unary predicate P�. The sentence

∀x
P$(x) ∧�

∨
�∈A′′

P�(x) ∧ ¬
∨

� 6=�∈A′′
P�(x)

 (1)

means that ‘now’, all objects in D are in P$ while later each of them belongs to
precisely one of the sets P�, for �∈A′′. To mark the object representing the active cell
of a given con�guration and its immediate predecessor and successor, we use three
unary predicates, S, L, and R, de�ned by the formulas

�+ ∀x
S(x)↔

∨
(s; a)∈A′

P(s; a)(x)

 ; (2)

�+ ∀x((L(x)↔ ©S(x)) ∧ (S(x)↔ ©R(x))); (3)

�+ ∀x¬(S(x)∧�S(x)): (4)

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 93

The transition from one con�guration to another is simulated by means of the for-
mula:

�(x; y) =
∧

�(�; �;
)=(�′ ; �′ ;
′)

�+(L(x)∧P�(x)∧©(P�(x)∧© P
(x)))

→�+

(
(L(x)→P�′(y)) ∧ (S(x)→ P�′(y)) ∧ (R(x)→ P
′(y))

∧
∧
�∈A′

(¬L(x) ∧ ¬S(x) ∧ ¬R(x) ∧ P�(x)→P�(y))

)
:

The following two formulas de�ne a unary predicate C (clock); its intended meaning
is to �x the moment of time the machine reaches this or that con�guration.

∀x(�+C(x) ∧�+¬(C(x) ∧�C(x))); (5)

∀x; y(�(x; y)→ �+ (C(x) ∧©C(y))): (6)

It remains only to ensure that there exists a sequence representing a halt con�gura-
tion:

∃x�+
∨

(s1 ; a)∈A′
P(s1 ; a)(x); (7)

and that each con�guration save the start one on the empty tape has a predecessor:

∀y(¬(P$(y) ∧©(P(s0 ; b)(y) ∧�Pb(y))→∃x �(x; y)): (8)

Let ’A be the conjunction of (1)–(8) and the formula �+ ©>, which ensures that
every moment of time (starting from the one satisfying this formula) has an immediate
successor. It is not hard to check that ’A is satis�ed in a model with a �nite domain
(based on a frame in F) i� A comes to a stop having started from the empty tape.
Indeed, the ‘⇐’-part of the proof should be clear. For the converse, suppose that ’A

is satis�ed in a world w of a model based on some linear order and having a �nite
domain, D. By (7), (1), and (2)–(4), there is h∈D representing a halt con�guration.
Observe that, by (5) and (6), we cannot have objects c0; : : : ; cn ∈D such that c0 = cn
and w |= �[c0; c1] ∧ · · · ∧ �[cn−1; cn]. Let c0; : : : ; cn be a maximal chain in D for which
cn= h and w |= �[ci; ci+1], 06i¡n. Such a chain exists since D is �nite. So there
is no c∈D with w |= �[c; c0]. In view of (8), this can only mean that c0 represents
the start con�guration on the empty tape. Thus, by de�nition of �, A reaches a halt
con�guration having started from the empty tape.
Thus, the set TL2 ∩TLmo ∩ TL�n(F) is undecidable. On the other hand, its com-

plement (in the set of monadic TL-formulas) is recursively enumerable. For, it is not
hard to see that satis�ability of monadic and indeed arbitrary ML-formulas in mod-
els based in F and having domains of 6n elements, for �xed n, can be reduced to
satis�ability of propositional temporal formulas in F, which is known to be decidable
(see e.g. [16]).

94 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

2.2. Monodic formulas

Note that both undecidability proofs above use temporal formulas of the form ’U
with two free variables. We now consider the ‘monodic’ fragment of TL without
formulas of that sort.

De�nition 4 (monodic formulas). Denote by TL1 the set of all TL-formulas ’ such
that any subformula of ’ of the form 1U 2 or 1S 2 has at most one free variable.
Such formulas will be called monodic. In other words, monodic formulas allow quan-
ti�cation into temporal contexts only with one free variable. From now on we will be
assuming that all our formulas are monodic.

For a set � of TL-formulas, denote by subn � the closure under negation of the
set of all subformulas of formulas in � containing 6n free variables; sub’ denotes
the set of all subformulas in a formula ’, and con’ the set of all constants in ’.
Without loss of generality, we may identify and ¬¬ ; so subn � is �nite whenever
� is �nite. In what follows we will not be distinguishing between a �nite set � of
formulas and the conjunction

∧
� of formulas in it.

For every formula (x)=’1U’2 or (x)=’1S’2 with one free variable x, we
reserve a unary predicate P (x), and for every sentence =’1U’2 or =’1S’2 we
�x a propositional variable p . P (x) and p are called the surrogates of (x) and ,
respectively.
Given a formula ’, we denote by �’ the formula that results from ’ by replacing

all its subformulas of the form 1U 2 and 1S 2 which are not within the scope of
another occurrence of U or S by their surrogates. Thus, �’ contains no occurrences of
temporal operators at all – i.e., it is an L-formula; we will call �’ the L-reduct of ’.
For a set � of TL1-formulas, we let ��= { � : ∈�}.

3. Codifying models

Imagine that we need to �nd out whether a TL1-sentence ’ is satis�able. Following
the motto ‘divide and conquer’, we separate the temporal and the pure �rst-order parts
of TL1, focusing attention mainly on the former and pretending that we have a friend
who knows how to deal with the latter. We assume that this friend can obtain for us
an L-structure realizing any given set of subsets of sub’, if such a structure exists at
all. In this way, we build up a complete stock of such structures; one of them should
satisfy the L-reduct of ’. Our task is then to try to �t these structures together into a
temporal model satisfying ’. When doing this, we need only take care of formulas of
the form 1U 2 and 1S 2 in sub’, relying upon our good friendship as far as other
formulas are concerned.
The aim of this section is to show that modulo’, every temporal model can be

codi�ed in a structure called a quasimodel. A quasimodel may be viewed as a model

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 95

in which the states have pairwise disjoint domains, each domain has a bounded number
of elements (depending on ’), and each domain element satis�es some speci�ed set
of subformulas of ’. The correspondence between elements in di�erent states will be
established by special functions called runs.
Let x be a variable not occurring in ’. Put

subx ’= { {x=y} : (y)∈ sub1 ’}:

De�nition 5 (type). By a type for ’ we mean any boolean-saturated subset t of subx ’:
that is,

• ∧ �∈ t i� ∈ t and �∈ t, for every ∧ �∈ subx ’;
• ¬ ∈ t i� =∈ t, for every ∈ subx ’.

We say that two types t and t′ agree on sub0 ’ if t ∩ sub0 ’= t′ ∩ sub0 ’. Given a
type t for ’ and a constant c∈ con’, the pair 〈t; c〉 will be called an indexed type for
’ (indexed by c) and denoted by tc(x) or simply tc.

There are only �nitely many types for ’ – at most

[(’)= 2|subx ’|;

to be more precise. To a certain extent, every state w in a model under a given
assignment can be characterized (modulo ’, of course) by the set of types that are
realized in this state and the set of types that hold on its constants. This motivates the
following de�nition.

De�nition 6 (state candidate). Suppose that T is a set of types for ’ that agree on
sub0 ’, and Tcon= {〈t; c〉 : c∈ con’} a set of indexed types such that {t : 〈t; c〉 ∈Tcon}
⊆T . Then the pair C = 〈T; T con〉 is called a state candidate for ’.

Not all state candidates can represent states in temporal models. To single out those
that can, we require one more de�nition.

De�nition 7 (realizable state candidate). Consider a �rst-order L-structure

D= 〈D; PD
0 ; : : : ; cD

0 ; : : :〉 (9)

and suppose that a∈D. The set

tD(a)= { ∈ subx ’ :D |= � [a]}
is clearly a type for ’. Say that D realizes a state candidate 〈T; T con〉 if the following
conditions hold:
• T = {tD(a) : a∈D},
• Tcon= {〈tD(cD); c〉 : c∈ con’}.
A state candidate is said to be �nitely realizable if there exists a �nite L-structure

realizing it.

96 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Denote by](’) the number of distinct realizable state candidates for ’. It should
be clear that

](’)62[(’) · [(’)|con ’|:

Lemma 8. A state candidate C = 〈T; T con〉 for ’ is (�nitely) realizable i� the
L-formula

�C =

(∧
t∈T

∃x �t(x)
)
∧
(
∀x
∨
t∈T

�t(x)

)
∧
 ∧

〈t; c〉∈Tcon

�t(c)


is satis�ed in some (respectively; �nite) L-structure.

Proof. Follows immediately from the de�nitions.

Lemma 9. Let � be a cardinal; �¿ℵ0. Then every realizable state candidate 〈T; T con〉
is realized in an L-structure D of the form (9) such that; for every t ∈T; the set

Dt = {a∈D :D |= �t [a]}
is of cardinality �.

Proof. Follows from classical model theory, since the language L is countable and
does not contain equality.

We are now in a position to de�ne the central notion of this section, that of a
quasimodel. Let F = 〈W;¡〉 be a linear order.

De�nition 10 (state function). A state function for ’ over F is a map f associating
with each w∈W a realizable state candidate f(w)= 〈Tw; T con

w 〉 for ’.

De�nition 11 (run). Let f be a state function for ’ over F = 〈W;¡〉, with f(w)=
〈Tw; T con

w 〉 for w∈W . By a run in f we mean a function r from W into the set⋃
w∈W Tw such that

• r(w)∈Tw, for all w∈W ,
• for every 1U 2 ∈ subx ’ and every w∈W , we have 1U 2 ∈ r(w) i� there is v¿w
such that 2 ∈ r(v) and 1 ∈ r(u) for all u∈ (w; v),

• for every 1S 2 ∈ subx ’ and every w∈W , we have 1S 2 ∈ r(w) i� there is v¡w
such that 2 ∈ r(v) and 1 ∈ r(u) for all u∈ (v; w).

De�nition 12 (quasimodel). Suppose f is a state function for ’ over F and R a
set of runs in f. The pair m= 〈f;R〉 is called a quasimodel for ’ (over F) if the
following conditions hold:
• for every c∈ con’, the function rc de�ned by rc(w)= t, for 〈t; c〉 ∈Tcon

w ; w∈W , is
a run in R,

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 97

• for every w∈W and every t ∈Tw, there exists a run r ∈R such that r(w)= t.
In this case the state candidates f(w) are called quasistates of m. Say that ’

is satis�ed in the quasimodel m if there is w∈W such that ’∈ t, for some (or,
equivalently, all) t ∈Tw.

Remark 13. Note that, for any two sets of runs R1 and R2 in f, if R1⊆R2 and 〈f;R1〉
is a quasimodel for ’ then 〈f;R2〉 is a quasimodel for ’ as well. Consequently, there
exists a quasimodel for ’ based on a state function f i� 〈f;
f〉 is a quasimodel
for ’, where
f is the set of all runs in f. If we are interested in satis�ability of
temporal formulas in arbitrary models then it is enough to consider quasimodels of the
form 〈f;
f〉; to simplify notation, we will denote such quasimodels by f. To deal
with satis�ability in models with �nite domains, we shall need quasimodels 〈f;R〉
with �nite R.

Theorem 14. A TL1-sentence ’ is satis�able in a model based on F = 〈W;¡〉 i� it
is satis�ed in a quasimodel for ’ over F .

Proof. Suppose ’ is satis�ed in a model M= 〈F ; D; I〉. For every w∈W , de�ne
f(w)= 〈Tw; T con

w 〉 by taking
twa = { ∈ subx ’ : (M; w) |=a }; where a∈D and a(x)= a;

Tw = {twa : a∈D};
T con
w = {〈twcI(w) ; c〉 : c∈ con’}:

It is easy to see that for every a∈D, the function r(w)= twa ; w∈W , is a run in f.
Let R be the set of all such runs. Then 〈f;R〉 is clearly a quasimodel satisfying ’.
Note that R is �nite whenever D is �nite.
Conversely, suppose that ’ is satis�ed in a quasimodel f for ’ over F . Take a

cardinal �¿ℵ0 exceeding the cardinality of the set
f of all runs in f and put

D= {〈r; �〉 : r ∈
f; �¡�}:
Then for any w∈W and any type t,

|{〈r; �〉 ∈D : r(w)= t}|=
{

� if t ∈Tw;
0 otherwise.

By Lemma 9, for every w∈W there exists an L-structure I(w) with domain D real-
izing f(w) and such that cw = 〈rc; 0〉, for every c∈ con’, and

r(w)= { ∈ subx ’ : I(w) |= � [〈r; �〉]} (10)

for all r ∈
f and �¡�. Let M= 〈F ; D; I〉. We show by induction on that for all
 ∈ sub’ and w∈W , and any assignment a in D,

I(w) |=a � i� (M; w) |=a :

98 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

The basis of induction – i.e., the case when =Pi(x1; : : : ; x‘) – is clear; for then, = � .
The induction step for = 1 ∧ 2; =¬ 1, and =∀x 1 follows by the induction
hypothesis from the obvious equations:

 1 ∧ 2 = 1 ∧ 2; ¬ 1 =¬ 1; ∀x 1 =∀x 1:

Let (y)= �1U�2 and a(y)= 〈r; �〉. We then have � =P (y), so by (10) and the
induction hypothesis,

I(w) |=a P (y) i� �1U�2 ∈ r(w);

i� ∃v¿w(�2 ∈ r(v) & ∀u∈ (w; v)�1 ∈ r(u));

i� ∃v¿w(I(v) |=a �2 & ∀u∈ (w; v)I(u) |=a �1);

i� ∃v¿w((M; v) |=a �2 & ∀u∈ (w; v)(M; u) |=a �1);

i� (M; w) |=a �1U�2:

The formula (y)= �1S�2 is considered analogously.
Since ’∈ r(w) for some w∈W , we must have also (M; w) |=’, as required.

