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The dynamics of complex systems generally include high-dimen-
sional, nonstationary, and nonlinear behavior, all of which
pose fundamental challenges to quantitative understanding. To
address these difficulties, we detail an approach based on local
linear models within windows determined adaptively from data.
While the dynamics within each window are simple, consisting
of exponential decay, growth, and oscillations, the collection of
local parameters across all windows provides a principled charac-
terization of the full time series. To explore the resulting model
space, we develop a likelihood-based hierarchical clustering, and
we examine the eigenvalues of the linear dynamics. We demon-
strate our analysis with the Lorenz system undergoing stable
spiral dynamics and in the standard chaotic regime. Applied to
the posture dynamics of the nematode Caenorhabditis elegans,
our approach identifies fine-grained behavioral states and model
dynamics which fluctuate about an instability boundary, and
we detail a bifurcation in a transition from forward to back-
ward crawling. We analyze whole-brain imaging in C. elegans
and show that global brain dynamics is damped away from the
instability boundary by a decrease in oxygen concentration. We
provide additional evidence for such near-critical dynamics from
the analysis of electrocorticography in monkey and the imaging
of a neural population from mouse visual cortex at single-cell
resolution.

time-series segmentation | animal behavior | neural dynamics |
clustering | dynamical criticality

Complex dynamics are ubiquitous in nature; their diversity
in systems ranging from fluids and turbulence (1, 2) to

collective motion (3) and brain dynamics (4) is unified by com-
mon challenges of analysis which include high dimensionality,
nonlinearity, and nonstationarity. But how do we capture the
quantitative details of the dynamics of complex systems with
models simple enough to offer substantial interpretability?

Motivated by the remarkable increase in data quantity and
quality as well as growing computational power, one approach
is to fit a single global model to the dynamics with properties
extracted from data. For example, deep neural networks and
other machine-learning techniques (5, 6) often produce high-
dimensional nonlinear models, which can precisely represent
complex dynamics and yield accurate predictions. While power-
ful, however, these methods can create representations of the
dynamics that are too intricate for simple conceptual under-
standing. Another approach uses sparse regression to find a
system of differential equations governing a nonlinear dynami-
cal system (7). Also, short-time brain oscillations were studied by
using jPCA (8), a method that approximates the dynamics as a
linear model with skew-symmetric couplings. Although promis-
ing, global methods are unable to handle nonstationarities, such
as when a time series is composed of a set of distinct dynamics
that change in time.

An alternative to global methods is to segment the dynamics
into simpler components which change in time. For example, a
low-dimensional representation of the spatiotemporal patterns
found in the human brain was obtained through dynamic mode
decomposition (9) in short temporal segments (10). Studies
on self-regulated dynamical criticality in the human brain used
vector autoregressive models locally in time (11). Behavioral

motifs in Drosophila melanogaster were found by using local-
time wavelet analysis (12). In these methods, however, the local
windows are defined phenomenologically, which may conflate
distinct dynamical behaviors.

Principled approaches for the segmentation of time series
include those of change-point detection (13–20), which aim to
identify structural changes in the time series but often focus
on the location of change points or forecasting, instead of the
underlying dynamics (15–20). Other techniques, such as hidden
Markov models (21–23), assume that the global dynamics are
composed of a set of underlying dynamical states which the sys-
tem revisits, without providing a parameterization of the under-
lying dynamical patterns (23). More recently, switching linear
dynamical systems (LDSs) and autoregressive hidden Markov
models (24–26) were developed with the aim of providing such
a parameterization, but they do so either by setting the number
of breaks from the onset (27, 28) or by assuming that there is a
set of underlying dynamical regimes and that the system switches
between them (21, 22, 24–26, 29).

Here, we combine the simplicity of LDSs with a likelihood-
based algorithm for identifying dynamical breaks to construct
interpretable, data-driven models of complex dynamics, with
minimal a priori assumptions about the breakpoints or the num-
ber of states. We approximate the full dynamics with first-order
LDSs in short windows and use a likelihood-ratio test to esti-
mate to what extent newly added observations fit the same
linear model, thus adaptively determining the size of the local
windows. The global dynamics is therefore parameterized as
a set of linear couplings within windows of various lengths.

Significance

Natural phenomena are teeming with temporal complexity,
but such dynamics, however fascinating, offer substantial
obstacles to quantitative understanding. We introduce a gen-
eral method based on the simple idea that even complicated
time series are locally linear. Our analysis transforms dynami-
cal data into a parameterized space of linear models, and we
detail a hierarchical clustering of this space into dynamical
categories. The linear models reveal fine-scaled, interpretable
states in the posture behavior and global brain activity of the
nematode Caenorhabditis elegans. Furthermore, we find that
the population of stable and unstable oscillations suggests
a near-critical dynamics across both brains and behavior. We
expect our approach to be widely applicable.
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Fig. 1. Schematic of the adaptive, locally linear segmentation algorithm. (A) A d-dimensional time series is depicted as a blue line. We iterate over pairs
of subsequent windows and use a likelihood-ratio test to assess whether there is a dynamical break between windows. (B) We compare linear models θk

and θk+1, found in the windows Xk and Xk+1, by the log-likelihood ratio Λdata (Eq. 3). To assess significance, we compute the distribution of log-likelihood
ratios under the null hypothesis of no model change Pnull(Λ) and identify a dynamical break when Λdata >Λthresh where Pnull(Λthresh) = 0.05. If no break is
identified, we continue with the windows {θk+1, θk+2}. (C) The result of the segmentation algorithm is a set of windows of varying lengths and model
parameters {θ1, . . . , θN}. Our approach is similar to approximating a complex-shaped manifold by a set of locally flat patches and encodes a nonlinear time
series through a trajectory within the space of local linear models.

