227,386 research outputs found

    Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-Boltzmann simulations

    Full text link
    By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range interactions for the description of ternary amphiphilic fluids, we study how the phase separation kinetics of a symmetric binary immiscible fluid is altered by the presence of the amphiphilic species. We find that a gradual increase in amphiphile concentration slows down domain growth, initially from algebraic, to logarithmic temporal dependence, and, at higher concentrations, from logarithmic to stretched-exponential form. In growth-arrested stretched-exponential regimes, at late times we observe the self-assembly of sponge mesophases and gyroid liquid crystalline cubic mesophases, hence confirming that (a) amphiphile-amphiphile interactions need not be long-ranged in order for periodically modulated structures to arise in a dynamics of competing interactions, and (b) a chemically-specific model of the amphiphile is not required for the self-assembly of cubic mesophases, contradicting claims in the literature. We also observe a structural order-disorder transition between sponge and gyroid phases driven by amphiphile concentration alone or, independently, by the amphiphile-amphiphile and the amphiphile-binary fluid coupling parameters. For the growth-arrested mesophases, we also observe temporal oscillations in the structure function at all length scales; most of the wavenumbers show slow decay, and long-term stationarity or growth for the others. We ascribe this behaviour to a combination of complex amphiphile dynamics leading to Marangoni flows.Comment: 16 pages, 13 figures. Accepted for publication in Phys. Rev. E. (Replaced for the latest version, in press.) Higher-quality figures can be sent upon reques

    Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems

    Get PDF
    Characterizing the work statistics of driven complex quantum systems is generally challenging because of the exponential growth with the system size of the number of transitions involved between different energy levels. We consider the quantum work distribution associated with the driving of chaotic quantum systems described by random matrix Hamiltonians and characterize exactly the work statistics associated with a sudden quench for arbitrary temperature and system size. Knowledge of the work statistics yields the Loschmidt echo dynamics of an entangled state between two copies of the system of interest, the thermofield double state. This echo dynamics is dictated by the spectral form factor. We discuss its relation to frame potentials and its use to assess information scrambling.Comment: 11+6pp, 5 figures. v3: version accepted for publication in Quantu

    Adaptive, locally-linear models of complex dynamics

    Get PDF
    The dynamics of complex systems generally include high-dimensional, non-stationary and non-linear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties we detail a new approach based on local linear models within windows determined adaptively from the data. While the dynamics within each window are simple, consisting of exponential decay, growth and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a novel likelihood-based hierarchical clustering and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode C.elegansC. elegans our approach identifies fine-grained behavioral states and model dynamics which fluctuate close to an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. Finally, we analyze whole-brain imaging in C.elegansC. elegans and show that the stability of global brain states changes with oxygen concentration.Comment: 25 pages, 16 figure

    Asynchronous growth and competition in a two-sex age-structured population model

    Get PDF
    Asynchronous exponential growth has been extensively studied in population dynamics. In this paper we find out the asymptotic behaviour in a non-linear age-dependent model which takes into account sexual reproduction interactions. The main feature of our model is that the non-linear process converges to a linear one as the solution becomes large, so that the population undergoes asynchronous growth. The steady states analysis and the corresponding stability analysis are completely made and are summarized in a bifurcation diagram according to the parameter R0. Furthermore the effect of intraspecific competition is taken into account, leading to complex dynamics around steady states

    Growing dust grains in protoplanetary discs - III. vertical settling

    Get PDF
    TM acknowledges the support of a Swinburne Special Studies Programme. GL is grateful to the Australian Research Council for funding via Discovery project grant DP1094585, and acknowledges funding from the European Research Council for the FP7 ERC advanced grant project ECOGAL. JFG's research was conducted within the Lyon Institute of Origins under grant ANR-10-LABX-66.We aim to derive a simple analytic model to understand the essential properties of vertically settling growing dust grains in laminar protoplanetary discs. Separating the vertical dynamics from the motion in the disc mid-plane, we integrate the equations of motion for both a linear and an exponential grain growth rate. Numerical integrations are performed for more complex growth models. We find that the settling efficiency depends on the value of the dimensionless parameter γ , which characterizes the relative efficiency of grain growth with respect to the gas drag. Since γ is expected to be of the same order as the initial dust-to-gas ratio in the disc (≃10−2), grain growth enhances the energy dissipation of the dust particles and improves the settling efficiency in protoplanetary discs. This behaviour is mostly independent of the growth model considered as well as of the radial drift of the particles.Publisher PDFPeer reviewe
    • …
    corecore