4. Embedding into second-order monadic theories

We can now quickly deduce decidability results by translating into monadic second-
order logic the statement that a quasimodel satisfying ’ exists.
We will use some auxiliary formulas. Introduce a unary predicate variable R for

each ∈ subx ’. If t is any type for ’, let

�t(x)=
∧
 ∈t

R (x) ∧
∧

 ∈(subx ’)\t
¬R (x);

saying that the R (x) de�ne the type t at x. Also, � denotes the conjunction of the
two formulas

∀x
∧

 1U 2∈subx ’

(R 1U 2 (x)↔ ∃y(x¡y ∧ R 2 (y) ∧ ∀z(x¡z¡y→R 1 (z))));

∀x
∧

 1S 2∈subx ’

(R 1S 2 (x)↔∃y(y¡x ∧ R 2 (y) ∧ ∀z(y¡z¡x→R 1 (z))));

– this says that the R (x) de�ne a run.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 99

Let � be the set of all realizable state candidates for ’, and Ps (s∈�) a unary
predicate variable. We now de�ne the monadic second-order sentence �’ as follows:

∃
s∈�

Ps

∀x

∨
s∈�

Ps(x) ∧
∧

s; s′∈�
s 6=s′

¬(Ps(x) ∧ Ps′(x))

 ∧
∨

〈T; T con〉∈�
’∈
⋃

T

∃xP〈T; T con〉(x)

∧
∧

c∈con ’

∃
 ∈subx ’

R

� ∧ ∀x
∧

〈T; T con〉∈�
〈t; c〉∈Tcon

(P〈T; T con〉(x)→ �t(x))



∧ ∀x
∧

〈T; T con〉∈�
t∈T

[
P〈T; T con〉(x)→ ∃

 ∈subx ’
R (� ∧ �t(x))

] :

If F = 〈W;¡〉 is a linear order, then F |= �’ i� there exist (possibly empty) subsets
Ps ⊆W (s∈�) which partition W in such a way that the state function f :W →�
de�ned by w∈Pf(w), for all w∈W , is a quasimodel for ’ in the sense of Remark 13:
the second line states that each constant of con’ de�nes a run coded by the R , and
the third line expresses the second condition of De�nition 12. The last conjunct on the
�rst line says that ’ is satis�ed in this quasimodel. Hence, F |= �’ i� ’ is satis�ed in
a quasimodel for ’ over F .
Note that if � can be constructed from ’ by an algorithm, then so can �’.
We can now apply known facts on decidability of monadic second-order logic to

obtain decidability results for monodic fragments.

Theorem 15. Let TL′ ⊆TL1 and suppose that there is an algorithm which is capable
of deciding; for any TL′-sentence ’; whether an arbitrarily-given state candidate for
’ is realizable. Let F be one of the following classes of
ows of time:
1: {〈N;¡〉};
2: {〈Z;¡〉};
3: {〈Q;¡〉};
4: the class of all �nite strict linear orders;
5: any �rst-order-de�nable class of strict linear orders – for example; the class of
all linear orders.

Then the satis�ability problem for the TL′-sentences in F; and so the decision
problem for the fragment TL(F)∩TL′; are decidable.

Proof. By assumption, the sentence �’ is constructible e�ectively from ’.
1. By Theorem 14, ’ is satis�able in a model based on 〈N;¡〉 i� ’ is satis�ed
in a quasimodel for ’ over 〈N;¡〉, i� (by the foregoing) 〈N;¡〉 |= �’. This last
statement is decidable, by a result of B�uchi [10].

2. The case of 〈Z;¡〉 is similar.

100 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

3. The case of 〈Q;¡〉 is again similar, except that the decidability of the problem
‘〈Q;¡〉 |= �’’ follows from Rabin’s theorem on the decidability of S2S [35].

4. As before, we see that ’ is satis�able in a model based on a �nite linear order i�
�’ is true in some �nite linear order. As is well known, it follows from B�uchi’s
theorem [10] that this last statement is decidable.

5. By considering the standard translation of ’ into two-sorted �rst-order logic (see
Section 8.1) and applying the downward L�owenheim–Skolem–Tarski theorem, it can
be seen that ’ has a model with
ow of time in F i� it has a model with countable

ow of time in F. By Theorem 14, this holds i� ’ is satis�ed in a quasimodel for
’ over a countable order in F.
Let be a formula of monadic second-order logic, and let P be a monadic

predicate variable not occurring in . De�ne the relativization P of to P, by
 P = for atomic ; (¬)P =¬ P; (1∧ 2)P = P

1 ∧ P
2 ; (∀x)P =∀x(P(x)→ P),

and (∀Q)P =∀Q P . Evidently, for any sentence and any linear order F , we have
F |=∃P(∃xP(x) ∧ P) i� F ′ |= for some (non-empty) suborder F ′ of F – the
intended interpretation of P is the domain of F ′.
Now any countable strict linear order is a sub-order of 〈Q;¡〉. Let � be a sentence

of linear order de�ning F. Then �’ (assumed not to involve P) is satis�able in
some countable F ∈F i�

〈Q;¡〉 |=∃P(∃xP(x) ∧ (� ∧ �’)P):

By Rabin’s theorem, this last statement is decidable.

This completes the proof of the theorem.

Remark 16. A similar result for scattered orders (those not embedding 〈Q;¡〉) can
be obtained by combining these methods. A similar encoding will establish decidability
of fragments TL�n(N)∩TL′, for TL′ as in Theorem 15, using Theorem 29 below in
place of Theorem 14. This proves Theorem 26 below.

Various applications of Theorem 15 can be found in Section 8.

5. Satis�ability in 〈N ; ¡〉: arbitrary models

The translation into monadic second-order logic given in the preceding section re-
duces the satis�ability problem for monodic sentences to decidable problems of high
computational complexity – for example, the complexity of monadic second-order logic
over 〈N;¡〉 (that is, ‘S1S’) is itself non-elementary [36]. In this section we demon-
strate another way of proving decidability of fragments of linear temporal logics, which
is more direct, makes plain the structure of these models, and does yield an elementary
decision procedure, provided of course that determining the realizability of state can-
didates is elementary. For simplicity we will be considering here the logic TL(N) in
the language with only one temporal operator Until; it is easy to add Since if required.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 101

The idea is to show that every quasimodel satisfying a given TL1-formula ’ can be
converted into another quasimodel which also satis�es ’ and is based on a periodical
state function, with the period being of some bounded length. In the next section we
will use this idea to obtain a satis�ability criterion for TL1-formulas in models (on
〈N;¡〉) with �nite domains.
Fix a TL1-sentence ’.
We will use the following notation regarding certain sequences of elements, in par-

ticular, state functions f=f(0); f(1); : : : and runs r= r(0); r(1); : : : : Given a sequence
s= s(0); s(1); : : : and i¿0, we denote by s6i and s¿i the head s(0); : : : ; s(i) and the tail
s(i + 1); s(i + 2); : : : of s, respectively; s1 ∗ s2 denotes the concatenation of sequences
s1 and s2; |s| denotes the length of s, and

s!= s ∗ s ∗ s ∗ : : : :

An in�nite subsequence g=f(n0); f(n1); : : : of a state function f for ’ will also be
understood as a state function for ’ de�ned by g(i)=f(ni), i∈N.
Lemma 17. Let 〈f;R〉 be a quasimodel for ’ such that f(n)=f(m) for some n¡m.
Then 〈f6n ∗ f¿m;R6n ∗R¿m〉 is also a quasimodel for ’; where

R6n ∗R¿m= {r6n
1 ∗ r¿m

2 : r1; r2 ∈R; r1(n)= r2(m)}:

Proof. It su�ces to observe that if r1 and r2 are runs in f and r1(n)= r2(m), then
r6n
1 ∗ r¿m

2 is a run in f6n ∗ f¿m. Let us check, for instance, the ‘⇒’-condition for
 1U 2 ∈ subx ’. Suppose that 1U 2 ∈ r1(k) for some k6n. Then, since r1 is a run,
there is l¿k such that 2 ∈ r1(l) and 1 ∈ r1(l′) for all l′ ∈ (k; l). If l6n then we are
done. Otherwise, when l¿n, we have 1U 2 ∈ r1(n)= r2(m), and so are done again,
since r2 is a run.
Now, because 〈f;R〉 is a quasimodel, for every r1 ∈R there is r2 ∈R such that

r1(n)= r2(m), and vice versa (swapping n; m). It now follows that 〈f6n ∗f¿m;R6n ∗
R¿m〉 is a quasimodel for ’.
De�nition 18. If g is a subsequence of f, and both 〈f;R〉 and 〈g;Q〉 are quasimodels
for ’, then we call 〈g;Q〉 a subquasimodel of 〈f;R〉.
For instance, 〈f6n ∗ f¿m;R6n ∗R¿m〉 in the formulation of Lemma 17 is a sub-

quasimodel of 〈f;R〉.
Lemma 19. Every quasimodel f for ’ contains a subquasimodel f′=f1 ∗ f2 such
that |f1|6](’) and each quasistate in f2 occurs in this sequence in�nitely many
times.

Proof. If each f(n), for n∈N, occurs in�nitely often in f then let f′=f=f2 (f1
is empty). Otherwise, we take n to be the maximal number such that f(n) 6=f(m),
for all m¿n, and apply Lemma 17 to the quasimodel f deleting from its head f6n

all repeating quasistates, which yields us a subquasimodel f′=f1 ∗f¿n satisfying the
required properties.

102 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

De�nition 20. Suppose that f=f(0); f(1); : : : is a sequence of realizable state candi-
dates for ’ of the form f(i)= 〈Ti; T con

i 〉; r is a sequence of elements from Ti; i∈N,
such that r(i)∈Ti, and n∈N. Suppose also that a formula 1U 2 ∈ subx(’) occurs
in r(n). Then we say that r realizes 1U 2 in m steps (starting from n), if there is
l∈ (0; m) such that 2 ∈ r(n+ l) and 1 ∈ r(n+ k) for all k ∈ (0; l).

Lemma 21. Let f=f1 ∗ f2 be a quasimodel for ’ (with quasistates of the form
〈Ti; T con

i 〉 for i∈N) such that n= |f1|6](’) and each quasistate in f2 occurs in it
in�nitely often. Then f contains a subquasimodel of the form f1 ∗f0 ∗f¿l

2 ; for some
l¿0; such that
(i) |f0|6|subx ’| ·](’) · [2(’) +](’);
(ii) for every t ∈Tn there is a run r in f1 ∗f0 ∗f¿l

2 coming through t and realizing
all formulas of the form 1U 2 ∈ r(n) in |f0| steps (for tc ∈Tcon

n the run rc
realizes all formulas of the form 1U 2 ∈ rc(n) in |f0| steps);

(iii) f0(0)=f¿l
2 (0).

Proof. Suppose t ∈Tn; 1U 2 ∈ t and r is a run in f through t, i.e., r(n)= t. Take the
minimal m¿0 such that 2 ∈ r(n+m) and 1 ∈ r(n+k) for all k ∈ (0; m). Assume now
that 0¡i¡j¡m, r(n+ i)= r(n+ j) and f(n+ i)=f(n+ j). In view of Lemma 17,
f1 ∗f6i

2 ∗f¿j
2 is a subquasimodel of f and r6n+i ∗r¿n+j is a run in it coming through

t ∈Tn. It follows that we can construct a subquasimodel f1 ∗f602 ∗f3 of f and a run
r1 in it which comes through t ∈Tn and realizes 1U 2 in m16[(’) ·](’) steps.
Then we consider another formula of the form ′

1U ′
2 ∈ t and assume that it is

realized in m2¿m1 steps in r1. Using Lemma 17 once again (and deleting repeating
quasistates in the interval f3(m1); : : : ; f3(m2)) we select a subquasimodel f1 ∗ f602 ∗
f6m1
3 ∗ f4 of f and a run r2 through t ∈Tn which realizes both 1U 2 and ′

1U ′
2 in

2 · [(’) ·](’) steps.
Having analyzed all distinct formulas of the form 1U 2 in t ∈Tn we obtain a

subquasimodel f1 ∗f602 ∗f′ ∗f¿k of f and a run r′ through t which realizes all such
formulas in m′6|subx ’| · [(’) ·](’) steps.
After that we consider in the same manner another type t′ ∈Tn. However this time

we can delete quasistates only after f′(m′), and so to realize in some run through t′ a
formula 1U 2 ∈ t′, we need again 6[(’) ·](’) new steps. Since |Tn|6[(’), at most
|subx ’| · [2(’) ·](’) quasistates are required to satisfy (ii).
Finally, not more than](’) quasistates may be needed to comply with (iii).

De�nition 22 (suitable pair). A pair t; t′ of types for ’ is called suitable if for every
 1U 2 ∈ subx ’,

 1U 2 ∈ t i� either 2 ∈ t′ or 1 ∈ t′ and 1U 2 ∈ t′:

Lemma 23. Suppose that f1 and f2 are �nite sequences of realizable state candidates
for ’ of length l1 and l2; respectively; and let

f=f1 ∗ f!
2

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 103

with f(n)= 〈Tn; T con
n 〉; n∈N. Then f is a quasimodel for ’ whenever the following

conditions hold:
1: for every i; 06i6l1 + l2; and every ti ∈Ti, there are ti−1 ∈Ti−1 (only if i¿0) and

ti+1 ∈Ti+1 (only if i¡l1 + l2) 2 such that the pairs ti−1; ti and ti; ti+1 are suitable;
2: for every i6l1 and every ti ∈Ti; all formulas of the form 1U 2 ∈ ti are realized
in l1 + l2− i steps in some sequence ti; ti+1; : : : ; tl1+l2 in which ti+j ∈Ti+j and every
pair of adjacent elements is suitable;

3: every pair of adjacent elements in t0c ; : : : ; t
l1+l2
c ; where tic ∈Tcon

i ; is suitable and; for
every i6l1; all formulas of the form 1U 2 ∈ ti are realized in this sequence in
l1 + l2 − i steps.

Proof. We have to show that there is a run coming through an arbitrarily given tn ∈Tn,
for every n∈N. If n6l1, then we �rst use condition 1 to construct a sequence t0; : : : ; tn
such that ti ∈Ti and every pair of adjacent elements in it is suitable. After that, in
accordance with condition 2, we continue this sequence to t0; : : : ; tn; : : : ; tl1+l2 in order
to realize all formulas of the form 1U 2 ∈ tn. Then we again use 2 to continue it to
t0; : : : ; tl1+l2 ; : : : ; t2(l1+l2), realizing all U-formulas in tl1+l2 . And so forth. The resulting
sequence is clearly a run in f.
If n¿l1 then, using 1, we construct a sequence t0; : : : ; tn; : : : ; tm such that ti ∈Ti,

every pair of adjacent elements in it is suitable and m= k(l1 + l2), for some k¿1.
After that, by 2, we run on this sequence to

t0; : : : ; tn; : : : ; tm; : : : ; t(k+1)(l1+l2)

realizing all the U-formulas in tm, and so on, thus obtaining a run through tn.
Finally, we observe that the sequence

t0c ; : : : ; t
l1−1
c ∗ (tl1c ; : : : ; tl1+l2−1

c)!

is a run in f, for every c∈ con’.

As a consequence of the two preceding lemmas we immediately obtain the following:

Theorem 24. A TL1-sentence ’ is satis�able i� there are two sequences f1 and f2
of realizable state candidates for ’ such that f1 ∗ f!

2 satis�es conditions 1–3 of
Lemma 23; all state candidates in f1 are distinct (and so |f1|6](’));

|f2|6|subx ’| · [2(’) ·](’) +](’)

and ’∈ t for all t ∈T0.

Proof. By Theorem 14 and Lemmas 19, 21, ’ is satis�able i� ’ is true in the �rst
quasistate of a quasimodel of the form f1 ∗f0 ∗f¿l

2 described in Lemma 21. It remains
to observe that f1 ∗ f!

0 satis�es the conditions of Lemma 23.