We analyze the resulting model space using hierarchical cluster-
ing with a likelihood-based similarity measure and by examining
the dynamical eigenvalue spectra in three illustrative systems:
the Lorenz dynamical system and both posture and whole-
brain dynamics of the nematode Caenorhabditis elegans. In
addition, we extend our analysis to higher-dimensional dynam-
ics: electrocorticography (ECoG) recordings in nonhuman pri-
mates and a population of hundreds of neurons in mouse
visual cortex.

Locally Linear, Adaptive Segmentation Technique
An overview of the segmentation technique is given in Fig. 1
and a detailed description as well as links to publicly available
code are in Materials and Methods. Briefly, we iterate over pairs
of consecutive windows (Fig. 1A) and estimate whether the lin-
ear model fit in the larger window θk+1 is significantly more
likely to model the observations in the larger window compared
with the model found in the smaller window θk (Fig. 1B). We
compare the two models by the log-likelihood ratio Λdata and
assess the significance of Λdata by using Monte Carlo methods
to construct a likelihood-ratio distribution Pnull(Λ) under the
null hypothesis of no model change. This null distribution is
used to define Λthresh according to a threshold probability or
significance level Pnull(Λthresh). We identify a dynamical break
when Λdata>Λthresh, in which case we save the model parame-
ters and start a new modeling process from the break location.
If Λdata≤Λthresh, then no break is identified, and we move to
the next window pair {θk+1, θk+2}. Over the entire time series,
our procedure yields a set of N windows of varying sizes with
their respective linear model parameters, {θ1, . . . , θN}(Fig. 1C)
and is analogous to tiling a complex shaped manifold into local
flat regions. We thus trade the complexity of the nonlinear time
series for a space of simpler local linear models that captures
important properties of the full dynamics.

Surveying the Space of Models
The application of locally linear, adaptive segmentation gener-
ally results in a large set of LDSs, and we explore this space
both through the eigenvalues of the coupling matrices and by
model clustering through a likelihood-based measure of similar-
ity. Despite a typically large number of models, the dynamical
eigenvalues offer a direct measure of local oscillations and stabil-
ity. Complex conjugate eigenvalues represent oscillations, with
frequency f = Im(λ)/(2π). A negative real part implies stable
damped dynamics along that mode, while a positive real part
implies unstable exponentially growing trajectories. As the least-
stable eigenvalue approaches 0, the system becomes sensitive to
external perturbations. At the bifurcation point, Re(λ) = 0, the
susceptibility diverges, and we enter a critical dynamical state
(30–32). The full spectrum of eigenvalues across models thus
provides not only information about oscillatory patterns but also
stability and criticality.

To cluster the models, we note that simply using the Euclidean
metric is inappropriate, since the space of linear models is invari-
ant under the action of the GL(n) group∗. Instead, we define
dissimilarity as the loss in likelihood when two windows are
modeled by a single linear model constructed fitting within the
combination of windows. Given two windows, Xa and Xb , we
define the dissimilarity as da,b = Λc,a + Λc,b , where Λ is the log-
likelihood ratio and c is the union of the windows Xc =Xa ∪Xb .
We note that this measure is symmetric da,b = db,a , positive
semidefinite da,b ≥ 0, and does not require the windows to be
the same size. If the dynamics in both windows are similar, then

*The action of P∈GL(n) to the matrix of linear couplings A results in new coupling
matrix PA that is very different according to the Euclidean metric, while representing
the same linear dynamics. Therefore, using the Euclidean distance is deeply misleading
as two matrices that are distant in Euclidean metric can represent the same LDS.
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the combined model will still accurately fit each window. If not,
then it will be far less likely to model the windows, resulting
in a higher disparity between models. Once the dissimilarity is
computed between all models, we perform hierarchical cluster-
ing by combining models according to Ward’s minimum variance
criterion (33).

Lorenz System
As a demonstration of the locally linear approach, we analyze the
time series generated from the Lorenz dynamical system (34):

ẋ=σ(y − x )

ẏ=x (ρ− z )− y

ż=xy −βz ,

with β= 8/3 and σ= 10. We explore two dynamical regimes:
transient chaos with late-time, stable spiral dynamics at ρ=
20 and the standard chaotic attractor with ρ= 28. For spiral
dynamics, we vary the initial conditions to sample the dynamics
approaching the fixed point at the center of each lobe (Fig. 2A),
which have the same period but vary in their phase space tra-
jectories. We apply adaptive segmentation and show the result
of model-space clustering in Fig. 2B. We find a single domi-
nant split in the clustering dendrogram, which corresponds to
approaching the two different fixed points. Inside each branch,
the different linear models are all quite similar. In the chaotic

regime, however, we find substantially more structure and large
dissimilarities between models even at the lower branches of the
tree. Notably, the first split occurs between the two lobes of the
attractor, and, more generally, the linear model clustering pro-
vides a partition of the Lorenz phase space with different levels
of description depending on the depth in the dendrogram.

Further insight into the dynamics is reflected in the distribu-
tion of the spectrum of eigenvalues across the local linear models
(Fig. 2C). In the spiral dynamics, we find two peaks reflecting
a dominant pair of complex conjugate eigenvalues, and these
correspond to a decaying oscillation (Re(λ)< 0). We note that
while the local coupling matrix is constructed from finite tempo-
ral windows and is not the instantaneous Jacobian, the dynamical
eigenvalues are close to those derived from linear stability of the
fixed points (Materials and Methods). In contrast, the spectrum
in the chaotic regime reflects a complexity of behaviors, with
many models displaying unstable dynamics along the 1d unsta-
ble manifold of the origin (SI Appendix, Fig. S1). In the locally
linear perspective, the complexity of chaotic dynamics is asso-
ciated with both substantial structure in the space of models as
revealed through hierarchical clustering, as well as a wide range
of dynamics, including eigenvalues that are broadly distributed
across the instability boundary.

