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The Impact of Mild Traumatic Brain injury on Neuronal Networks and
Neurobehavior

Abstract
Despite its enormous incidence, mild traumatic brain injury is not well understood. One aspect that needs
more definition is how the mechanical energy during injury affects neural circuit function. Recent
developments in cellular imaging probes provide an opportunity to assess the dynamic state of neural
networks with single-cell resolution. In this dissertation, we developed imaging methods to assess the state of
dissociated cortical networks exposed to mild injury. We probed the microarchitecture of an injured cortical
circuit subject to two different injury levels, mild stretch (10% peak) and mild/moderate (35%). We found
that mild injury produced a transient increase in calcium activity that dissipated within 1 h after injury.
Alternatively, mild/moderate mechanical injury produced immediate disruption in network synchrony, loss in
excitatory tone, and increased modular topology, suggesting a threshold for repair and degradation. The more
significant changes in network behavior at moderate stretch are influenced by NMDA receptor activation and
subsequent proteolytic changes in the neuronal populations. With the ability to analyze individual neurons in
a circuit before and after injury, we identified several biomarkers that confer increased risk or protection from
mechanical injury. We found that pre-injury connectivity and NMDA receptor subtype composition (NR2A
and NR2B content) are important predictors of node loss and remodeling. Mechanistically, stretch injury
caused a reduction in voltage-dependent Mg2+ block of the NR2B-cotaning NMDA receptors, resulting in
increased uncorrelated activity both at the single channel and network level. The reduced coincidence
detection of the NMDA receptor and overactivation of these receptors further impaired network function and
plasticity. Given the demonstrated link between NR2B-NMDARs and mitochondrial dysfunction, we
discovered that neuronal de-integration from the network is mediated through mitochondrial signaling.
Finally, we bridged these network level studies with an investigation of changes in neurobehavior following
blast-induced traumatic brain injury (bTBI), a form of mild TBI. We first developed and validated an open-
source toolbox for automating the scoring of several common behavior tasks to study the deficits that occur
following bTBI. We then specifically evaluated the role of neuronal transcription factor Elk-1 in mediating
deficits following blast by exposing Elk-1 knockout mouse to equivalent blast pressure loading. Our systems-
level behavior analysis showed that bTBI creates a complex change in behavior, with an increase in anxiety and
loss of habituation in object recognition. Moreover, we found these behavioral deficits were eliminated in
Elk-1 knockout animals exposed to blast loading. Together, we merged information from different
perspectives (in silico, in vitro, and in vivo) and length scales (single channels, single-cells, networks, and
animals) to study the impact of mild traumatic brain injury on neuronal networks and neurobehavior.
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ABSTRACT 
 

THE EFFECTS OF TRAUMATIC BRAIN INJURY ON NEURONAL NETWORKS 

AND NEUROBEHAVIOR 

Tapan P. Patel 

David F. Meaney, PhD 

Despite its enormous incidence, mild traumatic brain injury is not well understood. One 

aspect that needs more definition is how the mechanical energy during injury affects 

neural circuit function. Recent developments in cellular imaging probes provide an 

opportunity to assess the dynamic state of neural networks with single-cell resolution. In 

this dissertation, we developed imaging methods to assess the state of dissociated cortical 

networks exposed to mild injury. We probed the microarchitecture of an injured cortical 

circuit subject to two different injury levels, mild stretch (10% peak) and mild/moderate 

(35%). We found that mild injury produced a transient increase in calcium activity that 

dissipated within 1 h after injury. Alternatively, mild/moderate mechanical injury 

produced immediate disruption in network synchrony, loss in excitatory tone, and 

increased modular topology, suggesting a threshold for repair and degradation. The more 

significant changes in network behavior at moderate stretch are influenced by NMDA 

receptor activation and subsequent proteolytic changes in the neuronal populations. With 

the ability to analyze individual neurons in a circuit before and after injury, we identified 

several biomarkers that confer increased risk or protection from mechanical injury. We 

found that pre-injury connectivity and NMDA receptor subtype composition (NR2A and 
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NR2B content) are important predictors of node loss and remodeling. Mechanistically, 

stretch injury caused a reduction in voltage-dependent Mg
2+

 block of the NR2B-cotaning 

NMDA receptors, resulting in increased uncorrelated activity both at the single channel 

and network level. The reduced coincidence detection of the NMDA receptor and 

overactivation of these receptors further impaired network function and plasticity. Given 

the demonstrated link between NR2B-NMDARs and mitochondrial dysfunction, we 

discovered that neuronal de-integration from the network is mediated through 

mitochondrial signaling. Finally, we bridged these network level studies with an 

investigation of changes in neurobehavior following blast-induced traumatic brain injury 

(bTBI), a form of mild TBI. We first developed and validated an open-source toolbox for 

automating the scoring of several common behavior tasks to study the deficits that occur 

following bTBI. We then specifically evaluated the role of neuronal transcription factor 

Elk-1 in mediating deficits following blast by exposing Elk-1 knockout mouse to 

equivalent blast pressure loading.  Our systems-level behavior analysis showed that bTBI 

creates a complex change in behavior, with an increase in anxiety and loss of habituation 

in object recognition.  Moreover, we found these behavioral deficits were eliminated in 

Elk-1 knockout animals exposed to blast loading.  Together, we merged information from 

different perspectives (in silico, in vitro, and in vivo) and length scales (single channels, 

single-cells, networks, and animals) to study the impact of mild traumatic brain injury on 

neuronal networks and neurobehavior.  
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CHAPTER 1: Dissertation Overview  

BACKGROUND AND SIGNIFICANCE 

Mild traumatic brain injury is a major health problem 

Concussions are a form of mild traumatic brain injury (mTBI) that represent at 

least 80% of the traumatic brain injuries occurring each year in the United States (Kraus 

and Nourjah, 1988).  Although often associated with sports, the majorities of concussions 

occur outside of sporting activities and include motor vehicle accidents, falls, and any 

situation involving sudden acceleration or deceleration of the head.  Despite its name, the 

consequences of mild TBI are not "mild"; 30%-80% of patients diagnosed with mTBI 

experience disabling problems, such as persistent headaches, fatigue, changes in sleep 

patterns, sensory problems (post-concussion syndrome), and mood changes (Alexander, 

1995; Hall and Chapman, 2005; Kushner, 1998).  In addition, repetitive mTBI is 

correlated to delayed neurodegenerative changes, often accompanied by severe decline in 

cognitive and psychiatric health (Stern et al., 2011).  

Long considered an injury that was ‘inevitable’ with little recourse, the growing 

awareness of the long-term effects of concussion led to a renewed focus on 

understanding, preventing, and treating concussions.  New technology to assess the 

mechanical circumstances of concussions is leading to a new perspective on effective 

protective equipment.  Alongside the advances in basic science understanding of 

concussions, new diagnostic imaging methods are also becoming available to better 
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evaluate and assist clinicians in the care of patients with a concussion (Difiori and Giza, 

2010). At the mechanistic level, our knowledge in the past decade increased considerably 

about the early events following traumatic axonal injury – e.g., the relative vulnerability 

of unmyelinated axons to trauma, the early and progressive cytoskeletal changes, the 

appearance of new surface channels or the loss of existing channels, and the acute 

mechanisms of injury both in vivo and in vitro (Buki and Povlishock, 2006; Farkas and 

Povlishock, 2007; Johnson et al., 2012). 

The effect of mTBI on information flow through neuronal networks is unknown 

Despite this progress, we know little about one potentially important aspect of 

mTBI: how do the cellular, subcellular and molecular perturbations following injury 

affect the structure and organization, or "information flow", through neuronal networks? 

Partly, this is because the cellular substrate of concussion is largely unknown (Meaney 

and Smith, 2011).  One theory on the mechanical origin of concussions proposes that the 

cortical strains appearing in the gray matter at the moment of injury are the most likely 

reason for the impairments that occur in a concussion. Alternatively, others pose that 

deformation of the axonal tracts, termed diffuse axonal injury, are key in producing the 

cognitive and behavioral deficits associated with severe concussions (Andriessen et al., 

2010; Biasca and Maxwell, 2007; Sharp and Ham, 2011). A common theme among these 

concussion theories is that the mechanical energy during rapid head motions will deform 

brain tissue and, ultimately, the cellular ensembles that form these tissues.  However, at 

the multicellular scale, it is not clear if these transient mechanical events will cause 
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permanent changes in the neuronal morphology or, alternatively, the wiring of neural 

circuits within brain regions associated with concussion.  These changes in both the 

neuronal connections and, alternatively, the wiring of neural networks can play a key role 

in the recovery of the brain following a concussion.   

Synchronization of neuronal activity is key for information flow over long-distances 

 Synchronization of neuronal activity is fundamental in the operation of cortical 

networks. Neurons in cortical networks engage in synchronous activity in a wide range of 

frequencies bands, influenced by the central state of the brain (e.g. sleeping, awake), the 

presence of sensory stimuli (e.g. visual perception, attention demanding tasks), or motor 

acts. Functionally, synchronization is an integrated mechanism that brings a widely 

distributed set of neurons together into a coherent ensemble that underlies a cognitive act. 

In other words, the dynamic modulation of synchrony recruits specific brain regions that 

are required for executing a task, whereas de-synchronization resets the circuit for the 

next task.   

 Interestingly, alterations of oscillation patterns occur in several neurological 

disorders (Hammond et al., 2007; Isomura et al., 2008; Uhlhaas et al., 2008; Uhlhaas and 

Singer, 2006). Several recent reports also suggest that mTBI is a disease of network 

dysfunction. The changes in physical connections among brain regions, revealed through 

diffusion tensor imaging (DTI), and alterations in coordinated brain activity, revealed 

through a combination of EEG and functional magnetic resonance imaging (fMRI), 

suggest that the cognitive impairments and decline in task-related performance after 
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mTBI are likely a result of network dysfunctions. Although these aggregate measures 

have important diagnostic implications, it is difficult to extend these studies into 

therapeutic application because the mechanisms for network dysfunction following mTBI 

remain elusive and potential strategies to repair an injured circuit have not yet been 

explored.  

THESIS OUTLINE 

 This dissertation aims to study the function of microcircuits in real-time, 

with single-cell resolution to understand how mTBI appears and evolves at the 

circuit level. Based on past work, it is likely that mechanical injury can disrupt both the 

timing and coordination of information transfer through a neural circuit. Of the available 

technologies for mapping neural circuits, functional multi-neuron calcium imaging by far 

is the best compromise between single-cell spatial resolution and near single action-

potential temporal resolution. 

 Single-cell measures of electrophysiological function are important to determine 

how components of injured circuits can change following mTBI. Similarly, EEG, fMRI 

and DTI techniques provide valuable information about the macroscopic brain regions 

most affected by mTBI but they do not have the spatial or temporal resolution to probe 

the cellular mechanisms leading to network dysfunction. Although recording extracellular 

field potential using high-density electrode arrays can help reconstruct the wiring of a 

neuronal network in vivo, it is difficult to mechanically injure the brain and 

simultaneously record network activity with these rigid arrays. Alternatively, mapping 
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the connectivity of microcircuit either in vitro or in vivo can also be approximated with 

high speed imaging methods and is less invasive than electrode arrays. Voltage sensitive 

dyes are widely available and provide direct recording of the field potential changes that 

occur within in vitro networks and acute slice preparations. Developing an exact map of 

the functional connectivity among neurons within these preparations is difficult because 

the speed required for detecting action potential events requires ultrasensitive CCD 

cameras with poor spatial resolution, making it difficult to detect single neurons in the 

network. 

 In Chapter 2, we develop the tools to map the functional connectivity of 

hundreds of distinct neurons within a field of view using high speed calcium imaging. 

We then validate and test the sensitivity of these tools under physiologic and pathologic 

conditions with known network functions.   

 In Chapter 3, we explore the topology and function of an injured network subject 

to different injury severities and at different time points following the injury. The single-

cell spatial resolution of our technique and the ability to image the same microcircuit 

before and after injury allows us to probe the mechanisms of dynamic changes in network 

topology. Specifically, we identify a few common features of the network prior to injury 

that are linked to increased susceptibility and greater network degradation following 

mechanical injury. Additionally, we identify a strategy to repair and regain plasticity in a 

post-traumatic circuit. 
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 In Chapter 4, we explore the common and distinguishing features of mechanical 

and excitotoxic injuries. Specifically, we focus on the role of mitochondria morphology 

and motility on network patterns following overactivation of NMDA receptors. 

Additionally, we test whether targeted repair of mitochondria function improves post-

injury network function. 

 In Chapter 5, we move the in vitro findings to an in vivo setting. We first create 

the tools necessary for automated high-throughput phenotyping of mouse neurobehavior, 

which are key outcome measures used in rodent models of neurological injury, disease, 

and degeneration. The behaviors tested span multiple neuroanatomic substrates, including 

tests of cortical, hippocampal, amygdala, and cerebellar circuitry. We applied the 

automated algorithms and used a systems-level analysis to study the alterations in 

behavior that occur following a new model of mild TBI and to examine the impact of 

mTBI in a transgenic mouse.  

 We conclude in Chapter 6 with a brief discussion of few limitations of our 

studies and a set of future directions for this project. We present preliminary data for 

some of these future studies and highlight the importance of single-cell biomarkers for 

targeted repair of an injured network. Additionally, we point out a potentially broad role 

of astrocytes in disrupting neuronal networks surrounding the mechanical injury focus. 

Further studies on the astrocyte-neuron networks may open a new class of glio-centric 

targets for treating mild traumatic brain injuries.  
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CHAPTER 2: Automated quantification of neuronal network 

dynamics with single-cell resolution using calcium imaging 
 

ABSTRACT 

 Neuronal networks exhibit a rich repertoire of context-dependent activity patterns 

that subserve numerous cognitive and behavioral tasks, including information processing, 

learning and memory, and interfacing with the external environment. Understanding the 

dynamics of spontaneous and/or stimulus-evoked network activity in health and in 

models of neurological, psychiatric and neurodevelopmental disorders is critical for 

understanding pathophysiology and guiding treatment. Recent advances in fluorescent 

calcium indicator technology and microscopy provide an opportunity to assess the 

dynamic state of neural networks with single-cell and single action potential resolution. 

However, a fully-integrated automated workflow for the analysis and visualization of 

these rich microcircuits is lacking. Here we estimated the imaging conditions needed to 

achieve accurate measures of network properties and developed an open-source, 

interactive software for automated quantification of numerous biologically relevant 

features of both the calcium dynamics of single-cells and the activity patterns of 

networks. Our software integrates and improves upon existing tools for spike detection, 

synchronization analysis, and inference of functional connectivity, making it most useful 

to experimentalists with little or no programming knowledge. We apply this software in 

several conditions of known network function. We first characterize the activity patterns 
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of neuronal microcircuits undergoing developmental maturation in vitro. We used an in 

vitro model of Lewy body pathology, known to cause selective decreases in synaptic 

proteins, to examine whether calcium imaging-based estimates of neuronal network 

excitability and connectivity are impaired. Separately, we highlight the utility of single-

cell analysis of calcium dynamics for phenotyping a mixed population of neurons 

expressing a human mutant variant of the microtubule associated protein tau and wild-

type tau. We expect the use of these tools will provide a comprehensive analysis of 

neuronal networks, promoting the rapid interrogation of circuits in health and disease. 

INTRODUCTION 

 Understanding how the brain carries out the vastly diverse and complex tasks is 

arguably the greatest scientific problem of our time. This is inherently a multi-scale 

problem. Over the past decades, our knowledge of the microscopic properties of single 

ion channels and neurons increased tremendously through the use of electrophysiology. 

Similarly, recent advances in medical imaging allow researchers to study the macroscopic 

structural and functional organization of the brain with astonishing detail (Matthews et 

al., 2006; Sorbara et al., 2012; Toga et al., 2006). Despite this progress, the mechanisms 

of neurobehavior remain elusive, partly because we know little about how groups of 

interconnected neurons, or microcircuits, communicate and dynamically regulate their 

activity patterns to produce a seemingly effortless behavioral response. The ultimate goal 

of systems neuroscience is to record every spike from every neuron, at rest, during 
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sensory input, and during ensuing behavioral output to unravel the rules that govern 

behavior and to understand how these rules are broken in disease states.  

Towards this goal, there has been a concerted effort to start mapping the 

connections among neurons within the brain for both small and large organisms.  In 

parallel, a substantial new set of tools appeared for formulating principles of information 

flow among neural networks, measuring their relative connectivity map, and 

understanding key points of control for complex networks (Bullmore and Sporns, 2009; 

Cao and Slobounov, 2010; Garofalo et al., 2009; Liu et al., 2011; Rubinov and Sporns, 

2010; Stam and Reijneveld, 2007).  Key in this progress is a new emerging set of 

fluorescent reagents that provide stable, long term optically-based recording of 

dissociated neurons, ensembles of neurons within acute brain slices, and the living cortex 

(Dombeck et al., 2010; Mittmann et al., 2011; Tian et al., 2009).  Collectively, these new 

tools allow for the direct visualization of the nervous system at an unprecedented scale – 

it allows one to estimate the input/output connectivity maps among neurons, assess the 

relative strength of connections among neurons in a network, and to define the network 

scaling principles used in the design of the network. However, quite often these tools are 

developed for a specific application, by different groups, in different locations, in 

different programming languages, and have limited integration into a workflow. As a 

consequence, the activation energy for experimentalists, who may not be well-versed in 

programming, to quickly go from raw time-lapse images of calcium fluorescence to 

quantifiable measures of activity, coordination and functional integration of the imaged 
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microcircuit is quite large. 

 In this study, we first critically analyze fluorescence based imaging methods for 

mapping neural network properties. We then created a comprehensive, consolidated and 

an interactive framework to aid in the analysis of calcium imaging data. We adapted and 

improved on existing tools for automatically computing numerous biologically relevant 

features of neuronal network activity. In addition, we created a graphical user interface 

(GUI) to streamline the processing and visualization of both single-cell and network 

parameters. Our calcium analysis software does not require any programming knowledge 

and will be especially useful to neuroscientists who want to use calcium imaging as a 

functional readout following an experimental manipulation. It can be used for the most 

basis application of visualizing a particular neuron's calcium fluorescence trace or for 

more complex analysis of synchronization, identifying different patterns of network 

activity and interactively exploring the functional connectivity of a microcircuit.  

 We applied our software in two separate contexts of known underlying pathology 

to determine the sensitivity and biological interpretation of calcium-imaging based 

estimates of network and single-cell parameters. First, we used a network-level analysis 

to study how developmental maturation of neurons grown in culture influence patterns of 

spontaneous activity. Then, we used a model of Lewy body pathology to determine if 

pathological inclusions of α-synuclein and its associated decrease in synaptic proteins 

alter the network excitability and connectivity. Separately, we used neurons expressing a 

human mutant variant of tau, suspected to alter calcium homeostasis, to determine if 
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automatically derived measures of single-cell calcium dynamics can be used to 

phenotype a mixed population of wild-type and transgenic neurons. 

