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Abstract. Asynchronous exponential growth has been extensively studied in
population dynamics. In this paper we find out the asymptotic behaviour in a
non-linear age-dependent model which takes into account sexual reproduction
interactions. The main feature of our model is that the non-linear process
converges to a linear one as the solution becomes large, so that the popu-
lation undergoes asynchronous growth. The steady states analysis and the
corresponding stability analysis are completely made and are summarized in a
bifurcation diagram according to the parameter R0. Furthermore the effect of
intraspecific competition is taken into account, leading to complex dynamics
around steady states.

1. Introduction

The asymptotic behavior of solutions in models of structured population
dynamics is in some cases very regular, specially when the equation of the system
is linear. See e.g. the survey in the book [6] and the references there in. A typical
regular dynamical behaviour is the so-called asynchronous exponential growth or
balanced exponential growth which, in the classical linear age-dependent problem
(Lotka-McKendrick equation), is determined by the existence of persistent solu-
tions. These solutions are exponentially increasing or decreasing in time, namely
eαtu(a) with u a function of age a. Moreover, all the solutions have the property
that the total population size approaches exponential growth/decay in time but
the age-profile, that is, the age-density normalized to total integral 1, converges
to an asymptotic age-profile which is independent of the initial condition. See for
instance the book [2] Chapters 1 and 2 or the book [5] Chapter 14.

Beyond linear systems, the property of balanced exponential growth can be
found as well in non-linear systems where even persistent solutions can exist. An
example of the latter are the homogeneous (of degree one) systems which can arise
in epidemiological models and also in two-sex (pair-formation) models. See e.g.
[1] where the authors undertake an stability analysis for the persistent solutions
of an abstract homogeneous dynamical system with the help of a normalized
system. See also the book [7] Chapter 5.
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For a nice introduction to the subject of asynchronous exponential growth
in linear and non-linear models see [8], where the authors study an abstract
semilinear differential equation such that non-linear processes converge to linear
processes as the solution becomes large.

In this paper we investigate a basic population model, which is neither linear
nor homogeneous, describing the dynamics of a two-sex population . The system
is instead asymptotically linear in the sense that it converges to a linear one as
the population tends to infinity. We focus on the age-profile and the final goal
is to find the asymptotic age-profile according to the parameters of the model
and the initial condition. Furthermore, we consider the effect of intra-specific
competition that modifies the previous scenario changing the bifurcation diagram
and preventing the population from unlimited growth.

2. A basic model

Our basic model concerns a two-sex population structured by the age of the in-
dividuals and such that the sex-ratio is constant and age-specific. Such framework
accounts fot different mechanisms that produce age-specific sex heterogeneity. We
have in mind at least two mechanisms such as sequential hermaphroditism (i.e.
individuals can switch from one sex to the other sex in only one direction once in
a lifetime) as described in [3] and [4], and the case of different mortality between
males and females. Precisely, we have

• i) the case of hermaphroditism:
here we assume that each individual during its lifetime undergoes a tran-
sition to the other sex so that the net process produces an appreciable
age-specific deviation of the sex-ratio from 1 to 1. Thus calling σ(a) the
probability of being male at age a, we have

pm(a, t) = σ(a) p(a, t) , pf (a, t) = (1 − σ(a)) p(a, t)

where pm, pf and p respectively are the age-density of males, females and
joint sex population.

• ii) the case of different mortalities:
if we assume that males and females have respective age-specific mortali-
ties µm(a) and µf(a) then it is easy to see that the age-specific sex-ratio
defined as the proportion of males (0 ≤ σ(a) ≤ 1) has the following form

σ(a) =
Πm(a)σ0

Πm(a)σ0 + Πf (a)(1 − σ0)

where

Πm(a) := e−
R a

0
µm(x) dx , Πf(a) := e−

R a

0
µf (x) dx

are the respective probabilities of survival and σ0 is the sex-ratio at birth.
Moreover, for the joint sex population we have the mortality

µ0(a) = µm(a)σ(a) + µf(a)(1 − σ(a)) .
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The evolution of our population is described by the following Gurtin-MacCamy
type system

(1)






pt(a, t) + pa(a, t) + µ0(a) p(a, t) = 0, t > 0, a ∈ (0, a†)

p(0, t) = Φ(S(t))

∫ a†

0

β(a) p(a, t) da, t > 0,

p(a, 0) = p0(a), a ∈ [0, a†].

where p(a, t) is the age-density of the population at time t, a† is the maximum
age and

S(t) =

∫ a†

0

σ(a) p(a, t) da

is the size of the male subpopulation. We assume that

σ(·) ∈ L∞
+ (0, a†).