Posture Dynamics of C. elegans
The posture dynamics of the nematode C. elegans is accurately
represented by a low-dimensional time series of eigenworm

B

A

C

Fig. 2. Adaptive segmentation of the Lorenz dynamical system and likelihood-based clustering of the resulting model space. (A) Simulated Lorenz system for
stable spiral dynamics (Left) {ρ= 20, β= 8/3,σ= 10} and the standard chaotic regime (Right) {ρ= 28, β= 8/3,σ= 10}. (B) Likelihood-based hierarchical
model clustering. In the spiral dynamics, there is a large separation between models from each lobe, while the dynamics within lobe are very similar. In
the chaotic regime, the model-space clustering first divides the two lobes of the attractor, and the full space is intricate and heterogeneous. (C) Dynamical
eigenvalue spectrum for each regime, λr and λi , respectively represent the real and imaginary eigenvalues. The spiral dynamics (C, Left) exhibits a pair
of stable, complex conjugate peaks, while in the chaotic regime (C, Right), we find a broad distribution of eigenvalues, often unstable, reflecting the
complexity of the chaotic attractor.
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projections (35) (Fig. 3A), although a quantitative understand-
ing of the behaviors in these dynamics remains a topic of active
research (36–39). More broadly, principled behavioral analysis
is the focus of multiple recent advances in the video imaging
of unconstrained movement across a variety of organisms (12,
24, 40–47). Here, we apply adaptive locally linear analysis to
the eigenworm time series and find short model window lengths
ranging from∼0.6 s to 1.2 s (Fig. 3B). Notably, the median model
window size is similar to the duration of half a worm’s body wave,
suggesting that the body-wave dynamics provide an important
timescale of movement control.

Likelihood-based model clustering reveals that forward crawl-
ing separates from other worm behaviors at the top level of
the hierarchy (Fig. 3C). At a finer scale, forward crawling
breaks into faster and slower models, while turns and rever-
sals emerge from the other branch. To clarify the structure
of the model space, we leverage the interpretability of the
eigenworm projections, where the first two modes (a1 and a2)
capture a primary body-wave oscillation with phase velocity
ω=− d

dt
tan−1 (a2/a1), while a third projection a3 captures

broad body turns (35). In Fig. 3D, we show ω and a3 for each clus-
ter. We note that there are a few low-amplitude positive phase

velocities in the reversal branch: The adaptive segmentation
detects a dynamical break when the worm starts slowing down
in preparation for a reversal, and those first frames are included
in the reversal window. We note that changes in the activity of
AIB, RIB, and AVB neurons also precede the reversal event
(48). Further examination of the agreement between model
clusters and behavioral states is provided in SI Appendix, Fig.
S2. At a coarse level, the canonical behavioral states described
since the earliest observations of the movements of C. elegans
(49, 50) are identified here by using data-driven, quantitative
methods.

The model parameters provide an additional opportunity for
interpretation of the worm’s behavior, and in SI Appendix, Fig.
S3, we show the coefficients for illustrative models at the clus-
tering level consisting of four states. For models from the two
forward states, the two pairs of complex conjugate eigenvalues
have different imaginary values, corresponding to different fre-
quencies of the locomotor wave oscillation. On the other hand,
the turning model can be identified by the large mean turning
amplitude. Finally, the reversal model exhibits an inversion in
the sign of the {a1, a2} coupling, which corresponds to a reversal
in the direction of the body wave.

A

C

D

B

Fig. 3. Locally linear analysis of C. elegans posture dynamics reveals a rich space of behavioral motifs. (A) We transform image sequences into a 4D posture
dynamics using “eigenworm” projections (35), where the first two modes (a1, a2) describe a body wave, with positive phase velocity ω for forward motion
and negative ω when the worm reverses. High values of |a3| occur during deep turns, while a4 captures head and tail movements. (B) The cumulative
distribution function (CDF) of window sizes reveals rapid posture changes on the timescale of the locomotor wave (the average duration of a half body
wave is shown for reference). (C) Likelihood-based hierarchical clustering of the space of linear posture dynamics. At the top of the tree, forward crawling
models separate from other behaviors. At the next level, forward crawling splits into fast and slower body waves, while the other behaviors separate into
turns and reversals. Hierarchical clustering results in a similarity matrix with weak block structure; while behavior can be organized into broad classes,
large variability remains within clusters. (D) Cluster branches reveal interpretable worm behaviors. We show the probability distribution function (PDF) of
body-wave phase velocities and turning amplitudes at the fourth-branch level of the tree. In the first forward state (dark green), worms move faster than
in the second branch (light green). In the turn branch (blue), the phase velocity is centered around zero, and high values of |a3| indicate larger turning
amplitudes. In the reversal branch (red), we find predominantly negative phase velocities.
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The full structure of the model dendrogram reveals that the
behavioral repertoire of C. elegans is far more complicated
than the canonical states of forward, reversal, and turning loco-
motion. For example, forward crawling behavior is rich and
variable: Two forward crawling models can be almost as dis-
similar as a turn is from a reversal. While the worm’s behav-
ior is stereotyped at a coarse-grained level, there is signifi-
cant variation within each of the broad behavioral classes. For
example, at the 12-branch level of the tree, the reversal class
splits into faster and slower reversals, as well as a new behav-
ioral motif: a reversal-turn (SI Appendix, Fig. S4). Certainly,
some of these “states” simply reflect the linear basis of the
segmentation algorithm. However, longer nonlinear behavioral
sequences can emerge from analysis of the resulting symbolic
dynamics.