2 Note that f(l1 + l2) =f(l1) =f2(0).

104 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Given two �nite sequences f1 and f2 of state candidates for ’, we can e�ectively
check whether they satisfy conditions 1–3 of Lemma 23. The only missing thing to
make the criterion of Theorem 24 e�ective is therefore an algorithm for detecting
whether a given state candidate for ’ is realizable. Modulo such an (elementary)
algorithm, we obtain an (elementary) algorithm for deciding ’.
Now we extend the developed technique to obtain a similar satis�ability criterion in

models with �nite domains.

6. Satis�ability in 〈N ; ¡〉: �nite domains

To begin with, let us observe that formulas in TL1 behave di�erently in models
with arbitrary and �nite domains.
For ‘¿1, put TL‘

1 =TL1 ∩TL‘.

Theorem 25. For every TL′ ⊇TL1
1 ∩TLmo;

TL�n(N)∩TL′%TL(N)∩TL′:

Proof. Let

’= � ∃x(P(x) ∧ ¬(>SP(x))):

In English: ‘at every moment, someone starts to get old’ – or perhaps, ‘every day has
its dog’. Then ’∈TL1

1 ∩TLmo, and it is readily checked that ’ is satis�ed in the
model M= 〈〈N;¡〉;N; I〉 with

I(n)= 〈N; Pn= {0; : : : ; n}〉;
but is false in all models with �nite domains. Indeed, if we interpret � as ‘at all
times’, then in any model of ’ with linear
ow of time W and domain D we have
|D|¿|W |. Thus, ¬’∈TL�n(N)∩TL′ and ¬’ =∈TL(N)∩TL′.

Our aim in this section is to prove the following analogue of Theorem 15(1):

Theorem 26. Let TL′ ⊆TL1 and suppose that there is an algorithm which is capable
of deciding; for a TL′-sentence ’; whether an arbitrarily-given state candidate for
’ is �nitely realizable. Then the satis�ability problem for TL′-formulas in models
with �nite domains; and so the decision problem for the fragment TL�n(N)∩TL′;
are decidable.

To this end we will modify Theorem 24 to show that a TL1-sentence ’ is satis�ed
in a model with a �nite domain i� there is a quasimodel based on a state function
f=f1 ∗ f!

2 as in Theorem 24, f(n) being a �nitely realizable state candidate for all
n∈N, and the quasimodel having a �nite set of runs R in it. The idea is to strengthen
conditions 1 and 2 of Lemma 23 in such a way that sequences tl1 ; : : : ; tl1+l2 , realizing

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 105

formulas of the form 1U 2, could be short-circuited, i.e., tl1+l2 = tl1 . Then we will be
able to compose in�nite runs of the form

t0; : : : ; tl1−1; 〈tl1 ; : : : ; tl1+l2−1〉!;
the number of which is clearly �nite. Yet, there remains one more technical problem:
to ensure that we have enough runs, i.e., that every type in every quasistate lies on
some run. To solve it, we will need two kinds of sequences of types in quasistates:
one,

s2 = 〈tl1 ; : : : tl1+l2−1〉;
to realize U-formulas, and another one,

s3 = 〈t′l1 ; : : : t′l1+l2−1〉;
to make sure that we have enough runs. The resulting runs will then have the forms

t0; : : : ; tl1−1; (s2 ∗ s3)! and t0; : : : ; tl1−1; (s3 ∗ s2)!:

Let us �x a TL1-sentence ’ and an enumeration 〈t1; : : : ; tn’〉 of all types for ’; n’

6[(’).
The following claim is a ‘�nite version’ of Lemma 9:

Lemma 27. There is m¡! such that; for every �nitely realizable state candidate
C = 〈T; T con〉 and every sequence 〈ni : 0¡i6n’〉; in which ni=0 whenever ti =∈T and
ni¿m otherwise; C is realized in an L-structure D such that |Dti |= ni; for every
i6n’.

Proof. Suppose that C1; : : : ;Ck are all distinct �nitely realizable state candidates for
’ (so that k6](’)) and that Cj is �nitely realized in Dj. Then it is enough to take
m= max{|Dj

ti | : 0¡i6n’; 0¡j6k}.

De�nition 28. A quasimodel 〈f;R〉 for ’ over a linear order F = 〈W;¡〉 is said to
be �nitary if f(w) is a �nitely realizable state candidate for all w∈W , and R is �nite.

Now we can prove a �nite analogue of Theorem 14; it holds for any linear
ow of
time.

Theorem 29. A TL1-sentence ’ is satis�ed in a model with a �nite domain i� it is
satis�ed in a �nitary quasimodel 〈f;R〉 for ’.

Proof. The implication (⇒) was established in the proof of Theorem 14.
(⇐) Suppose ’ is satis�ed in a �nitary quasimodel 〈f;R〉 for ’, and let m be the

number supplied by Lemma 27. De�ne the domain of the model to be constructed by
taking

D= {〈r; �〉 : r ∈R; �¡m}:

106 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

By Lemma 27, for every n∈N there exists an L-structure I(n) with domain D real-
izing f(n) and such that cn= 〈rc; 0〉, for every c∈ con’, and

r(n)= { ∈ subx ’ : I(n) |= � [〈r; �〉]}
for all r ∈R and �¡m. Let M= 〈D; I〉. In precisely the same way as in the proof of
Theorem 14 one can show that ’ is satis�ed in M.

Let 〈f;R〉 be a quasimodel for ’. De�ne an equivalence relation ∼R on N by taking

i∼R j i� f(i)=f(j) and ∀r ∈R r(i)= r(j)

and denote by [n]R the ∼R-equivalence class generated by n.
Besides, for each n∈N, we de�ne one more equivalence relation ∼n

R on N by taking
i∼n

R j i� f(i)=f(j) and
• for every r ∈R there is r′ ∈R such that r(n)= r′(n) and r(i)= r′(j),
• for every r ∈R there is r′ ∈R such that r(n)= r′(n) and r(j)= r′(i).

Lemma 30. For every n∈N; the number of pairwise distinct ∼n
R-equivalence classes

does not exceed

“(’)=](’) · 22·2|subx ’|
:

Proof. Fix some n∈N and de�ne a function �i(k; l), for i∈N, k; l6n’, by taking

�i(k; l) =
{
1 if ∃r ∈R r(n)= tk & r(i)= tl;
0 otherwise:

We then have i∼n
R j i� f(i)=f(j) and �i(k; l)= �j(k; l), for all k; l6n’. It remains

to observe that the number of functions from {1; : : : ; n’}2 into {0; 1} is 2n2’ .

The �nite analogue of Lemma 19 we need is proved similarly to that lemma with
the help of Lemma 17.

Lemma 31. Every quasimodel 〈f;R〉 for ’ with �nite R contains a subquasimodel
〈f1 ∗ f2;Q〉 with �nite Q such that |f1|6](’) and [n]Q is in�nite, for every n¿|f1|.

However, to prove a �nite version of Lemma 21, a somewhat subtler deleting tech-
nique is required.

Lemma 32. Let 〈f;R〉 be a quasimodel for ’; n¡i¡j; and i∼n
R j.

Then 〈f6i ∗ f¿j; Q=R6i ∗n R¿j〉 is also a quasimodel for ’; where

R6i ∗n R¿j = {r6i
1 ∗ r¿j

2 : r1; r2 ∈R; r1(i)= r2(j); r1(n)= r2(n)}:
Moreover; for all n′¿j; if n∼R n′ then n∼Q n′ − (j − i).

Proof. Follows immediately from the de�nition of i∼n
R j.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 107

Lemma 33. Let 〈f=f1 ∗ f2;R〉 be a quasimodel for ’ (with quasistates having the
form 〈Ti; T con

i 〉) such that n= |f1|6](’); R is �nite; and [m]R is in�nite for all m¿n.
Then 〈f;R〉 contains a subquasimodel of the form 〈f1 ∗f0 ∗f¿l

2 ;Q〉; for some l¿0;
such that Q is �nite and
(i) |f0|6|subx ’| · “(’) · 22·2|subx ’|

+ “(’);
(ii) for every t ∈Tn there is a run r ∈Q through t realizing all formulas of the form

 1U 2 ∈ r(n) in |f0| steps (for tc ∈Tcon
n the run rc realizes all formulas of the

form 1U 2 ∈ rc(n) in |f0| steps);
(iii) n∼Q |f1 ∗ f0|. 3

Proof. Suppose t ∈Tn, 1U 2 ∈ t and r is a run in R through t. Then there exists
m¿0 such that 2 ∈ r(n + m) and 1 ∈ r(n + k) for all k ∈ (0; m). Assume now that
0¡i¡j¡m, r(n+ i)= r(n+ j) and n+ i∼n

R n+ j. In view of Lemma 32, 〈f1 ∗f6i
2 ∗

f¿j
2 ;Q0 =R6n+i∗nR¿n+j〉 is a subquasimodel of 〈f;R〉, r6n+i∗r¿n+j is a run through

t, and for all n′¿n+ j we have n∼Q0 n
′ − (j − i) whenever n∼R n′. Thus we obtain

a subquasimodel

〈f1 ∗ f602 ∗ f3;Q0〉;
of 〈f;R〉 such that Q0 is �nite, there is a run r1 ∈Q0 through t, realizing 1U 2 in
m162|subx ’| · “(’) steps, and such that for all n′¿n + m1 we have n∼Q0 n

′ − (j − i)
whenever n∼R n′. In particular, [n]Q0 is in�nite.
After that we consider another formula ′

1U ′
2 ∈ t and assume that it is realized

in m2¿m1 steps in r1. Using Lemma 32 once again (and deleting quasistates in the
interval f3(m1); : : : ; f3(m2)) we construct a subquasimodel

〈f1 ∗ f602 ∗ f6m1
3 ∗ f4;Q1〉

of 〈f;R〉 and a run r2 through t realizing both 1U 2 and ′
1U ′

2 in 2 · 2|subx ’| · “(’)
steps, with [n]Q1 being in�nite.
Having analyzed all distinct formulas of the form 1U 2 in t we obtain a subquasi-

model

〈f1 ∗ f612 ∗ f′;Q′〉
of 〈f;R〉 with �nite Q′ and a run r′ ∈Q′ through t realizing all U-formulas in
m′6|subx ’| · 2|subx ’| · “(’) steps. The class [n]Q′ is in�nite.
Then we consider in the same manner another type t′ ∈Tn. However, this time we can

delete quasistates only after f′(m′). And so forth. Thus we arrive at a subquasimodel

〈f1 ∗ f602 ∗ f′′;Q′′〉;
of 〈f;R〉 with �nite Q′′, in�nite [n]Q′′ and such that all formulas of the form 1U 2
in all t ∈Tn are realized by some r ∈Q′ in 6|subx ’| · “(’) · 22·2|subx ’|

steps.

3 Note that f(n)=f0(0)=f¿l
2 (0)=f(|f1 ∗ f0|).

108 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Finally, we need at most “(’) new quasistates to comply with (iii).

We are in a position now to prove the �nite analogue of Lemma 23.

Lemma 34. Suppose f1 and f2 are �nite sequences of realizable state candidates for
’ of length l1 and l2; respectively; and let

f=f1 ∗ f!
2

with f(n)= 〈Tn; T con
n 〉; for n∈N. Suppose also that the following conditions hold:

1. for every i¡l1 + l2 and every ti ∈Ti; there is a sequence t0; : : : ; tl1+l2−1 of types
for ’ such that
1:1. tj ∈Tj; for every j¡l1 + l2;
1:2. the pair ti; ti+1 is suitable; for every i¡l1 + l2 − 1;
1:3. the pair tl1+l2−1; tl1 is suitable;

2. for every i6l1 and every ti ∈Ti; there is a sequence t0; : : : ; tl1+l2−1 such that
2:1. all formulas of the form 1U 2 are realized in l1 + l2 − i steps in t0; : : : ;

tl1+l2−1;
2:2. tj ∈Tj; for j¡l1 + l2;
2:3. every pair of adjacent types in the sequence is suitable;
2:4. the pair tl1+l2−1; tl1 is suitable.

3. all pairs of adjacent elements in t0c ; : : : ; t
l1+l2−1
c ; where tic ∈Tcon

i ; as well as the pair
tl1+l2−1
c ; tl1c ; are suitable; and; for every i6l1; all formulas of the form 1U 2 ∈ ti
are realized in t0c ; : : : ; t

l1+l2−1
c in l1 + l2 − i steps.

Then there is a �nite set R of runs in f such that 〈f;R〉 is a quasimodel for ’.

Proof. We have to de�ne a �nite set of runs R in f. Say that a sequence t0; : : : ; tl1+l2−1
is of type 1 (type 2) if it satis�es condition 1 (respectively, condition 2 for i= l1)
in the formulation of the lemma. Clearly, there are �nitely many sequences of type 1,
and every sequence of type 2 is also a sequence of type 1.
Let R consist of all in�nite words of the form

s1 ∗ (s¿l1
2 ∗ s¿l1

3)! and s1 ∗ (s¿l1
3 ∗ s¿l1

2)!;

where s1, s3 are sequences of type 1 and s2 is a sequence of type 2 such that
• the pair s1(l1 + l2 − 1), s2(l1) is suitable and
• s2(l1)= s3(l1).
It is readily checked that every such word is a run in f and that 〈f;R〉 is a

quasimodel for ’. Needless to say that R is �nite.

Putting together the two preceding lemmas we obtain:

Theorem 35. ATL1-sentence ’ is satis�ed in a model on 〈N;¡〉 with a �nite domain
i� there are two sequences f1 and f2 of �nitely realizable state candidates for ’

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 109

such that f1 ∗ f!
2 satis�es conditions 1–3 of Lemma 34; all state candidates in f1

are distinct (and so |f1|6](’));

|f2|6|subx ’| · “(’) · 22·2|subx ’|
+ “(’)

and ’∈ t; for all t ∈T0.

The criterion of Theorem 26, reducing the satis�ability problem for TL′-formulas
in models with �nite domains to the �nite satis�ability problem for L-formulas of the
form �C , follows immediately.

7. Satis�ability in 〈R ; ¡〉: �nite domains

Now we will present a third method of reducing decidability of monodic fragments
to classical decidability problems. We will consider only �nite domains, with
ow
of time the real numbers, 〈R;¡〉. (The decidability problems for �nite domains over
an arbitrary �rst-order de�nable class of
ows and over 〈N;¡〉, 〈Z;¡〉, and 〈Q;¡〉
reduce to this case; see Corollary 37. The case of 〈R;¡〉 with arbitrary domains
remains open.)
We will prove the following theorem.

Theorem 36. Let TL′ ⊆TL1 and suppose that there is an algorithm which is capable
of deciding; for any TL′-sentence ’; whether an arbitrarily-given state candidate for
’ is �nitely realizable. Then it is decidable whether such a sentence ’ is satis�ed
in a model with
ow of time 〈R;¡〉 and �nite domain: that is; TL�n(R) ∩ TL′ is
decidable.