Moreover

µ0(·) ∈ L1
loc,+(0, a†)

is the per capita mortality rate, which defines the survival probability as

Π0(a) := e−
R a

0
µ0(x) dx

with Π0(a†) = 0. Also, our initial condition is a biologically meaningful initial
age distribution

p0(·) ∈ L1
+(0, a†).

Concerning the birth process (see the boundary condition above) is modeled
by two terms:

β0(·) ∈ L∞
+ (0, a†)

which is the age specific fertility rate, and the function φ : [0,∞) → [0,∞) which
accounts for the mechanism of encounters in sexual reproduction (i.e. interactions
between the sub-populations of females and males). Actually this function gives
the functional response to the search for a male and

φ(S(t)) (1 − σ(a)) p(a, t) da

is the number of effective encounters per unit of time of females with age between
a and a + da with any male. Regarding φ(x) we suppose that

(2)

{
φ(x) is continuous and increasing,

φ(0) = 0 and lim
x→∞

φ(x) = φ∞,

where 1/φ∞ represents the time to produce newborns before a new encounter.
Moreover

(3) R0 := φ∞

∫ a†

0

β0(a) (1 − σ(a)) Π0(a) da



4 MIMMO IANNELLI AND JORDI RIPOLL

is the basic reproduction number in the sense that represents the number of
newborns produced by an individual of the population during his lifespan with a
complete availability of males. Then in (1) we have rescaled our functions setting

(4) Φ(x) =
φ(x)

φ∞

, β(a) = φ∞β0(a)(1 − σ(a)) ≤ β+,

so that

R0 :=

∫ a†

0

β(a) Π0(a) da.

A standard form for φ may be a Holling type II functional response

(5) φ(x) =
γ x

1 + τ x
,

that has been used in [3] [4]. At this stage of the model we neglect the competition
for the resources that we will introduce later in Section 5. Let us remark that in
order to avoid degenerated cases we assume that both parameters σ(a) and β(a)
are not zero a.e. on (0, a†).

Existence of steady states to the model equation (1) can be easily established.
Namely, it is clear that the origin (or extinction equilibrium) is a solution of (1).
Moreover, there possibly exist non-trivial equilibria given by

(6) p∗(a) =
S∗Π0(a)∫ a†

0

σ(a) Π0(a) da

where S∗ must satisfy the following non-linear equation:

(7) R0Φ
(
S∗
)

= 1.

Now it is not difficult to see that there exist at most a non-trivial equilibrium.
More precisely, if R0 ≤ 1 there is no non-trivial equilibrium whereas if R0 > 1
there exists a unique non-trivial equilibrium. The latter follows from the fact
that the function Φ is increasing and takes all the values between 0 and 1.

Notice that equation (7) also gives a bifurcation diagram which is plotted as
the graph of the function S∗ = Φ−1

(
1

R0

)
in the plane (R0, S

∗), (see Figure 1

where the particular case of (5) is discussed). In particular, one has that S∗

tends to infinity as R0 → 1+. In this model the (positive) parameter R0 plays a
fundamental role as it is quite usual in population dynamics. Other bifurcation
diagrams are possible according to other model parameters accounting for more
specific biological features of the population, see e.g. the diagrams in [3] and [4].

3. Asymptotic behavior

Based on the integral formulation of (1) we may derive some global result about
the asymptotic behaviour of the solution. Namely we consider the two variables
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1
R 0

S
∗

R0Φ(S∗) = 1

unstable

stable

globally

locally

Bifurcation diagram

Figure 1. Bifurcation diagram for system (1) where the weighted
population size at equilibrium S∗ is plotted versus the parameter
R0 > 0, see Sections 2 and 3. There is a qualitative change at
R0 = 1, an unstable non-trivial equilibrium appears coming from
infinity. The total population at equilibrium is given by P ∗ =

S∗
R a†
0

Π0(a) da
R a†
0

σ(a) Π0(a) da
.

