1,134 research outputs found

    Recovery from visual dysfunction following mild traumatic brain injury is associated with adaptive reorganization of retinal inputs to lateral geniculate nucleus in the mouse model utilizing central fluid percussion injury.

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of morbidity and mortality nationwide. Prevalence of mild TBI (mTBI) vastly outnumbers more severe forms however the associated morbidity has only recently gained public attention. Visual dysfunction is a significant component of mTBI associated morbidity with recovery of function linked with improvement in global outcomes. Examination of sensory and motor pathways in other brain injury paradigms support that recovery is largely dependent on adaptive plasticity of remaining connections. Current examinations of visual function recovery following mTBI is limited to identifying evidence for recovery and objective evidence for adaptive plasticity is limited. Therefore, to understand the mechanisms behind visual recovery in mTBI, we utilize a mouse model to examine the changes in the downstream target of retinal ganglion cells (RGC) in the formed vision pathway, the lateral geniculate nucleus (LGN). Using techniques designed to identify structural changes as well as electrophysiologic connectivity we aimed to identify if deafferentation due to experimental mTBI is met with adaptive structural and electrophysiologic reorganization of inputs to LGN relay cells, to determine if they may contribute to recovery of vision over time. Examination of ensuing deafferentation in LGN was performed using a combination of anterograde tract tracing with cholera toxin B conjugated fluorescent probes, immunohistochemistry targeting retinal ganglion cell axon terminals, and a transgenic mouse in which a subpopulation of retinal ganglion cells are labelled with green fluorescent protein. Our studies were designed to capture structural reorganization in specific subpopulations of retinal ganglion cells and determine if ensuing reorganization violated projection patterns established during normal development and refinement of the retinal geniculate pathway. Additionally, our studies examined the electrophysiologic responses of relay neurons in the lateral geniculate nucleus to stimulation of the optic tract as a function of time following injury. Using ex-vivo patch clamp recording of LGN relay neurons, we examined responses of these cells to stimulation of the optic tract following mTBI. Our findings demonstrated intact short-term depression at the retinal geniculate synapse following injury, which is a mechanism through which LGN relay neurons establish functional connectivity from retinal inputs. This innate mechanism of short-term plasticity likely uncovers latent connectivity between the remaining retinal inputs and LGN relay neurons to provide new connectivity for functional recovery. These studies support the premise that recovery of function in the visual axis following mild TBI is dependent on adaptive structural and electrophysiologic reorganization within the lateral geniculate nucleus

    Brain Connectivity After Concussion

    Get PDF
    Mild traumatic brain injury (mTBI) accounts for over one million emergency visits in the United States each year. While most mTBI patients have normal findings in clinical neuroimaging, alterations in brain structure and functional connectivity have frequently been reported. In this study, we investigated the large-scale brain structural and functional connectivity using diffusion MRI and resting-state fMRI data. Data from 40 mTBI patients was acquired at the acute stage (within 24 hrs after injury). 35 patients returned for data acquisition at a follow-up (4-6 weeks after injury). Data was also collected from a cohort of 58 healthy subjects, 36 of whom returned for data acquisition at the second time point, 4-6 weeks later. All data was collected at Wayne State University, Detroit, Michigan, USA. We also evaluated the relationship between functional connectivity findings at the acute stage and neurocognitive symptoms at follow up to assess the feasibility of using neuroimaging data to predict neurocognitive complications after mTBI. Moreover, we developed the connectivity domain, a new analysis method which can potentially improve reproducibility and ability to compare findings across datasets