METHODS 

 

Cell culture: All animal procedures were approved by the University of Pennsylvania 

Institutional Animal Care and User Committee. Embryos at day E18 were surgically 

removed from a timed pregnant Sprague-Dawley rat anesthetized with 5% CO2 and 

sacrificed via cervical dislocation. Neocortical tissue was dissected from the embryos and 

dissociated for 15 minutes at 37C in trypsin (1.4 mg/mL) and DNAse (0.6 mg/mL, Roche 

Applied Science, Indianapolis, IN). After trituration and filtration through Nitex mesh 

(Crosswire Cloth, Bellmawr, NJ), cells were resuspended in MEM with Earl's salts and 

GlataMAX supplemented with 0.6% D-glucose (Sigma-Aldrich, St. Louis, MO), 1% 

Pen-Strep, and 10% Horse Serum and plated on poly-D-lysine (0.08 mg/mL, Sigma-

Aldrich) and laminin (0.001 mg/mL BD Biosciences, San Jose, CA) coated glass bottom 

dishes (MatTek, Ashland, MA). Cell were plated at a density of 200,000 cells/mL, 

roughly 10,000 cells/mm
2
. After overnight adhesion, media was replaced with 

Neurobasal media supplemented with B-27 and 0.4mM GlutaMAX and grown in a 

humidified 37C 5% CO2 incubator.  

For experiments involving mixed neuronal populations containing the expression of 

human mutant variant of the microtubule-associated protein tau (P301S) and wild-type 
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tau, we crossed a PS19 monogenic female mouse expressing P301S mutant tau 

(Yoshiyama et al., 2007) to a wild-type male and isolated hippocampal neurons from the 

embryonic litter. Hippocampi of 7 - 10 embryos from the same litter were dissociated 

together and plated onto MatTek dishes as described above, which yielded a mixed 

population of neurons that contained either 0 or 1 copy of P301S tau. 

Induction of Lewy body pathology: 

To induce the recruitment of endogenously expressed mouse α-syn into insoluble Lewy 

body-like and fibrillar aggregates, we added α-syn pre-formed fibrils (pffs) generated 

from full-length recombinant α-syn-hWT to primary hippocampal neurons derived from 

WT C57BL6 mice after culturing them for 5-6 days in vitro (DIV). PFF were a gift from 

Virginia Lee, University of Pennsylvania (Volpicelli-Daley et al., 2011). Pffs were 

diluted in PBS at 0.1 mg/mL, sonicated several times, and diluted in neuronal media. 5 

ug/mL of α-syn pffs were added to a 35-mm MatTek dish.  

In silico simulation of network behavior: We used a stochastic integrate and fire model to 

evaluate network dynamics, predict alterations in cytosolic calcium, and use these 

estimates of cytosolic calcium to predict measurements derived from fluorescent 

indicator dyes and genetically encoded calcium indicators (see next section). Each neuron 

within the model is designated as either an inhibitory (I) or excitatory (E) neuron.  We 

base this model on previous models for network behavior, which contain neurons that 

show either a regular spiking (RS) or intrinsic bursting (IB) behavior (French and 
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Gruenstein, 2006).  When modeled as a regular spiking neuron, the membrane potential 

of a single neuron will receive a spiking input, followed by a refractory period defined by 

a monoexponential decay.  To monitor changes in membrane potential v(t), we also 

include a leak current, a calcium sensitive hyperpolarizing current for potassium channels 

(IK(Ca)), a noise component, and a generalized formulation of the synaptic current: 

  
  

  
                                     , 

where C is the overall capacitance of neuronal membrane. The synaptic current has 

contributions from both the AMPA and NMDA receptors,  

                     , 

where dj is a synaptic depression factor that accounts for the loss of vesicles from the j 

pre-synaptic terminals. AMPA and NMDA currents are computed from previous 

Smoldyn simulations that give a temporal profile of the number of open receptors (AMPA 

and NNMDA), following synaptic vesicular release (Singh et al., 2011): 

                        , 

                          

where gAMPA = 12pS, gNMDA = 45pS and the reversal potential E = 0. The remainder of 

model parameters are consistent with (French and Gruenstein, 2006). 



14 

 

For an intrinsic bursting neuron, we follow French et al. and add a low threshold 

calcium channel to augment the existing components incorporated for a bursting neuron. 

By incorporating the stochastic nature of AMPA and NMDA receptor opening, we 

enhance the previous model and account for the observed variability in activity patterns.  

Defining the connectivity of the in silico network: The connectivity of our in silico model 

was prescribed to match in vitro neural network development. Past work using 

dissociated cortical neurons indicate that the input and output degree distribution is 

Poisson (Amit and Brunel, 1997; van Vreeswijk and Sompolinsky, 1996). In selecting 

targets for neuron i's outputs, we utilized a weighted random sampling function, where 

neurons closest to, and in the direction of i’s axonal growth cone are preferentially 

connected. The number, or degree, of inputs (Ki) and outputs (Ko), and the relative 

distribution of the degree among an ensemble of neurons, defines the overall degree of 

connectivity in the neural circuit.  Models of cortical neural networks were developed and 

executed using a custom MATLAB script (Mathworks, Inc.).  We simulated the activity 

of 100 neurons for 10s, with 2-ms time steps, and average Ki = Ko = 20, where each 

connection was further divided into 20-50 synapses for a total of ~10,000 synapses. 

Synapses were populated with 80 AMPARs and 20 NMDARs. Simulations ran for 3 

hours in simulation time to correspond with 10 seconds of imaging data. 

Simulating calcium dynamics: Calcium influx is simulated by incorporating a step in free 

cytosolic calcium with each action potential, followed by an exponential decay. Calcium 

traces were used to predict changes in the fluorescence of two commonly used calcium 
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indicator dyes, fura-2 and fluo-4. Predicted fluorescence is dependent on a combination 

of the buffering property of the indicator (see Table 1), the acquisition rate of the imaging 

camera (0.4-20 frames per second; see methods below), and the sensitivity of the 

detector.   The fluorescence, R, was determined from: 

[    ]  
      

      
    

and then down sampled to match experimental imaging speeds. Rmin was 

determined by imaging neurons in a calcium free saline solution and Rmax was determined 

by imaging neurons in normal saline solution, exposed to 5µM ionomycin (Sigma-

Aldrich). The fraction of action potentials that were resolved by the calcium indicator dye 

was used to compare different imaging conditions. 

Table 2.1: Properties of two commonly used calcium indicator dyes 

 Fura-2 Fluo-4 

Kd 145nM 345nM 

Rmin .3982 121 

Rmax 2.7021 549 

Frame rate .4 Hz .4-20Hz 
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Calcium imaging and data acquisition: 

 We measured calcium activity with the synthetic calcium indicator, fluo4-AM for 

short-term imaging, or a genetically engineered calcium indicator (GECI) for repeated 

long-term imaging.  

 For calcium imaging with fluo-4, a vial of 50µg Fluo4-AM (Invitrogen F-14201) 

was solubilized with the non-ionic surfactant Pluronic F-127 in 20% DMSO (Invitrogen, 

P-3000MP) to yield a 1mM stock solution. The stock solution was further diluted in 

controlled saline solution (CSS) to 2uM (CSS: in mM, NaCl 126, KCl, 5.4, 

MgCl2*6H2O, 1, CaCl2*2H2O, 1.8, HEPES, 10, glucose, 25). Osmolarity of CSS 

adjusted to 290mOsm and pH to 7.4. Culture media was exchanged with 2mL CSS and 

the cultures were loaded with Fluo-4AM for 30 minutes. Cultures were rinsed gently in 

CSS before imaging. 

 For calcium imaging with GECI, neurons were transduced at least 7 days prior to 

planned imaging study with an adeno-associated virus expressing GCaMP3, 5 or 6f under 

the control of the synapsin-1 promoter (GECI of Janelia Farm and Penn Vector Core, GC 

5x10
9
/mL).  

 Images of spontaneous calcium activity were acquired with a Nikon Eclipse 

TE2000U microscope fitted with a spinning disk confocal (CSU-10b, Solamere 

Technologies), a CCD camera (Photometric Cool-Snap HQ2, BioVision, Exton PA), 488-

nm excitation laser (Prairie SFC) and a Nikon 10X Plan Apo objective (N.A. = 0.4). 
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Exposure time was set to 50-ms and images streamed at 20Hz frame rate for at least 5 

minutes. Each image frame was 520x696 pixels which corresponded to 0.3 mm
2
 

rectangular area.  

A subset of cultures comparing Fluo-4 and Fura-2 indicator dyes were tested on a 

TE300 microscope.  For Fura-2 imaging, cells were alternately excited at 340nm and 

380nm using an excitation shutter filter wheel (Sutter Instruments, Novato, CA) and the 

corresponding emission images (510 nm) were collected using a 14-bit Hamamatsu 

camera (model- c4742-98; Optical Apparatus, Ardmore, PA) at a rate of one ratio image 

approximately every 2 seconds.   Fluo-4 images were also collected at the same 

acquisition rate (.4 Hz), and higher rates (1Hz and 10Hz) for comparison purposes. 

Excitatory tone in the network was determined using a modified approach of 

disintegrating the giant component (Breskin et al., 2006). Rather than using field stimulus 

and exposing neurons to large currents, we applied bicuculline and relied on the native 

excitatory circuitry to drive synchronous oscillations. By slowly adding increasing 

concentrations of AMPA receptor antagonist NBQX, we were able to stop synchronous 

oscillations and arrive at a critical value of [NBQX]/Kd that disintegrates the excitatory 

network (Kd = 47nm, (Dev et al., 1996)).   

Immunocytochemistry 
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 Following calcium imaging experiments, neurons were fixed with 4% 

paraformaldehyde and probed for the presence of human P301S tau using rabbit 

polyclonal17025 antibody per standard protocol (17025 gift from Virginia Lee, 

University of Pennsylvania). Briefly, cells were permeabilized with 0.2% Triton X for 10 

minutes, blocked in 5% normal goat serum (NGS) for 30 minutes, incubated with 17025 

primary antibody in NGS overnight and stained with Alexa Fluor goat anti-rabbit 594 

secondary. Images were acquired on an upright Leica SP5 confocal microscope with a 

25X objective (N.A. 0.95) and rotated 90
0
 to match the coordinate system of calcium 

images. Markers placed on the bottom of the glass cover slip prior to calcium imaging 

helped navigate to the same field of view. We manually co-registered the 

immunofluorescence image of fixed neurons to a fluo-4 image of the same field of view 

to retrospectively identify neurons that expressed the transgene.  

Data analysis: 

 We used custom-coded MATLAB scripts to analyze the image stacks and created 

an interactive graphic user interface to facilitate broad use of our workflow. The general 

workflow is outlined in Figure 2. 1 and detailed below. Briefly, the steps are: 1) to identify 

cell bodies in an image (segmentation), 2) compute a time-varying fluorescence trace for 

each neuron across the image stack, 3) detect the onset of calcium transients, 4) quantify 

the shape and characteristics of calcium events for each neuron, and 5) compute the 

synchronization and functional connectivity of the network. We minimized user 
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interaction by automating each step in the workflow but allowed user flexibility to 

interactively explore the raw and processed data and make manual corrections if needed.   

 

Figure 2. 1: Overview of image analysis. A: Workflow for the analysis of time-lapse calcium 

imaging. After acquiring images, pseudo-automated segmentation is performed to define regions 



20 

 

of interest (ROIs), delineating neuronal cell bodies from background. Fluorescence versus time is 

computed for each ROI and the onsets of calcium transients are automatically determined. Single-

cell features of calcium transients and network-level measures of synchrony and functional 

connectivity are then derived. A graphical user interface was created to facilitate batch processing 

(B), segmentation (C), inspecting the fluorescence trace and spikes of individual neurons (D) and 

properties of the network (E). 

Segmentation: 

A key first step in analysis is to identify cell bodies or regions of interest (ROIs) in an 

image frame. Often, it is difficult to manually draw ROIs around individual neurons 

because cell bodies in vivo are packed together and the expression of genetically encoded 

calcium indicators is restricted to the cytoplasm, necessitating careful delineation of cell 

edges. Rather, we integrated an automated cell identification method based on 

spatiotemporal independent component analysis into our workflow (Mukamel et al., 

2009). Briefly, the algorithm uses spatial similarity of the fluorescence of groups of 

pixels and their temporal co-variation to identify "independent" sources of calcium 

signals. However, it cannot detect cells that do not spike or differentiate cells that fire 

synchronously. Further, it performs poorly if the signal-to-noise ratio is low (<0.1) or if 

there are too many cells (>200). We overcome these limitations with two key 

modifications. First, we subdivided the field of view into multiple smaller regions, 

performed ICA-based segmentation on each sub-region and then merged the results. This 

improved the fidelity of the algorithm by having fewer cells per sub-region and reduced 
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possible synchrony between sub-regions. To offset the increase in computation time 

associated with multiple segmentations, we transported the algorithms to a GPU and 

parallelized its execution to achieve similar computation time while increasing 

segmentation fidelity. To identify cells that do not spike or have low SNR, we generated 

a maximum projection image across the time series to improve image contrast and used 

K-means clustering algorithm to detect groups of spatially related pixels with similar 

intensities. To further improve segmentation quality, we built an interface that allowed 

users to interact with each automatically defined ROI and either delete falsely labeled 

ROIs, or add new ROIs simply by clicking on the interior of a cell. This greatly speeds up 

manual correction of an automatically generated segmentation and makes manual 

segmentation from scratch feasible by eliminating the need to carefully freehand cell 

contours.  

Single neuron temporal fluorescence intensity and spike-detection: 

 Given a stack of .tiff images containing time-lapse images of calcium 

fluorescence and an accompanying segmentation file that delineates neurons (ROIs) from 

background, we first computed a fluorescence versus time trace for each neuron. The raw 

fluorescence trace was background subtracted to eliminate fluctuations in light source 

intensity or stage drift and then converted to a ΔF/F0 trace. This trace was characterized 

by a baseline that was periodically interrupted by calcium transients with varying 

amplitude and duration, consistent with a difference in the number and frequency of 

underlying action potentials (Dombeck et al., 2007; Greenberg et al., 2008; Kerr et al., 
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2005; Tian et al., 2009). Past techniques show that the firing rate of neurons can be 

extracted by deconvolution if the waveform describing the rise and decay of calcium 

fluorescence following a single action potential is known (Yaksi and Friedrich, 2006). 

However, this requires a specialized combined electrophysiology and live cell 

microscopy setup. Instead, we directly used these traces as a surrogate measure of spiking 

activity and referred to them as the temporal activity pattern of the neurons.  

 We automatically identified the onsets of calcium transients for each neuron. 

Automated spike detection is generally a difficult problem, and especially more difficult 

for neuronal calcium fluorescence data because a given neuron may contain variable 

number of spikes.  Moreover, individual spikes may have different amplitudes, different 

durations, occur at irregular intervals, and may be buried in significant noise. We 

explored three different methodologies for spike detection, providing each of these to the 

user in the software package.  First method used a percentile based threshold (e.g., mean 

+ 2*standard deviation of fluorescence) to detect peak events, but we discovered this 

methodology was not robust enough to correctly identify both small and large amplitude 

spikes (Figure 2. 2 A, B). Our second option employed a more sophisticated method 

inspired by an automated spike detection of EEG dataset using the continuous wavelet 

transform (Nenadic and Burdick, 2005). Wavelet transform decomposes a time-varying 

signal into its frequency and time components. Since spikes in EEG or calcium imaging 

experiments are restricted to a certain range of frequencies, the wavelet transform can 

identify when these frequencies occur. Although this is conceptually simple, we realized 
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that it requires setting a number of empirical parameters to achieve good accuracy in 

practice. Often, it falsely identified spikes that were part of background noise and, more 

importantly, does not correctly identify the exact time of a transient, often identifying a 

spike shifted in time relative to the true onset (Figure 2. 2 C, D). This is a result of limited 

temporal resolution of the wavelet transform but it is problematic because the precise 

timing of firing of neurons is an important feature of a microcircuit. 

 To overcome these limitations, our third option for spike detection developed a 

novel supervised spike detection algorithm using a database of known spike waveforms. 

We generalized the decisions that an observer makes when identifying spikes in a time 

series. Typically, a user has some prior knowledge on the characteristics of calcium 

spike, i.e. its fast onset, exponential decay, short duration, and timing.  In practice, a user 

is constantly comparing their mental database with epochs of a times series to look for 

similarities. Algorithmically, we constructed a database of spike waveforms by asking 

several observers to manually identify the onset and duration of calcium spikes across 

multiple datasets. We eliminated entries that were too similar to each other, yielding a 

database containing 20 spike waveforms (Figure 2. 2 E,F). To detect spikes in a time 

series, we computed the time-varying correlation coefficient between a true spike 

waveform and target fluorescence trace (Figure 2. 2 G, H). We chose the correlation 

coefficient as our similarity metric because it is independent of amplitude, allowing us to 

identify a range of large and small transients. Local maxima in the correlation-coefficient 

domain correspond to onset of calcium transients (Figure 2. 2 I, J). A threshold 
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correlation coefficient > 0.85 was used since it maximized the true positive rate and 

minimized false positive rate. 

 Recognizing that the human observer is still the gold standard, we built a "Spike 

Inspector" module where users can click on individual neurons in the field of view and 

inspect the raw fluorescence trace, overlaid with automatically identified spikes. The user 

can interactively delete falsely identified spikes or add spikes with simple mouse clicks. 
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Figure 2. 2: Automated spike detection methodology. Percentile-based thresholding based 

on average fluorescence intensity for each ROI works well (positive predictive value = 

86%) for spike detection if spike amplitude is nearly constant (A, example of an 

individual neuron's fluorescence trace) but fails to detect low amplitude spikes (PPV= 63 

%) when there are amplitude variations from spike-to-spike (B). Spike detection using 

continuous-wavelet transform is an alternative, more sophisticated method.  However, it 

suffers from high false positive rate when the signal to noise ratio is low (C, 34% false 

positives) and the wavelet transform can introduce small phase-shifts in spike times (D). 

A third method for spike detection used a supervised algorithm by first building a 

database of unique calcium transient waveforms (E, F expanded view, note the different 

y-axes). Each waveform was used to derive a time-varying correlation trace that indicated 

the level of similarity between a true calcium transient and epochs of fluorescence trace 

(G; correlation value computed over 5 second windows, 100-ms displacement), 

generating a similarity matrix (H). Local maxima in the correlation matrix corresponded 

to the onset of calcium transients, providing a robust method for automated spike 

detection for a noisy trace (I, heat map shows the maximum correlation coefficient across 

all spike waveforms) and a trace with varying amplitude (J).  Across these three 

methodologies, the average fraction of true spikes that were correctly identified (PPV) 

was significantly higher for the supervised spike detection method when compared to 

either the percentile or wavelet transform based methods (K). The accuracy of supervised 
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spike detection was relatively insensitive to the number of true spike waveforms beyond 

n=10 (L).  

Single-cell calcium dynamics (SCCD) phenotyping module 

We implemented several measurements to phenotype the temporal dynamics of calcium 

influx occurring within individual neurons. Overall, these measurements describe the 

spatiotemporal profile of calcium transients on a neuron basis and can be a useful adjunct 

to identify how alterations in calcium physiology correspond to the number or frequency 

of underlying action potential events measured with the spike detection algorithm (Figure 

2. 3).  For example, past work shows the relative amplitude of a detected calcium spike 

can reveal differences in the number of action potentials generated over time within an 

individual neuron (Tian et al., 2009).  In addition, the time to peak calcium can indicate 

the frequency of action potential firing within an individual neuron over time (Dombeck 

et al., 2007; Greenberg et al., 2008; Kerr et al., 2005; Tian et al., 2009).  