B(t) = p(0, t) (total birth rate at time t) and S(t), focusing on the integral system

(8)






B(t) = Φ(S(t))

(∫ t

0

K(t − x)B(x) dx + F (t)

)
,

S(t) =

∫ t

0

H(t − x)B(x) dx + G(t),

where the following definitions apply

K(a) := β(a)Π0(a), H(a) := σ(a)Π0(a),

F (t) :=

∫ ∞

0

K(a + t)
p0(a)

Π0(a)
da, G(t) :=

∫ ∞

0

H(a + t)
p0(a)

Π0(a)
da,

with all the functions extended by zero outside the interval [0, a†] (we note also
that both F (t) and G(t) vanish outside the interval [0, a†]). From (8) we can get
the solution of the original system as (see e.g. [2] for further details)

(9) p(a, t) =





p0(a − t)

Π0(a)

Π0(a − t)
a > t,

B(t − a)Π0(a) a ≤ t.

First we have a global result concerning the extinction equilibrium
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Proposition 1. If R0 < 1 then the origin is globally asymptotically stable.

Proof. First we note that B(t) is bounded. In fact from the first equation in (8)
we have

max
s∈[0,t]

B(s) ≤ R0 max
s∈[0,t]

B(s) + max
s∈[0,a†]

F (s)

and, consequently

sup
t≥0

B(t) ≤

max
s∈[0,a†]

F (s)

1 − R0
≤

β+

1 − R0

∫ a†

0

p0(a)da.

Then, using this estimate and the form (9) of the solution, we have
∫ a†

0

p(a, t)da ≤

(
a† +

β+

1 − R0

)∫ a†

0

p0(a)da

that shows that the solution is stable. Moreover we draw

lim sup
t→∞

B(t) < +∞,

and, considering the first equation in (8), which for t > a† is

B(t) = Φ(S(t))

∫ a†

0

K(t − x)B(x) dx,

we get

lim sup
t→∞

B(t) ≤ R0 lim sup
t→∞

B(t),

and, since R0 < 1,

lim
t→∞

B(t) = 0.

By (9) we finally get

lim
t→∞

∫ a†

0

p(a, t)da = 0. �

The previous result concerns the case in which only the extinction equilibrium
exists. However, in the case R0 > 1 we can still give an estimate of the attraction
due to this equilibrium.

Proposition 2. If R0 > 1 then for any initial condition p0(·) ∈ L1
+(0, a†) such

that

(10) p0(a) ≤ δp∗(a), a.e. in [0, a†], δ < 1

we have

lim
t→∞

∫ a†

0

|p(a, t)| da = 0.
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Proof. From the second equation in (8) we have

S(0) =

∫ ∞

0

σ(a)p0(a)da ≤ δS∗

where we have used (6). Then we define

t0 = sup
{

T | S(t) ≤ δ̃S∗, for t ∈ [0, T ]
}

where we take δ < δ̃ < 1. If t0 < ∞, from (8) we also have for t ∈ [0, t0]

B(t) ≤ Φ(δ̃S∗)

(

max
s∈[0,t0]

B(s)

∫ t

0

β(a)Π0(a)da

+
δS∗

∫ a†

0

σ(a)Π0(a)da

∫ ∞

t

β(a)Π0(a)da

)

that yields

max
s∈[0,t0]

B(s) ≤ R0Φ(δ̃S∗) max





max

s∈[0,t0]
B(s),

δS∗

∫ a†

0

σ(a)Π0(a)da





.

Since

(11) R0Φ(δ̃S∗) < 1

we have

(12) max
s∈[0,t0]

B(s) <
δS∗

∫ a†

0

σ(a)Π0(a)da

.

Then, plugging this inequality into the second of (8) we get

δ̃S∗ = S(t0) =

∫ t0

0

H(a)B(t0 − a)da + G(t0) ≤ δS∗,

which is a contradiction, showing that t0 = ∞. From this and (12) we have

sup
t≥0

S(t) ≤ δ̃S∗, sup
t≥0

B(t) < +∞

and, from the first equation in (8), we may derive

lim sup
t→∞

B(t) ≤ R0Φ(δ̃S∗) lim sup
t→∞

B(t),

that, by (11) implies lim
t→∞

B(t) = 0. �

On the other hand we have also a symmetrical condition under which the
non-trivial steady state repels the solution that goes to infinity.
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Proposition 3. If R0 > 1 then for any initial condition p0(·) ∈ L1
+(0, a†) such

that

(13) p0(a) ≥ δp∗(a), a.e. in [0, a†], δ > 1

we have

lim
t→∞

∫ a†

0

|p(a, t)| da = +∞.