The proof will occupy most of this section. The method is model-theoretic, based on
that of [11, 23, 28]; see also [16, Chapter 6.9]. Very roughly, the idea of the proof is
as follows. By Theorem 29, we need only decide whether there is a �nitary quasimodel
of a given sentence ’∈TL′ with
ow of time 〈R;¡〉. Such a quasimodel consists
of a �nite set of runs over 〈R;¡〉, a ‘snapshot’ of the runs at any moment of time
giving a �nitely realizable state candidate. Thus, the �nitely realizable state candidate
gives an instantaneous description of the runs in the quasimodel. We will show how to
describe the runs over longer intervals of R, ranging from one-point intervals as above,
to the whole of R. We may decide whether each possible description of the runs is
satis�able: for one-point intervals, using the algorithm deciding �nite realizability of
state candidates, and for more complex ones by decomposing them into simpler parts
for which we can already decide satis�ability (cf. Lemma 46(2,4) below). We will
then show that a description of the runs on the whole of R can always be built up in
�nitely many steps from instantaneous descriptions (�nitely realizable state candidates)
– cf. Lemma 46(3). Combining these ideas serves to prove Theorem 36; formally, the
theorem follows from Lemma 46.

110 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Decidability over various other
ows of time or classes of
ows of time reduce to
Theorem 36.

Corollary 37. Let TL′ ⊆TL1 and suppose that there is an algorithm deciding; for
any TL′-sentence ’; whether an arbitrarily given state candidate for ’ is �nitely
realizable. Then it is decidable whether a TL′-sentence is satis�ed in a model with
�nite domain and with any of the following (classes of)
ows of time:
1. 〈N;¡〉;
2. 〈Z;¡〉;
3. 〈Q;¡〉;
4. the class of all �nite linear orders;
5. any �rst-order-de�nable class of linear orders.

Proof. We prove part 1. Given ’, introduce a new propositional variable p, and de�ne
the TL1-sentence

�=�¬(>Sp)∧�(>Up∧¬pS>∧¬pU>);
where � abbreviates ∨>U ∨>S and � abbreviates ¬�¬ . So � states that
p is bounded below, unbounded above, and that there is no accumulation point of p.
Clearly, the models of � with
ow of time 〈R;¡〉 are precisely those in which the
interpretation of p is isomorphic to 〈N;¡〉. Now de�ne the relativization ’p of the
temporal connectives in ’ to p, by induction in the usual way: �p= � for atomic �,
(¬)p=¬ p, (1 ∧ 2)p= p

1 ∧ p
2 , (∀x)p=∀x p, and (1U 2)p=(p→ p

1)U(p∧
 p
2), plus a similar clause for S. Then it is easily seen that ’ has a model with
ow
of time 〈N;¡〉 and �nite domain i� �∧p∧’p has a model with
ow of time 〈R;¡〉
and �nite domain. An algorithm to decide �nite realizability of state candidates for ’
easily adapts to do the same for �∧p∧’p. This proves part 1.
Parts 2 and 4 of the corollary are proved by similar reductions. For part 5, we also

use the downward L�owenheim–Skolem–Tarski theorem (as in Theorem 15) and the
expressive completeness of U and S over 〈R;¡〉 [26, 16]. Part 3 follows, because ’
has a model with dense
ow of time without endpoints (a �rst-order de�nable property)
i� it has a model over 〈Q;¡〉. The details are left to the interested reader.

This gives an alternative proof of Theorem 26.

7.1. 3-theories

We begin our proof of Theorem 36 with the de�nitions needed to describe runs
over intervals of R. To simplify notation, we will frequently identify (notationally)
a structure with its domain: hence, we write W rather than F = 〈W;¡〉 for a linear
order.
Let L’ denote the �rst-order language (with equality, say, though it is immaterial for

our purposes) in the signature {¡;R : ∈ subx ’}, where the R are unary predicates.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 111

An L’-order is an L’-structure M = 〈W;RM
 : ∈ subx ’〉 where W is a linear order

and the RM
 are subsets of W .

De�nition 38 (3-theory). A 3-theory (in L’) is a set � of �rst-order L’-sentences
of the form 3th(M)= {� : � an L’-sentence of quanti�er depth at most 3, M |= �}, for
some L’-order M .

Up to logical equivalence, there are �nitely many 3-theories. Note that by de�nition,
any 3-theory has a model. Let T be the set of types for ’; recall that T is �nite,
with |T|6[(’). If W is a linear order and r :W →T, de�ne the L’-order Mr to be

〈W; {w∈W : ∈ r(w)} : ∈ subx ’〉:
That is, Mr has underlying order W , and Mr |=R (w) i� ∈ r(w), for w∈W and
 ∈ subx ’. We let 3th(r) denote 3th(Mr).

De�nition 39 (endpoints, degenerate). Let � be a 3-theory. We say that � has a left
endpoint if � `∃x∀y¬(y¡x), that � has a right endpoint if � `∃x∀y¬(x¡y), and we
say that � is degenerate if � `∀xy¬(x¡y).

Let I be a linear order and Mi= 〈Wi; Ri
 : ∈ subx ’〉 (i∈ I) be L’-orders. We write∑

i∈I Mi for the L’-order M with underlying order W =
⋃

i∈I Wi × {i}, ordered lex-
icographically by 〈w; i〉¡〈w′; j〉 i� either i¡j, or i= j and w¡w′ in Wi, and with
M |=R (〈w; i〉) i� Mi |=R (w), for 〈w; i〉 ∈W and ∈ subx ’. We write the underlying
order of M as

∑
i∈I Wi. When I = {0; 1} with 0¡1, we write simply M0 + M1 and

W0 +W1.
A well-known Feferman–Vaught argument (see, e.g. [25, Theorem A.6.2]) shows that

if Mi; Ni (i∈ I) are L’-orders and 3th(Mi)= 3th(Ni) for all i, then 3th(
∑

i∈I Mi)= 3th
(
∑

i∈I Ni). Hence, we may use the following notation. Let I be a linear order and for
each i∈ I let �i be a 3-theory. We write

∑
i∈I �i for the unique 3-theory � such that

�=3th(
∑

i∈I Mi) for any L’-orders Mi |= �i (i∈ I).
As with L’-orders, we write �0 + �1 when I = {0; 1} with 0¡1.

7.2. Characters

Given a state function f for ’ over a linear order W (De�nition 10), a run r in f
(De�nition 11) is completely described by the L’-order Mr . The 3-theory 3th(r) does
not completely determine r, but it does carry a great deal of information about r. For
example, for an arbitrary function r :W →T with f(w)∈Tw where f(w)= 〈Tw; T con

w 〉,
3th(r) determines whether r is a run in f, and whether ’∈ r(w) for some w∈W .
Moreover, 3-theories are �nite syntactic objects and can be used in algorithms. So we
will use them to represent quasimodels.
We aim to decide satis�ability of ’ by deciding whether a (�nitary) quasimodel for ’

exists. Such a quasimodel consists chie
y of a set of runs, and it can be described by a

112 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

set of 3-theories – simply the 3-theories of the runs in the quasimodel. The quasimodel
also contains distinguished runs associated with constants, so we will also distinguish
certain of the descriptive 3-theories. This leads us to the following de�nition.

De�nition 40 (character).
1. A character is a pair 〈S; Scon〉, where S is a set of 3-theories and Scon : con’→ S
is a function. There are only �nitely many characters.

2. A character 〈S; Scon〉 is said to have a left (right) endpoint if every �∈ S has a left
(right) endpoint.

3. A character 〈S; Scon〉 is said to be degenerate if
• each �∈ S is degenerate,
• for each �∈ S, the set t�= { ∈ subx ’ : � `∃xR (x)} is a type for ’,
• 〈{t� : �∈ S}; {〈tScon(c); c〉 : c∈ con’}〉 is a �nitely realizable state candidate for ’.

A �nitary quasimodel for ’ is formally a state function f on a linear order W , whose
values are �nitely realizable state candidates, together with a �nite set R of runs in f.
We may ‘restrict’ such a quasimodel to any suborder W ′ of W , by restricting f and the
runs in R to W ′. In general, such a restriction need not be a quasimodel (we will call
it a ‘pre-quasimodel’), but it still has a character associated with it in the same way
as for a full quasimodel, by taking the 3-theories of the restrictions of the runs to W ′.
The smallest possibility is when W ′ consists of a single point of W – the restriction
of the quasimodel to W ′ is then essentially a �nitely realizable state candidate, and the
associated character is degenerate.
We aim to try to build a quasimodel for ’ from smaller pre-quasimodels which are

restrictions of it. These smaller pre-quasimodels are in turn built from even smaller
ones, and so on, leading eventually to one-point restrictions. We will calculate the
character of each successively larger pre-quasimodel from the characters of the next
smaller ones, starting from degenerate characters describing the one-point restrictions,
and stopping when the character tells us that we have a genuine quasimodel. The al-
lowed operations in building a pre-quasimodel from smaller ones are, roughly speaking:
concatenating two pre-quasimodels; iterating a �xed pre-quasimodel ! times, forwards
or backwards; and merging �nitely many pre-quasimodels together in a densely ordered
‘shu�e’. We note that these operations can in general be e�ected in more than one
way, so are non-deterministic, and that certain preconditions borrowed from [11] have
to be met in order to ensure that the �nal quasimodel has order-type R.
Since we are representing pre-quasimodels by their characters, we need to calculate

the character of a pre-quasimodel resulting from smaller ones by these operations.
The following de�nition will allow us to do this. The building operations cited above
are represented by clauses (iv)–(vii) in the de�nition. We should note that there can
be more than one pre-quasimodel with a given character, and given that the building
operations are also non-deterministic, the character of the resulting pre-quasimodel is
not uniquely determined by the characters of the smaller ones. Therefore, we de�ne
only a relation ‘≡’ between the ‘input’ and ‘output’ characters, not a function.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 113

We will need the notion of a condensation of R: namely, a linear order 〈I;¡〉
where I is the set of equivalence classes of some equivalence relation on R whose
equivalence classes are convex, the ordering ¡ on I being induced from the ordering
on R in the obvious way. For more information on condensations see, e.g. [39]

De�nition 41 (≈; ≡). Let I be a linear order, and �= 〈S; Scon〉 and �i= 〈Si; Scon
i 〉

(i∈ I) be characters. We write � ≈∑i∈I �i if
(i) for each c∈ con’, Scon(c)=

∑
i∈I S

con
i (c),

(ii) for each �∈ S there are �i ∈ Si (i∈ I) such that �=
∑

i∈I �i,
(iii) for all i∈ I and �i ∈ Si, there are �j ∈ Sj (j∈ I\{i}) such that ∑j∈I �j ∈ S.

We write � ≡∑i∈I �i if one of the following holds:
(iv) I is a 2-element order, say {0; 1} with 0¡1, either �0 has a right endpoint or �1

a left endpoint (not both), and � ≈ �0 + �1,
(v) I = 〈N;¡〉, �i= �0 for all i∈N, �0 has either a left or a right endpoint (not

both), condition (i) above holds, and S = {∑i∈I �i : �i ∈ S0; �i= �0 for all i∈ I}.
(vi) As for (v) but with I = 〈N;¿〉.
(vii) I is a dense condensation of 〈R;¡〉 without endpoints; conditions (i) and (ii)

above hold, and for all i∈ I (so that i is a convex subset of R):
• i and �i have a left and a right endpoint,
• i is a singleton subset of R i� � `∀xy¬(x¡y) for all �∈ Si,
• for each �∈ Si there are �j ∈ Sj (j∈ I) with

∑
j∈I �j ∈ S, 〈�j; �j〉= 〈�i; �〉 for

some j∈ I , and for each j∈ I , the set {k ∈ I : 〈�k ; �k〉= 〈�j; �j〉} is dense in I .

We will see later that the conditions for � ≡∑i∈I �i are decidable.

7.3. Legal and perfect characters

We now de�ne those characters that are reachable from degenerate ones by �nitely
many applications of De�nition 41.

De�nition 42 (legal character). Let � denote the smallest set of characters containing
all degenerate characters and such that if I is a linear order, �i ∈� for i∈ I , and
� ≡∑i∈I �i, then �∈�. A character � is said to be legal if �∈�.

We also de�ne those characters that may be descriptions of quasimodels.

De�nition 43 (perfect character). A character �= 〈S; Scon〉 is said to be perfect if for
every �∈ S,
• � `∀x(R 1U 2 (x)↔∃y(x¡y∧R 2 (y)∧∀z(x¡z¡y→R 1 (z)))) for every 1U 2

∈ subx ’,
• � `∀x(R 1S 2 (x)↔∃y(y¡x∧R 2 (y)∧∀z(y¡z¡x→R 1 (z)))) for every 1S 2

∈ subx ’,
• � `∀x∃y; z(y¡x¡z),
and for some �∈ S we have � `∃xR’(x).

114 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

By an interval of R we mean a linear order whose domain is a non-empty convex
subset of R, the ordering on it being induced from 〈R;¡〉. We will often abuse nota-
tion by identifying the subset of R with the linear order. Note that up to isomorphism
there are just �ve intervals of R, represented by [0; 1], [0; 1), (0; 1], (0; 1), and {0}.
Here and below, we use standard notation for intervals: [x; y)= {z ∈R : x6z¡y} if
x6y, etc.
Characters describe runs over some interval of a potential �nitary quasimodel. We

now make this precise.

De�nition 44 (pre-quasimodel). A pre-quasimodel is a triple p= 〈W;f;R〉, where W
is a linear order isomorphic to an interval of R, f is a state function for ’ over W ,
f(w)= 〈Tw; T con

w 〉 is a �nitely realizable state candidate for ’ for each w∈W , and R

is a �nite set of functions r :W →T, satisfying the conditions:
• r(w)∈Tw for every r ∈R, w∈W ,
• for each c∈ con’, the map rfc :W →T de�ned by rfc (w)= t, where 〈t; c〉 ∈Tcon

w , is
in R,

• for each w∈W and t ∈Tw there is r ∈R with r(w)= t.

De�nition 45 (model of a character). Let p= 〈W;f;R〉 be a pre-quasimodel for ’,
and let �= 〈S; Scon〉 be a character. We write p |= � if
• 3th(rfc)= Scon(c) for each c∈ con’,
• {3th(r) : r ∈R}= S.

7.4. The main lemma

We will prove:

Lemma 46. 1. If � is a perfect character; p= 〈W;f;R〉 is a pre-quasimodel; and
p |= �; then 〈f;R〉 is a �nitary quasimodel for ’ over W in which ’ is satis�ed; and
W ∼= 〈R;¡〉.
2. If � is a legal character; then there exists a pre-quasimodel p with p |= �.
3. If 〈f;R〉 is a �nitary quasimodel for ’ over 〈R;¡〉 in which ’ is satis�ed; then

there is a legal perfect character � with 〈〈R;¡〉; f;R〉 |= �.
4. Given an oracle that determines whether a given state candidate for ’ is �nitely

realizable; it is decidable whether there exists a legal perfect character. The algorithm
is uniform in ’.