We analyze the spectrum of eigenvalues across the entire
model space (Fig. 4A) and find that the worm’s dynamics
includes both stable and unstable eigenvalues with a broad
peak at f ∼ 0.6 s−1, in agreement with the average forward
undulatory frequency of the worm in these food-free condi-
tions (35). Some of these unstable dynamics are explained by
coarse behavioral transitions, and we align reversal trajectories
by the moment when the body-wave phase velocity ω crosses
zero from above to follow the median of the least-stable eigen-
values during this transition (Fig. 4B). We see that the reversal
behavior is accompanied by an apparent Hopf bifurcation: A
pair of complex conjugate eigenvalues crosses the instability
boundary. More generally, we find that the dynamics rapidly
switches stability (Fig. 4C). Indeed, the spectrum of eigenvalues
shows that the worm’s dynamics is generically near the instabil-
ity boundary, which is suggestive of a general feature of flexible
movement control.

Neural Dynamics of C. elegans
With recent progress in neural imaging, C. elegans also provides
the opportunity to observe whole-brain dynamics at cellular res-
olution (48, 51–55), and we apply our techniques to analyze the
differences between active and quiescent brain states driven by
changes in oxygen (O2) concentration (52). In these experiments,
worms enter a “sleep”-like state when the O2 levels are lowered

to 10%, and are aroused when the O2 concentration is increased
to 21%. These conditions offer a probe of the neural dynamics
of C. elegans and also suggest qualitative comparisons with sleep
transitions measured through ECoG in human and nonhuman
primates (11, 56, 57).

In Fig. 5A, we show an example trace of the recorded neu-
ral activity, and further details are available in Materials and
Methods. We analyze the stability of the neural dynamics using
“active” and “quiescent” global brain states identified previously
(52), and we show the distribution of least-stable dynamical
eigenvalues for each condition (Fig. 5B). To further characterize
the transition between states, we align the maximum real dynam-
ical eigenvalues by the time of increased O2 concentration and
show the mean of this distribution (Fig. 5C). As activity increases
from the quiescent state, the dynamics move toward the instabil-
ity boundary, eventually crossing and remaining nearly unstable
in the aroused state. While the neural imaging occurs in par-
alyzed worms, the broad distribution of eigenvalues across the
instability boundary in the active brain state is consistent with the
complexity of the behavioral dynamics. Notably, the model space
also contains clusters in approximate correspondence with previ-
ous state labels, both in these experiments (52) and in worms
exhibiting more complex natural behaviors (48) (SI Appendix,
Figs. S5 and S10).

Higher-Dimensional Systems
Beyond the previous examples, there are situations where high
dimensionality and low sampling rate (relative to the signal
correlation time) yield a minimum window size which is too
large to capture important dynamics. This is as expected—more
dimensions generally require more statistical samples—and our
minimum window size is chosen conservatively to result in a good
model fit without regularization and thus without bias. If the
sampling rate is adequate, then we can easily apply our tech-
nique to higher-dimensional data, as we demonstrate in Fig. 6A
and SI Appendix, Fig. S6, where we show the analysis of 40
components from ECoG recordings in nonhuman primates. For
sparsely sampled systems, on the other hand, regularization is
generally required to accurately compute the inverse of the data
and error covariance matrices. We offer one straightforward

A B

C

Fig. 4. Linear posture dynamics in C. elegans is distributed across an instability boundary with spontaneous reversals evident as a bifurcation. (A) The
eigenvalues of the segmented posture time series reveal a broad distribution of frequencies f = |Im(λ)|/2π with a peak f ∼ 0.6 s−1 that spills into the
unstable regime. (B) We align reversal events and plot the maximum real eigenvalue (λr ) and the corresponding oscillation frequency. As the reversal
begins, the dynamics become unstable, indicating a Hopf-like bifurcation in which a pair of complex conjugate eigenvalues crosses the instability boundary.
The shaded region corresponds to a bootstrapped 95% confidence interval. (C) Instabilities are both prevalent and short-lived. We show the cumulative
distribution function (CDF) of the number of consecutive stable or unstable models, demonstrating that bifurcations also occur on short times between
fine-scale behaviors.
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Fig. 5. Quiescence stabilizes global brain dynamics in C. elegans. (A) We analyze whole-brain dynamics from previous experiments in which worms were
exposed to varying levels of O2 concentration (52). We show the background-subtracted fluorescence signal ∆F/F0 from 101 neurons, while the O2 concen-
tration changed in 6-min periods: Low O2 (10%) induces a quiescent state; high O2 (21%) induces an active state. (B) We plot the distribution of maximum
real eigenvalues (λr ) for the active and quiescent states. The active state is associated with substantial unstable dynamics, while the dynamics of the qui-
escent state is predominately stable, which is consistent with putative stable fixed-point dynamics. PDF, probability distribution function. (C) We plot the
average maximum real eigenvalue as the O2 concentration is changed. We align the time series from different worms to the first frame of increased O2

concentration and show the accompanying increase in the maximum real eigenvalue, which crosses and remains near to the instability boundary. The shaded
region corresponds to a bootstrapped 95% confidence interval, and curves were smoothed by using a five-frame running average.

procedure which is motivated by principal component regres-
sion (58) where we reduce the dimension locally, within each
window. We detail this idea in Materials and Methods and pro-
vide a demonstration from recordings of hundreds of neurons
in mouse visual cortex (Fig. 6B and SI Appendix, Fig. S7). In
both of these high-dimensional systems, the local-linear analy-
sis yields model dynamics that sit near the instability boundary,
with a large fraction of unstable models (Fig. 6).