    The Impact of Mild Traumatic Brain injury on Neuronal Networks and Neurobehavior

    Get PDF
    Despite its enormous incidence, mild traumatic brain injury is not well understood. One aspect that needs more definition is how the mechanical energy during injury affects neural circuit function. Recent developments in cellular imaging probes provide an opportunity to assess the dynamic state of neural networks with single-cell resolution. In this dissertation, we developed imaging methods to assess the state of dissociated cortical networks exposed to mild injury. We probed the microarchitecture of an injured cortical circuit subject to two different injury levels, mild stretch (10% peak) and mild/moderate (35%). We found that mild injury produced a transient increase in calcium activity that dissipated within 1 h after injury. Alternatively, mild/moderate mechanical injury produced immediate disruption in network synchrony, loss in excitatory tone, and increased modular topology, suggesting a threshold for repair and degradation. The more significant changes in network behavior at moderate stretch are influenced by NMDA receptor activation and subsequent proteolytic changes in the neuronal populations. With the ability to analyze individual neurons in a circuit before and after injury, we identified several biomarkers that confer increased risk or protection from mechanical injury. We found that pre-injury connectivity and NMDA receptor subtype composition (NR2A and NR2B content) are important predictors of node loss and remodeling. Mechanistically, stretch injury caused a reduction in voltage-dependent Mg2+ block of the NR2B-cotaning NMDA receptors, resulting in increased uncorrelated activity both at the single channel and network level. The reduced coincidence detection of the NMDA receptor and overactivation of these receptors further impaired network function and plasticity. Given the demonstrated link between NR2B-NMDARs and mitochondrial dysfunction, we discovered that neuronal de-integration from the network is mediated through mitochondrial signaling. Finally, we bridged these network level studies with an investigation of changes in neurobehavior following blast-induced traumatic brain injury (bTBI), a form of mild TBI. We first developed and validated an open-source toolbox for automating the scoring of several common behavior tasks to study the deficits that occur following bTBI. We then specifically evaluated the role of neuronal transcription factor Elk-1 in mediating deficits following blast by exposing Elk-1 knockout mouse to equivalent blast pressure loading. Our systems-level behavior analysis showed that bTBI creates a complex change in behavior, with an increase in anxiety and loss of habituation in object recognition. Moreover, we found these behavioral deficits were eliminated in Elk-1 knockout animals exposed to blast loading. Together, we merged information from different perspectives (in silico, in vitro, and in vivo) and length scales (single channels, single-cells, networks, and animals) to study the impact of mild traumatic brain injury on neuronal networks and neurobehavior

    STRUCTURAL AND FUNCTIONAL ALTERATIONS IN NEOCORTICAL CIRCUITS AFTER MILD TRAUMATIC BRAIN INJURY

    Get PDF
    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structural- functional alterations of excitatory and inhibitory systems in the neocortex

    Brain Injury Induced Prefrontal Cortex Circuit Dysfunction Contributes to Working Memory Impairment

    Get PDF
    Traumatic Brain Injury (TBI) is the most common cause of brain damage resulting in disability, both in the United States and worldwide. TBI patients suffer from profound impairments in memory function. Lateral fluid percussion injury (LFPI) is the most common animal model of TBI and recreates the memory symptoms experienced by TBI survivors. Using a combination of behavioral testing and neurophysiological recording I investigated dysfunction in the brain circuits underlying post-TBI memory impairment in LFPI animals. I demonstrated that LFPI animals suffer from sustained working memory impairment in the first week after brain injury. Additionally, I determined the neurophysiological changes to the medial prefrontal cortex, a key component of the circuitry underlying working memory. The medial prefrontal cortex displays layer-specific changes to synaptic transmission and intrinsic excitability as well as decreased network excitability after brain injury. This pattern of physiological changes is similar to post-TBI alterations in the hippocampus, another key structure underlying post-TBI memory impairment. Despite the relative lack of attention paid to the medial prefrontal cortex by the TBI field, functional changes in the medial prefrontal cortex after TBI are likely a post-TBI substrate of working memory impairment

    Hyperconnectivity is a fundamental response to neurological disruption

    Get PDF
    In the cognitive and clinical neurosciences, the past decade has been marked by dramatic growth in a literature examining brain "connectivity" using noninvasive methods. We offer a critical review of the blood oxygen level dependent functional MRI (BOLD fMRI) literature examining neural connectivity changes in neurological disorders with focus on brain injury and dementia. The goal is to demonstrate that there are identifiable shifts in local and large-scale network connectivity that can be predicted by the degree of pathology. We anticipate that the most common network response to neurological insult is hyperconnectivity but that this response depends upon demand and resource availability

    Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS: We used standard searches to find publications using ADNI data. RESULTS: (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION: Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial desig
    corecore