Baseline fluorescence: The baseline calcium fluorescence of a neuron is an indication of 

the intracellular free calcium concentration, [Ca
2+

]i and is related to resting membrane 

potential, Vm. For example, removing tonic inhibitory drive with bicuculline raises Vm 

and increase [Ca
2+

]i whereas sodium channel blocker (TTX) slightly decreases Vm and 

[Ca
2+

]i. We computed the baseline fluorescence of each neuron by averaging parts of the 

fluorescence trace that are at least 2-seconds before and 10 seconds after the onset of a 

calcium transient. 
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Distribution of transients: The number of calcium events per neuron and the distribution 

of inter-event-interval (IEI) are important measures of the level of activity and 

rhythmicity. We report the mean and standard deviation of the IEI distribution for each 

neuron. 

Kinetics of transients: The shape of a calcium transient is influenced by many factors, 

including the number and frequency of action potentials, the activation of synaptic 

sources of calcium entry, and the neuronal buffering capacity. We measured the 

amplitude, rise time, and fall time of each calcium event and their coefficient of variation. 

The amplitude was defined as the maximum change in fluorescence over baseline 

following the onset of a calcium transient. Rise time was defined as the time required to 

reach half maximum amplitude. Similarly, fall time was determined by fitting an 

exponentially decaying curve to the calcium transient. An R
2 

> 0.9 indicated acceptable 

regression fit. When regression failed (R
2 

<0.9), we interpolated the time to reach half-

max amplitude during the decay part of the calcium transient. We also computed the 

coefficient of variation of the amplitudes of calcium transient as a measure of peak-to-

peak variability, indicative of variable AP firing rates. 
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Figure 2. 3: Classifiers for single cell calcium dynamics of neurons in the network. A: 

Fluorescence versus time trace depicts automated detection of calcium transients (pink dashed 

lines). For each transient, the peak amplitude (a), rise time (d) and fall time (e) are determined. 

The resting fluorescence of each cell (c) and mean inter-event-interval (b) are also automatically 

computed.  The resulting normalized peak intensity for an individual neuron shows a distribution 

of values across a network (B), while the rise and fall times show a more uniform range of values 

(C, red bars - rise time; gray bars - fall time). 

Network analysis module: 

Neural circuits display complex spontaneous and stimulus-evoked temporal activity 

patterns. Changes in the circuit wiring or neuronal physiology will manifest as a change 

in the pattern of network activity.  Therefore methods to estimate the functional 

connectivity of the network, defined as the estimated connections a neuron forms with its 

neighboring neurons in the network, can be a powerful and sensitive functional output 

measure of an experimental manipulation. Additionally, many neurodegenerative and 

neuropsychiatric disorders are associated with changes in the pattern of resting state 

activity, and therefore methods for estimating network connectivity can provide new 

insights into the mechanisms and progressive changes that occur in these diseases.  

Synchrony: A prominent feature of dynamic interconnected systems is their ability to 

synchronize. In vivo, synchronization serves a more general role by binding groups of 

distributed neuronal assemblies into functional units so that these assemblies can transfer 

information more easily. In essence, synchronized activity provides the necessary syntax 
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for neuronal communication. To identify groups neurons with similar pattern of activity 

and to quantify their synchrony, we use an approach based on the instantaneous phase of 

the raw fluorescence time series. Separating a time-varying signal into its amplitude and 

phase components allow us to focus on the timing of events, regardless of its amplitude 

(we measured the amplitude of calcium transients separately above). Phase 

synchronization has many features that make it attractive to the analysis of neuronal 

signals: a) it can capture non-linear dependencies between two or more time series 

(overcoming limitations of cross-correlation), b) it is time-resolved (overcoming 

limitations of coherence), c) it does not rely on estimating probability distributions which 

is often a limiting step for synchronization methods based on mutual information or 

transfer entropy, and d) the analysis can be restricted to specific frequency ranges, 

reflecting brain rhythms.  

To quantify the phase synchronization of two time series, x(t) and y(t), we first compute 

their instantaneous phase ϕx(t) and ϕy(t). The Hilbert transform or a Morlet wavelet 

transform have been used in the past for obtaining instantaneous phase, however, these 

techniques are sensitive to noise and require filtering the signal, which can potentially 

introduce unwanted phase shifts. Instead, we numerically compute instantaneous phase 

using calcium spike times where a neuron undergoes a full oscillatory cycle (phase angle 

= 0 to 2*pi) from one spike event to the next. Mathematically, the unwrapped 

instantaneous phase is given by: 
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where t
(k)

 is the spike time of the k
th

 spike. 

If x(t) and y(t) are completely synchronized, their absolute phase difference         

    |           |     would be a constant. Alternatively, if x(t) and y(t) are 

completely independent,         will take on all values in the interval [0, 2π]. The 

distribution of         will be peaked at some phase-locked value in the former case and 

uniform in the latter case. The "peakiness" of a distribution can be quantified by its 

entropy and has been used as a measure of synchrony in some reports, however, this 

method requires normalizing and is sensitive to sample size and choice of bins. Instead, 

we use a definition of pair-wise phase synchronization index,     , based on circular 

variance of         give by      √                              , where 

brackets denote average over time.  

Geometrically,      measures the variability in the distribution of         when projected 

onto a unit circle. By definition,      takes on values in the interval [0,1];      = 1 if x(t) 

and y(t) are perfectly synchronized and 0 if they are completely independent.      is also 

a proper distance metric, i.e. it is positive definite and satisfies the triangle inequality. 

This will be an important feature for cluster analysis described below.  
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To identify patterns of network activity, we compute pair-wise synchronization index of 

each neuron and populate a synchronization matrix S of size MxM, where M = number of 

neurons in the network. S(i,j) is the pair-wise synchronization index for the i-th and j-th 

neuron time series. Matrix formulation allows us to use linear algebra tools, namely 

Eigen decomposition, to cluster groups of neurons that display similar activity patterns 

and to quantify the level of synchronization in each cluster. For complete mathematical 

details, see (Allefeld C, 2007; Bialonski and Lehnertz, 2006; Li et al., 2010a). Briefly, 

clustering algorithm relies on examining the distribution of the eigenvalues of the matrix 

S. Given that S is symmetric and positive-definite, we are guaranteed to have M real 

eigenvalues, λ
(M)

. If all neurons are completely synchronized and there is only 1 pattern 

of activity, all elements of the S = 1. In this case, there is only 1 eigenvalue that is 

disproportionately larger than the rest, λ1 = λ2 = λM-1 = 0, λM = M. Alternatively, if all 

neurons fire independently and there are no patterns of activity, all elements of S = 0, and 

all eigenvalues are identical, λ1 = λ2 = λM = 0. The number of disproportionately large 

eigenvalues correspond to the number of unique activity patterns, and their corresponding 

eigenvectors contain information about which sets of neurons contribute to the creation of 

distinct patterns of activity. The largest eigenvalue is also proportional to the global 

synchronization index. We automatically compute pair-wise synchronization matrix and 

perform a synchronization cluster analysis as part of the workflow. The synchronization 

matrix and the raster plot of activity are rearranged based on their participation in a 

cluster and displayed for quick visual inspection of unique patterns of activity.  
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Functional connectivity: Key utility of calcium imaging is the inference of functional 

connectivity. Given the calcium fluorescence time series of two neurons, x(t) and y(t), the 

goal is to determine if x and y are functionally connected. The simplest method to assess 

temporal relationship is through Person's correlation or cross-correlation, however, these 

operations are limited to linear interactions and require the use of an arbitrary threshold to 

determine functional connectivity. Instead, we make use of surrogate data and statistical 

inference to determine functional connectivity. Given x(t), y(t), and their instantaneous 

phase ϕx(t), ϕy(t), our goal is to determine if the distribution of the instantaneous phase 

difference         is statistically significant. Since we do not know the null distribution 

H0 a priori, we use amplitude adjusted Fourier transform (AAFT) of y(t) to generate 

surrogate time series,  ̂    and derive   ̂    and     ̂   .  ̂    has the same linear 

correlation structure, power spectrum and the marginal distribution as y(t) but is 

otherwise random. In contrast to random permutation, which destroys any possible 

correlations in the time series, AAFT is autoregressive and is used to test H0 that the time 

series is generated by a Gaussian process undergoing a monotonic static transform, i.e. 

the changes in fluorescence of y(t) are a result of spontaneous presynaptic release events 

and not influenced by the activity of x(t). We used the Kolmogorov-Smirnov test to 

determine statistical departure of          from the H0     ̂    and chose α=0.05 and 

p<0.001  to define a functional connection between neurons x and y.   

 Our toolbox automatically computes functional connectivity of the network. We 

use routines from the Brain Connectivity Toolbox to describe the topology of the network 
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such as modularity, clustering coefficient and path length. We also created an interactive 

interface to aid in data exploration and data mining. Clicking on any neuron raises the 

focus of its functional targets, highlights their connections and provides detailed 

information about that neuron's single-cell and network properties, including the mean 

amplitude, inter-event-interval, rise and fall time, functional connectivity index, 

synchronization participation index, and nodal clustering coefficient. 

Statistical Analysis:  

Statistical differences in single-cell properties (peak amplitude, resting fluorescence, 

characteristic rise and fall time) and network properties (synchronization and frequency 

of calcium events) were assessed via student's t-test and/or one-way ANOVA and 

Tukey's post-hoc test. Shapiro-Wilk test was used to assess normality and nonparametric 

tests (Kruskal-Wallis and Mann-Whitney U) were employed when needed. At least n=8 

wells from 3 different isolations were used to study developmental changes in 

spontaneous network function. alpha-level 0.05, *p<0.05 and **p<0.01 indicated 

significance.  All values reported are mean ± s.e.m. unless otherwise noted. 

RESULTS 

In silico neural network yields estimates of optimal imaging parameters necessary to 

achieve accurate spike detection 
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 We first developed an in silico model of neural network activity, conducting a 

parametric analysis to understand advantages and drawbacks of choices that are 

commonly used in optical imaging of neural activity.  Our multi-scale network model 

used a weighted pseudo-randomized network connection topology, and individual 

synapses, populated with AMPA and NMDA receptors, were assumed to follow a 

stochastic activation pattern per a recent report (Singh et al., 2011) (Figure 2. 4).    

Integration of current from individual synaptic release events, which could 

include a random vesicular release event (i.e., synaptic noise), showed development of 

spontaneous network activity that would vary temporally (Figure 2. 4 F).  Within 

individual neurons, these periodic bursts of activity would slightly precede or follow 

neighboring neurons, would show some modest diversity in the spontaneous timing of 

bursts.  Repeat simulations of the same network topology yielded slightly different 

patterns of activity, owing to the stochastic synaptic activation scheme.   Inhibitory 

neurons in the network provided modulation of the activity pattern, as reducing the 

relative strength of the inhibitory neuronal tone led to a progressive synchronization of 

network activity, resembling a common technique to synchronize the electrical activity of 

cortical neuron cultures in vitro.   
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Figure 2. 4: Multi-scale computational model of neuronal network activity. A: We built an in 

silico network composed of 100 pyramidal-like neurons whose connectivity matched in vitro 

neural network development. B: The dendrites of each neuron were populated with spines, sites 

of synaptic contact. C: Synapses were populated with AMPA and different subunit compositions 

of NMDAR receptors. D: The temporal profile of activation of synaptic receptors in response to 

vesicular release of glutamate was used to update the cell membrane potential, following scaling 

by spine and somatic membrane capacitance. E: The variations in single-neuron membrane 

potential (black trace) and somatic calcium (green trace) were modeled and used to generate a 

temporal pattern of network activity (F, dots represent action potentials).  
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Using estimates of calcium binding for different calcium indicator dyes, we 

investigated how well fura-2 and fluo-4 capture underlying electrical activity. Under the 

most ideal conditions, without hardware noise, we found neither Fura-2 nor Fluo-4 

provided accurate estimates of precise timing of action potential firing when sampled at 

relatively low rates.  Although Fura-2 offers approximately double the accuracy in 

detecting action potentials within networks under very low framing rate conditions (.4 

frames per second), the predicted accuracy was still less than 10% (Figure 2. 5). Fluo-4 

offers the ability, with its single emission wavelength, to capture fluorescence imaging 

data at a much faster rate limited only by the imaging hardware (Takahashi et al., 2007).  

Across typical imaging rates available in commercial interline CCD and EMCCD 

camera, we find that image acquisition rate will substantially improve the fidelity 

between increases in calcium indicator fluorescence changes and action potential activity 

(Figure 2. 5).  Optimal image acquisition rates with the Fluo-4 indicator exceed 80% 

accuracy in capturing action potentials (85% ± 7.8%) at reasonable framing rates, and 

approach 60% (58% ± 8.52) even at 10 frames per second. 
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Figure 2. 5: In silico predictions of fluorescent probe sensitivity. Calcium transients predicted 

from underlying action potentials were converted to fluorescence traces for fura-2 and fluo-4, 

taking into account their unique buffering properties and down sampled to match imaging frame 

rates of most CCD cameras. The accuracy of resolving action potentials using fluorescent dye is 

greater for fluo-4 and increases with imaging acquisition speed. 

 

Optical imaging of network activity in vitro reveals modules and minimum acquisition 

requirements 

We tested these in silico predictions directly on our imaging system, assessing 

both the relative performance of different indicator dyes at low framing rates and the 

performance of the Fluo-4 indicator at higher framing rates.  Several algorithms are 

available to detect spike patterns from optical imaging data, and our knowledge-based 

algorithm yielded consistent, repeatable measures of activity on a single neuron basis that 

was not complicated by altering or changing threshold conditions and baseline shifts that 

are often challenging experimental factors (Figure 2. 2).  Applying this detection 
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algorithm to neuronal network cultures (n=10), we found no discernable difference 

between Fluo-4 and Fura-2 at framing rates typically used in time lapse imaging 

applications (.4 Hz) (Figure 2. 6 A,B).  In the same culture, we progressively increased 

framing acquisition rates using the Fluo-4 indicator dye.  Acquiring images at 1 Hz and 

20 Hz, rather than .4 Hz, revealed a much more dynamic activity pattern, picking up 

many short lived calcium transients (Figure 2. 6 C,D).  At higher imaging rates, we could 

no longer detect activity patterns clearly evident at lower framing rates, presumably due 

to the aggregate detection limits of the objective, filters, camera and other optical 

elements in the light path. We observed no significant difference in the activity patterns 

measured with either Fluo-4 or GCaMP6f, a recently introduced genetically engineered 

calcium sensor (Tian et al., 2009). 

 

Figure 2. 6: Comparison of in vitro calcium imaging with fura-2 and fluo-4 at varying 

frame rates. A,B: Representative examples of spontaneous activity of a mature culture (DIV 18), 

A B 

C D 
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captured with fura-2 and fluo-4 at the same acquisition speed. The fluo-4 loaded culture was 

imaged at higher speed (C, 1Hz) and (D, 20 Hz), revealing richer temporal activity patterns. 

 After establishing the necessary acquisition speeds to accurately detect activity, 

we next considered both the number of neurons and length of imaging time necessary to 

accurately estimate network synchronization, a key parameter often used to determine 

network modules (Bialonski and Lehnertz, 2006).  Across multiple cultures (n=8), we 

found that the phase difference in the calcium transients was not spatially sensitive, 

suggesting a randomized network topology often associated with dissociated cortical 

networks (Kamioka et al., 1996).  The periodic bursting behavior observed with neural 

networks, when acquired at high framing rates (20 Hz), yielded a synchronization index 

for the entire culture.  We divided the imaging field of view into regions of varying sizes 

and computed the synchronization index of neurons within the subregion. The percent 

difference in synchronization of a smaller neuronal network compared to the full-frame 

network was < 5% for networks consisting of > 40 neurons.  Similarly, we found that at 

least 2.5 minutes of imaging spontaneous calcium activity in the dissociated cultures was 

necessary to achieve reasonably stable estimates of the synchronization index. 

Knowledge-based automated detection of calcium transients is the most accurate spike 

detection algorithm 

 A crucial first step in the analysis of calcium fluorescence data is delineating 

calcium transients from resting fluctuations in fluorescence (noise). Several methods 

exist for spike detection. A common approach selects a threshold value based on some 
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predefined percentile (mean + 2* standard deviation) and identifies spikes that cross the 

threshold. This approach was not robust enough to detect both small and large amplitude 

transients (Figure 2. 2 A,B), yielding an optimum positive predictive value (PPV, the 

fraction of automatically detected spikes that are true positives) of 0.688 ± 0.08 across 22 

randomly selected calcium traces, which contained 158 manually verified true spikes 

(Figure 2. 2 K). In comparison, the continuous wavelet transform to identify spike events 

either falsely detected spikes in noisy calcium fluorescence traces (average signal to noise 

ratio of < 5) or introduced small phase shifts when calcium transients are too broad or too 

narrow (Figure 2. 2 C,D).  As a result, the average PPV for the wavelet transform method 

was  0.8395 ± .041 across the same imaging experiments analyzed with the threshold 

spike detection algorithm. Finally, a customized database of expert labeled calcium 

transient waveforms provided the necessary input for our knowledge-based spike 

detection algorithm, (Figure 2. 2 E,F). Given a fluorescence trace, Fi(t), we compared the 

instantaneous similarity of Fi(t) to known spike waveforms (Figure 2. 2 G), generating a 

time-varying similarity trace for each spike waveform (Figure 2. 2 H). Local maxima in 

the similarity matrix correctly identified the onset of calcium transients (Figure 2. 2 I, J), 

yielding a significantly better PPV 0.972 ± 0.065 compared to the other two methods 

(Figure 2. 2 K). For these tests, we had used a library of 20 unique spike waveforms. We 

next tested the sensitivity of our algorithm to the choice of spike waveforms in the library 

by using either 1, 5, 10, 15 or all 20 spike waveforms, chosen at random. We found that a 
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library of just 10 spike waveforms achieved a PPV of 0.91 ± 0.14 and correctly detected 

89% ± 5% of the total 158 calcium transients (Figure 2. 2 L).   

Single-cell calcium dynamics and network connectivity revealed through calcium 

imaging 

 We implemented several quantitative descriptors of calcium dynamics of single-

cells (Figure 2. 3) and networks (Figure 2. 7). Interestingly, we found large variability in 

the distribution of peak [Ca
2+

]i amplitudes, ranging from ΔF/F0 = 0.1 to 3.0, in 

spontaneously active neurons (Figure 2. 3 B). Despite this large range, the variance in rise 

time and fall time of individual calcium transients was smaller, with a median rise time of 

0.67s ± 0.3s and a median fall time 1.7s ± 0.6s (Figure 2. 3 C).  