Proof. the argument to prove this result follows the one used in the proof of
Proposition 1, with reversed inequalities. However, in this case we need to pre-
liminarily prove that B(t) is strictly positive. Actually we first prove that

B(t) > 0 for t ∈ [0, a†].

In fact, since S(0) ≥ δS∗ > 0 we have

B(0) = Φ(S(0))F (0) > R0Φ(S(0))
δS∗

∫ a†

0

σ(a)Π0(a)da

> 0

and, supposing that there exists t0 ∈ [0, a†] such that

B(t0) = 0, B(t) > 0 for t ∈ [0, t0),

we have

0 ≥

∫ t0

0

K(t0 − a)B(a)da +
δS∗

∫ a†

0

σ(a)Π0(a)da

∫ a†

t0

K(a)da

which yields the wrong conclusion

K(a) = 0 for a ∈ [0, a†].

Repeating this argument for t0 > a†, we conclude that B(t) > 0 for all t.
Let now

t0 = sup
{
T |S(t) ≥ δ̃S∗, for t ∈ [0, T ]

}

with 1 < δ̃ < δ. If t0 < +∞ we have

min
s∈[0,t0]

B(s) ≥ R0Φ(δ̃S∗) min





min

s∈[0,t0]
B(s),

δS∗

∫ a†

0

σ(a)Π0(a)da





.

Since min
s∈[0,t0]

B(s) > 0 and R0Φ(δ̃S∗) > 1 we draw

(14) B(t) ≥
δS∗

∫ a†

0

σ(a)Π0(a)da

for t ≤ t0
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then from the second equation in (8)

δ̃S∗ = S(t0) ≥ δS∗

which is absurd. Then S(t) ≥ δ̃S∗ for all t ≥ 0 so that (14) holds for all t ≥ 0
and lim inf

t→+∞
B(t) > 0. From the first equation in (8) we get

lim inf
t→+∞

B(t) ≥ R0Φ(δ̃S∗) lim inf
t→+∞

B(t)

and, consequently

lim
t→+∞

B(t) = +∞,

which implies the thesis. �

The previous propositions soon imply the following consequence

Corollary 4. Let R0 > 1, then the trivial equilibrium is asymptotically stable
and the non-trivial one is unstable.

Proof. Though the condition required in Proposition 2 is not in general satisfied
by the initial datum p0(a) however, applying Gronwall inequality to the first
equation in (8) we have

B(t) ≤ β+eβ+a† |p0|L1 for t ∈ [0, a†]

so that

p(a, a†) = B(a† − a)Π0(a) ≤ β+eβ+a† |p0|L1 Π0(a).

Then, calling p̃(a, t) the solution of the problem with initial datum p̃0(a) =
p(a, a†), since for t > a† we have

p(a, t) = p̃(a, t − a†),

we can apply Proposition 2 to p̃(a, t) and conclude that the origin is asymptoti-
cally stable.

Concerning the non-trivial equilibrium p∗(a) we take p0(a) = (1+ η)p∗(a) with
η > 0 small enough in order to have p0(a) as close as we want to p∗(a) and,
applying Proposition 3 we see that with any such initial datum the solution is
going to infinity, proving instability of p∗(a). �

We can also estimate how the solution growth to infinity

Corollary 5. If R0 > 1 and the assumptions of Proposition 3 are fulfilled, then
we have

(15) B(t) > ceωt

where c and ω are suitable positive constants.
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Proof. We start from the inequalities for t ≥ 0

B(t) > 0, S(t) ≥ δ̃S∗,

established in the proof of Proposition 3. Then, setting

Bn = min
t∈[na†,(n+1)a†]

B(t), n = 0, 1, . . .

we have from (8)

Bn ≥ R0Φ(δ̃S∗) min {Bn, Bn−1}

and consequently, since R0Φ(δ̃S∗) > 1 and Bn > 0,

Bn > R0Φ(δ̃S∗)Bn−1, n = 0, 1, . . .