Discussion
Simple linear models form the foundation for our analysis of
complex time series based upon interpretable dynamics in short

segments determined adaptively from data. The trajectories of
a single model can only exponentially grow, decay, or oscillate.
However, by tiling the global dynamics with many such models,
we faithfully reproduce nonlinear, multidimensional, and nonsta-
tionary behavior and parameterize the full dynamics with the set
of local couplings. To elucidate the resulting space of models, we
construct hierarchical clusters with a new likelihood-based dis-
similarity measure between local dynamics, and we examine the
distribution and stability of the dynamical eigenvalues.

In the Lorenz system, chaos is distinguished by an increased
model variety, including many with instabilities. In the chaotic
attractor, the model hierarchy naturally splits across the two

A B

Fig. 6. Higher-dimensional applications of the adaptive locally linear model technique: The dynamics exhibit a wide range of frequencies and near-critical
behavior. (A) Distribution of the least-stable real eigenvalues from each window of the local-linear models obtained from the analysis of ECoG recordings
in nonhuman primates. A, Inset shows the full distribution of eigenvalues—color code is the same as in Fig. 3. (B) Distribution of the least-stable real
eigenvalues from each window of the local linear models obtained in recordings of 240 neurons in the visual cortex of Mus musculus. B, Inset shows the full
distribution of eigenvalues—color code is the same as in Fig. 3. Here, due to the high-dimensionality, a regularization procedure was added to the original
technique (Materials and Methods). PDF, probability distribution function.
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lobes with the clusters at deeper levels forming a progressively
finer partition of the phase space. These partitions, as well as
the recurrence structure in the space of models, can be used
to estimate ergodic properties of the attractor, such as the
Kolmogorov–Sinai entropy (59, 60). Adaptive locally linear anal-
ysis offers a new approach for thinking quantitatively about
animal behavior, where recent advances have resulted in multiple
efforts aimed at understanding movement at high resolution (12,
35, 36). In the posture dynamics of C. elegans, we find that inter-
pretable behavioral motifs emerged naturally, with high-level
clusters reflecting canonical behavioral states of forward, rever-
sal, and turning locomotion (49) and finer-scale, novel states
appearing deeper in the tree. An advantage of our clustering
approach is that the level of behavioral description can be chosen
appropriate to the nature of the analysis, and these states form
a natural basis with which to apply techniques such as compres-
sion (36, 61) and to explore long-time behavioral dynamics like
memory (12). The dissimilarity measure also enables the com-
parison of models across datasets, regardless of experimental
details such as frame rate, as long as postures are projected into
the same basis. This can be useful for developing a master reper-
toire of behaviors (36) as well as looking for differences between
nematode species or studying perturbations to behavior (35, 38,
50, 61–64). We note that the success of the local linear basis in
revealing interpretable worm behavior results in part from the
ability to capture oscillations and the interactions between dif-
ferent posture modes, both common components of movement
behavior.

The eigenvalues of the posture dynamics reflect variability and
hint at the presence of flexible control. While the eigenvalue dis-
tribution is centered on the frequency of the locomotor wave, the
peak is close to the instability boundary, and many models are
unstable. Posture movements thus appear more complex than
suggested by a model of stereotyped behaviors composed of a
small collection of simple limit cycles (65).

The global neural activity of C. elegans also displays mod-
el dynamics which fluctuate across the instability boundary
(Fig. 5B), suggesting a near-critical brain state (see ref. 66 for
a similar, recent conclusion from a statistical perspective). Addi-
tionally, we obtain similar findings through local linear analysis of
ECoG in monkey and single-cell recordings from a neural popu-
lation in mouse visual cortex (Fig. 6). Such behavior is observed
in whole brain activity (11, 56) and is consistent with the observa-
tion that the firing rate of neural populations exhibits subcritical
dynamics (67). Dynamical criticality is advantageous for infor-
mation processing in models of neural networks (68, 69) and can
occur as a result of an anti-Hebbian balance of excitation and
inhibition (32). Close to criticality, the dynamics is highly suscep-
tible to external perturbations, and small changes to the stability
can have a dramatic impact on the dynamical time scales (70).
This susceptibility can change across brain regions (71), and we
show that it can also be modulated with behavioral transitions
and neural quiescence in C. elegans. Such modulation also occurs
with the induction of anesthesia in ECoG (57) (SI Appendix,
Fig. S6).

For simplicity and interpretability, we choose a basis of first-
order linear models, although extensions to higher order are
straightforward. Also, while we focus on the deterministic model
properties, the error terms (Eq. 1, Materials and Methods) may
also carry important information. For example, it has been
recently shown that even deterministic chaotic systems can be
accurately represented as linear dynamics with a heavy-tailed
stochastic forcing, the magnitude of which can be used to iden-
tify bursting or lobe-switching events (72). In our analysis, we find
that the error distribution exhibits heavy tails along the direction
of the nonlinearities of the Lorenz system and that the magnitude
increases with lobe switching in the Lorenz system or reversal
events in C. elegans.

There have been multiple recent advances in applying lin-
ear models to the analysis of complex time series (24–26, 73,
74), and while our approach shares a linear basis, there are
important differences. For example, both autoregressive hidden
Markov models and switching LDSs assume that the dynamics is
composed of a set of discrete coarse-grained dynamical modes,
revisited by the system. The number of these modes is a hyperpa-
rameter of the model, chosen to balance model complexity and
accuracy. In contrast, our analysis finds as many linear models
as permitted by reliable estimation, and the depth of the hier-
archical clustering can be chosen a posteriori, depending on the
interpretation of the clusters. Our combination of adaptive seg-
mentation and hierarchical clustering also enables the explicit
examination of the variability of models within each cluster. The
combination of the simplicity of linear models with the power of
the statistical methods yields a compelling route for the deeper
understanding of complex dynamics, and we expect our approach
to be widely applicable.