 We inferred the functional connectivity of pair-wise neurons within a microcircuit 

by testing for statistical dependencies in their calcium activity (Figure 2. 7). We compared 

the similarity of the distribution of instantaneous phase difference of pair-wise neurons to 

the distribution generated by surrogate resampling. Amplitude adjusted Fourier transform 

was used to generate surrogate instantaneous phase because, rather than simple 

permutation, AAFT preserves the frequency content and power of the original signal but 

destroys phase relationship, mimicking the activity of an "unconnected" neuron. We used 

the Kolmogorov-Smirnov test and chose a p-value<0.01 to infer a functional connection 

between the two neurons because we found that the total number of functional 

connections in the network were relatively insensitive to the choice of threshold beyond 

p<0.01 (Figure 2. 7 F). 
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Figure 2. 7: Estimate of functional connectivity. The functional connectivity of pair-wise 

neurons (A) was determined by testing for statistical dependencies in their calcium activity. 

Visual inspection (B) and correlogram (C) of the fluorescence trace of 4 neurons indicated in A 
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shows temporal similarity between neuronal pairs (1,2) and (3,4) but not between the pair (2,4). 

The distribution of instantaneous phase difference of pair-wise neurons was compared to the 

distribution generated by resampling the fluorescence trace of one of neuron pairs (D,E). An 

overlap in the distributions of actual and surrogate samples is indicative of a lack of functional 

dependency. Kolmogorov-Smirnov test was used to test statistical similarity of the two 

distributions. A p-value < 0.01was used as a threshold to infer functional connection since the 

total number of functional connections were relatively insensitive beyond this point (F). 

 The complete workflow for mapping functional connectivity of neuronal 

networks in vitro is illustrated in Figure 2. 8, where we quickly go from time-lapse 

images of calcium fluorescence to the detection of somatic calcium spikes, to temporal 

pattern of network activity, and functional connectivity and synchrony. Using graph 

theory, we identified groups of neurons with high-degree of functional connections 

within the groups and sparse connections between groups, i.e. communities or modules 

(Newman, 2006; Rubinov and Sporns, 2010), and grouped the activity map into modules. 

Interestingly, neuronal networks in vitro, thought to have random structural connectivity, 

show a functional modular organization (Figure 2. 8 H).  



46 

 

 

Figure 2. 8: Mapping functional connectivity of neural circuits in vitro. (A) Neurons are 

labeled with a calcium-sensitive fluorescent indicator dye. Time lapse images (time shown in 

each image) are analyzed, yielding the fluorescence intensity of individual neurons (B: red neuron 

highlighted in A; C: green neuron highlighted in A) is analyzed for peak detection, where each 

peak corresponds to neuronal activation.  A raster plot of the activity for neurons within the entire 

circuit (D) is analyzed to develop the functional connectivity map of the neural circuit (E) using 

algorithms described above.  Further analysis of an activity raster plot (F) will re-arrange 

subgroups of into synchronized modules (G) that show unique patterns (H; different patterns 

denoted by red vs. green pattern).   
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A final parameter that we investigated experimentally is the excitatory tone of the 

network.  Network disinhibition with bicuculline caused synchronized calcium 

oscillations (Figure 2. 9 A) whose frequency was systematically reduced with increasing 

dose of AMPA receptor antagonist NBQX (Figure 2. 9 B-C), until oscillations abruptly 

stopped at certain threshold [NBQX] (Figure 2. 9 D). The [NBQX]threshold/Kd was recorded 

as the excitatory tone. Similar to network synchronization, sampling from a large 

neuronal population may not be necessary to achieve accurate estimates of this 

parameter.  Using a progressive inhibition of AMPA receptors in dissociated culture, we 

found that the measured excitatory tone would require recording activity from at least 30 

neurons to achieve a stable measure with less than 5% variation.  Using this as a guide, 

we verified that excitatory tone was modulated across development time in the 

dissociated cultures.  Several studies indicate a progressive increase in AMPA receptor 

number indicated with immunoblotting and immunocytochemistry (Lin et al., 2002), and 

we found a similar increase in the excitatory tone that progressed and stabilized at later 

DIV (Figure 2. 9 E). 
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Figure 2. 9: Excitatory tone measurement. Forced oscillations were induced by network 

disinhibition with bicuculline (A). Progressive application of increasing [NBQX] decreased the 

frequency of oscillations until a critical threshold was reached when synchronous activity 

abruptly stopped (B-D). The excitatory tone increases as neurons mature in culture (E). 

 We applied the network analysis module of our software to better characterize the 

repertoire of spontaneously generated activity patterns at different stages during 

developmental maturation of embryonically derived cortical neurons in culture. 

Separately, we used the single-cell phenotyping module to investigate whether 

overexpression of a human mutant variant of the microtubule-associated protein tau 

disrupts the calcium homeostasis of neurons expressing the transgene and whether these 
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neurons can be distinguished from wild-type based solely on the dynamics of calcium 

activity.  

Developmental changes in the frequency and coordination of neuronal network activity 

 Embryonic neurons in cultures form synaptic connections and undergo many 

similar developmental changes in receptor composition and phenotypic maturation that 

occur in vivo (Lesuisse and Martin, 2002). We imaged the spontaneous calcium activity 

of a population of neurons throughout this maturation process, beginning on day 8 in 

vitro (DIV 8) through day 21 (DIV 21). The activity of a microcircuit from each imaging 

session was time aligned using a network-wide burst event. The full raster plot of activity 

from DIV 8 - 21 is shown in Figure 2. 10 A, where each dot, color-coded by culture age, 

represents the onset of a calcium transient from a given neuron label assigned arbitrarily. 

Activity of a young network (DIV 8 -11) was sparse and uncoordinated, showing few 

rhythmic transitions between UP and DOWN states (Figure 2. 10 B). The frequency of 

spontaneous activity rapidly increased over DIV 12 - 14, reaching its peak at DIV 14 and 

subsequently reached a plateau over DIV 18-21 (Figure 2. 10 A-B). The pattern of 

coordinated activity followed a similar trend; the activity of young neurons was 

uncoordinated but became highly synchronized by DIV 14 and settled to a plateau by 

DIV 18 (Figure 2. 10 C-D). This evolution of network activity is consistent with the 

model that neurons in culture undergo a period of rapid synaptic growth and 

strengthening, followed by synaptic pruning, reaching the completion of developmental 
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synaptic modification at ~ 18 DIV (Nakanishi and Kukita, 1998; Nakayama et al., 2005; 

Passafaro et al., 2003; Tetzlaff et al., 2010; Voigt et al., 2005)  

 In addition to the structural remodeling associated with developmental maturation 

of neuronal networks, networks undergo a change in the balance of inhibition and 

excitation. In contrast to the mature brain, in which GABA is the major inhibitory 

neurotransmitter, in the developing brain GABA can be excitatory (Ben-Ari, 2002). We 

applied bicuculline, a GABAA antagonist to neuronal cultures at different points in their 

development and measured the change in the frequency of calcium events and the 

synchronization of the network. In young cultures (DIV 8 - 11), bicuculline treatment 

significantly reduced excitatory activity and abolished synchrony. In contrast, exposure to 

bicuculline in older cultures (DIV 14+) significantly enhanced synchronized activity 

(Figure 2. 10 D), consistent with previous reports indicating that GABAA receptor 

activation is a major route of excitation in young neurons, primarily from the altered 

expression of chloride transporters KCC2 and NKCC1 (Fukuda et al., 1998; Ganguly et 

al., 2001; Rivera et al., 1999; Yamada et al., 2004) 
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Figure 2. 10: Developmental changes in network activity patterns. A: Spontaneous activity 

patterns of neurons at different stages in development, colored-coded by age (days in 

vitro, DIV) and time-aligned for visual comparison, shows increasing frequency and 

greater complexity of activity as neurons mature. B: Network-bursts, recorded as 

simultaneous calcium spike in >90% of neurons in the imaging field of view, represent 

the transitions between depolarized (UP) and hyperpolarized (DOWN) states of the 

network. The number of UP-DOWN states per minutes gradually increased over 
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development and reached its peak at DIV 14, consistent with increased synaptic growth 

and strength. This was followed by a significant decrease in the frequency of network 

bursts over DIV 15-16, and a plateau DIV 18+. C, D: The pattern of activity became 

increasingly synchronized as neurons matured in culture and reached its peak at DIV 14 

characterized by periodic synchronized calcium oscillations. Beyond DIV 14, 

spontaneous activity was moderately synchronized, characterized by a mix of 

synchronized network-wide bursts and intermittent flickering events. Antagonizing the 

GABAA receptor with bicuculline forced synchronized calcium oscillations in mature 

(DIV 14+) cultures because of recurrent excitation and network disinhibition. In 

comparison, bicuculline greatly reduced the frequency and coordination of activity in 

immature cultures (DIV 8-12), likely due to the excitatory role of GABA in early 

development.  

Lewy body pathology impairs network synchrony and connectivity 

 We used an in vitro model of Lewy body pathology to confirm that calcium 

imaging based estimates of network synchrony and functional connectivity show 

predictable changes under pathological conditions. Aggregates of amyloid proteins 

characterize many neurodegenerative disorders including Alzheimer's disease (AD) and 

Parkinson's disease (PD). Formation of pathological inclusions occurs in a multistep 

process including the misfolding of normal soluble proteins and their association into 

higher order oligomers, followed by their assembly into amyloid fibrils that form disease 

specific inclusions (Conway et al., 2000; Uversky et al., 2001). Proteinaceous aggregates 
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composed of tau and α-synuclein, characteristic lesions of AD and PD respectively, can 

induce pathology in health cells (Clavaguera et al., 2009; Desplats et al., 2009; Frost et 

al., 2009; Guo and Lee, 2011; Luk et al., 2009). Recently, our collaborators in Virginia 

Lee's research group found that the formation of PD-like Lewy bodies (LBs) and Lewy 

neurites (LNs) in cultured neurons can be facilitated under physiological conditions using 

pure WT α-syn pre-formed fibrils (pffs) and endogenous levels of α-syn expression 

(Figure 2. 11 A). LN-like accumulations were initially detected in axons and α-syn 

pathology then propagated to the cell body where LB-like inclusions developed (Figure 2. 

11 B). They report that the Formation of these PD-like α-syn LNs and LBs caused 

selective reductions in synaptic vesicle-associated SNARE proteins, Snap25 and 

VAMP2, as wells as proteins that participate in exo-endocytic synaptic vesicle cycle such 

as CSPα, and synapsin II (Volpicelli-Daley et al., 2011).  
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Figure 2. 11: α-syn pffs recruit endogenous α-syn to form pathologic, insoluble aggregates. 

A: Two weeks after pff addition, neurons were fixed with paraformaldehyde with 1% Tx-100 to 

extract soluble proteins. Addition of α-syn pffs formed Tx-100 insoluble aggregates. B: Time 

dependence of aggregate formation. α-syn pffs were added to DIV 5 neurons and fixed either 4, 7, 

or 10 days later. Small puncta corresponding to neuritic p-α-syn were visible 4 days after pff 

addition, and by 7 days, neuritic p-α-syn levels increased, and accumulations were visible in some 

cell bodies. Ten days after addition of pffs, p-α-syn was seen throughout the neurites as small 

puncta, longer fibrous structures, and as somal inclusions. Image adapted from (Volpicelli-Daley 

et al., 2011) with permission. 

 The decreased levels of synaptic proteins and the presence of pathological 

inclusions in neurites suggest impairment in neural network activity. Calcium imaging of 

hippocampal neurons loaded with the calcium-sensitive fluorescent dye, Fluo-4 AM, was 

performed to investigate the effect of α-syn aggregates on the activity patterns of the in 
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vitro neural network established by these cultured neurons. The spontaneous activity of 

neurons treated with PBS was characterized by flickering events, intermixed with 

network-wide bursts when nearly all the neurons were simultaneously firing as reflected 

by a high synchronization index (Figure 2. 12 A). In contrast, neurons treated with α-syn 

pffs showed a significant decrease in synchronized activity as early as 4 days after 

treatment (Figure 2. 12 B). At this time point, low levels of α-syn aggregates were 

visualized exclusively in axons by immunofluorescence microscopy, and no pathological 

α-syn was detect biochemically. Yet, this level of axonal pathology was sufficient to 

impair coordinated network activity. This reduction in synchronized activity persisted at 

7, 10, and 14 days after α-syn pff treatment (Figure 2. 12 B). In contrast, α-syn pff treated 

neurons from α-syn -/- mice showed no impairments in synchronization index, indicating 

that these effects are selective for neurons harboring α-syn aggregates and do not result 

from exogenously added pffs. 
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Figure 2. 12:  Effect of aggregate formation on neural network activity. Calcium imaging on 

hippocampal neurons loaded with the calcium-sensitive fluorescent dye, Fluo4-AM, was 

performed. A: PBS-treated neurons showed flickering events and simultaneous bursting. The 

spontaneous activity in α-syn pff-treated WT neurons showed reduced coordination and 

frequency of oscillations. B: The level of coordinated spontaneous activity was quantified as the 

synchronization index. α-syn pff-treated neurons (red) showed a significant decrease in 



57 

 

synchronicity by day 4, relative to PBS-treated neurons (blue) and the deficit continued for longer 

treatment duration. Primary neurons from α-syn -/- mice treated with α-syn pffs (purple) did not 

show reductions in the synchronization index relative to PBS-treated neurons (green). C: 

Excitatory tone in the network was determined by recording spontaneous activity and then by 

forcing synchronous oscillations via network disinhibition with bicuculline. Incremental 

concentrations of NBQX were added until coordinated activity stopped and the excitatory tone 

was reported as [NBQX]/Kd. D: Excitatory tone in PBS (blue) and α-syn pff (red)-treated 

neurons, showed significant decreases by 10 as wells as 14 days after pff treatment. Addition of 

α-syn pffs to α-syn -/- neurons did not affect excitatory tone. E: Functional network connectivity, 

derived from the rasters in A, is depicted as nodes (neurons) of varying sized, where the size of a 

given node is scaled to reflect the total number of connections to that particular node. F: The 

average number of connections per neuron was determined from functional connectivity map. 

Compared to PBS, α-syn pff-treated neurons has fewer numbers of functional connections. 

Connectivity of α-syn pff-treated α-syn -/- neurons were similar to PBS-treated neurons. PBS-

treated: day 4, n=9; day 7, n=11; day 10, n=10; day 14, n=9. PFF-treated: day 4, n=9; day 7, 

n=12; day 10, n=11; day 14, n=9.  

 We next determined whether the progressive recruitment of α-syn into pathologic 

aggregates and the decrease in synaptic SNARE proteins correlated with changes in the 

frequency of activity or the excitatory tone of the network. First, synchronous oscillations 

were forced using the GABAA antagonist, bicuculline, to abolish inhibitory input, 

followed by increasing doses of the AMPA receptor antagonist, NBQX, until 

synchronous oscillations stopped. The final concentration of NBQX require to impair 
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activity within the excitatory network determined the excitatory tone (Figure 2. 12 C). No 

significant changes in excitatory tone was detected in cultures 4 or 7 days after α-syn pff 

treatment but by 10 and 14 days after treatment, when increasing accumulation of neuritic 

and perikaryal pathology was observed, there were significant reductions in excitatory 

tone, reflecting compromised synaptic activity (Figure 2. 12 D). Again, neurons from α-

syn -/- mice did not show impairments in excitatory tone at 10 and 14 days after pff 

treatment, confirming that the effects result from the accumulation of endogenous α-syn 

aggregates.  

 Since spatiotemporal patterns of activity are shaped by the underlying 

connectivity architecture and the relative balance of excitation and inhibition, we used 

network activity patterns to determine the functional connectivity in PBS and α-syn pff-

treated neurons. As neurons matured in vitro, the number of functional connections 

increased and eventually plateau (Figure 2. 12 F). The timeframe for this correlated well 

with neurite sprouting and synapse stabilization. However, in α-syn pff-treated WT, but 

not α-syn -/- neurons, the maturation of functional connections never reached the level 

achieved in PBS-treated cultures, as a significant reduction was observed 10 days after α-

syn pff treatment. This functional connectivity was severely compromised 14 days after 

treatment and the network consisted of just a few sparse connections at this time point 

(Figure 2. 12 F). In summary, the formation of insoluble aggregates of endogenous α-syn 

results in early disruptions in coordinated network activity. Later, as more α-syn 
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inclusions develop and propagate throughout the neuron, excitatory tone is decreased and 

functional connectivity is greatly reduced.  

Expression of human mutant variant of tau is associated with altered calcium 

homeostasis 

 As a separate application of our software, we investigated if the shape of calcium 

transients of individual cells can be used to develop functional neuron subgroups, or 

phenotypes, that can exist in a heterogeneous neuronal ensemble. To test, we cultured 

mouse embryonic hippocampal neurons that either contained human mutant tau variant 

(P301S) or wild-type tau protein, derived from cross of PS19 transgenic mouse line with 

wild-type mouse. We imaged the spontaneous calcium activity of this microcircuit using 

fluorescent calcium indicator, fluo-4 (Figure 2. 13 A). The cultures were fixed and probed 

for P301S tau using 12025 antibody to identify neurons within the same microcircuit that 

expressed the transgene (Figure 2. 13 B).  

 We extracted 4 relevant shape features from spontaneously generated calcium 

transients for a given neuron, which included fluorescence at the onset of a transient, F0, 

the peak amplitude of the transient, ΔF/F0, rise time, trise, and fall time, tfall. Each calcium 

transient arose from a neuron expressing either transgenic or wt tau protein (Figure 2. 13 

C). We projected the dataset into a lower dimensional space spanned by the first 2 

principal components that were derived from a linear combination of the 4 shape-based 

features. Each dot in Figure 2. 13 D is the projection of quantifiable features of a single 

calcium transient. We found that two clusters readily emerged in the principal component 
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space. Given that a principal component analysis identifies the combination of the 

original variables that has the largest possible variation, the emergence of clusters or 

groups is highly suggestive of the presence of discriminating characteristics between 

calcium transients of P301S and wild-type neurons. We found that the resting free 

intracellular calcium, [Ca
2+

]i, and peak calcium amplitude of P301S tau expressing 

neurons undergoing spontaneous activity were significantly larger compared to neurons 

expressing wild-type tau (P301S tau ΔF/F0: 0.059 ± 0.004 vs. wild-type 0.043 ± 0.002, 

p<0.001, n=54; P301S tau [Ca
2+

]i: 128nM ± 2.1nM vs. wild-type 95 nm  ± 2.8, p<0.001) 

(Figure 2. 13 E). Although spontaneously generated calcium transients of transgenic 

neurons reached a higher peak amplitude, these transients were significantly shorter-

lived, resulting in equal calcium load (area under the curve of calcium transients) for 

transgenic and wild-type neurons (P301S tfall: 0.92s ± 0.15s vs. wild-type: 1.41s ± 0.16 s, 

p=0.027; P301S calcium load: 0.05± 0.009 vs. wild-type 0.063 ± 0.008, p>0.05) (Figure 

2. 13 E). These alterations in the kinetics of calcium transients likely have an 

electrophysiological basis since expression of a different human mutant tau variant, 

P301L, has been shown to raise neuronal resting membrane potential, increase evoked 

action potential firing rate and decrease the duration of single action potentials (Rocher et 

al., 2010). 