Theorem 29 and parts 1–3 of the lemma show that ’ has a model with
ow of
time 〈R;¡〉 and �nite domain i� there exists a perfect legal character. By part 4 of
the lemma, given TL′ ⊆TL1 and an algorithm that decides for any sentence ’∈TL′

whether a given state candidate for ’ is �nitely realizable, it is decidable whether such
a character exists. Hence, Theorem 36 follows from Lemma 46.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 115

7.5. Proof of Lemma 46(1)

This is straightforward. Let �= 〈S; Scon〉 be a perfect character, p= 〈W;f;R〉 a pre-
quasimodel, and let p |= �. Then by the de�nitions, R is �nite, and if r ∈R we have
3th(r)∈ S and so r is a run in f. So m= 〈f;R〉 is a �nitary quasimodel for ’ over
W . Let �∈ S be such that � `∃xR’(x), and let r ∈R satisfy 3th(r)= �. Then clearly,
’∈ r(w) for some w∈W , so that ’ is satis�ed in m. Since � `∀x∃yz(y¡x¡z), W is
isomorphic to an interval of R and has no endpoints, so we must have W ∼= 〈R;¡〉.

7.6. Proof of Lemma 46(2)

Here, we prove the ‘soundness’ part of Lemma 46. (Some may wonder if it should
be called ‘completeness’.) We will show that if � is a legal character then there is
a pre-quasimodel p |= �. By de�nition of �, it su�ces to prove that this holds for
any degenerate �, and that if I is a linear order, �i (i∈ I) are characters having pre-
quasimodels, and � ≡∑i∈I �i, then p |= � for some pre-quasimodel p.
Let �= 〈S; Scon〉 be a degenerate character. As in De�nition 40, for �∈ S let t�= { ∈

subx ’ : � `∃xR (x)}, a type for ’. Let W be a one-point ordering with domain {w},
de�ne f(w) to be the �nitely realizable state candidate 〈{t� : �∈ S}; {〈tScon(c); c〉 : c∈
con’}〉 for ’, and for �∈ S de�ne r� :W →T by r�(w)= t�.
Observe that 3th(r�)= �. For, by de�nition of Mr� , for every ∈ subx ’ we have

Mr� |=R (w) i� ∈ r�(w) i� � ` ∃xR (x). As � ` ∀xy¬(x¡y), we see that if N |= �
then N ∼= Mr� . Since such an N exists, we have Mr� |= �. Hence, 3th(r�)= 3th(Mr�)= �.
As W is isomorphic to a (one-point) interval of R, p= 〈W;f; {r� : �∈ S}〉 is evi-

dently a pre-quasimodel, and by the above, p |= �.
For the inductive step, let I be a linear order and �= 〈S; Scon〉, �i= 〈Si; Scon

i 〉; pi=
〈Wi; fi;Ri〉 characters and pre-quasimodels with pi |= �i (for all i ∈ I), and suppose that
� ≡∑i∈I �i. We will de�ne a pre-quasimodel 〈W;f;R〉 and show that 〈W;f;R〉 |= �.
Let W =

∑
i∈I Wi. We show �rst that (∗) W is isomorphic to an interval of R. If

I is the order 0¡1, then our assumptions show that either W0 has a right endpoint
or W1 a left endpoint, and not both, so that (∗) is clear. (For example, if W0

∼= [0; 1]
and W1

∼= (1; 2) then W ∼= [0; 2), an interval of R.) If I = 〈N;¡〉, then each Wi has
a left (say) endpoint, so again,

∑
i∈I Wi is isomorphic to an interval of R; the case

I = 〈N;¿〉 is similar. Finally, suppose that I is a dense condensation of R without end-
points whose elements have left and right endpoints. Then by de�nition of ≡; Wi

∼= i
for each i∈ I , so W ∼= ⋃ I ∼= R and (∗) follows. All cases in the de�nition of ≡ are
now covered, and we are done.
For any functions gi de�ned on Wi (i∈ I), we write

∑
i∈I gi for the function g on

W de�ned by g(〈w; i〉)= gi(w).

Lemma 47. If ri :Wi →T (i∈ I); then 3th(
∑

i∈I ri)=
∑

i∈I 3th(ri).

Proof. Write r for
∑

i∈I ri. By de�nition, 3th(r)= 3th(Mr) and 3th(ri)= 3th(Mri) for
each i ∈ I . Clearly, Mr =

∑
i∈I Mri . So

∑
i∈I 3th(ri) is by de�nition 3th(r).

116 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

De�ne a state function f=
∑

i∈I fi on W , and write f(w)= 〈Tw; T con
w 〉 for w∈W .

The de�nition of R will divide into cases according to the parts of the de�nition of ≡,
but in all cases we will arrange that each r ∈R has the form

∑
i∈I ri for some ri ∈Ri

(i∈ I), and that rfc ∈R for each c∈ con’. Given this much, we can already check that

r(w) ∈ Tw for all r ∈R; w ∈ W; (11)

3th(rfc)= Scon(c): (12)

For (11), let 〈w; i〉 ∈W and r=
∑

i∈I ri ∈R. Then fi(w)=f(〈w; i〉)= 〈T〈w; i〉; T con
〈w; i〉〉.

So as pi is a pre-quasimodel, r(〈w; i〉)= (∑i∈I ri)(〈w; i〉)= ri(w)∈T〈w; i〉, as required.
For (12), as pi |= �i for each i, we have 3th(rfi

c)= Scon
i (c). By the de�nitions and

Lemma 47, we obtain

rfc =
∑
i∈I

rfi
c ;

3th(rfc)= 3th

(∑
i∈I

rfi
c

)
=
∑
i∈I

3th(rfi
c)=

∑
i∈I

Scon
i (c)= Scon(c)∈ S:

 (13)

Now we go through the cases of De�nition 41, de�ning R and checking that p= 〈W;
f;R〉 is a pre-quasimodel and p |= �.
4. (I = {0; 1}) We de�ne R= {r0 + r1 : r0 ∈R0; r1 ∈R1; 3th(r0 + r1)∈ S}. This is
clearly �nite, since R0, R1 are �nite.
• By (13), rfc ∈R.
• Let w∈W and t ∈Tw; we seek r ∈R with r(w)= t. Let w= 〈w′; i〉 for w′ ∈Wi,

i∈ I . As pi is a pre-quasimodel, there is ri ∈Ri with ri(w′)= t. As pi |= �i;
3th(ri)= �i ∈ Si. As � ≈ �0 + �1, there is �1−i ∈ S1−i with �0 + �1 ∈ S, and
as p1−i |= �1−i, there is r1−i ∈R1−i with 3th(r1−i)= �1−i. Then by Lemma 47,
r= r0 + r1 satis�es

3th(r)= 3th(r0 + r1)= 3th(r0) + 3th(r1)= �0 + �1 ∈ S;

so clearly, r ∈R and r(w)= ri(w′)= t.
• To prove S = {3th(r) : r ∈R}, we only need check ‘⊆’ – that if �∈ S then there
is r ∈R with �=3th(r). By condition (ii) of De�nition 41, there are �i ∈ Si

(i=0; 1) with �= �0 +�1, and since pi |= �i, there are ri ∈Ri with 3th(ri)= �i,
for each i. We may take r= r0 + r1.

5. (I = 〈N;¡〉) We may assume that pi= p0 for all i∈ I , since �i= �0. We de�ne

R=

{
r : r=

∑
i∈I

ri for some ri ∈Ri (i∈ I); ri= r0 for all i; 3th(r)∈ S

}
:

Clearly, |R| ≤ |R0|, so R is �nite.
• If c∈ con’ then rfi

c = rf0c for all i∈ I , since pi= p0. It now follows from (13)
that rfc ∈R.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 117

• We let w∈W and t ∈Tw and �nd r ∈R with r(w)= t. Suppose that w=
〈w′; n〉, for w′ ∈Wn, n∈N. As pn is a pre-quasimodel, we may pick rn ∈Rn with
rn(w′)= t. As pn |= �n, 3th(rn)∈ Sn. De�ne ri= rn for all i∈ I . Then by de�nition
of ≡, 3th(∑i∈I ri)=

∑
i∈I 3th(ri)∈ S, so r=

∑
i∈I ri ∈R and r(w)= rn(w′)= t.

• By de�nition of ≡, each �∈ S has the form
∑

i∈I �i for �i ∈ Si (i∈ I) with all
�i equal to �0. By p0 |= �0, there is r0 ∈R0 with 3th(r0)= �0. Let ri= r0, for
each i, and r=

∑
i∈I ri. Then 3th(r)= �, so r ∈R. Hence, S ⊆{3th(r) : r ∈R},

and the converse inclusion is clear by de�nition of R.
6. (I = 〈N;¿〉) This is similar to the preceding case.
7. (I is a dense condensation of R) This is the most involved case. Again, we may
as well suppose that if �i= �j then pi= pj, for i; j∈ I . The de�nition of R has
two parts. First, observe that by De�nition 41(ii), for each �∈ S there are �i ∈ Si

(i∈ I) such that �=
∑

i∈I �i. For each i, pick ri ∈Ri with 3th(ri)= �i, and let
r�=

∑
i∈I ri. Next, noting that it follows from the de�nition of ≡ that for each

character �, the set I�= {i ∈ I : �i= �} is either empty or dense in I , choose an
equivalence relation ∼ on I with the properties:
(∗) ∀i; j∈ (i ∼ j ⇒ �i= �j),

for all i∈I; I�i is partitioned by ∼ into |Si| equivalence classes, each dense in I .
If ri ∈Ri for i∈ I , the sequence (ri)i∈ I is said to be simple if i∼ j implies
ri= rj, for all i; j∈ I . Note that there are only �nitely many simple sequences.
We let

R= {r� : �∈ S}∪
{∑

i∈I

ri : (ri)i∈ I a simple sequence, 3th

(∑
i∈I

ri

)
∈ S

}
:

• Observe that if c∈ con’ then by (∗), (rfi
c)i∈I is simple, so by (13) as before,

rfc ∈R.
• Since by Lemma 47, 3th(r�)= �∈ S, we have S = {3th(r) : r ∈R}.
• Let 〈w; j〉 ∈W , and t ∈Tw. We seek r ∈R with r(〈w; j〉)= t. As pj is a pre-
quasimodel, we may pick rj ∈Rj with rj(w)= t. By De�nition 41(vii), there
are �i ∈ Si for i∈ I such that

∑
i∈I �i ∈ S, 〈�i; �i〉= 〈�j; 3th(rj)〉 for some i ∈ I ,

and (†) {k ∈ I : 〈�k ; �k〉= 〈�i; �i〉} is dense in I for each i∈ I . We may therefore
choose a new equivalence relation ∼′ on I satisfying the conditions (∗), such
that if i ∼′ i′ then �i= �i′ . So, writing i=∼′ for the ∼′-class of i (and similarly
for ∼), we may de�ne �i=∼′ to be �i, for i∈ I . Let I�=∼ denote the set of
∼-classes contained in I�, and de�ne I�=∼′ similarly. By (∗), |I�=∼ |= |I�=∼′|
for every �, and we know that 3th(rj)= �e for some e∈ I�j =∼′. Since j∈ I�j ,
we may pick a bijection � : I=∼ → I=∼′ such that
(a) �(I�=∼)= I�=∼′, for all characters �,
(b) �(j=∼)= e, so that ��(j=∼) = 3th(rj).
Now pick ri ∈Ri for each i∈ I\{j} in such a way that ∀i∈ I(3th(ri)= ��(i=∼) ∈
Si) and ∀i; k ∈ I (i ∼ k ⇒ ri= rk). Thus, the sequence (ri)i∈I is simple. For ev-
ery i∈ I , the set {k ∈ I : 〈�k ; 3th(rk)〉= 〈�i; 3th(ri)〉} contains i=∼ , so by (∗)

118 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

it is dense in I . We saw that an analogous property (†) holds for (�i)i∈I . A
Feferman–Vaught argument (cf. [25, Theorem A.6.2]) now shows that∑

i∈I 3th(ri)=
∑

i∈I �i ∈ S. Hence, r=
∑

i∈I ri ∈R, and r(〈w; j〉)= rj(w)= t.

Remark 48. This part of the argument seems to fail in the arbitrary-domain case –
there is no obvious analogue for the last, density condition of De�nition 41(vii) in that
case. This does not necessarily mean that the �nite-domain case is ‘easier’, as opposed
to ‘di�erent’. We conjecture that the argument of the �rst-half of [11] may apply in
arbitrary domains.

7.7. Proof of Lemma 46(3)

The argument is very similar to one in [11]. Let m= 〈f;R〉 be a �nitary quasimodel
for ’ over 〈R;¡〉 in which ’ is satis�ed. For any interval E of R, we write m�E
for 〈E; f�E; {r�E : r ∈R}〉; note that m�E is a pre-quasimodel. We write �E for the
character

�E = 〈{3th(r�E) : r ∈R}; (c 7→ 3th(rfc �E))c∈con ’〉:

It is clear that m�E |= �E for all E, and that �R is perfect. We are going to show that
�R is legal.

Lemma 49. Let I be a linear order and let Ei be an interval of R for each i∈ I; such
that E=

⋃
i∈I Ei is also an interval of R; and x¡y whenever i¡j in I; x∈Ei; and

y∈Ej. Then
1: 3th(r�E)=

∑
i∈I 3th(r�Ei) for each r ∈R;

2: �E ≈∑i∈I �Ei .

Proof. Let r ∈R. Then by de�nition, 3th(r�E)= 3th(Mr�E) and 3th(r�Ei)= 3th(Mr�Ei)
for each i. Clearly, Mr�E =

∑
i∈I Mr�Ei . So

∑
i∈I 3th(r�Ei) is by de�nition 3th(r�E).

We now check that �E ≈ ∑i∈I �Ei . Let �E = 〈S; Scon〉, and �Ei = 〈Si; Scon
i 〉 for i∈ I .

If c ∈ con’, then by de�nition, Scon(c)= 3th(rfc �E) and Scon
i (c)= 3th(rfc �Ei) for i∈ I .

Of course, rfc ∈R. By part 1, we conclude that Scon(c)=
∑

i∈I S
con
i (c).

Parts (ii) and (iii) of De�nition 41 follow easily from the fact that

S = {3th(r�E) : r ∈R}=
{∑

i∈I

3th(r�Ei) : r ∈R

}
: (14)

De�nition 50 (good interval). We say that an interval E of R is good if �E is legal.

Lemma 51. Any one-point interval of R is good.

Proof. Let E be such, with domain {e}; we claim that �E = 〈S; Scon〉, say, is degener-
ate. Each �∈ S has the form 3th(r�E) for some r ∈R. Then Mr�E |=∀xy¬(x¡y), so

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 119

�=3th(Mr�E) is degenerate. Further,

t�= { ∈ subx ’ : � ` ∃xR (x)}= { ∈ subx ’ :Mr�E |=R (e)}= r(e);

a type for ’. As m is a �nitary quasimodel for ’,

〈{t� : �∈ S}; {〈tScon(c); c〉 : c∈ con’}〉
= 〈{r(e) : r ∈R}; {〈rfc (e); c〉 : c∈ con’}〉=f(e);

a �nitely realizable state candidate for ’.