Materials and Methods
Linear Dynamics and the Likelihood Function. We approximate a given time
series using first-order LDSs in short windows and use a likelihood-ratio test
to estimate whether new observations can be modeled by the linear coef-
ficients. Given a d-dimensional discrete time series ~x∈Rd , we define the
first-order vector autoregressive process,

~xt+1 =~c + A~xt + ~ηt+1, [1]

where ~c∈Rd is an intercept vector, A is a d× d discrete time coupling
matrix, and ~η is a noise term with covariance Σ, which we assume to be
Gaussian and white. We estimate the linear parameters θ= (~c, A, Σ) through
least-squares regression. The continuous time linear couplings, φ, can be
obtained by taking

φ=
A− 1d

∆t
, [2]

where 1d is a d-dimensional identity matrix and ∆t is the inverse of the
sampling rate.

Using windowed data Xk+1 =~xt , t∈ [t0, t0 + wk+1], we construct the log-
likelihood ratio between models with parameters θk and θk+1 as

Λk,k+1 = l(θk+1|Xk+1)− l(θk|Xk+1), [3]

where the pseudo-log-likelihood function of model parameters θa =(
~ca, Aa, Σa

)
from Xb for a Gaussian process is given by

l(θa|Xb) =−
1

2

wb∑
t=t0+1

{
log
[
(2π)d|Σa|

]
− ~η>t Σ

−1
a ~ηt

}
, [4]

where ~ηt is the error of modeling Xb with θa.

Adaptive Locally Linear Segmentation Algorithm. We first define a set of can-
didate windows in which to examine whether there are dynamical breaks.
This is done iteratively: We set a minimum window size wmin and then
increment by ∼ 10% which ensures that larger windows contain a pro-
portionally larger number of observations. The candidate windows range
between wmin and some wmax , which corresponds to the value at which the
step size is larger or equal to wmin. The specific value of wmin depends on
the dataset and the dimensionality d, and we choose wmin to be the small-
est interval in which the data can be reliably fit. However, simply setting
wmin = d does not incorporate the possibility of multicollinearity, when two
or more components are not linearly independent, which produces an ill-
conditioned linear regression. This linear dependence results in a moment
matrix X>X that is not full rank or nearly singular, and therefore small per-
turbations result in large fluctuations in the estimated linear parameters. In
addition, computing the log-likelihood function in Eq. 4 requires inverting
the covariance matrix of the error Σ. Thus, we require a minimum window
size for which both X>X and Σ are well-conditioned. We compute the con-
dition number of these matrices as a function of window size and choose
wmin as the smallest window for which the condition numbers are reason-
ably small. The results for each analyzed dataset are shown in SI Appendix,
Fig. S8.
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Given a set of candidate windows, we iterate over pairs of consecutive
windows of size wk and wk+1, estimate the respective model parameters θk

and θk+1, and locate a dynamical break if θk+1 performs significantly better
than θk in fitting the data from the window of size wk+1. We assess sig-
nificance through a likelihood-ratio test and obtain Λk,k+1 from Eq. 3. We
note that our models are nonnested, for which the likelihood ratio would
be asymptotically χ2 distributed. Instead, we take θk as a null model for the
observations in the window of size wk+1 and use a Monte Carlo approach to
generate n = 5,000 surrogate trials of size wk+1 from θk to compute Pnull(Λ),
the distribution of the log-likelihood ratio under the null hypothesis of hav-
ing no model change. We identify a dynamical break if Λk,k+1 >Λthresh,
where Λthresh is defined by the larger solution of Pnull(Λthresh) = 0.05. A
graphical representation of the technique is shown in Fig. 1, and the algo-
rithm is detailed in SI Appendix. Finally, if the algorithm iterates to the
maximum window size wmax, we automatically assign a break, which we
then assess through the following procedure: We start with wk = wmin and
compare the models found in the intervals [wmax−wk, wmax] and [wmax−
wk, wmax + (wk+1−wk)] as we increase k until we span the entire set of
candidate windows. If none of these tests suggest a break, then we simply
remove it.

We choose the significance threshold empirically, and this choice re-
flects a tension between model complexity and accuracy; varying
Pnull(Λthresh) principally changes the number of breaks. While we have found
Pnull(Λthresh) = 0.05 to be reasonable across multiple datasets, we provide
additional intuition through a toy segmentation problem illustrated in SI
Appendix. The results reported in this work do not depend sensitively on
the significance threshold.

Regularization for High-Dimensional Data. Regularization can be incorpo-
rated straightforwardly into our method: At each iteration step, we project
the windows of size wk and wk+1 to a space of orthogonal vectors defined
by the first D eigenvectors of the covariance matrix of the window of
size wk+1, estimate whether a break exists in this lower-dimensional space,
and then project back the inferred model parameters to the original space
through a simple linear transformation. The number of eigenvectors is cho-
sen to keep the condition number of the covariance matrix of the data
and the error below a certain threshold κthresh to ensure a well-conditioned
model fit. We choose to use the condition number instead of the fraction of
explained variance as a threshold, such that we could capture as much of the
variance while being able to have a well-conditioned model fit. This results
in projections that can capture more of the variance than that imposed by
a variance threshold. We set the minimum window size at 10 frames, such
that wk+1 is at least 10% larger than wk (as in Algorithm 1 in SI Appendix).
We demonstrate this regularization procedure on a dataset consisting of
calcium imaging of hundreds of neurons in the mouse visual cortex (Fig. 6B
and SI Appendix, Fig. S7). Other approaches such as lasso or ridge regres-
sion may also be incorporated, but at the cost of additional regularization
parameters (75, 76).