By induction we draw

Bn >
(
R0Φ(δ̃S∗)

)n

B0 .

Then, if t ∈ [na†, (n + 1)a†]

B(t) >
(
R0Φ(δ̃S∗)

)−1 (
R0Φ(δ̃S∗)

) 1

a†
t

and we have (15) with suitable c and ω. �

4. Age-profile

In this section we reformulate the original non-linear problem (1) introducing
the age-profile (or the per capita age-density of the population) as a new state
variable

w(a, t) =
p(a, t)

P (t)

and the total population

P (t) =

∫ a†

0

p(a, t) da > 0.

Notice that this description is possible for initial data p0(a) that are not trivial,
i.e. those data for which P (t) does not vanish in a finite time. Namely, we will
assume in the sequel that the initial condition p0(·) ∈ L1

+(0, a†) for system (1) is
such that for all t ≥ 0 the functions

σ(a + t)p0(a) and β0(a + t)p0(a) are not zero a.e. on (0, a†) .

Actually this conditions guarantee that the initial population is endowed with
males and fertile females, otherwise the population goes to extinction. See e.g. [5]
Chapter 14.



A TWO-SEX AGE-STRUCTURED POPULATION MODEL 11

From the original system (1) and noticing that p(a†, t) = 0 (see (9)), it is
possible to write a non-linear system for the age-profile and the total population
jointly:

(16)






wt(a, t) + wa(a, t) + (µ0(a) + M(t))w(a, t) = 0

w(0, t) = Φ(S(t))

∫ a†

0

β(a) w(a, t) da

∫ a†

0

w(a, t) da = 1

d

dt
P (t) = M(t) P (t)

where

M(t) :=

∫ a†

0

(
Φ(S(t))β(a) − µ0(a)

)
w(a, t) da

and

S(t) := P (t)

∫ a†

0

σ(a) w(a, t)da.

System (16) is a combination of a partial differential equation and an ordinary
differential equation. In order to have an initial-boundary value problem an
initial condition should be provided (w(a, 0), P (0)) = (w0(a), P0) satisfying the
compatibility condition ∫ a†

0

w0(a) da = 1.

Moreover, we note that the joint state variables take values in an invariant subset
of the positive cone L1

+(0, a†) × R+. Once we know the solution of (16), the
solution of system (1) can be recovered by the formula

p(a, t) = P (t) w(a, t).

Now is a routine to check that the number of equilibria of (16) is exactly
the same as the number of non-trivial equilibria of (1) and that they are just
related through a normalization. So, according to equation (7), if R0 ≤ 1 there
is no equilibrium of (16) whereas if R0 > 1 there exists a unique (non-trivial)
equilibrium given by

(17) w∗
0(a) =

Π0(a)∫ a†

0
Π0(a) da

, P ∗ = S∗

∫ a†

0
Π0(a) da∫ a†

0
σ(a) Π0(a) da

where S∗ is the solution of (7). These are the stationary age-profile and the total
population at equilibrium respectively.

Note that no solution corresponds to the trivial solution of (1) because if P ∗ = 0
then the second condition in (16) would give w∗

0(a) ≡ 0 and the third condition
would not be satisfied.

Since we know from the previous section that non-trivial equilibrium is unsta-
ble, we have to check asymptotic states such those we obtain going to the limit
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with lim
t→+∞

P (t) = +∞. In fact, this formal limit performed in (16), and taking

into account lim
t→+∞

Φ(S(t)) = 1, leads to the following equation

(18)






wt(a, t) + wa(a, t) + µ0(a)w(a, t)

+w(a, t)

∫ a†

0

(β(s) − µ0(s)) w(s, t)ds = 0

w(0, t) =

∫ a†

0

β(a) w(a, t)da
∫ a†

0

w(a, t) da = 1

which has a steady solution

(19) w∗
∞(a) =

e−α∗aΠ0(a)∫ a†

0

e−α∗xΠ0(x) dx

where α∗ is the only real solution of the equation (the intrinsic Malthusian pa-
rameter of the limiting system)

∫ a†

0

β(a)Π0(a)e−λada = 1.