Lemma 52. Assume the conditions of Lemma 49; that I = {0; 1} with 0¡1; and that
E0 and E1 are good. Then E is good too.

Proof. It su�ces to prove that �E ≡ �E0 + �E1 .
As E is an interval of R, either E0 has a right endpoint or E1 a left endpoint. Assume

the former; the other case is similar. If r ∈R then by de�nition, 3th(r�E0)= 3th(Mr�E0),
so as Mr�E0 |=∃x∀y¬(x¡y), 3th(r�E0) ` ∃x∀y¬(x¡y). Hence, �E0 has a right end-
point. Similarly �E1 has no left endpoint.
By Lemma 49(2), �E ≈ �E0 + �E1 , and we conclude that �E ≡ �E0 + �E1 .

Lemma 53. Again assume the conditions of Lemma 49; that I ∈{〈N;¡〉; 〈N;¿〉;
〈Z;¡〉}; and that every Ei (i∈ I) is good. Then E is good.

Proof. We only consider the case I = 〈N;¡〉; the case 〈N;¿〉 is similar, and 〈Z;¡〉
is handled using 〈N;¿〉, 〈N;¡〉, and Lemma 52. For i¡j in N, write Eij for the
interval

⋃
i6k¡j Ek of R. By Lemma 52 and induction on j− i, Eij is good. There are

only �nitely many characters, so by Ramsey’s theorem [37], there is in�nite X ⊆N
such that �Eij is constant for all i¡j in X . Let x∈X be minimal. As E0; x is good, by
Lemma 52 it su�ces to prove that

⋃
i¿x Ei is good. Therefore, by renaming, we may

assume that �Eij is constant for all i¡j in N. As R is �nite, we may further assume
(by Ramsey’s theorem) that for each r ∈R; 3th(r�Eij) is the same for all i¡j in N.
We will show that �E ≡∑i∈I �Ei .
We know that �Ei = �E0 for all i∈ I . Since E0; E1 are disjoint convex subsets of R

whose union is convex, either E0 has a right endpoint or E1 a left endpoint – and not
both. It follows as in Lemma 49 that �E0 has either a left or right endpoint.
Let �E = 〈S; Scon〉 and �Ei = 〈Si; Scon

i 〉 for i∈ I , as usual.

• By Lemma 49, Scon(c)= 3th(rfc �E)=
∑

i∈I 3th(r
f
c �Ei)=

∑
i∈I S

con
i (c) for each c∈

con’.
• S = {∑i∈I �i : �i ∈ S0; �i= �0 for all i∈ I} is true because (14) holds, and by the
above, 3th(r�Ei)= 3th(r�E0) for each r ∈R; i∈ I .

Now De�nition 41(v) gives �E ≡ ∑
i∈I �Ei . Since the �Ei are assumed legal, so is

�E , and we conclude that E is good.

120 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

De�nition 54. We de�ne a binary relation ∼ on R by x∼y i� x=y, or x¡y and
every convex subset contained in [x; y] is good, or y¡x and every convex subset
contained in [y; x] is good.

Lemma 55. ∼ is an equivalence relation on W; and any ∼-class is itself an interval
of R.

Proof. Only transitivity needs a proof. Assume that x∼y∼ z in R; we check that
x∼ z. There are various cases, depending on the order-type of x; y; z. If x¡z¡y, it
is clear. Assume that x¡y¡z, let E be a convex subset of [x; z]; E0 =E ∩ [x; y), and
E1 =E ∩ [y; z]. If either E0 or E1 is empty, then certainly E is good. Otherwise, we
are in the situation of Lemma 52, so again E is good. The other cases are similar.
Hence, x∼ z, as required.
It is clear by de�nition that any ∼-class is convex.

Lemma 56. Any subinterval E of any ∼-class is good.

Proof. There are four cases, depending on the endpoints of E. If E= [x; y] for some
x¡y in R, then x∼y and the result is trivial. Assume that E has a left-hand endpoint
x0 but no right-hand endpoint. Choose an increasing sequence x0¡x1¡ · · · in E, of
order type 〈N;¡〉 and unbounded in E, and let Ei= [xi; xi+1). Since xi ∼ xi+1, Ei is
good. Now we are in the situation of Lemma 53, and we conclude that E is good. The
other two cases, when E has no left-hand endpoint, can be covered using the cases
〈N;¿〉 and 〈Z;¡〉 of Lemma 53.

Lemma 57. Each ∼-class is a closed interval of R.

Proof. Let E be a ∼-class, and suppose that E has a least upper bound b ∈ R. We
show that b∈E. Take e∈E, and any interval D of R with D⊆ [e; b]. Lemma 56
shows that D∩E is good. If D⊆E, we are done. Otherwise, D=(D∩E)∪{b}, and
Lemmas 51, 52, and 56 show that D is good. So b∼ e and b∈E.
Similarly, E contains any greatest lower bound for it. So it is closed.

We aim to show that R is a single ∼-class. To this end, assume not: so the conden-
sation C =R=∼ given by ∼ has at least two elements. Because R is dense, Lemma 57
now shows that C is a dense ordering. Enumerate R as 〈rn : n¡N 〉, and choose an
open interval I of C such that the �nite set

{〈�E; 3th(rn�E) : n¡N 〉 :E ∈ I};

has least possible cardinality. It follows that for each open interval J ⊆ I and each
sequence �= 〈�; �n : n¡N 〉 of a character and N 3-theories, {E ∈ J : 〈�E; 3th(rn�E) :
n¡N 〉= �} is empty or dense in J .

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 121

It can now be seen that �⋃ J ≡∑E∈J �E by dint of De�nition 41(vii). Certainly, J

is isomorphic to a dense condensation of 〈R;¡〉 without endpoints. By Lemma 49(2),
conditions (i) and (ii) hold. By Lemma 57, each E ∈ J has a right and a left endpoint,
and since if r ∈R and E ∈ J then Mr�E |=3th(r�E) and the underlying order of Mr�E

is E, �E has left and right endpoints too. Similarly, |E|=1 i� 3th(r�E) ` ∀xy¬(x¡y)
for all r ∈R. The last part of De�nition 41(vii) holds because for any r ∈R and E ∈ J ,
{E′ ∈ J : 〈�E′ ; 3th(r�E′)〉= 〈�E; 3th(r�E)〉} is dense in J .
So
⋃

J is good. By Lemma 56, each E ∈ J is good, and Lemma 52 now shows that
if J is any subinterval of I then

⋃
J is good.

Take x¡y in
⋃

I with x 6∼y. So there is an interval X ⊆ [x; y] that is no good. Let
�X = {E ∈ I :E⊆X }. Then �X is a subinterval of I , so

⋃ �X is good. Let X¡= {z ∈X :
z¡v for all v∈⋃ �X }, and de�ne X¿ similarly. By Lemma 56, X¡ and X¿ are good.
We have X =X¡ +

⋃ �X + X¿, so by Lemma 52, X is itself good, a contradiction.
Hence indeed, R is a single ∼-class, so is good – �R is legal. This completes the

proof.

7.8. Proof of Lemma 46(4)

Assume that we have an oracle telling whether a given state candidate for ’ is
�nitely realizable. We show how to use it to decide whether there exists a legal perfect
character. The decision procedure is uniform in ’. Our method is to reduce the problem
to the satis�ability of certain existential monadic second-order sentences in 〈R;¡〉.
By [11, Theorem 2.9(d)], such problems are decidable. This reduction is quite quick
to present, avoiding several semantic subtleties, but since [11] uses much the same
methods as here, it is a very convoluted way of obtaining decidability. It is easy but
tedious to give a more direct algorithm.
Recall that up to logical equivalence there are �nitely many 3-theories. Indeed, we

may easily construct from ’ a �nite set T of L’-sentences of quanti�er depth at
most 3, closed under single negations and containing every such sentence up to logical
equivalence, and in particular containing the sentences ∃x∀y¬(y¡x), ∃x∀y¬(x¡y),
∀xy¬(x¡y), and ∃ xR (x) for ∈ subx ’, and their negations. Any 3-theory can be
taken to be a certain subset of T , and a character a pair 〈S; Scon〉 where S ⊆˝T (˝
denotes the power set) and Scon : con’→ S.
Note that not every such object is a 3-theory (or character). Nonetheless, we have:

Lemma 58. Given �⊆T and �= 〈S; Scon〉 where S ⊆˝T and Scon : con’→ S; it is
decidable whether � is a 3-theory and � is a character.

Proof. �⊆T is a 3-theory i� it contains every sentence in T or its negation, and the
sentence ∃ ∈subx ’R

∧
� is true in some linear order. Hence, by the decidability of the

universal monadic second-order theory of linear order [22, 11], it is decidable whether
� is a 3-theory or not. Therefore, whether � is a character is also decidable.

122 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

By this result, it su�ces to show that it is decidable (using the oracle) whether a
given character is legal or perfect. We can decide by inspection whether a character is
perfect. For legality, there are two parts.

Lemma 59. Given S ⊆˝T and Scon : con’→ S; it is decidable (using the oracle)
whether �= 〈S; Scon〉 is a degenerate character.

Proof. We simply check that � is a character and that each �∈ S contains ∀xy¬(x¡y).
Then we check by inspection (cf. De�nition 5) that for each �∈ S, the set t�= { ∈
subx ’ :∃ xR (x)∈ �} is a type for ’. Finally, we check with the oracle that 〈{t� :�∈S};
{〈tScon(c); c〉 : c∈ con’}〉 is a �nitely realizable state candidate for ’. � is a degenerate
character i� all these checks succeed.

Lemma 60. Let S be a set of characters and � be a character. It is decidable whether
there exist a linear order I and characters �i ∈S (i∈ I) such that � ≡∑i∈I �i.

Proof. We refer to De�nition 41. We can certainly decide whether a character has a
left or right endpoint. For the remainder, we need some notation. If �(x) is a �rst-
order formula with x and perhaps other variables free, and � is a �rst-order formula,
we de�ne the relativization ��(x) of � to �(x) in the usual way, by �rst renaming
variables of � so that they do not occur in �, and then setting ��= � for atomic �,
(�∧ �′)�= �� ∧ �′�, (¬�)�=¬��, and (∃y�)�=∃y(�(y=x)∧ ��). We will always use
the variable x for relativization, and � will always be a sentence, so that it is harmless
to rename its variables. We note that any 3-theory � is satis�able in a countable L’-
order, and that any countable linear order embeds in 〈R;¡〉. Hence, if P is a new
unary predicate, �P(x) is true in some expansion of 〈R;¡〉 interpreting the symbols of
L’ ∪ {P}.
Now we go through the cases in De�nition 41 once more.

4. (I = {0; 1}) Introduce new unary predicates P0; P1. For 3-theories �; �0; �1, we have
�= �0 +�1 i� the conjunction of the following sentences is true in some expansion
of 〈R;¡〉 : (∧ �0)P0(x), (

∧
�1)P1(x), (

∧
�)P0∨P1(x),

∧
i¡2 ∃xPi(x), and ∀xy(P0(x)∧

P1(y)→ x¡y). By the result of [11] already mentioned, this is decidable. The
de�nition of � ≡ �0 + �1 is a boolean combination of such conditions, and is
therefore decidable. So we can decide whether � ≡ �0 + �1 for some �0; �1 ∈S, by
considering all of the �nitely many possibilities for �0; �1.

5. (I = 〈N;¡〉) Let P;Q be new unary predicates and let � be the conjunction of the
sentences ∀x¬(P(x)∧Q(x)), ∃x(Q(x)∧∀y¡x(¬P(y)∧¬Q(y))), ∀x∃y¿xQ(y),
∀x∃y¡x∀z ∈ (y; x)¬Q(z), ∀x∃y¿x∀z ∈ (x; y)¬Q(z), and ∀x∃y¿xP(x). An expan-
sion of 〈R;¡〉 is a model of � i� (the interpretations of) P;Q are disjoint and
unbounded above in R, Q has order type 〈N;¡〉, and there is no P before the �rst
Q. Let �(x; y) be the formula P(x)∧∀z((x6z6y ∨ y6z6x)→¬Q(z)).
Let �; �i (i∈ I) be 3-theories with �i= �0 for all i. Then �=

∑
i∈I �i i� the con-

junction of the following sentences is true in some expansion of 〈R;¡〉 : �, �P(x),

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 123

and ∀y(P(y)→ (�0)�(x;y)) (relativizing on x as said before). This statement is de-
cidable, so given characters �, �0 = �1 = · · ·, we can check e�ectively whether
Scon(c)=

∑
i∈I S

con
i (c) for all c∈ con’ and whether S = {∑i∈I �i : �i ∈ Si; �i= �0

for all i}. Thus, whether � ≡∑i∈I �i for some �0 = �1 = · · · in S is decidable.
6. (I = 〈N;¿〉) This is no di�erent.
7. (I is a dense condensation of R) We will need to make copies Ls of the signature

L’= {¡;R : ∈ subx’}, for various objects s, by renaming the symbols R . We
assume that if s 6= t then Ls ∩Lt consists of just the symbol ¡ for the order. If
Ls is such a copy, and � is an L’-sentence, we write �Ls for the result of replacing
the relation symbols of L’ in � by the corresponding ones in Ls.
For a unary predicate P, we let �(x; y; P) be ∀z((x6z6y ∨ y6z6x)→P(z)).
Let {�0; : : : ; �n−1} be a set of characters, with n ≥ 2, and let �= 〈S; Scon〉 be

another character. Write �i= 〈Si; Scon
i 〉, as usual. Introduce new unary predicates Xi

(i¡n), and consider the following sentences :
• ∀x∨i¡n(Xi(x)∧

∧
j 6=i ¬Xj(x)),

• ∧i¡n ∀x∃yz(y¡x¡z ∧Xi(y)∧Xi(z)),
• ∀xy∧i 6=j(x¡y∧Xi(x)∧Xj(y)→

∧
k¡n ∃z ∈ (x; y)Xk(z)).

These three say that the condensation given by ‘x∼y i�
∨

i¡n �(x; y; Xi)’ is dense
without endpoints, and indeed that the classes included in any Xi occur densely.

• For each c∈ con’, take a copy Lc of L’ and add the sentences (
∧

Scon(c))Lc

and ∀y(Xi(y)→ (
∧

Scon
i (c))�(x; y; Xi)

Lc
) for each i¡n.