Likelihood-Based Hierarchical Clustering. The space of LDSs has a family of
equivalent representations given by the transformation P∈GL(n) of the
group of nonsingular n× n matrices, and thus the Euclidean metric is
not an appropriate dissimilarity measure. While previous solutions have
been presented for measuring LDS distances (77, 78), the adaptation of
these methods to our framework would be intricate and unnatural, and
we instead define a likelihood dissimilarity measure, which is consistent
with the adaptive segmentation method. In essence, two models are dis-
tant if the model found by combining the two corresponding windows
is unlikely to fit either window. On the other hand, when the models
are similar, then the model found by combining the two windows is very
likely to fit both windows. Specifically, let Λc,a = l(θa|Xa)− l(θc|Xa) and
Λc,b = l(θb|Xb)− l(θc|Xb). We define the dissimilarity between models θa and
θb as,

da,b = Λc,a + Λc,b, [5]

where Xc = Xa ∪Xb, and θc is the result of fitting Xc to Eq. 1. This
measure is positive semidefinite since Λc,a≥ 0 and Λc,b≥ 0 (θa is the
maximum-likelihood estimate in Xa; l(θa|Xa)− l(θc|Xa)≥ 0) and also sym-
metric; since we do not fit across windows, a first-order linear fit in
Xa ∪Xb yields the same linear couplings as in Xb ∪Xa. After comput-
ing the dissimilarity between all linear models, we use Ward’s criterion
(33) to perform hierarchical clustering by minimizing the within-cluster
variance.

Lorenz Data. We simulate the Lorenz system using the scipy.odeint pack-
age (79) with parameter choices σ= 10, β= 8/3, and ρ= 28 in the chaotic
regime and ρ= 20 for spirals. We use step size ∆t = 0.02 s. In the chaotic
regime, we integrate for a total of 1,000 s, waiting 200 s for the trajecto-
ries to fall onto the attractor. For the stable spirals in the late-time transient
chaos regime, we choose initial conditions (x0, y0, z0) = (x, 0, 20), where x
varies from −12 to −8 and 8 to 12 in steps of 0.2, yielding a total of
42 initial conditions. The trajectories are drawn to one of the stable fixed
points C± = (x*, y*, z*) = (±

√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1), for which lin-

ear stability analysis yields a stable oscillation with λr ≈−0.4 and λi/(2π)≈
1.4 and a relaxation with λr ≈−12.9. We wait for 10 s before sampling
the spiraling trajectory on additional 10 s. To reduce multicollinearity,
we add small-amplitude Gaussian white noise with a diagonal covari-
ance matrix with variances σii = 0.001, i∈{x, y, z} to the simulated time
series. The minimum window size wmin = 10 frames is chosen by using SI
Appendix, Fig. S8.

C. elegans Posture Data. We analyze published data consisting of for-
aging behavioral conditions (35, 80) in which N2-strain C. elegans were
imaged at f = 32 Hz with a video-tracking microscope. Coiled shapes are
resolved, and the time series downsamples to f = 16 Hz (38). Worms are
grown at 20◦C under standard conditions (81). Before imaging, worms
are removed from bacteria-strewn agar plates by using a platinum worm
pick and rinsed from Escherichia coli by letting them swim for 1 min in
nematode growth medium buffer. They are then transferred to an assay
plate (9 cm Petri dish) that contains a copper ring (5.1 cm inner diame-
ter) pressed into the agar surface, preventing the worm from reaching the
side of the plate. Recording starts ∼5 min after the transfer and lasts
for 2,100 s. In total, data from N = 12 worms are recorded. Using SI
Appendix, Fig. S8, we select a minimum window size of wmin = 10 frames.
Likelihood hierarchical clustering yield a dendrogram for which a cut at
the four-branch level results in clusters with approximately 6,500 (fast
forward), 14,400 (slow forward), 3,500 (turns), and 4,200 (reversals) mod-
els. In Fig. 4B, reversal events are identified when the phase velocity
changes sign. Only segments for which there is a 2-s window of posi-
tive and negative phase velocity before and after the change of sign are
considered.

C. elegans Neural Data. We analyze whole-brain experiments from the Zim-
mer group in which transgenic C. elegans expressing a nuclear localized
Ca2+ indicator are imaged in a microfluidic device where a reduction in
O2 concentration is observed to induce a sleep-like, quiescent state in
npr-1 lethargus animals (52). A range of 99–126 neurons is imaged for
N = 11 worms, and each neural trace is normalized by subtracting the
background and dividing by the mean signal. A linear component is also
subtracted to correct for bleaching. We use principal components analy-
sis to reduce each ensemble recording to an eight-dimensional time series
capturing ∼ 90% of the variance. Each of the experimental trials (one per
worm) consists of three 6-min periods with alternating O2 concentrations:
starting with 10%, increasing to 21%, and returning to 10%. We select a
minimum window size wmin = 18 frames using SI Appendix, Fig. S8. Like-
lihood hierarchical clustering yields a dendrogram for which a cut at the
three-branch level results in one cluster with 24 models, another with
74 models, and a third outlier cluster containing just 1 model. Removing
the outlier results in a dendrogram with a more even model distribu-
tion: one cluster with 24, another with 16, and a third with 55 models.
We use this clustering to compare state labels with identified active and
quiescent global brain states (52) (SI Appendix, Fig. S4). Data from unper-
turbed worms exhibiting more complex natural behaviors (48) are analyzed
similarly.