 In addition to alterations in the kinetics of calcium transients, we used our 

software analysis module to identify if additional features separated neurons expressing 

mutant protein from other neurons expressing wildtype protein.  We found that the 
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expression of P301S tau protein did not significantly change the pattern of network 

activity or the functional integration of these neurons in the network, likely because the 

fraction of neurons expressing the transgene was typically < 10%. Together, these data 

demonstrate the utility of our calcium imaging software in two broad applications - 

monitoring the temporal evolution of network activity and single-cell phenotyping using 

features extracted from the shape of spontaneously generated calcium transients.  
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Figure 2. 13: Single-cell phenotypes revealed by calcium imaging. A: The spontaneous 

activity of mouse hippocampal neurons was recorded with the fluorescent calcium 

indicator, Fluo4-AM. B: Following calcium imaging, cells were fixed and probed for the 

expression of P301S tau protein with 12025 antibody (red - PS19, blue - DAPI). The 

same field of view used for calcium imaging was used during immunofluorescence 

microscopy to identify individual neurons that expressed the transgene (example of 4 co-

registered neurons is indicated). C: Comparison of the average fluorescence trace of a 

representative neuron expressing the human mutant variant of tau (red) and wild-type 

neuron (blue) showed some obvious differences in the baseline fluorescence and 

amplitudes of calcium transients. D: Shape-based features of each calcium transient, 

including the fluorescence at the onset of a spike, peak amplitude, and characteristic rise 

and fall times, were computed and projected onto a 2-dimensional principal component 

space. Two clusters readily emerged in the principal component space, corresponding to 

neurons expressing mutant tau (red) or wild-type tau (blue). E: Resting [Ca
2+

]i and peak 

amplitude were significantly larger in PS19 neurons and compared to wild-type. 

However, the duration of calcium transients was significantly shorter, resulting in similar 

calcium load between PS19 and WT neurons. PS19 n=54, WT, n=53. (** p<0.01, * 

p<0.05). 
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Discussion 

 In this chapter, we assessed fluorescence based imaging methods and created an 

automated workflow for mapping neural network properties in vitro. We used our 

analysis to design experiments to test the sensitivity of calcium imaging-based estimates 

of network properties in model systems with known physiological and pathological 

network alternations. We found that the pattern of network activity became more 

synchronized as neurons underwent developmental maturation in vitro, consistent with a 

period of synaptic growth and strengthening. As neurons continued to mature, activity 

pattern became more complex, characterized by few network-wide burst events 

intermixed with many flickering events, consistent with synaptic pruning. The degree 

distribution of functional connectivity of mature networks matched previous reports and 

showed a modular organization, consistent with a pseudo-random structural connectivity. 

Then, we used a novel, well-characterized model of Lewy body pathology to determine 

whether structural changes in the neurites and soma (α-syn inclusions) also result in 

functional impairments in the network. Surprisingly, we found evidence of decreased 

synchrony in α-syn pff-treated neurons at very early time points, when only low levels of 

α-syn aggregates were visualized exclusively in axons by immunofluorescence 

microscopy, and no pathological α-syn was detected biochemically. This suggests that 

estimates of network properties derived using functional calcium imaging can be 

sensitive indicators of even minor alterations in the physiology of neurons. In a separate 

study, we found that population calcium imaging can be nearly as sensitive as single-cell 
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electrophysiology in identifying phenotypic alterations of overexpression of human 

mutant variant of tau protein.  

 A number of recent efforts developed and characterized the ability of existing and 

new molecular probes to function as a surrogate indicator of single cell electrical activity.   

These efforts are now positioned to probe network dynamics and complement traditional 

microelectrode array technologies.  Our predictions of probe sensitivity, accuracy, and 

minimum detection thresholds for network topology are supported by measurements in 

parallel on dissociated cortical neuron networks.  Similar to past work (Fetcho et al., 

1998; Stosiek et al., 2003), we find the relatively high speed imaging requirements 

restricts the use of probes to those with high efficiency and single emission capability – 

notably, Fluo-4 and some GCaMP variants.  New contributions from our work include 

estimates for the number of neurons and the acquisition time period necessary to 

accurately capture descriptors of the network.  These minimal imaging requirements will 

help set the framework for experiments where it may be useful to map the response of the 

network to any given stimulus.   It is important to point out that our analysis assumed 

stability of the network topology during the imaging period.  Certainly, any in vitro 

neural circuit exhibits the potential to change the strength, number, and degree of 

connections over time.  The relatively short imaging periods needed to estimate network 

connectivity makes this approach ideal for studying changes in neural circuits that occur 

during development, in response to prolonged exposure to chemical treatment, or 

mechanical stimulus.  Less ideal are conditions where the network changes in seconds; to 
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our knowledge, there is no optical imaging technology available to perform such a rapid 

examination of the network and microelectrode arrays may be a more appropriate 

approach.   

 In addition to identifying optimal imaging conditions, we created a 

comprehensive workflow for the automated analysis of calcium imaging. for the 

automated analysis of single-neuron and neuronal network properties using data acquired 

from in vitro or in vivo calcium imaging. Functional multineuron calcium imaging is 

becoming a more widely accessible and an important tool for measuring the effects of 

experimental manipulations on the activity of individual neurons and microcircuits. Many 

research groups use custom-coded algorithms for analyzing their data but these software 

routines are either not published or poorly documented, are in different programming 

languages, and the output from one algorithm is not always appropriately formatted as the 

input to the next step, limiting integration into a workflow. These restrictions create a 

technical barrier for biologists, who may not be well-versed in programming, to use many 

of these tools for interrogating microcircuit function.  Our open-source software and the 

accompanying graphic user interface provide a comprehensive solution for the analysis of 

neuronal microcircuits.  

 Unlike other reports that focus on detection of cell bodies in an image frame 

(segmentation) (Mukamel et al., 2009; Ozden et al., 2008; Tomek et al., 2013), our 

software used a new segmentation method and also automated the measurement of 

additional biologically-relevant features describing the function of both single-neurons 
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and networks. At the single-neuron scale, we automatically detected the onset of [Ca
2+

]i 

transients using a novel spike detection algorithm and measured the dynamics of each 

event, including peak amplitude, rise time, fall time, and resting fluorescence. We 

showed that these measurements of single-neuron calcium dynamics discriminated 

between two distinct neuronal populations within a dissociated culture of hippocampal 

neurons.  Our measures of single neuron dynamics corresponded to measured differences 

in electrophysiological properties of individual PS19+ neurons compared to wildtype. At 

the network scale, we automatically compute the pair-wise synchronization of each 

neuron and quantify the level of global and local synchrony. We infer the functional 

connectivity of the microcircuit through a novel surrogate resampling method. Previous 

reports used temporal correlations between pair-wise time-series to determine functional 

connections (van den Heuvel et al., 2008), but this method is sensitive to noise 

fluctuations and requires the use of an arbitrary threshold to binarize correlation 

coefficients. Instead, we used the instantaneous phase of pair-wise neurons to determine 

statistically significant linear and non-linear dependencies through the use of surrogate 

resampling. We find that the activity patterns of groups of neurons from different 

functional modules also display distinct temporal patterns of activity. The patterns of 

activity evolve overtime as neurons undergo developmental maturation in vitro.  

 To increase usability, we created several routines that allow interactive 

exploration of the dataset. Users can inspect the raw fluorescence trace of any arbitrary 

neuron in the field of view with a simple mouse click and examine the functional 
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integration of the selected neuron to the rest of the network. Such level of exploration 

will be especially useful to investigate the role of particular neuronal subtypes or targeted 

gene manipulations on neuronal network function and dynamics of activity. We also 

anticipated shortcomings in automated segmentation of neurons and spike detection if 

image quality or SNR is extremely poor. To improve accuracy, we created GUI modules 

to remove falsely detected ROIs from the image series. Similarly, interactive adjustment 

of spike detection threshold or modifications to the spike waveform library could both 

improve accuracy. However, we found that knowledge-based spike detection is accurate, 

even with a few spike waveforms. 

 We used the calcium imaging software to analyze known behavior of circuits.  

The change in spontaneous patterns of activity over time as neurons mature in vitro is 

consistent with reports of synaptic growth and strengthening followed by synaptic 

pruning. Importantly, we identified subtle changes in network synchronization and the 

frequency of oscillations through calcium imaging that could not be possible with other 

modalities 

 We also investigated the sensitivity and biological interpretation of some of our 

network measurements using well-characterized disease models of known underlying 

etiology and pathology. Our research collaborators found that the recruitment of 

endogenously expressed α-syn into inclusions following treatment with α-syn pre-formed 

fibrils resulted in pathological aggregates in neurites and soma, accompanied by reduced 

levels of synaptic proteins. We used this model to investigate whether functional 
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measurements of network activity and excitability follow a similar timeframe as the 

progression of aggregate pathology. We found a diminished neuronal synchronization 

early after pff addition when only small aggregates are visible only in axons, suggesting 

that even minor burden of α-syn pathology can have a major impact on the coordinated 

activation of neuronal ensembles. By 10 days and 14 days after pff treatment, when 

pathology is extensive, neuronal excitability and connectivity is substantially reduced, 

which may be accounted for by the reductions in presynaptic proteins. Sequestration of α-

syn away from the presynaptic terminal into insoluble inclusions may impair the 

homeostasis of presynaptic proteins and consequently, synaptic vesicle exocytosis since 

α-syn, in cooperation with CSPα, may act as a chaperone to maintain presynaptic 

SNARE complex assembly (Burre et al., 2010; Chandra et al., 2005).  

 Indeed, one major strength of our software is the analysis of calcium imaging at 

multiple length scales. We tested whether our single-cell measurements of the kinetics of 

calcium transients are informative in phenotyping a heterogeneous cell population, using 

immunofluorescence as gold standard. We could readily distinguish neurons from 

astrocytes based solely on the duration of calcium transients, since nearly all calcium 

activity in neurons was much shorter (< 2s) relative to astrocytic calcium waves, which 

could last for up to 5 - 10 seconds. Following calcium imaging, we co-labeled cultures 

with MAP-2 and GFAP to identify neurons and glia, respectively, and achieved > 90% 

classification accuracy. We could not accurately assign a neuron or astrocyte label to 

cells that did not exhibit spontaneous activity.  
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 We next determined if we could distinguish excitatory neurons from inhibitory 

neurons, based solely on the characteristic of calcium transients. Inhibitory neurons 

express distinct phenotypic markers such as parvalbumin or cholecystokinin and have 

exhibit fast-spiking activity that distinguish them from excitatory neurons. Given these 

differences, we expected that the spontaneous calcium activity of interneurons would be 

uniquely different from excitatory neurons. Indeed we found that some neurons had 

significantly more calcium transients than others, but we were not able to definitively 

identify interneurons with immunofluorescence using either parvalbumin, or GAD-67 

antibodies. We found that nearly all neurons were diffusely labeled, possibly because 

interneurons in culture do not express parvalbumin and GAD67 immunoreactivity until 

very late in development (Kinney et al., 2006). Furthermore, previous attempts to use in 

vivo 2-photon calcium imaging failed to reveal significant differences among the 

spontaneous calcium transients (frequency, amplitude, or shape of transients) that would 

correspond to the post hoc classification of GABAergic or excitatory neurons with 

immunostaining (Langer and Helmchen, 2012). 

 Instead, we chose a different system to examine if differences in calcium 

transients appear in a heterogeneous population of neurons expressing a transgenic or 

wild-type tau protein. In the PS19 transgenic mouse model, monogenic expression of 

mutant human tau variant P301S leads to development of neurofibrillary tangles, memory 

impairment, and neuronal death, reminiscent of human tauopathies. Interestingly, 

cultured neurons from PS19 mice do not spontaneously develop NFTs. However, 
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alterations in the electrophysiology and morphology of individual neurons has been 

reported in cortical slices prepared from a P301L transgenic mouse and wild-type 

littermate. Thus, we prepared neuronal cultures from a cross between a heterozygous 

PS19 and a wild-type mouse, resulting in a heterogeneous cell population where neurons 

expressed either 0 or 1 copy of the mutant P301S tau. We found that although 

spontaneous patterns of network activity were not different between mutant and wild-

type neurons, we consistently observed differences in the spontaneous calcium transients. 

Notably, we found that the resting intracellular [Ca
2+

] and peak transient amplitude were 

significantly elevated in neurons expressing P301S tau relative to wild-type but the 

duration of calcium transients was significantly reduced, resulting in the same amount of 

calcium load per event. These calcium-imaged based observations are consistent with an 

elevated resting membrane potential (+ 8 mV) and shorter duration of single APs in 

P301L transgenic cells recorded by electrophysiology. Single cell resolution of calcium 

imaging may provide a direct ability to compare a mixture of neurons in other transgenic 

or disease models.  

 Strictly speaking, a calcium transient only identifies an electrically active neuron 

and we are careful not to include an algorithm to extract either the number or action 

potentials contained within a transient or, in addition, the frequency of the bursts 

contained with a calcium transient event. Although new genetically encoded calcium 

indicators have near single action-potential resolution and a graded increase in 

fluorescence with firing rate (Akerboom et al., 2009; Tian et al., 2009), extracting more 
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detailed information on either spike rate or number requires a thorough calibration of 

each experimental system and would not be an easily generalizable feature of our open 

source software. Similarly, although calcium imaging has been used to infer functional 

connectivity, it is not demonstrable proof of structural connectivity. Functional 

connectivity is much more dynamic and dependent on the experimental context or the 

task (Friston, 2011), however consistent changes in functional connectivity are highly 

suggestive of differences in the flow of information through neuronal networks. As Ca
2+

 

imaging methods improve (better indicators, fast microscopes), our ability to discern the 

functional connectivity of interconnected neurons will undoubtedly improve in parallel. 

To this end, our previous work investigated the relative improvement in connectivity of 

the actual network vs. the connectivity estimated from calcium imaging data and we 

showed that we approach the optimal limit of matching structural connectivity with 

functional connectivity estimates under the imaging conditions employed in this study 

(Patel et al., 2012). Using this previous work as background, we used surrogate 

resampling techniques to identify statistically significant temporal interactions between 

pair-wise neurons, thereby eliminating the use of empirical threshold parameters and 

standardizing the analysis between experiments or laboratory settings.  

 We believe the tools developed in this Chapter significantly extend the repertoire 

of image-derived quantitative metrics of network function. To our knowledge, no 

commercial software exists for automated analysis of calcium imaging and the only other 

publicly available software is limited to segmentation and measurement of fluorescence 
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versus time trace for each region of interest (Tomek et al., 2013). Several past reports use 

calcium imaging (and custom-coded analysis routines) to investigate the 

microarchitecture of local brain regions in anesthetized, awake and task-engaged animals 

(Dombeck et al., 2007; Greenberg et al., 2008; Kerr et al., 2007; Kerr et al., 2005; 

Petersen, 2007; Sato et al., 2007). Publically available tools have already had a clear 

benefit in the analysis of fMRI, EEG and electrophysiology data by offering research 

groups access to advanced routines and algorithms that go beyond the skills and expertise 

of an individual group (Cox, 1996; Cui et al., 2008; Delorme and Makeig, 2004; Duann 

et al., 2002; Meier et al., 2008; Quiroga et al., 2004; Spacek et al., 2008). Similar code 

sharing is only recently beginning to happen for calcium imaging datasets, partly because 

experimental tools for accurate interrogation of neuronal networks at sufficient spatial 

and temporal resolution are only recently becoming more widely available. We expect 

the continued use of functional multineuronal calcium imaging, combined with our 

framework for analysis will advance our understanding of how information flow within 

and across distributed brain networks drive behavior or contribute to disease.  
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CHAPTER 3: Single neuron NMDA receptor phenotype 

dictates neuronal rewiring and re-integration following 

traumatic injury 

ABSTRACT:  

Despite its enormous incidence, mild traumatic brain injury is not well understood.  One 

aspect that needs more definition is how the mechanical energy during injury affects 

neural circuit function.  Recent developments in cellular imaging probes provide an 

opportunity to assess the dynamic state of neural networks with single-cell resolution.  In 

this Chapter, we applied the methodologies developed in the previous Chapter to evaluate 

if mild mechanical injury to cortical neurons produces graded changes to either 

spontaneous network activity or altered network topology. We found that modest injury 

produced a transient increase in calcium activity that dissipated within 1hr after injury.  

Alternatively, moderate mechanical injury produced immediate disruption in network 

synchrony, loss in excitatory tone, and increased modular topology.  A calcium-activated 

neutral protease (calpain) was a key intermediary in these changes; blocking calpain 

activation restored the network nearly completely to its pre-injury state.  With the ability 

to analyze individual neurons in a circuit before and after injury, we identified several 

nodal biomarkers that confer increased risk or protection from mechanical injury. We 

found that pre-injury connectivity and NMDA receptor subtype composition (NR2A and 

NR2B content) are important predictors of node loss and remodeling. Mechanistically, 

stretch injury caused a reduction in voltage-dependent Mg
2+

 block of the NR2B-cotaning 
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NMDA receptors, resulting in increased uncorrelated activity both at the single channel 

and network level. The reduced coincidence detection of the NMDA receptor further 

impaired network function by limiting plasticity, which was rescued by pairing an LTP 

stimulus with NR2B antagonists. 

INTRODUCTION: 

 Mild traumatic brain injury (mTBI) is the most common form of head injury with 

an estimated incidence of 1.2 million cases per year. Concussions are a form of mild 

traumatic brain injury that represents at least 80% of the traumatic brain injuries 

occurring each year in the United States (Kraus and Nourjah, 1988).  Although often 

associated with sports, the majorities of concussions occur outside of sporting activities 

and include motor vehicle accidents, falls, and any situation involving sudden 

acceleration or deceleration of the head.  Long considered an injury that was ‘inevitable’ 

with little recourse, the growing awareness of the long-term effects of concussion led to a 

renewed focus on understanding, preventing, and treating concussions. 

 Despite its name, the consequences of mild TBI are not "mild"; 30%-80% of 

patients diagnosed with mTBI experience disabling problems, such as persistent 

headaches, fatigue, changes in sleep patterns, sensory problems (post-concussion 

syndrome), and mood changes (Alexander, 1995; Hall and Chapman, 2005; Kushner, 

1998).  In addition, repetitive mTBI is correlated to delayed neurodegenerative changes, 

often accompanied by severe decline in cognitive and psychiatric health (Stern et al., 

2011). Advanced radiological and laboratory tests have led to better early diagnosis of 
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TBI (De Kruijk et al., 2001; Ingebrigtsen et al., 2000). However, treatment options are 

limited to reactive, rather than preventative, management of trauma-induced neurological 

and neuropsychiatric symptoms, partly because we do not yet fully understand the 

clinical and mechanistic progression of acute injury into long-term disability. 

 The cellular substrate of concussion is largely unknown (Meaney and Smith, 

2011).  One theory on the mechanical origin of concussions proposes that the cortical 

strains appearing in the gray matter at the moment of injury are the most likely reason for 

the impairments that occur in a concussion (Ommaya and Gennarelli, 1974).  

Alternatively, others pose that deformation of the brainstem structures are key in 

producing the brief periods of unconsciousness associated with severe concussion 

(Browne et al., 2011; Smith et al., 2000).  A common theme among these concussion 

theories is that the mechanical energy during rapid head motions will deform brain tissue 

and, ultimately, the cellular ensembles that form these tissues.   