Now, in order to assure the convergence of the solution of (16) to (19), we need
an additional hypothesis on Φ(x), namely,

(20)

∫ ∞

1

1 − Φ(x)

x
dx < ∞ ,

which means that the function 1 − Φ(x) must have a sufficiently fast decay (see
also e.g. [8]). For instance, the function considered in (5), corresponding to
a Holling type II functional response, fulfills this further condition (20). Next
theorem is concerned with the convergence of the age-profile to (19)

Theorem 6. Let R0 > 1 and suppose that p0(a) satisfies condition (13) of Propo-
sition 3. Then, if Φ(x) fulfills (20), we have

(21) lim
t→∞

∫ a†

0

|w(a, t) − w∗
∞(a)| da = 0.

Proof. We first go back to the first equation of system (8) and note that it can
be viewed as a time-depending linear renewal equation

B(t) =

∫ t

0

K(t, s)B(t − s)ds + F (t)

with

K(t, s) = Φ(S(t))β(a)Π0(a)
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which converges to K(a) = β(a)Π0(a) in the following sense

(22) |K(t, ·) − K(·)|L∞ ≤ β+ (1 − Φ(t)) → 0 as t → +∞,

and, moreover is rapidly converging, that is

(23)

∫ ∞

0

|K(t, ·) − K(·)|L∞ dt < +∞.

To see this we use the bound (15) derived for B(t) at the end of the proof of
Proposition 3. In fact (15) implies, for t sufficiently large

S(t) =

∫ a†

0

B(t − s)Π0(s)ds > ceωt,

with some constant c > 0, and consequently, for some constant C > 0

Φ(S(t)) > Φ
(
Ceωt

)
for t ≥ 0.

Thus
∫ ∞

0

|K(t, ·) − K(·)|L∞ dt ≤ β+

∫ ∞

0

(1 − Φ(S(t))) dt

≤ β+

∫ ∞

0

(
1 − Φ

(
Ceωt

))
dt =

β+

ω

∫ ∞

1

(
1 − Φ(x)

x

)
dx < +∞.

as we claimed.
Now we are able to use a result in [2] where it is proved that (22) and (23)

imply

(24) B(t) = b0e
α∗t (1 + Ω(t))

where

lim
t→+∞

Ω(t) = 0

and

b0 =
K̂(α∗) + ĝ(α∗)∫ a†

0

e−α∗ssK(s)

> 0

with

g(t) = (1 − Φ(S(t)))

∫ t

0

K(s)B(t − s)ds

which is positive and absolutely Laplace transformable thanks to assumption (20).
Finally, since (24) imply (for t > a†)

w(a, t) =
B(t − a)Π0(a)∫ a†

0

B(t − a)Π0(a)da

=
e−α∗a (1 + Ω(t − a)) Π0(a)∫ a†

0

e−α∗a (1 + Ω(t − a))Π0(a)da

we have (21). �



14 MIMMO IANNELLI AND JORDI RIPOLL

Concerning the latter results, it is worth to mention that in [8] the authors give
a result (Theorem 2.6), using the theory of semigroups on dual Banach spaces,
which cannot be applied directly to our model in order to study the asymptotic
age-profile. However, if in addition to the assumptions of the previous Theorem 6
we assume that σ(a) ≥ σ > 0 a.e. on (0, a†) then we arrive to the same conclusion
as in Example 3.8 of [8] with the functions

F (φ) :=
(
Φ(
∫ a†

0
σ(a)|φ(a)| da) − 1

) ∫ a†

0
β(a)φ(a) da · δ0 ,

where δ0 is the Dirac delta concentrated at the origin, andf(r):=(1−Φ(σr))|β(·)|L∞.

5. Competition effects

We now take into account competition effects that may arise at high population
densities and modify the long term behavior of the basic model. So, we investigate
the following non-linear equation which is a modification of system (1)

(25)






pt(a, t) + pa(a, t) + µ0(a) p(a, t) = 0

p(0, t) = Φ(S(t)) Ψ(P (t))

∫ a†

0

β(a) p(a, t)da ,

where

P (t) =

∫ ∞

0

p(a, t) da

is the total population and Ψ: [0,∞) → [0, 1] introduces the effect of competi-
tion for limited resources, producing a reduction of fertility due to population
crowding. Regarding the latter we suppose that

(26)






Ψ is continuous and decreasing ,

Ψ(0) = 1 and lim
x→∞

Ψ(x) = 0.