ECoG in Monkey. We analyze a publicly available dataset (neurotycho.org/)
that has been described (4, 56, 82). The details of the experimental proce-
dure can be found in ref. 83. The raw 128 electrode signals are preprocessed
in the following way. First, the original signal is downsampled from 1 KHz
to 500 Hz. Then, two channels are removed due to significant line noise
contamination. The remaining 126 electrodes are filtered to remove the
line noise at 50 Hz and subsequent harmonics. Multitaper filtering is
performed by using the Chronux toolbox (84), available at chronux.org/,
with a bandwidth of 5 Hz (nine tapers) in a moving window of 2 s
with 0.5-s overlap. The overlap regions are smoothed by using a sigmoid
function with smoothing parameter τ = 10. Finally, the electrode signals
are projected into 40 principal components that capture ∼ 99% of the
variance. We select a minimum window size wmin = 83 frames using SI
Appendix, Fig. S8.
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Mus musculus Neural Data. We analyze a publicly available dataset (obser-
vatory.brain-map.org/visualcoding/search/cell list?experiment container id=
511854338&sort field=p sg&sort dir=asc) from the Allen Institute (85). The
analyzed data constitute a total of 240 neurons from the anterolateral
visual cortex of Mus musculus, at a depth of 275 µm. Neural activity is
sampled at ∼ 30 Hz for ∼ 60 mins with a GCaMP6f calcium indicator, during
exposure to a natural movie. The background subtracted bleach-corrected
signals are accessed by using the Allen Software Development kit (86). The
local linear analysis is performed with regularization by using a condition
number threshold of κthresh = 105.

Software. Code for the adaptive locally linear segmentation and likelihood-
based hierarchical clustering was written in Python (87) and is publicly avail-
able (https://github.com/AntonioCCosta/local-linear-segmentation.git).
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53. Schrödel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A (2013) Brain-wide 3D imag-
ing of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods
10:1013–1020.

54. Prevedel R, et al. (2014) Simultaneous whole-animal 3D imaging of neuronal activity
using light-field microscopy. Nat Methods 11:727–730.

55. Venkatachalam V, et al. (2016) Pan-neuronal imaging in roaming Caenorhabditis
elegans. Proc Natl Acad Sci USA 113:E1082–E1088.

56. Solovey G, et al. (2015) Loss of consciousness is associated with stabilization of cortical
activity. J Neurosci 35:10866–10877.

57. Alonso LM, et al. (2014) Dynamical criticality during induction of anesthesia in human
ECoG recordings. Front Neural Circuits 8:20.

58. Jolliffe IT (1982) A note on the use of principal components in regression. J Royal Stat
Soc Ser C Appl Stat 31:300–303.

59. Kolmogorov AN (1959) On the entropy per unit time as a metric invariant of
automorphisms. Doklady Russ Acad Sci 124:754–755.

60. Ott E (2002) Chaos in Dynamical Systems (Cambridge Univ Press, Cambridge, UK).
61. Gomez-Marin A, Stephens GJ, Brown AEX (2016) Hierarchical compression of

Caenorhabditis elegans locomotion reveals phenotypic differences in the organiza-
tion of behaviour. J Royal Soc Interface 13:20160466.

62. Vidal-Gadea A, et al. (2011) Caenorhabditis elegans selects distinct crawling and
swimming gaits via dopamine and serotonin. Proc Natl Acad Sci USA 108:17504–
17509.

63. Gao S, et al. (2018) Excitatory motor neurons are local oscillators for backward
locomotion. eLife 7:e29915.

64. Fouad AD, et al. (2018) Distributed rhythm generators underlie Caenorhabditis
elegans forward locomotion. eLife 7:e29913.

65. Revzen S, Guckenheimer JM (2012) Finding the dimension of slow dynamics in a
rhythmic system. J Royal Soc Interface 9:957–971.

66. Chen X, Randi F, Leifer AM, Bialek W (2018) Searching for collective behavior in a
small brain. arXiv:1810.07623v1. Preprint, posted October 17, 2018.

67. Wilting J, Priesemann V (2018) Inferring collective dynamical states from widely
unobserved systems. Nat Commun 9:2325.

Costa et al. PNAS | January 29, 2019 | vol. 116 | no. 5 | 1509

https://github.com/AntonioCCosta/local-linear-segmentation.git
http://www.surfsara.nl


68. Toyoizumi T, Abbott LF (2011) Beyond the edge of chaos: Amplification and temporal
integration by recurrent networks in the chaotic regime. Phys Rev E 84:1–8.

69. Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic
neural networks. Neuron 63:544–557.

70. Wilting J, et al. (2018) Dynamic Adaptive Computation: Tuning network states to task
requirements. arXiv:1809.07550v1. Preprint, posted September 20, 2018.

71. Murray JD, et al. (2014) A hierarchy of intrinsic timescales across primate cortex. Nat
Neurosci 17:1661–1663.

72. Brunton SL, Brunton BW, Proctor JL, Kaiser E, Nathan Kutz J (2017) Chaos as an
intermittently forced linear system. Nat Commun 8:1–8.

73. Oh SM, Rehg JM, Balch T, Dellaert F (2008) Learning and inferring motion pat-
terns using parametric segmental switching linear dynamic systems. Int J Comput Vis
77:103–124.

74. Fox E, Sudderth EB, Jordan MI, Willsky AS (2009) Nonparametric bayesian learning
of switching linear dynamical systems. Advances in Neural Processing Systems 21, eds
Koller D, Schuurmans D, Bengio Y, Bottou L (Neural Information Processings Systems
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