 At the mechanistic level, our knowledge in the past decade increased considerably 

about the early events following mTBI - e.g. the relative vulnerability of unmyelinated 

axons to trauma, the early and progressive cytoskeletal changes, the appearance of new 

surface channels or the loss of existing channels, and the acute mechanisms of injury both 

in vivo and in vitro (Buki and Povlishock, 2006; Farkas and Povlishock, 2007; Johnson et 

al., 2012). Despite this progress, we know little about one potentially important aspect of 

mTBI: how do the cellular, subcellular and molecular perturbations following injury 

affect the structure and organization, or "information flow", through neuronal networks? 
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In other words, it is not clear if transient mechanical events will cause permanent changes 

in the neuronal morphology or, alternatively, the wiring of neural circuits within brain 

regions associated with concussion.  These changes in both the neuronal connections and, 

alternatively, the wiring of neural networks can play a key role in the recovery of the 

brain following a concussion.   

 Several recent studies highlight that mTBI is a disease of network dysfunction.  

Two network-based features are appearing as critical changes in the traumatically injured 

brain.  First, the persisting loss of coordinated EEG brain activity after mTBI (Sponheim, 

2011) suggests a potentially important alteration in cortical connectivity even after mTBI 

that can affect the processing of information, owing to the critical role of synchronization 

in relaying information throughout the brain (Buzsaki and Draguhn, 2004; Fries, 2005; 

Womelsdorf et al., 2007). Second, the change in the physical and functional connections 

among brain regions, revealed through a combination of diffusion tensor imaging (DTI) 

and functional magnetic resonance imaging (fMRI),  is now thought to be a significant 

contributor to the cognitive impairment and decline in task-related performance after 

mild TBI (Bonnelle et al., 2012; Bonnelle et al., 2011; Hillary et al., 2011; Sharp et al., 

2011; Witt et al., 2010). 

 Although we gain to learn valuable information about the brain regions most 

affected by mTBI through EEG and fMRI techniques, they do not provide sufficient 

resolution to examine the exact cellular mechanisms leading to network dysfunction after 

mTBI. Measuring changes in both the connection map and information flow 
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(synchronization) of the circuit with single cell resolution would provide key information 

on the functional consequences of mechanical injury and help identify novel therapeutic 

target.  Additionally, probing network structure and function at this length scale provides 

an opportunity to identify whether certain injured neurons contribute disproportionally 

more to network dysfunction than other injured neurons or, alternatively, is a subset of 

neurons is critical for maintaining network functions after injury.  Determining the 

relative contribution of neuronal subgroups to the overall changes in network dynamics 

and plasticity changes may provide new insight into the natural recovery of cortical 

microcircuits after injury, and if there are new therapeutic approaches that can target the 

recovery of a selective group of dysfunctional neurons to repair an injured circuit after 

TBI. 

In this study, we measured and probed the mechanisms for changes in network 

behavior following mechanical stretch injury to cortical neurons in vitro at varying 

severities. Unlike higher injury levels (>80% stretch) that will cause neuronal death 

within 24h post-injury, we find that mild levels of mechanical injury (35% stretch) causes 

widespread changes in network topology, synchrony and excitatory transmission. The 

network that was once highly interconnected prior to injury breaks off into multiple, 

smaller clusters of locally connected modules. Long-range synaptic transmission is 

impaired. Functionally, there is a significant drop in network synchrony. Given recent 

work showing the unique mechanosensitivity of the N-Methyl-D-Aspartate (NMDA) 

receptor, we studied whether differential mechanical activation of NR2A- or NR2B-
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containing NMDARs influences the coordinated activity of neurons and the functional 

connectivity of an injured circuit. We discovered that NR2B subtypes, but not NR2A, 

selectively impair network dynamics following mechanical stretch injury. Further, at 

these stretch levels, there is also delayed proteolysis of voltage gated sodium channels, 

mediated by the calcium sensitive protease, calpain (von Reyn et al., 2009). We show that 

pharmacological blockade of calpain improves network synchrony. Alternatively, even 

milder mechanical injury (10% stretch) produced very little changes in network topology 

or synchrony, however, there was a brief period of heightened spontaneous activity 

following injury, suggesting there is a mechanical threshold for permanent changes to the 

microcircuitry.   

METHODS: 

Mechanical injury of cortical neurons:   

 Cortical neurons at 18-21 days in vitro (DIV) were subjected to a strain-

controlled stretch injury in CSS as described previously (Lusardi et al., 2004b). Briefly, 

cells plated on flexible membranes were placed on a stainless steel plate and covered with 

a top plate to form a sealed chamber.  Increasing the chamber pressure to its peak level in 

15 milliseconds caused the compliant silicone membrane to stretch, in turn applying a 

stretch to the cultured neurons.  This pressurization phase was immediately followed by a 

release of the pressure, typically within 25 milliseconds of achieving the peak pressure.  

Although cells were cultured over a circular area (23 mm diameter), we designed the 

supporting stainless steel plate to expose only cells in a defined region (a 3mm x 18mm 
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rectangular region; approximately 1/3 of the culture surface area) to a stretch, designing 

the system to provide a uniform membrane stretch over 95% of the surface within that 

region (Lusardi et al., 2004a). The magnitude of the stretch injury was calibrated to the 

applied input pressure for each week of experiments, and a transducer recorded the 

applied output pressure of each test (Endevco, San Juan Capistrano, CA). The membrane 

in the injured region was stretched uniaxially, where the width was extended 10% (mild) 

or 35% (moderate) beyond its initial width before returning to its original dimension.  

These levels of strain magnitude and rates are typically observed in human and animal 

models of mild TBI (Meaney et al., 1995). At these levels of injury, we did not observe 

any obvious detachment of the cells from the membrane following stretch injury, nor did 

we observe any gross morphological changes in the cultures.  This stretch level does not 

cause a significant increase in cell death compared to unstretched controls (Lusardi et al., 

2004b). Naïve unstretched neurons served as reference conditions for statistical 

comparison.     
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Figure 3. 1: Schematic of stretch injury device. A: Cells cultured on a silastic membrane and 

placed over a stainless steel plate with a 3" slit were secured to the microscope stage with a top 

plate, forming an air-sealed chamber. Rapid pressurization of the chamber through an air inlet 

port caused the membrane to deflect (B, right), producing a uniaxial strain deformation. The 

membrane returned to its original unstretched shape (B, left) following de-pressurization.  

Drug Treatments: All compounds were solubilized in controlled saline solution (CSS; in 

mM: 120 NaCl, 5.4 KCl, 1 MgCl2, 1.8 CaCl2, 25 HEPES, 15 glucose, pH 7.3. Cortical 

neurons were incubated in bicuculline methobromide 50 µM (Tocris), APV 25µM 

(Tocris), Ro 25-6981 2µM (Sigma-Aldrich), NVP-AAM077 50nM (Novartis, CA)  or 

MDL28170 50µM (Calbiochem) as needed. 
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Single cell phenotyping of the relative contribution of NMDAR subtypes to synaptically-

evoked rise in intracellular calcium 

We developed a rapid method to determine the relative fraction of NR2B and NR2A 

receptors of individual neurons within an intact network. We performed calcium imaging 

of neuronal networks and measured calcium fluorescence at the soma as described above. 

When a neuron fires a single or a train of APs, the rise in calcium indicator fluorescence 

is the product of influx through the NMDARs (all subtypes), calcium-permeable 

AMPARs, and the voltage gated calcium channels that are opened when the neuron is 

depolarized with AMPAR activation. We stimulated the excitatory network by blocking 

GABAA receptors with bicuculline (50 µM). This induced rhythmic oscillations with 

little variability in calcium amplitudes for a given neuron. The fractional drop in calcium-

indicator fluorescence amplitude with the application of either NR2A-selective 

antagonist, NVP, or NR2B-selective antagonist, Ro 25, provided an estimate of the 

relative contribution of NR2B and NR2A subtypes to synaptically-evoked rise in 

intracellular calcium. Although not a direct estimate of the percent composition of NR2A 

or NR2B receptors at the synapse, this is a functional measure of the fraction of total 

somatic calcium load that is generated by the activation of NR2A and NR2B receptors at 

the synapse.  
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Statistical Analysis: 

Data were analyzed using student's t-test or by ANOVA with Tukey's post-hoc test. At 

least n = 10 cultures, from three different isolations were tested for each experimental 

condition. All values are reported as mean ± s.e.m. 

Calcium imaging and data analysis: 

We used the technology developed in past reports (Fetcho et al., 1998; Stosiek et al., 

2003; Tian et al., 2009; Yuste et al., 1992) and methodology developed in Chapter 2 to 

measure neural circuit dynamics using fluorescent calcium indicator. The spontaneous 

activity of a mature culture (DIV 18-21) was measured prior to injury and at increasing 

time points post injury up to 5 days.  

RESULTS 

Integration of neurons within an injured network is influenced by pre-stretch 

connectivity.  

 Using newly developed methods to estimate the functional connectivity of 

neurons within a dissociated microcircuit (Figure 3.2A), we first measured the initial 

reduction and early recovery in the circuit connectivity after stretch injury.  Neurons were 

cultured on a silastic membrane and a small region of the membrane was stretched 

uniaxially to 35% ± 5% peak stretch within 15 ms duration, mimicking the strain 

magnitude and duration of human mTBI. Mechanically injured neurons showed an 

immediate transient increase in cytosolic calcium that returned to pre-stretch baseline 



84 

 

levels within 10 minutes of injury (Figure 3.2B).  Consistent with previous reports, this 

calcium transient was eliminated completely by inhibiting the NMDA receptor 

population (APV, 25 µM) prior to stretch insult.  Although this level of mechanical injury 

did not produce significant cell death one day after injury, we did see both an immediate 

(10 minute) and more persisting impairment (1 hour) in functional connectivity of the 

microcircuit after injury (Figure 3.2C).  Functional connectivity index of a neuron was 

defined as the ratio of the number of functional targets to the total number of neurons in 

the network (0 = neuron has no functional connections to the network, 1 = neuron is 

functionally connected to every other neuron in the network). The connectivity index of 

individual neurons did not vary spatially. The functional connectivity of the network, 

defined as the average of the connectivity index across all neurons, as well as the number 

of calcium events were significantly reduced 10 minutes and one hour following injury 

(Figure 3.2E-F).  Consistent with the inhibition of stretch-induced transients, APV 

pretreatment restored the deficits in the connectivity and spontaneous activity following 

mechanical injury (Figure 3.2E-F).   
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Figure 3.2: Mechanical injury to a cortical network in vitro causes acute reduction in 

functional connectivity through NMDA receptor activation. The calcium activity of a 

population of neurons was recorded with the genetically encoded calcium indicator, GCaMP5 

(A). The temporal similarity in the fluorescence trace of each pair-wise neurons was quantified as 

the synchronization index and then binarized to yield a functional connectome. Example of 3 
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neuronal traces is depicted. Neuron pairs 1 and 2 have a similar temporal pattern of calcium 

fluorescence and hence are functionally connected whereas the activity of neuron pair 2 and 3 is 

not similar enough to be functionally connected. We measured the spontaneous activity of a 

population of neurons grown on a silastic membrane and applied stretch injury to a confined 

region of the well, yielding peak 35% ± 5% uniaxial stretch in 15 ms duration (B). Stretch 

produced an immediate rise in [Ca
2+

]i which could be completely blocked by pre-treatment with 

the NMDA receptor antagonist, APV (B). The functional connectivity of the network was 

significantly reduced immediately following  stretch injury (10 min post-injury) but showed 

partial recovery by 1 h (C,D). The functional connectivity is overlaid on an image of the same set 

of neurons images pre and post-injury (C); yellow circles = neuronal cell bodies or nodes that are 

functionally integrated in the network, i.e. have at least 1 functional target, red circles = 

completely deintegrated nodes and red lines indicate functional connections or edges. Injury also 

significantly reduced network-wide calcium oscillations at 10 min and 1 h post-injury (E). The 

effect of injury on network functional connectivity and activity were completely blocked by APV 

pre-treatment (D,E). Although there was an overall decrease in the number of functional 

connections 1 h following stretch at the network scale, the pre-stretch connectivity of individual 

neurons within the network influenced their post-injury connectivity - a fraction of sparsely-

connected neurons (connectivity index < 0.3) showed an increase in the number of functional 

connections following injury, whereas most highly connected neurons (connectivity index > 0.7) 

underwent a reduction (F, n=221 neurons from N=5 experiments, paired t-test p<0.01). 

 Although mechanical injury caused an overall reduction in synchronization, 

spontaneous activity, and the total number of functional connections, it was unlikely that 

every neuron showed the same level of de-integration after mechanical injury.  With the 
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single cell resolution available in the calcium imaging methodology, we next examined if 

the initial connectivity of a neuron within the network influences their post-injury 

connectivity.  We recorded the spontaneous calcium activity of the same microcircuit 

prior to and 1-hr following stretch injury and determined the number of functional 

connections, the node degree, of each neuron within the network at these two time points. 

Most neurons in our mature cultures were either fully integrated (connectivity index > 

0.7) or sparsely connected (connectivity index < 0.3). In uninjured cultures, the 

connectivity index of individual neurons did not change over the 1-hr time interval 

(paired t-test p>0.1). Using these broad groupings, we found a fraction of sparsely-

connected neurons showed an increase in the number of functional connections following 

injury, whereas most highly connected neurons underwent a reduction (Figure 3.2F, 

n=221 cells from N=5 separate experiments, paired t-test p<0.01, dotted line is the line of 

identify - neurons that fall above this line show an overall enhancement in connectivity 

whereas those that fall below the diagonal show a reduction in connectivity). 

Additionally, in the fully integrated group of neurons (connectivity index > 0.7), neurons 

with greater number of connections prior to stretch had a disproportionately lesser 

reduction in functional connectivity post-stretch, i.e. the slope and the change in slope of 

post vs. pre connectivity was > 0.  

Broadly, these data show that mechanical injury to cortical neurons will incur 

immediate and broad disruptions in network behavior.  However, finite element models 

suggest a wide range of in vivo brain deformations occur during concussion.  As such, we 
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also tested a less severe injury level (10% ± 4%).   Distinct from studies at the moderate 

injury level, we observed no change in functional connectivity. Interestingly, the 

frequency of network-wide spontaneous oscillations significantly increased acutely after 

injury and returned to pre-stretch levels by 1hr.  The threshold for disrupting connectivity 

in the networks appears to be between these two levels of mechanical injury and we 

focused our efforts to understand the mechanisms of network degradation at 35% stretch. 

Neuronal NMDAR subunit composition influences functional rewiring following injury. 

 In addition to examining the relative change of individual neuronal integration 

within a larger neural microcircuit, calcium imaging also provides the resolution to 

identify and group neuronal subpopulations with similar functional properties.  Given that 

the source of calcium influx, as well as the potential secondary release from intracellular 

stores, can play a major role in the mechanisms that mediate changes in synaptic 

plasticity, neuronal remodeling, and network maintenance, we extended the calcium 

imaging methodology to functionally profile individual neurons within the microcircuit.  

We first blocked inhibitory GABAA receptors with bicuculline, removing the 

contribution of fast inhibitory synaptic transmission from network activity. The 

contribution of NMDARs was assessed by comparing calcium oscillation amplitude in 

bicuculline vs. bicuculline + APV. Similarly, the contribution of CP-AMPARs and 

voltage-gated calcium channels was determined by the sensitivity to naspm and 

nimodipine, respectively (two example traces in Figure 3.3 A, B). We further divided the 

contribution of NMDARs into NR2A and NR2B components by measuring the percent 
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reduction in amplitude with NVP and Ro-25, respectively (Figure 3.3D). Within 

individual neurons from the same microcircuit, single-cell calcium dynamics (SCCD) 

showed that the relative calcium influx profile could differ significantly. Consistent with 

past work showing a developmental change in the expression of AMPA and NMDA 

receptors over time in vitro (Ben-Ari et al., 1997), we also observed a shift in the average 

SCCD profile from influx primarily through the NMDA receptors (10 DIV) to a more 

significant influx associated with opening of voltage gated changes, presumably from an 

increase in AMPA receptor expression, at 21 DIV (Figure 3.3C, DIV 18-21 NMDAR 

contribution 62% ± 11% vs. DIV 10 NMDAR contribution 80% ± 9%, p<0.05, n=69 

cells). The relative composition in SCCD profile was examined further with subunit-

selective antagonists of NMDA receptors, taking advantage of antagonists directed 

towards the glutamate binding site on either the NR2B subunit (Ro25-6981) or the NR2A 

subunit (NVP-AAM077).  We found that the majority of synaptically evoked increase in 

cytoplasmic calcium during spontaneous activity in mature cortical neurons (DIV 18-21) 

arise from NMDARs (65% ± 7.3%) and VSCCs (32% ± 10.1%) (Figure 3.3C). Of the 

65% NMDAR contribution to [Ca
2+

]i oscillations in mature neurons, NR2A subtypes 

contributed 64% ± 7.3% and NR2B contributed 28% ± 8.4% to rise in [Ca
2+

]i, whereas, 

NR2B subtypes contributed significantly greater (47% ± 5.9%) to Ca
2+

 oscillations in 

younger neurons, consistent with developmental turnover of NR2B subtypes and 

electrophysiological and Western blot-based estimates of subunit composition in cultured 

neurons (Liu et al., 2004; Stocca and Vicini, 1998; Tovar and Westbrook, 1999).  
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Figure 3. 3: Profiling the contributions of NMDA receptors (NR2A and NR2B subtypes) 

and voltage-gated calcium channels to intracellular calcium oscillations. Neuronal networks 

underwent rhythmic oscillations in [Ca
2+

]i following the removal of fast inhibitory synaptic 

transmission with bicuculline. The contribution of synaptically-activated NMDA receptors to the 
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[Ca
2+

]i oscillations was assessed by comparing calcium oscillation amplitude in bicuculline vs. 

bicuculline + APV. Similarly, the sensitivity to naspm and nimodipine was used to assess the 

contributions of calcium-permeable AMPARs and voltage-gated calcium channels to [Ca2+]i 

oscillations. The contributions of these channels to [Ca2+]i oscillations varied from neuron-to-

neuron (example of two neurons from the same network in A and B). The contribution NR2A and 

NR2B subtypes was assessed by the percent reduction in amplitude with NVP and Ro-25, 

respectively (D). As embryonic neurons matured in vitro, the contribution of NMDARs to [Ca
2+

]i 

oscillations decreased (C) and showed greater sensitivity to NVP, indicative of turnover of NR2B 

subtypes with NR2A-containing NMDARs (E).  

 With an ability to estimate both the relative integration of a neuron within a 

microcircuit and its functional calcium influx profile, we tested directly if these two 

single cell-based features contributed to the individual neuronal response to traumatic 

mechanical injury.  Previous study by our group investigated the mechanosensitivity of 

NMDAR subunits and found that majority of the immediate Ca
2+

 influx is through 

NR2B-containing NMDAR, and not NR2A-containing NMDARs (Singh et al., 2012). 

Based on this past work, we expected that neurons displaying a relatively large calcium 

influx through NR2B-containing NMDARS – indicative of a significant number of 

synaptic NR2B-containing NMDARs – would respond more robustly to traumatic 

mechanical injury.  We used calcium imaging to quickly estimate the NR2A and NR2B 

contribution to [Ca
2+

]i oscillations prior to stretch injury, yielding a biochemical 

phenotype for each neuron in the network.  Although most neurons underwent a 

reduction in the total number of functional connections, we explored the relationship 
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between NMDAR subtype composition of a given neuron prior to injury and its 

functional connectivity following injury. The functional connectivity of a neuron, i.e. its 

functional neuronal targets, could undergo one of 3 changes: of the set of all functional 

targets, a fraction of connections may be lost as a result of injury, a fraction of 

connections may remain stable following injury or there maybe some newly formed 

functional connections following injury that were not present in the uninjured network. 