The other terms µ0(a), β(a), σ(a), Φ(x) and S(t) are like in the basic model (1).
A standard prototype for the function Ψ(x) is for instance

(27) Ψ(x) =
1

1 + (x/k)θ

where the parameter θ > 0 accounts for the different impact of competition (see
Figure 3 for an example of the functions defined in (5) and (27)).

Now, proceeding as in Section 2, non-trivial equilibria are given by

p∗(a) = p∗(0) Π0(a)

where p∗(0) is related to the two variables

S∗ := p∗(0)

∫ a†

0

σ(a) Π0(a) da and P ∗ := p∗(0)

∫ a†

0

Π0(a) da
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1
R 0

S
∗

1

m

R0Φ(S∗)Ψ(σ̃S∗) = 1

stable

globally

locally

Bifurcation diagram

Figure 2. New bifurcation diagram when competition effects are
included. The weighted population size at equilibrium S∗ is plotted
versus R0 > 0 assuming that 0 ≤ Φ(x) Ψ(σ̃x) ≤ M is unimodal
(with maximum value M < 1, see (29)). Two non-trivial equilibria
exist for R0 > 1

M
.

1

0,8

0,6

0

0,2

0,4

x

6 82 40

Figure 3. From top to bottom, the picture shows the functions
Ψ(σ̃x), Φ(x) and the function Φ(x) × Ψ(σ̃x) which is unimodal.

which regarded as positive independent variables must satisfy the following non-
linear equations:

(28) R0Φ
(
S∗
)
Ψ
(
P ∗
)

= 1 , P ∗ = S∗

∫ a†

0
Π0(a) da∫ a†

0
σ(a) Π0(a) da

,
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with R0 still defined in (3). Once we know the solutions of (28) we get the steady
states p∗(·).

Regarding equations (28), multiple situations can occur depending on the
explicit form of the functions Φ and Ψ. Nevertheless, defining

(29) σ̃ :=

∫ a†

0
Π0(a) da∫ a†

0
σ(a) Π0(a) da

> 0 and M := max
x>0

{Φ(x) Ψ(σ̃x)} < 1

one has that if R0 < 1
M

there is no non-trivial equilibrium, if R0 = 1
M

there exist at
least a non-trivial equilibrium, and if R0 > 1

M
there exist at least two non-trivial

equilibria. The latter follows from the fact that the function x → Φ(x) Ψ(σ̃x)
takes all the values between 0 and M at least twice.

We now focus on the simple case in which this function is unimodal so that, for
R0 > 1

M
we have exactly two non-trivial states as illustrated in the bifurcation

diagram in Figure 2. In fact the action of competition reduces males availability
and rises the threshold for R0, from 1 to 1

M
> 1, in order to non-trivial states to

exist and allow the population not to go extinct.
Concerning stability of these states, we soon remark that, by the same argu-

ment as in Proposition 1 we can prove

Proposition 7. If R0 < 1
M

then the extinction equilibrium p∗ ≡ 0 is globally
asymptotically stable.

And, with an argument similar to the one used in the proof of Proposition 2,
we also have

Proposition 8. If R0 > 1
M

then the extinction equilibrium is asymptotically
stable.

In order to analyze the stability of the non-trivial states we consider the char-
acteristic equation arising from linearization at such states and we obtain

(30) 1 = K̂0(λ) + R0S
∗
[
Φ′(S∗)Ψ(σ̃S∗)K̂1(λ) + σ̃Φ(S∗)Ψ′(σ̃S∗)K̂2(λ)

]
,

where K̂0(λ), K̂1(λ), K̂2(λ) are the Laplace transforms of the respective kernels

K0(a) =
β(a)Π0(a)

R0

, K1(a) =
σ(a)Π0(a)∫ a†

0
σ(a)Π0(a)da

, K2(a) =
Π0(a)∫ a†

0
Π0(a)da

Such characteristic equation will be systematically analyzed numerically in a
forthcoming paper as in [9], in order to discuss the effect of the interplay between
the increasing growth rate of the basic model and the reduction operated by the
logistic term introduced by function Ψ.
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