• For each �∈ S, take a copy L� of L’, and add the sentences (
∧

�)L� and
∀y∧i¡n (Xi(y)→

∨
�i∈Si(

∧
�i)

�(x; y; Xi)
L�

).
• Finally, for each �= 〈j; �〉 where j¡n and �∈ Sj, introduce new unary predicates

Q�; i; �′ for i¡n and �′ ∈ Si, and add the sentences:
◦ ‘The Q�;i;�′ are pairwise disjoint’,
◦ ∧i¡n ∀x(Xi(x)↔

∨
�′∈Si Q�; i; �′(x)),

◦ (∃xQ�(x))→∀xy(x¡y∧Q�′(x)∧Q�′′(y)→∃z ∈ (x; y)Q�(z)), for any three
triples �; �′; �′′ of the form 〈�; i; �′〉 for �xed � as above and with �′ 6= �′′,

◦ ∀y(Q�; i; �′(y)→ (
∧

�′)
�(x; y;Q�; i; �′)
L�

), for each i; �′,
◦ ∨�∈S(

∧
�)L� .

It is not so hard to check that the conjunction of these sentences is true in
some expansion of 〈R;¡〉 i� � ≡ ∑

i∈I �i, where I is a condensation of 〈R;¡〉,
{�i : i ∈ I} = {�0; : : : ; �n−1}, and the provisions of De�nition 41(vii) are met. Hence,
as before, it is decidable whether � ≡ ∑

i∈I �i via De�nition 41(vii) for some
�i ∈S.

Now we decide whether a character � is legal as follows. Build the set �0 of all
degenerate characters, using Lemmas 58 and 59. Given �n, check for each character
� =∈�n whether � ≡∑i∈I �i for some linear order I and some �i ∈�n, using Lemma 60.
If so, put � in �n+1. Include �n in �n+1. Increment n, and repeat. Terminate when
�n+1 =�n, and check whether �∈�n. This determines whether � is legal, and com-
pletes the proof of Lemma 46 and Theorem 36.

124 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

8. Applications

In this section, we apply the conditional decidability criteria obtained above in order
to single out a number of decidable fragments of various temporal logics. We begin by
discussing a major alternative approach to temporal reasoning, via two-sorted �rst-order
logic (see, e.g., [2, 3, 12, 13]).

8.1. Two-sorted temporal logic

Consider a �rst-order logic with two sorts: domain and time. The language TS of
the logic is based on the following alphabet:

• an in�nite set of individual variables x0; x1; : : : and a set of constants c0; c1; : : : of
domain sort,

• an in�nite set of individual variables t0; t1; : : : of temporal sort,
• the binary predicate symbol ¡ of sort ‘temporal × temporal’,
• predicate symbols P0; P1; : : : of sort ‘temporal × domainn’, n¡!.

Formulas of TS are de�ned inductively:

• ti¡tj is an (atomic) formula, for temporal variables ti, tj,
• P(t; x1; : : : ; xn) is an (atomic) formula, for a predicate symbol P of sort temporal ×
domainn, t a temporal variable, and x1; : : : ; xn domain variables,

• if ’ and are formulas, t a temporal variable, and x a domain variable, then ¬’,
’∧ , ∀t’, and ∀x’ are formulas.

TS is interpreted in �rst-order temporal models of the usual form M= 〈F ; D; I〉,
where F = 〈W;¡〉 is a
ow of time (i.e., a strict linear order), D is a non-empty set,
the domain of M, and I is a function associating with every moment of time w∈W
a �rst-order L-structure

I(w)= 〈D; PI(w)
0 ; : : : ; cI(w)0 ; : : :〉;

in which PI(w)
i , for each i, is a predicate on D of arity n whenever Pi is of arity n+1,

and cI(w)i ∈D.
An assignment in M is a function a = a1 ∪ a2 such that a1 associates with every

temporal variable t a moment of time a1(t)∈W and a2 associates with every domain
variable x an element a2(x) of D.
The truth relation M |=a ’ is de�ned inductively as follows:

• M |=a ti¡tj i� F |= a1(ti)¡a1(tj),
• M |=a P(t; x1; : : : ; xn) i� 〈a2(x1); : : : ; a2(xn)〉 ∈PI(a1(t)),
• M |=a ∀t’ i� M |=b ’ for every assignment b that may di�er from a only on t,
• M |=a ∀x’ i� M |=b ’ for every assignment b that may di�er from a only on x,

and the standard clauses for the booleans.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 125

It should be clear that the temporal operators U and S of TL are expressible in
TS. On the other hand, there are TS-formulas that are not expressible in TL over
any interesting class of
ows of time (see below). It turns out, however, that TL and
TL1 are expressively complete for some natural fragments of TS.

De�nition 61. Let TS1t (respectively, TS1x) consist of all TS-formulas ’ without
subformulas of the form ∀x (∀t) such that contains more than one free temporal
(respectively, domain) variable. Let TS1 =TS1t ∩TS1x.

Suppose that each n-ary predicate symbol Qi of TL is associated with the (n+1)-
ary predicate symbol Pi of TS. De�ne a translation † from TL into TS by taking,
for some �xed temporal variable t,

Qi(x1; : : : ; xn)†=Pi(t; x1; : : : ; xn);

(’∧)†=’†∧ †;

(¬’)†=¬ (’†);

(∀x’)†=∀x(’†);

(U’)†=∃ t′ (t¡t′ ∧’†{t′=t}∧∀t′′(t¡t′′¡t′ → †{t′′=t}));
(S’)†=∃ t′ (t′¡t ∧’†{t′=t}∧∀t′′(t′¡t′′¡t→ †{t′′=t}));

where t′ and t′′ are new temporal variables.
Note that for every TL-formula ’, we have ’† ∈TS1t , and for every ’∈TL1 we

have ’† ∈TS1.
The meaning of the translation † is explained by:

De�nition 62. Let M= 〈F; D; I〉 be a TS-model and a =(a1; a2) an assignment in M.
Let N= 〈F ; D; J 〉 be a TL-model, b an assignment in N. We say that 〈M; a 〉 and
〈N ; b 〉 are equivalent, and write 〈M; a 〉∼〈N ; b 〉, if P I(w)

i =QJ (w)
i for all w, i, and

a2= b.

Lemma 63. Suppose 〈M; a 〉∼ 〈N; b〉. Then for every TL-formula ’ and every mo-
ment of time w; if a (t)=w then

〈N ; w〉 |=b ’ i� M |=a ’†:

Proof. An easy induction on ’.

De�nition 64. Let F be a class of
ows of time, L′ ⊆TL, and L′′⊆TS. We say
that L′ is expressively complete for L′′ on F if for every ’∈L′′ with at most
one free temporal variable, there exists a formula ’̂∈L′ such that (’̂)† and ’ are
equivalent in all models based on
ows of time in F.

126 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Theorem 65. Let F be any class of dedekind-complete
ows of time (for example;
the class {〈N;¡〉; 〈Z;¡〉; 〈R;¡〉}∪ {F : F a �nite linear order}). Then
1. TL is expressively complete for TS1t on F.
2. TL1 is expressively complete for TS1 on F.

Proof. By Kamp’s theorem [26, see also 16, Chapters 9–12], the propositional tem-
poral logic with S and U is expressively complete for monadic �rst-order logic
over F. So for any formula ’(t; P1; : : : ; Pk) of monadic �rst-order logic with one
free variable t and unary predicates P1; : : : ; Pk , we may �x a propositional tempo-
ral formula �’(p1; : : : ; pk) such that for every �rst-order structure M based on a
ow
of time F = 〈W;¡〉 ∈F, and every valuation V in F with V(pi)=PM

i , we
have

〈〈F ;V〉; w〉 |= �’ i� M |= ’[w=t]; for all w∈W:

For ∈TS1t with a free temporal variable t, if any, and ′ ∈TL, we say that ′

expresses if the translation (′)† of ′ is equivalent to in any �rst-order temporal
model based on a
ow of time in F. Suppose now that �= �(t; Q1; : : : ; Qk)∈TS1t .
We prove that for every subformula of � with at most one free temporal vari-
able, there is a TL-formula ̂ that expresses . The proof is by induction
on .
Case 1: is atomic. If = t¡t, then put ̂ =⊥. If =Qi(t; x1; : : : ; xn), then put

 ̂ =Pi(x1; : : : ; xn).
Case 2: =∀x 1. By the induction hypothesis, there exists ̂1 that expresses 1.

But then, ̂ =∀x ̂1 expresses .
Case 3: otherwise. Let 1; : : : ; l be a list of all subformulas of of the form either

Qi(t′; y1; : : : ; yn) or ∀z ′ that have an occurrence in that is not within the scope of
a domain quanti�er ∀y. Since ∈TS1t , every i of the form ∀z ′

i has at most one
free temporal variable. Thus, by the induction hypothesis, there exists ̂ i ∈TL that
expresses i, for each i6l.
Now replace in every occurrence of a i(t′) that is not within the scope of a

∀y by a predicate symbol Q i(t
′) of the monadic �rst-order logic. Denote the result-

ing monadic �rst-order formula by ′(t; Q 1 ; : : : ; Q l). Take the propositional formula
 ′(q 1 ; : : : ; q l), and in it, replace every propositional variable q i by ̂ i. The resulting
formula ̂ clearly expresses .
This completes the induction. So there is a TL-formula �̂ expressing �, proving

the former claim of the theorem. To prove the latter, it is enough to observe that if
 ∈TS1 then ̂ ∈TL1.

Remark 66. Clearly, the TS-sentence

∃ t1 ∃ t2(t1¡t2 ∧∀x(P(t1; x)↔P(t2; x)))

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 127

is not in TS1t . By results of [27, 3, 2], it cannot be expressed in TL over the
ow of
time 〈Q;¡〉 nor over the class of all �nite linear
ows. It follows from Theorem 65
that over these
ows, it is not equivalent to any TS1t-sentence.

For a class H of
ows of time, denote by TS(H) the set of all TS-sentences
that are true in all models based on frames in H, and by TS�n(H) the set of TS-
sentences true in all models based on frames in H and having �nite domains. Given
a set TL′⊆TL1, let

TS′= {’∈TS1 : ’̂∈TL′};

where ’̂ is as de�ned in the proof of Theorem 65. Since ’̂ is constructed e�ectively
from ’ (see [26]), as an immediate consequence of Lemma 63 and Theorem 65 we
obtain the following:

Corollary 67. Suppose that every F ∈H is dedekind-complete; and that TL′ ⊆TL1.
If the fragment TL(H)∩TL′ is decidable; then the fragment TS(H)∩TS′ is de-
cidable. If the fragment TL�n(H)∩TL′ is decidable; then the fragment TS�n(H)∩
TS′ is decidable.

8.2. Two-variable fragment

We remind the reader that the language TL2
1 contains all monodic TL-formulas

with at most two variables. Let TS2
1 be the sublanguage of TS1 whose formulas

contain at most two domain variables. Clearly, TS2
1 = {’∈TS1 : ’̂∈TL2

1 }. Below,
F will denote any of the classes of
ows of time mentioned in the formulation of
Theorem 15 – that is,
1. {〈N;¡〉},
2. {〈Z;¡〉},
3. {〈Q;¡〉},
4. the class of all �nite strict linear orders,
5. any �rst-order-de�nable class of strict linear orders.
F+ will range over these and {〈R;¡〉}. G will be one of 〈N;¡〉; 〈Z;¡〉, and the

class of all �nite strict linear orders, and G+ will range over these and {〈R;¡〉}.

Theorem 68. The fragments TL(F)∩TL2
1 ; TL�n(F+)∩TL2

1 ; TS(G)∩TS2
1 ; and

TS�n(G+)∩TS2
1 are decidable.

Proof. The L-formula �C , corresponding to a state candidate C for a formula ’∈
TL2

1, contains at most two individual variables. As is well known (see [41, 33]),
the satis�ability problem for such formulas is decidable. Moreover, as the two variable
fragment of L has the �nite model property, the �nite satis�ability is decidable as well.

128 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

All that remains is to use the criteria of Theorems 15, 26, and 36 and Corollaries 37
and 67.

As TL2
1 contains the set TL

1 of TL-formulas with at most one variable, TS2
1

contains the set TS1
1 of TS1-formulas with at most one domain variable, and TS1

1 =
{’∈TS1 : ’̂∈TL1}, we also have:

Corollary 69. The fragments TL(F)∩TL1; TL�n(F+)∩TL1; TS(G)∩TS1
1 ;

and TS�n(G+)∩TS1
1 are decidable.

Remark 70. It is worth noting that the set of formulas TL1 corresponds to the propo-
sitional language LS;U;� with the temporal operators S; U and the modal (epistemic)
operator �. Indeed, we may de�ne a translation T from LS;U;� onto TL1 by taking,
for a �xed individual variable x,

T(pi)=Pi(x);

T(’∧)= T(’)∧ T();

T(¬’)=¬ T(’);

T(’U)= T(’)UT();

T(’S)= T(’)ST();

T(�’)=∀x T(’):

Recall that the product L × S5 of a propositional temporal logic L, determined by a
class H of linear orders 〈W;¡〉, and S5 is the set of all formulas in LS;U;� that are
valid in frames of the form 〈W ×V;¡;∼〉, where 〈W;¡〉 ∈H; V is a non-empty set,
〈w; v〉¡〈w′; v′〉 i� v= v′ and w¡w′, and ∼ is an equivalence relation on W×V de�ned
by 〈w; v〉∼〈w′; v′〉 i� w=w′. For more information on products of modal logics, we
refer the reader to [18].
It is easy to see that a formula ’∈LS;U;� belongs to L × S5 i� T(’) is valid

in all �rst-order temporal models based on linear orders 〈W;¡〉 validating L. Thus
we obtain, for example, that L(N)× S5 is decidable, where L(N) denotes the propo-
sitional temporal logic determined by 〈N;¡〉. Observe that this logic coincides with
the temporal-epistemic logic from [15] of one agent who does not forget, does not
learn, and who knows time (the decidability of which is of course known
already).
We do not know whether the logic L(N) ×f S5, determined by the class of frames

of the form 〈N × V;¡;∼〉 with �nite V , has been considered in the literature. This
logic, the propositional version of TL�n(N)∩TL1, is di�erent from the temporal-
epistemic logic L(N)×S5 (the proof is similar to that of Theorem 25) and corresponds

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 129

to the assumption that there are only �nitely many possible runs of the multi-agent
system.

8.3. Monadic fragment

One more interesting fragment of TL is the set TLmo of monadic temporal for-
mulas. The corresponding fragment TSmo consists of those TS-formulas involving
only predicate symbols of sort ‘temporal×domain’ or ‘temporal’. As was shown in
Section 2, the fragments TL2 ∩TLmo ∩TL(N) and TL2 ∩TLmo∩TL�n(N) are un-
decidable. However, this is not the case for the languages TLmo

1 =TL1 ∩TLmo and
TSmo

1 =TS1 ∩TSmo. For then, the formula �C , corresponding to a state candidate
C for ’∈TLmo

1 , is a monadic L-formula, and as is well known (see [29]), the
monadic fragment of �rst-order logic is decidable and has the �nite model property.
This yields:

Theorem 71. The fragments TL(F)∩TLmo
1 ; TL�n(F+)∩TLmo

1 ; TS(G)∩TSmo
1 ;

and TS�n(G+)∩TSmo
1 are decidable.