The "lost", "stable", and "new" fraction for a given neuron compactly describes its extent 

of functional rewiring in the injured network (Figure 3.4A,B).  

 In sham cultures, the lost and new fraction for nearly all neurons is < 5%, 

indicating very little change in the functional connectivity over a 1 hour time period. In 

contrast, we found a large number of functional connections were lost and a smaller 

number of newly formed functional connections appeared 1-hr following stretch injury 

(57% ± 9.6% lost, 22% ± 8% new, Figure 3. 4). Interestingly, the functional rewiring of 

single-cells fell into three clusters - a group of neurons that de-integrated from the circuit 

(i.e. lost many of their functional connections), a group of neurons that remained 

integrated and a group that re-integrated, forming new connections. Overlaying the pre-

stretch NR2B and NR2A receptor "content" of each neuron onto its degree of functional 

rewiring following injury, we found a significant positive relationship between pre-

stretch NR2B contribution and de-integration (Figure 3. 4 C,D, correlation coefficient 

0.89 ± 0.12 p<0.01). These data showed individual neurons whose [Ca
2+

]i oscillations 

were most sensitive to Ro-25 prior to stretch lost many of its functional targets at 1-hr 
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following stretch, consistent with our earlier work showing that the sensitivity of the 

NMDA receptor to mechanical stretch injury is linked primarily to the NR2B subunit 

(Singh et al., 2012). There was no correlation between node degree and NR2A or NR2B 

contribution prior to stretch, indicating that NMDAR subtypes do not influence 

functional connectivity in an uninjured network.    

 If NR2B content is an injury-susceptibility marker, experimental manipulations 

that either reduce or enhance the relative NR2B:NR2A receptor content prior to stretch 

are expected to directly influence the functional integration of neurons following injury. 

We tested this hypothesis in two experimental conditions. During development, NR2B-

containing receptors are expressed in immature neurons, whereas NR2A-containing 

receptors become the electrophysiologically predominant subunit at later stages of 

development (Carmignoto and Vicini, 1992; Hestrin, 1992; Kew et al., 1998; Monyer et 

al., 1994; Roberts and Ramoa, 1999). We confirmed that the NR2B contribution to 

[Ca
2+

]i oscillations was greater in DIV 14 neurons compared to more mature neurons at 

DIV 20 (DIV 14 NR2B contribution 47% ± 3.9% vs. DIV 20 28% ±3.8%, p<0.05, Figure 

3.2 E).  Stretch injury to DIV 14 cultures caused a significantly greater reduction in 

functional connectivity relative to injury to DIV 20 cultures (DIV 14 47% ± 5% reduction 

vs. DIV 20 35 ± 6%, p <0.05).  

 Separately, we altered the NR2B:NR2A ratio by chronic NMDA receptor 

blockade, which causes a preferential increase in the surface expression of NR2A 

subtypes (von Engelhardt et al., 2009).  By blocking NMDARs, calcium activity was 
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reduced, but electrical activity was unaffected, resulting in a homeostatic increase in 

NR2A receptors. Following removal of APV, we noted an increase in calcium oscillation 

amplitude that was more sensitive to NVP relative to vehicle treated shams. The 

frequency of calcium oscillations and the functional connectivity were unaffected by 

chronic APV blockade (Figure 3.4E). However, cultures that were treated with 8 h APV, 

and hence had greater NR2A receptor content (lower NR2B:NR2A ratio) were protected 

against injury-induced loss in functional connections 1 h following injury (Figure 3.4 E), 

suggesting that the aggregate NR2B:NR2A ratio for a given neuron influences 

susceptibility to injury-induced functional rewiring.   
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Figure 3. 4: Functional rewiring following injury is influenced by NMDA receptor 

composition. As a result of injury, a neuron could undergo one of 3 changes in its functional 

connectivity. Of the set of all functional targets, a fraction of connections may be lost as a result 

of injury, a fraction of connections may remain stable following injury or there maybe some 

newly formed functional connections following injury that were not present in the uninjured 

network. The "lost", "stable", and "new" fraction for a given neuron compactly describes its 

extent of functional rewiring in the injured network (A, B). Following injury, individual neurons 

fell into three clusters - a group of neurons that remained integrated, a group of neurons that de-

integrated and a group of neurons that re-integrated. The pre-stretch NR2B and NR2A receptor 

contribution of [Ca
2+

]i oscillations was a strong predictor of functional de-integration following 

injury (C, D). Experimentally increasing the NR2A contribution to [Ca
2+

]i oscillations with a 

chronic APV blockade (E) abrogated loss in functional connectivity, indicating that the effects of 

injury on network connectivity at linked primarily to the NR2B subunit.  

NR2B-NMDA receptor, not NR2A, undergoes stretch induced reduction in Mg
2+

 block. 

 To determine why neurons with high pre-stretch NR2B contribution to [Ca
2+

]i 

oscillations are more adversely affected by stretch injury than NR2A dominant neurons, 

we investigated the mechanosensitive properties of these two subunits using whole-cell 

patch clamp to record agonist-activated currents. NMDA receptors have previously been 

shown to be mechanically activated (Paoletti and Ascher, 1994) and traumatic injury both 

in vitro and in vivo causes a reduction in the voltage-dependent Mg
2+

 block of the 

NMDARs (Furukawa et al., 2000; Zhang et al., 1996).   NMDA-activated currents 

recorded from uninjured control neurons under voltage clamp in the presence of 2mM 
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extracellular Mg
2+

 showed a typical "J"-shape when plotted against membrane command 

potentials (Figure 3. 5A). The negative conductance below -40mV is due to Mg
2+

 block of 

NMDARs. Consistent with previous report (Zhang et al., 1996), the current-voltage (I-V) 

relationship was more linear in stretch injured neurons at 1-hour post-injury (Figure 3. 

5A). Specifically, we noted significantly greater NMDA-activated currents at resting 

membrane potential (-62mV) in stretched neurons relative to unstretched (normalized 

current in stretched: -1.12 ± 0.16 vs. unstretched: -0.13 ± 0.17, n=16, p<0.001).  

 We used the NR2A-selective antagonist, NVP-AAM077, and the NR2B-selective 

antagonist, Ro25-6981, to determine the effect of these two subtypes on the I-V 

relationship in uninjured and injured neurons. Cultures were injured as before (or 

uninjured for control) and the NMDAR antagonists were applied prior to patch clamp 

recording. NMDA-activated currents in uninjured neurons with either antagonist 

individually showed a "J" shape I-V relationship, suggesting that both NR2A and NR2B 

containing receptors are blocked by extracellular Mg
2+

 below -40mV (data not shown). In 

contrast, the I-V relationship of NVP-AAM077 treated injured neurons remained more 

linear but Ro-25 treatment rescued the "J" shape (normalized current in stretched: -

1.12±0.16 vs. stretched + Ro 25: -0.42 ± 0.21, p<0.01), suggesting that the NR2B, not 

NR2A, containing NMDA receptors undergo a reduction in Mg
+2

 block following stretch 

(Figure 3.5A).  

 A selective reduction of voltage-dependent Mg
+2

 block of NR2B-containing 

NMDARs would suggest increased ionic fluxes, in particular Ca
+2

 flux through this 
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subpopulation of NMDARs following mechanical injury. Indeed, APV resulted in a 

greater reduction in Ca
2+

 oscillation amplitude in injured cultures relative to uninjured 

shams, suggesting a larger NMDAR component. Of the total Ca
2+

 influx through the 

NMDA receptors, the contribution of NR2B subtypes was significantly greater 1 h 

following injury relative to shams (Figure 3.5 B, injured NR2B contribution 54.3% ± 6% 

vs. uninjured 32.3% ± 7%, p<0.01). 

 We further measured NMDA-agonist induced rise in intracellular free calcium, 

([Ca
2+

]i) in uninjured and stretch injured neurons using the fluorescent ratiometric Ca
2+

 

indicator, fura-2 AM. Spontaneous activity and synaptic transmission were reduced with 

TTX (1uM), bicuculline (10uM) and nimodipine (10uM). We observed that NMDA 

treatment (200 M) increased [Ca
2+

]i by 36% over basal levels in uninjured neurons 

(basal [Ca
2+

]i: 88nM ± 13nM, NMDA induced [Ca
2+

]i: 115nM ± 9nM), whereas [Ca
2+

]i 

increased by 102% in injured neurons (basal [Ca
2+

]i: 93nM ± 28nM, NMDA-induced 

[Ca
2+

]i: 188nM ± 19nM). Moreover, blocking the NR2B, but not NR2A subtypes in 

injured neurons significantly attenuated NMDA induced rise in [Ca
2+

]i (injured + Ro25 

peak [Ca
2+

]i: 122nM ± 19nM, injured + NVP peak [Ca
2+

]i: 160nM ± 14nM, p<0.01) 

(Figure 3. 5 C-E). Together with electrophysiological recordings, these data strongly 

support an NR2B-selective reduction in voltage-dependent Mg
2+

 block following 

mechanical stretch injury. The selective vulnerability of NR2B-containing NMDAR 

subtypes supports our previous findings that neurons with high NR2B contribution to 
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[Ca
2+

]i oscillations prior to stretch undergo more severe changes in functional 

connectivity.   

 

Figure 3. 5: Injury results in a reduction of NR2B-NMDAR Mg
2+

 block. A: Patch-clamp 

recording of NMDA-induced currents at different hold potentials showed a characteristic J-curve 

in uninjured neurons and uninjured neurons pre-treated with Ro-25, due to an intact voltage-
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dependent Mg2+ block. Stretch injury caused a reduction in voltage-dependent Mg2+ block of 

NR2B-containing NMDARs as evidenced by a flattening of the I-V curve following injury but 

rescue of the J-shape when injured neurons were pre-treated with Ro-25. B: Consistent with a 

reduction in NR2B Mg2+ block, the contribution of NMDARs to spontaneously generated 

[Ca2+]i oscillations was significantly greater following injury, along with a relative increase in 

NR2B component. C-D: Changes in [Ca2+]i after NMDA application, measured with fura-2, 

show an enhanced response in injured neurons that is significantly attenuated by NR2B 

antagonist, Ro-25. Resting [Ca2+]i in uninjured and injured neurons at 1-hr are not significantly 

different. Traces are representative of an individual uninjured and injured neuron. E: The peak 

[Ca
2+

]i following NMDA stimulus was significantly greater in injured cultures relative to 

uninjured and could be attenuated with Ro-25 (n=8 uninjured and 7 injured cultures, **p<0.01).  

Stretch-induced reduction in NR2B-NMDAR Mg
2+

 block causes asynchronous circuit 

activity 

  Ca
2+

 enters the cell through NMDA receptors only when presynaptic 

glutamate release and depolarization of the postsynaptic membrane occur simultaneously 

(correlated activity), whereas NMDAR-mediated Ca
2+

 influx is suppressed at voltages 

near the resting membrane potential due to Mg
2+

 block. This coincidence detection is a 

fundamental feature of neurons that allows signaling specificity in response to patterned 

synaptic input. Often, it allows temporal control over postsynaptic action potential 

initiation following an appropriate pattern of spatiotemporal afferent inputs. Following a 

vesicular release of glutamate, the NR2A and NR2B subtypes undergo multiple 

intermediate stages of activation before transitioning to a gultamate-bound and open state 
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(Erreger et al., 2005). The activation scheme and sensitivity to Mg
2+

 block are different 

for different subtypes (Kuner and Schoepfer, 1996). Given that injury selectively reduces 

NR2B-NMDAR Mg
2+

 block, little evidence exists to predict how this selective change to 

a NMDAR subpopulation would influence the temporal patterns of network activity. 

 To investigate the effects of reduced NR2B Mg
2+

 block on the calcium dynamics 

at the dendritic spine-, neuron-, and network-level, we built a multi-scale model of 

neuronal network spontaneous activity. We modeled the stochastic activation of NR2A, 

NR2B, and AMPA receptors at dendritic spines under physiologic glutamate release 

conditions. The resulting current from activation of these receptors was used to update 

the membrane potential of pyramidal neurons which were modeled as leaky integrate-

and-fire. See Chapter 2 for methodological details.  

 Under physiologic Mg
2+

 block of the NR2A and NR2B subtypes, simulated 

release of a glutamate containing vesicle consistently activated AMPARs and NR2A 

subtypes, while NR2B activation was a rare event (3 out of 40 simulations showed NR2B 

activation). A raster plot of receptor activation for 40 independent simulations is shown 

in Figure 3. 6 A, where each dot represents glutamate-bound, open, and ion conducting 

state. Reducing NR2B Mg
2+

 block from extracellular [Mg
2+

]=0.8mM to 0mM resulted in 

significantly more activation of these receptors as expected, however, the model also 

predicted increased temporal jitter as a result of rapid transitions between glutamate-

bound/open state and glutamate-bound/closed state (Figure 3. 6 B). In an otherwise 

physiologic spine, these flickering events contribute negligible calcium flux due to 
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voltage-dependent Mg2+ block; however, they become a significant source of calcium in 

an ‘injured’ spine. Interestingly, the total calcium load does not significantly increase 

until external [Mg
2+

] is lowered beyond 0.15mM, suggesting a level of resilience (Figure 

3. 6 C).  Furthermore, the stochastic temporal activation of both AMPARs and NR2A 

subtypes was very similar across repeated simulations but varied greatly for the NR2B 

subtypes of a simulated injured spine as indicated by significantly greater variance across 

trials computed at each time point (Figure 3. 6 D, red trace - variance in NR2A activation 

under physiologic Mg2+= 0.8mM, black trace - variance in NR2B activation under 

[Mg2+] = 0mM). This suggests that a reduction in NR2B Mg2+ block not only increases 

calcium flux, but the temporal pattern of activation becomes more irregular between trials 

and noisier within trials.  

 We expect that increased variability in NR2B activation will disrupt the timing of 

firing of neurons within the network. We used the computational model to examine the 

sensitivity of the pattern of spontaneous network activity to NR2B-specific reduction in 

Mg
2+

 block. Previous computational models have shown that the wiring of networks and 

the balance of inhibitory and excitatory connections are important features that influence 

the temporal patterns of spontaneous activity (Compte et al., 2003; Cossart et al., 2003; 

Parga and Abbott, 2007). In model simulations, a small fraction of synapses received a 

transient input in the form of glutamate-containing vesicles, triggering a burst of activity 

that was self-sustained by virtue of NMDAR-dependent recurrent excitation but limited 

to 1-2 second duration due to inhibitory potentials (Fig 3.6E). The pattern of activity was 
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synchronized in the excitatory network and matched in vitro recordings of mature cortical 

cultures. 

 

Figure 3. 6: Computational model predicts the effects of reduced NR2B Mg
2+

 block 

on dendritic spine and network activation. The activation of AMPA receptors, NR2A 
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and NR2B-containing NMDA receptors on a prototypical dendritic spine were simulated 

following vesicular release of glutamate (A, blue dots - active AMPA receptors, red dots 

- open and conducting NR2A, black dots - open and conducting NR2B receptors). AMPA 

receptors opened quickly and desensitized within 50 ms of vesicular release, whereas 

NR2A receptors were open for ~200 ms. Under these release conditions, activation of 

NR2B receptors was rare. Selective reduction in NR2B [Mg
2+

] greatly increased 

activation of these subtypes as expected, however, the temporal pattern of activation 

varied greatly from trial-to-trial (B, D - variance in receptor activation across 40 

independent trials). Reduction in voltage-dependent Mg
2+

 block is expected to result in 

more calcium influx, however, the calcium load is relatively insensitive to reduction from 

physiologic 0.8mM to 0.15mM and dependent on the number of NR2B receptors at the 

spine (C). The receptor activation scheme under physiologic and simulated injury 

conditions were used to simulate the activity patterns of neuronal networks (E, F). A 

selective loss in NR2B Mg2+ block resulted in significant loss in synchrony (G, 

physiologic [Mg
2+

] = 0.8mM synchronization index: 0.87 ± 0.17 vs. [Mg
2+

] = 0mM, 

0.17± 0.08, p<0.01, n=20 simulations). 

 In different simulation trials, we reduced the voltage-dependent Mg
2+

 block of 

NR2B subtypes by varying amounts while keeping the network connectivity and all other 

simulation parameters constant. Complete relief of Mg
2+

 block resulted in significantly 

increased level of spontaneous activity but a significant reduction in synchrony 
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(synchronization index with NR2B [Mg
2+

] = 0.8mM: 0.87 ± 0.17 vs. NR2B [Mg
2+

] = 

0mM: 0.17 ± 0.08, p<0.01).  

 Experimentally, antagonizing either the NR2A-NMDAR or the NR2B-NMDAR 

subtypes did not alter the pattern of network activity in uninjured neurons (Figure 3. 7 A). 

In contrast, the activity of a mechanically injured network was significantly 

desynchronized (SI uninjured 0.55 ± 0.13 vs. 0.14 ± 0.09, paired t-test, p<0.01, n= 8 

cultures). Although the global synchronization of the network was reduced as a result of 

injury, several clusters of modestly synchronized oscillations within smaller neuronal 

ensembles emerged with the reduction of overall synchronization. These clusters 

encompass subpopulations of neurons whose activity pattern is different from neurons in 

other clusters. Antagonizing NR2A subtypes with NVP did not significantly alter the 

temporal pattern of activity or synchronization in an injured network ( A). However, 

selective blockade of NR2B-subtypes with Ro-25 unmasked synchronization of injured 

neuronal networks (SI injured 0.14 ± 0.09 vs. injured + Ro-25 0.32± 0.18, p<0.05) 

(Figure 3.7 A, C). Interestingly, the cluster of neurons that were most desynchronized 

(SI< 0.1) remained desynchronized following Ro-25 treatment.  In comparison,  modestly 

synchronized clusters (0.2 < SI < 0.4) expanded in size. Consistent with increased 

contribution of NR2B subtypes to [Ca
2+

]i oscillations following injury, Ro-25 caused a 

significant reduction in the frequency of calcium activity relative to uninjured controls or 

vehicle-treated injured cultures (Figure 3.7 B). Together, these data suggest that the 

underlying synchronous oscillations in an injured network are masked by the 



106 

 

uncorrelated activity of NR2B-NMDARs, and this synchronization can be recovered by 

selectively antagonizing NR2B-NMDARs. 

 

Figure 3. 7: Activation of NR2B-containing NMDARs disrupt the coordinated activity of an 

injured neuronal network. Injury caused a reduction in synchronization of calcium activity at 1 
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h (A, C). Frequency of spontaneous [Ca
2+

]i activity (B) was also significantly reduced following 

injury. The amount and the pattern of activity were insensitive to selective NR2A or NR2B-

NMDAR block in naive cultures, however, Ro-25 significantly rescued synchronization in 

injured networks. A: Representative raster plot of somatic calcium activity of a microcircuit prior 

to injury (left) and the same circuit following injury (right). Neurons with similar pattern of 

activity are grouped together and color-coded.  

Activation of NR2B-NMDARs in injured neurons reduces networks augmentation induced 

with synchronization. 