8.4. Guarded fragment

Let us consider now the following natural generalization of the �rst-order guarded
formulas of [5].

De�nition 72 (guarded fragment). Denote by TGF the smallest set of TL-formulas
such that
• every atomic formula is in TGF;
• if ’ and are in TGF, then so are ’∧ ; ¬’; ’S , and ’U ;
• if �x; �y are tuples of variables, G(�x; �y) is atomic, ’(�x; �y)∈TGF, and every free
variable occurring in ’(�x; �y) occurs in G(�x; �y) as well, then ∀ �y (G(�x; �y)→’(�x; �y))
is in TGF.
The set TGF is called the guarded fragment of the �rst-order temporal language.

We write GF for the guarded fragment L∩TGF of the �rst-order language L.

Note that unlike the guarded fragment GF of classical �rst-order logic, which is
known to be decidable (see [5]), the temporal guarded fragment interpreted in time
structures 〈N;¡〉 and 〈Z;¡〉 turns out to be even not recursively enumerable.

Theorem 73. Let F be either 〈N;¡〉 or 〈Z;¡〉. Then TL(F)∩TL2 ∩TGF is not
recursively enumerable.

Proof. The proof is similar to that of Theorem 2. We simply write down the required
formula ’T for a given set of tiles T = {t0; : : : ; tn}.

130 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

Let R be a binary predicate and P0; : : : ; Pn, Q unary ones. De�ne ’T to be the
conjunction of the following formulas:

∃ x(Q(x)∧ � P0(x));

∀x(Q(x)→∃y(R(x; y)∧Q(y)));
+ ∀x(Q(x)→ © Q(x));

∀x; y(R(x; y)→ R(x; y));

+ ∀x
Q(x)→

n∨
i=0

Pi(x)∧
∧
i 6=j

(Pi(x)→¬Pj (x))

 ;

+ ∀x
Pi(x)→∀y

R(x; y)→
∨

up(ti)=down(tj)

Pj (y)

 ;

+ ∀x
Pi(x)→ ©

∨
right(ti)=left(tj)

Pj(x)

 :

Clearly, ’T belongs to TL2 ∩TGF. It is readily seen that ’T is satis�able in F i�
there is a recurrent tiling of N×N by T .

We may de�ne the guarded fragment SGF ofTS, as follows: every atomic formula
is in SGF, SGF is closed under the boolean connectives and temporal quanti�ca-
tion ∀t, and if �x; �y are tuples of variables, G(t; �x; �y) is atomic, ’(t; �x; �y)∈SGF, and
every free domain variable of ’ occurs in G(t; �x; �y), then ∀ �y(G(t; �x; �y)→’(t; �x; �y))
∈SGF.
Let TGF1 =TGF∩TL1, and SGF1 =SGF∩TS1.

Theorem 74. The fragments TL(F)∩TGF1; TL�n(F+)∩TGF1; TS(G)∩SGF1;
and TS�n(G+)∩SGF1 are decidable.

Proof. By Theorems 15, 26, and 36, and Corollary 37, the result for the TL-classes
in the theorem may be established by showing that given ’∈TGF1, it is decidable
whether a given state candidate for ’ is (�nitely) realizable. It is evident from the
proof of Theorem 65 that TGF1 is expressively complete for SGF1 over G;G+. So
the result for the TS-classes in the theorem follows from this and Corollary 67.
So let ’∈TGF1 and let C = 〈T; T con〉 be a state candidate for ’. By Lemma 8, to

decide whether C is (�nitely) realizable it su�ces to show that it is decidable whether
the L-sentence

�C =
∧
t∈T

∃x �t(x)∧∀x
∨
t∈T

�t(x)∧
∧

〈t; c〉∈Tcon

�t(c)

has a (�nite) model.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 131

The formulas �t(x), �t(c) are in GF, but �C is not. However, we can transform
it into a guarded sentence as follows. Let P be a new unary predicate. Observe
that if ∈GF then the relativization P of to P is logically equivalent to a GF-
formula. For atomic , P = ∈GF; the boolean cases are trivial; and for guarded
 (�x; �y) and atomic G(�x; �y), ((∃y1; : : : ; yn(G(�x; �y)∧))P is by de�nition ∃y1; : : : ;
yn(
∧
16i6n P(yi)∧G(�x; �y)∧ P), which is equivalent to ∃y1; : : : ; yn(G(�x; �y)∧ (

∧
16i6n

P(yi)∧ P)) and hence is (inductively) equivalent to a guarded formula. Now,

(�C)P =
∧
t∈T

∃ x(P(x)∧ �t P(x)) ∧ ∀x
(
P(x)→

∨
t∈T

�t P(x)

)
∧

∧
〈t; c〉∈Tcon

�t P(c);

and we see that, up to logical equivalence; (�C)P ∈GF.
By classical model theory, �C has a (�nite) model i� (�C)P has a (respectively,

�nite) model. Since (�C)P is logically equivalent to a GF-sentence, and by results of
[5, 21], GF is decidable and has the �nite model property, we see that it is decidable
whether �C has a (�nite) model, as required.

8.5. Temporal description logics

The notion of quasimodel used in this paper is actually a generalization of the
quasimodels introduced in [46] to prove the decidability of the satis�ability prob-
lems for the temporal description logic CIQUS (i.e., the description logic CIQ of
De Giacomo and Lenzerini [20] extended with Since and Until) in models based on
the time structures 〈N;¡〉 and 〈Z;¡〉. However, the satis�ability problems in 〈Q;¡〉
and arbitrary strict linear orders were left open in that paper. Using the embedding
technique of Section 4, one can show that these problems are decidable too. Thus, we
have:

Theorem 75. There are algorithms that are capable of deciding whether a given
CIQUS-formula is satis�able in
• 〈N;¡〉;
• 〈Z;¡〉;
• 〈Q;¡〉;
• �nite linear orders;
• arbitrary strict linear orders.

Note, however, that CIQ (which is actually CPDL with quali�ed number restric-
tions or counting modalities) does not have the �nite model property, and it is not
known whether the �nite model reasoning in it is decidable. So we cannot say whether
the satis�ability problem for CIQUS-formulas is decidable in models with �nite do-
mains. For more information on the connection between multi-dimensional description
logics and �rst-order modal logic, see [47].

132 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

9. Open questions

We end the paper with some problems arising from the work above.
1. Do our results extend to the
ow of time 〈R;¡〉 with arbitrary domains? Or with
countable domains? (The logic here is di�erent – see Theorem 25.)

2. Can our results be extended to logics over non-linear
ows of time, such as historical
necessity logics, and CTL∗?

3. What is the computational complexity of satis�ability of an arbitrary monodic for-
mula ’ over the
ows of time considered earlier, given an oracle for determining
if a state candidate for ’ is realizable?

4. Are there other natural decidable (and expressive) fragments of TL?

Acknowledgements

We are grateful to Robin Hirsch, �Agnes Kurucz, Maarten Marx, and Szabolcs Mikul�as
for stimulating discussions, comments and suggestions. The work of the �rst author was
partially supported by UK EPSRC grant GR=L85978. The work of the third author was
partially supported by UK EPSRC Visiting Fellowship GR=M36748 and by Grant No.
99-01-0986 from the Russian Foundation for Basic Research.

References

[1] M. Abadi, The power of temporal proofs, Proc. Symp. on Logic in Computer Science, Ithaca, June
1987, pp. 176–186.

[2] S. Abiteboul, L. Herr, J. van den Bussche, Temporal connectives versus explicit timestamps in temporal
query languages, in: J. Cli�ord, A. Tuzhilin (Eds.), Recent Advances in Temporal Databases, Springer,
Berlin, 1995, pp. 43–57.

[3] S. Abiteboul, L. Herr, J. van den Bussche, Temporal versus �rst-order logic in query temporal databases,
ACM Symp. on Principles of Database Systems, Montreal, Canada, 1996, pp. 49–57.

[4] H. Andr�eka, I. N�emeti, I, Sain, Completeness problems in veri�cation of programs and program schemes,
Mathematical Foundations of Computer Science 1979, Lecture Notes in Computer Science, Springer,
Berlin, 1979.

[5] H. Andr�eka, I. N�emeti, J. van Benthem, Modal languages and bounded fragments of predicate logic, J.
Philos. Logic 27 (1998) 217–274.

[6] A. Artale, E. Franconi, A computational account for a description logic of time and action, Proc. 4th
Conf. on Principles of Knowledge Representation and Reasoning, Montreal, Canada, Morgan Kaufman,
Los Altos, CA, 1994, pp. 3–14.

[7] A. Artale, E. Franconi, Temporal description logics, in: L. Vila, P. van Beek, M. Boddy, M. Fisher,
D. Gabbay, A. Galton, R. Morris (Eds.), Handbook of Time and Temporal Reasoning in Arti�cial
Intelligence, MIT Press, Cambridge, MA, 1999, to appear.

[8] F. Baader, H.J. Ohlbach, A multi-dimensional terminological knowledge representation language, J.
Appl. Non-Classical Logic 5 (1995) 153–197.

[9] E. B�orger, E. Gr�adel, Yu. Gurevich, The Classical Decision Problem, Perspectives in Mathematical
Logic, Springer, Berlin, 1997.

[10] J.R. B�uchi. On a decision method in restricted second-order arithmetic, Logic, Methodology and
Philosophy of Science: Proc. 1960 Int. Congress, Stanford University Press, Stanford, CA, 1962, pp.
1–11.

I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134 133

[11] J.P. Burgess, Y. Gurevich, The decision problem for linear temporal logic, Notre Dame J. Formal Logic
26 (2) (1985) 115–128.

[12] J. Chomicki, Temporal query languages: a survey, in: D. Gabbay, H.J. Ohlbach (Eds.), Temporal Logic,
1st Int. Conf., Springer, Berlin, Lecture Notes in Arti�cial Intelligence, Vol. 827, 1994, pp. 506–534.

[13] J. Chomicki, D. Niwinski, On the feasibility of checking temporal integrity constraints, J. Comput.
Systems Sci. 51 (1995) 523–535.

[14] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, Elsevier, Amsterdam, 1990, pp. 996–1076.

[15] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA,
1995.

[16] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic. Part I, Clarendon Press, Oxford, 1994.
[17] D. Gabbay, M. Reynolds, M. Finger, Temporal Logic. Part II, Clarendon Press, Oxford, to appear.
[18] D. Gabbay, V. Shehtman, Products of modal logics, Part I, J. IGPL 6 (1998) 73–146.
[19] J.W. Garson, Quanti�cation in modal logic, in: D.M. Gabbay, F. Guenthner (Eds.), Handbook of

Philosophical Logic, Vol. 2, Kluwer Academic Publishers, Dordrecht, 1984, pp. 249–307.
[20] G. De Giacomo, M. Lenzerini, TBox and ABox reasoning in expressive description logics, Proc. 5th

Conference on Principles of Knowledge Representation and Reasoning, Montreal, Canada, Morgan
Kaufman, Los Altos, CA, 1996, pp. 316–327.

[21] E. Gr�adel, On the restraining power of guards, J. Symbolic Logic 64 (1999) 1719–1742.
[22] Y. Gurevich, Elementary properties of ordered abelian groups, Algebra and Logic 3 (1964) 5–39.

(Russian; an English version is in Trans. Amer. Math. Soc. 46 (1965) 165–192).
[23] Y. Gurevich, Expanded theory of ordered abelian groups, Ann. Math. Logic 12 (1977) 193–228.
[24] D. Harel, E�ective transformations on in�nite trees, with applications to high undecidability, dominoes,

and fairness, J. ACM 33 (1986) 224–248.
[25] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications, Vol. 42, Cambridge

University Press, Cambridge, U.K., 1993.
[26] H. Kamp, Tense logic and the theory of linear order, Ph.D. Thesis, University of California, Los

Angeles, 1968.
[27] H. Kamp, Formal properties of “now”, Theoria 37 (1971) 237–273.
[28] H. L�auchli, J. Leonard, On the elementary theory of linear order, Fund. Math. 59 (1966) 109–116.
[29] L. L�owenheim, �Uber M�oglichkeiten im Relativkalk�ul, Math. Ann. 76 (1915) 447–470.
[30] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Speci�cation, Springer,

Berlin, 1992.
[31] Z. Manna, A. Pnueli, Temporal Veri�cation of Reactive Systems: Safety, Springer, Berlin, 1995.
[32] S. Merz, Decidability and incompleteness results for �rst-order temporal logics of linear time, J. Appl.

Non-Classical Logic 2 (1992).
[33] M. Mortimer, On languages with two variables, Z. Math. Logik Grundlagen Math. 21 (1975) 135–140.
[34] A. Pnueli, Applications of temporal logic to the speci�cation and veri�cation of reactive systems,

a survey of current trends, in Current Trends in Concurrency, Lecture Notes in Computer Science,
Springer, Berlin, 1986, pp. 510–584.

[35] M.O. Rabin, Decidability of second order theories and automata on in�nite trees, Trans. Amer. Math.
Soc. 141 (1969) 1–35.

[36] M.O. Rabin, Decidable theories, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland,
Amsterdam, 1977, pp. 595–629.

[37] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264–286.
[38] M. Reynolds, Axiomatising �rst-order temporal logic: until and since over linear time, Studia Logica

57 (1996) 279–302.
[39] J.G. Rosenstein, Linear Orderings, Academic Press, New York, 1982.
[40] K. Schild, Combining terminological logics with tense logic, Proc. 6th Portuguese Conf. on Arti�cial

Intelligence, Porto, 1993, pp. 105–120.
[41] D. Scott, A decision method for validity of sentences in two variables, J. Symbolic Logic 27 (1962)

477.
[42] A. Sernadas, Temporal aspect of logical procedure de�nition, Inform. Systems 5 (1980) 167–187.
[43] C. Stirling, Modal and temporal logics, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.),

Handbook of Logic in Computer Science, Vol. 2, Clarendon Press, Oxford, 1992, pp. 478–551.

134 I. Hodkinson et al. / Annals of Pure and Applied Logic 106 (2000) 85–134

[44] A. Szalas, Concerning the semantic consequence relation in �rst-order temporal logic, J. Theoret.
Comput. Sci. 47 (1986) 329–334.

[45] A. Szalas, L. Holenderski, Incompleteness of �rst-order temporal logic with Until, J. Theoret. Comput.
Sci. 57 (1988) 317–325.

[46] F. Wolter, M. Zakharyaschev, Temporalizing description logics, Proc. FroCoS’98, Amsterdam, 1998.
in ‘Frontiers of Combining Systems’, Kluwer Academic Publishers, Dordrecht, 2000, to appear. See
http://www.informatik.uni-leipzig.de/∼wolter.

[47] F. Wolter, M. Zakharyaschev, Decidable fragments of �rst-order modal logics, Submitted. See
http://www.informatik.uni-leipzig.de/∼wolter, 1999.