 With evidence that both the initial functional connectivity and NR2B:NR2A 

NMDAR content of individual neurons strongly influence the post-injury network 

topology and synchronization of the neural circuit, we next explored how these factors 

influenced remodeling of the circuit following mechanical injury. Past work shows that a 

fixed period of induced synchronization by blocking inhibitory neurons permanently 

changes the activity pattern of in vitro networks and increases global functional 

connectivity (Arnold et al., 2005). We recognize this model of "recurrent network 

excitability" is not a classic model of long-term potentiation (LTP), but this adaptation 

response of the microcircuit shares many mechanisms with different models of LTP - the 

re-shaping of the microcircuit depends on protein translation, NMDA receptor activation, 

and the early transcriptional changes occurring during the induced synchronization 

(Arnold et al., 2005). Therefore, we selected this as a method to explore how the function 

of injured microcircuits can be recovered after injury.  
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 We explored the plasticity of an injured circuit by measuring changes in global 

functional connectivity, single-cell somatic Ca
2+

 amplitudes, and nuclear c-fos 

localization two hours following an induced synchronization period (Figure 3.8A).  To 

maintain consistency with prior experiments, we introduced this synchronization period 

one hour after injury and evaluated the network three hours after injury.  In uninjured 

cultures, bicuculline-induced brief period of heightened synaptic activity resulted in 

persistent synchronous calcium oscillations and significantly increased global functional 

connectivity two hours post-stimulus (Figure 3.8B). This switch in network state was 

dependent on signaling through the NMDARs, and more specifically, relied on NR2A, 

but not NR2B receptor, activation (Figure 3.8C). Although we could induce synchronous 

oscillations in an injured network with bicuculline treatment, the network activity 

reverted to its pre-treatment state following bicuculline washout and there was no 

enhancement of functional connectivity two hours after injury (Figure 3.8C).  Given a 

deficit in the induction of network plasticity following injury, we examined if we restored 

the deficit by targeting the blockade of either NR2A- or NR2B-containing NMDARs.  To 

this end, we measured the amplitude of somatic calcium transients of unstretched and 

stretch injured neurons before and 2-hours after bicuculline stimulus as an indication of 

excitability (Frick et al., 2004). We found an enhancement in calcium signals from 

unstretched neurons post-stimulus, which was greatly diminished in injured neurons 

(Figure 3.8D). Finally, since the long-term changes in excitability following bicuculline 

stimulus are dependent on transcription, we measured the nuclear localization of the 
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activity-dependent transcription factor, c-fos, in uninjured and stretch injured neurons (3 

hours post-injury and 2 hours post-bicuculline stimulus). Uninjured neurons showed 

significantly elevated nuclear c-fos following bicuculline stimulus compared to untreated 

cultures, whereas this response was greatly reduced in injured neurons (Figure 3.8E). 

Together, these data support an impairment in network plasticity following stretch injury, 

consistent with previous reports of altered excitability and impaired expression of LTP 

following TBI (Reeves et al., 1995; Schwarzbach et al., 2006; Sick et al., 1998).   

 Several reports highlight the importance of precise spatiotemporal pattern of 

synaptic activation for generating dendritic calcium influx and for the induction of 

plasticity (Spruston et al., 1995). We hypothesized that injury-induced reduction in 

voltage-dependent Mg
+2

 block of NR2B-containing NMDARs, resulting in uncorrelated 

activation of NR2B subtypes, is responsible for the inability of injured neurons to encode 

an external stimulus and change their functional integration within the microcircuit 

following bicuculline stimulus. To test, we stretch injured neurons as before and paired 

the 15-min bicuculline stimulus with either Ro-25 or NVP. All drugs were washed away 

and neurons incubated for additional 2 hours before calcium imaging. We compared the 

functional connectivity of an injured network 2-hrs following bicuculline + Ro-25 

stimulus to the connectivity pre-stimulus and found a significant increase (Figure 3.8C). 

Other measures of synaptic scaling, somatic Ca
2+

 amplitude and c-fos nuclear 

localization, also increased. Task learning in injured networks still depended on signaling 

through NR2A-containing NMDARs since pairing bicuculline stimulus with either APV 



110 

 

or NVP did not increase functional connectivity. Together, these findings suggest that 

enhanced contribution of NR2B-subtypes to [Ca
2+

]i activity reduces the stimulus 

encoding capacity of an injured network. At the single neuron scale, recovery of recurrent 

excitability requires a targeted inhibition of NR2B-containing NMDARs.  
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Figure 3. 8: Enhanced NR2B activation prevents task-learning in an injured network. A: 

Neurons were stretch injured (t=0) and their spontaneous activity recorded at 1-hr (t=1hr). A 15-
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min exposure to bicuculline was used to induce a period of synchronized activity and the 

spontaneous activity measured 2-hr following washout (t=3hr). An increase in functional 

connectivity from t=1hr to t=3hr indicated acquisition and maintenance of task-learning or a 

memory of the bicuculline stimulus (B). Task-learning was dependent on signaling through the 

NR2A-containing NMDARs in uninjured cultures. Injury significantly abolished task-learning, 

but antagonizing NR2B subtypes during the acquisition phase significantly rescued the ability of 

injured neurons to change their integration in the network (C). The change in amplitude of 

somatic calcium transients before and 2 h after bicuculline stimulus was used as an indication of 

excitability. We found an enhancement in calcium amplitude from uninjured neurons which was 

greatly diminished in injured neurons but could be rescued by pairing Ro-25 with bicuculline (D). 

Since long-term changes in network activity patterns and enhancement in functional connectivity 

following bicuculline stimulus are dependent on transcription, we measured the nuclear 

localization of the activity-dependent transcription factor c-fos in uninjured and stretch injured 

neurons. Nuclear c-fos localization increased following bicuculline stimulus at t=3hr relative to 

no treatment in uninjured neurons. The normalized nuclear c-fos intensity was significantly 

reduced in injured neurons stimulated with bicuculline but was rescued by pairing bicuculline 

stimulus with Ro-25 (E). **p<0.01, *p<0.05. 

DISCUSSION 

 In this study we explored how properties of connectivity and calcium signaling at 

the single neuron scale relate to the disruption in network structure and function that 

occurs following mechanical injury.  Our main finding was that individual neurons 

undergo complex functional rewiring following injury; this rewiring response is 



113 

 

influenced strongly by the initial neuronal connectivity within the microcircuit, the 

relative balance of NR2B- and NR2A-containing NMDARs in each neuron, and the 

subsequent synchronization of the circuit after injury.  Together, these data point to dual 

roles for the NR2B-containing NMDARs in influencing outcome after injury. First, by 

acting as primary mechanosensors, the NR2B-NMDARs confer individual neuronal 

susceptibility to mechanical injury.  Second, by contributing to uncorrelated activation 

after injury, of NR2B NMDAR subtypes contribute to impairments in network activity 

and a reduction in network plasticity. 

 An emerging set of studies show immediate disruptions in the network activity 

following mechanical trauma.  Cullen et al. show that a rapidly applied fluid shear stress 

was capable of disrupting spontaneous action potential firing within selected neurons 

(LaPlaca et al., 2006), and similar changes were observed when three-dimensional 

constructs were injured in pure shear (Cullen et al., 2007).  Using organotypic 

hippocampal slice cultures, Morrison et al. demonstrate that sublethal biaxial stretch 

causes electrophysiological dysfunction in the CA1, CA3, and dentate gyrus and results 

in changes in short-term plasticity (Yu and Morrison, 2010). Similarly, a suppression in 

broad periodic calcium oscillations appeared following injury to dissociated cortical 

neurons, and this suppression in activity persisted two days following the initial injury 

and was accompanied with a change in the composition of synaptic glutamate receptors 

(Goforth et al., 2011).   The recent results from Goforth et al. are most directly 

comparable to our tests using a moderate level of mechanical injury, where our results 
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also show an immediate reduction in spontaneous activity.  Moreover, we observed a 

similar reduction in the excitatory tone of the network post-injury, using a method 

distinct from the electrophysiological techniques employed by Goforth et al.  By 

acquiring imaging information at higher imaging rates and performing individual cell-

based analysis, our data also reveal new features of this response that included an 

emergence of numerous local modules within the network, reduction in the functional 

connectivity, and a broad loss in synchronization. These new data suggest that 

mechanical trauma can immediately change the topology of a network.  The origin or 

functional consequence of this change in network wiring are in large part mediated by 

NR2B-containing NMDAR activation.   

 The NMDA receptor subserves many important processes in the central nervous 

system, including survival signaling, synaptic plasticity and memory. Many of its 

functions depend on the presence of voltage-dependent Mg
2+

 block which only allows 

Ca
2+

 influx when both pre-synaptic and post-synaptic cells are active and suppresses 

NMDAR activity when the post-synaptic cell is inactive. Although many reports 

highlight the detrimental effects of excessive Ca
2+

 influx through the NMDAR acutely 

following traumatic brain injuries, the effect of mechanical forces on the properties of the 

NMDAR have largely been ignored. NMDARs have previously been shown to be 

mechanically activated (Paoletti and Ascher, 1994) and both in vitro and in vivo 

traumatic injury causes a reduction in the voltage-dependent Mg2+ block of NMDARs 

(Furukawa et al., 2000; Zhang et al., 1996). Here we investigated the contributions of 
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NR2A and NR2B subunits of the NMDAR to mechanical injury mediated changes in 

functional rewiring of neurons within a microcircuit.  

Differential roles for NR2A- and NR2B-NMDARs in shaping synchrony, functional 

recovery, and plasticity following injury 

 The NMDA receptor subunit composition differentially regulates several 

biochemical pathways in neurons. For example, the NR2A-containing NMDAR is 

required for LTP induction while the NR2B-type influences LTD, though the age of the 

animal, the region of the brain investigated, and the experimental protocol for induction 

of plasticity can also affect this distinction (Bartlett et al., 2007; Cui et al., 2013; Foster et 

al., 2010; Jin and Feig, 2010; Morishita et al., 2007). Additionally, the distribution of 

NR2A- and NR2B-subtypes at the synapse is different - the NR2B-subtypes are found at 

the post-synaptic, extrasynaptic and presynaptic regions while NR2A-subtypes are 

primarily localized to the synaptic surface(Kohr, 2006; Thomas et al., 2006). Many 

neurons express more than one of the modulatory NR2 subunits and the full spectrum of 

NMDAR signaling is critically dependent on the receptor composition, spatial 

distribution and association with intracellular binding partners. The distinct spatial 

distribution also has important consequences for survival signaling since activation of 

extrasynaptic NMDA receptors lead to activation of pro-apoptotic pathways while 

synaptic NMDAR activation is neuroprotective (Hardingham and Bading, 2010). Given 

the distinct roles for these subtypes in several important physiologic processes, it is not 

surprising that the NMDAR subtypes also differentially influence outcome in pathologic 
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states. However, to our knowledge, this is the first report that signaling through the 

NR2A and NR2B subtypes differentially affect patterns of spontaneous calcium activity 

and plasticity of injured neurons.  

 Neuronal networks are comprised of heterogeneous elements and have rich 

repertoire of structural and functional connectivity. The rules that determine how the 

functional connectivity of an individual neuron will change as a result of injury have so 

far been elusive. By studying the same neuronal networks in culture with single cell 

resolution before- and after-injury, we found that neurons that were highly connected 

prior to injury are more likely to keep their connection targets post-injury, whereas low 

degree nodes are more likely lose their targets or form new targets. Within the low degree 

group, the decision to lose connections or form new connections is in part influenced by 

the ratio of NR2B to NR2A content. From network controllability standpoint, nodes with 

high degree, or hub nodes, are essential for maintaining the rhythm or a particular state of 

the network, whereas, low degree nodes are required to change the network state (Liu et 

al., 2011).Our results suggest that NR2B subtypes influence susceptibility of individual 

neurons to mechanical injury and shed new light on how neurons change their integration 

into the network following injury. These findings provide new avenues for cell-based or 

network-based repair of an injured brain. 
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Network plasticity 

Stretch-induced selective loss of voltage-sensitive Mg2+ block of the NR2B-type 

receptors eliminates a cardinal feature of the NMDAR. Calcium enters the cell through 

the NMDAR only when presynaptic glutamate release and postsynaptic depolarization 

occur simultaneously (correlated activity). At resting membrane potential, the pore of the 

NMDAR is blocked by external Mg
2+

 ions which prevents NMDAR-mediated Ca
2+

 

influx and suppresses uncorrelated activity. One type of uncorrelated activity that is 

suppressed by Mg
2+

 block is spontaneous, action potential-independent, single vesicle 

release events ("minis"). Supporting this idea, we observed a significant increase in 

cytosolic Ca
2+

 with 1µM glutamate application to injured neurons that was nearly absent 

in uninjured neurons, which have an intact Mg
2+

 block mechanism. This concentration 

was chosen because the concentration of glutamate released by minis is on the order of 1 

µM at the synaptic cleft (Hertz, 1979).  

 Activity-dependent modulation of synaptic efficacy is an important aspect of 

brain function during learning and memory. Animal models of TBI show behavioral 

impairments in long-term memory, as well as reduced long-term potentiation in acute 

brain slices. We found that plasticity in an injured network could be recovered by 

blocking signaling through the NR2B-containing NMDARs during chemical-LTP 

stimulus. Our findings are consistent with previous reports of the importance of the 

NMDAR Mg
2+

 block for the induction of plasticity (Miyashita et al., 2012), but highlight 

an important distinction of NR2B-containing NMDARs. Many forms of LTP, including 
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bicuculline stimulus used in this study, are dependent on CREB signaling(Hardingham et 

al., 2001). Miyashita and colleagues used transgenic flies expressing NMDARs defective 

for Mg
2+

 block and found that these mutants have increased expression of CREB 

repressor genes and as a result, are defective for long-term memory formation (Miyashita 

et al., 2012). Activation of extrasynaptic NR2B receptors (by injured astrocytes) can 

further shut-off CREB signal and even override CREB-activating signal triggered by 

synaptic NR2A-NMDAR activation (Hardingham and Bading, 2002). In light of these 

reports, our data suggest that acute behavioral deficits and memory impairments 

following mild TBI may be reduced by pairing NR2B antagonists during memory 

acquisition task.  

Significance of synchronization  

 Rhythmic, synchronized activity is a natural property of neuronal networks, 

conserved across CNS tissue preparations, from dissociated cultures to in vivo, and across 

species, from C. elegans to humans. Mounting evidence suggests that transient 

synchronization of neuronal discharges dynamically binds widely distributed sets of 

neurons into functionally coherent ensembles, allowing these networks to communicate 

effectively. (Singer, 1993; Womelsdorf et al., 2007). In mice and humans alike, 

synchronization in the β- and γ-band is involved in a variety cognitive functions, such as 

perceptual grouping, attention-dependent stimulus selection, routing of signals across 

distributed cortical networks, working memory, and perceptual awareness. Due to its 

pervasive role of in cognitive and executive processes, it is not surprising that disruptions 
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in neural synchrony are found in several pathological brain states, including 

schizophrenia, epilepsy, autism, Alzheimer's disease and Parkinson's disease. We believe 

that many of the cognitive deficits following TBI may be linked to changes in the 

coordinated firing of brain regions.  

 In contrast to the large number of studies that investigated the mechanisms for 

emerge of synchrony and its role in physiological cognitive processing, relatively few 

studies have identified the mechanisms that reduce or alter neuronal synchrony in 

pathological brain states. An obvious mechanism for desynchrony is any number of 

disorders that cause structural or functional damage to axons and thereby interfere with 

fast and precise electrical transmission needed for synchronization. Demyelination of 

axons in multiple sclerosis(Arrondo et al., 2009; Hardmeier et al., 2012), cytoskeletal 

damage to long-range axonal tracts in traumatic axonal injury(Marquez de la Plata et al., 

2011), proteolysis of axonal Na+ channels after mechanical stretch injury (Patel et al., 

2012), or the overabundance of misfolded pathological protein aggregates in the axons of 

α-synucleinopathies(Volpicelli-Daley et al., 2011) or tauopathies (Babiloni et al., 2004; 

Stam et al., 2003) are all correlated with abnormalities in neuronal synchronization. 

Alternatively, change in the excitatory vs. inhibitory balance can influence 

synchronization as evidenced by the impairment in γ-band synchronization when NMDA 

receptors in parvalbumin-positive interneurons are selectively ablated in mice (Korotkova 

et al., 2010). Here, we report an entirely new mechanism for network desynchronization: 



120 

 

the reduction in voltage-dependent blockade of NR2B-containing NMDARs following 

mechanical injury, leading to increased uncorrelated activity.  

 In closing, our work identifies new features embedded within neural circuitry that 

dictate whether individual neurons will de-integrate from a microcircuit following injury, 

how the structure of the network is re-shaped after injury, and how selective changes to 

the properties of individual NMDAR subtypes mediates the impairment of plasticity in 

networks after injury.  Although the exact mechanisms to re-integrate neurons into the 

remaining microcircuit after injury are the focus of future studies, our current work 

identifies important properties of individual neurons that lead to the complex rewiring of 

circuitry that occurs following traumatic injury, and may provide insights into how the 

circuitry within different brain regions can change and recover following traumatic brain 

injury.  
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CHAPTER 4: NMDA-induced mitochondrial dysfunction 

contributes to neuronal network impairment that is mitigated 

by NIM811 

ABSTRACT 

NMDA receptor overactivation induced excitotoxicity is a common pathological 

mechanism of neurodegeneration. Given the central role of mitochondria in ATP 

production, Ca
2+

 buffering, oxidative stress, and apoptosis, there has been a concentrated 

effort on targeting the mitochondria for reducing excitotoxic burden that may lead to 

better behavioral and cognitive outcomes following stroke, epilepsy, or traumatic brain 

injury. Here we report that brief NMDA receptor overactivation increases the coordinated 

activity of the neuronal network resulting in activity- and transcription-dependent 

neuroprotection. In contrast, longer NMDA receptor overactivation increased the 

permeability of mitochondrial inner membrane resulting in depolarization of the 

mitochondrial membrane potential and mitochondria swelling. Neuronal activity and the 

functional integration of the neuronal microcircuit were both significantly impaired 

following an excitotoxic NMDA stimulus. Interestingly, acute functional de-integration 

of individual neurons from the network was predictive of delayed cell death. Inhibiting 

the mitochondrial permeability transition pore with NIM811 attenuated NMDA-induced 

mitochondria swelling and improved network connectivity, in part due to reduced AMPA 

receptor internalization. Separately, we found that mitochondrial motility is closely tied 

to morphology. Acute synaptic priming reduced NMDA-induced mitochondria swelling, 

however, this protection was lost when mitochondria movement was halted. Together, 
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these studies provide a better definition of the acute effects of excitotoxicity and 

mitochondria dysfunction on neuronal networks and point to two separate targets for 

repair. 

INTRODUCTION 

 NMDA receptor activation plays a critical role in synaptic physiology and 

neuronal survival while overactivation of the same receptor can drive neuronal death 

(Cull-Candy and Leszkiewicz, 2004). NMDA-induced excitotoxicity is a shared feature 

of the pathophysiology of many neurological and neurodegenerative disorders (Arundine 

and Tymianski, 2003; Doble, 1999; Sattler and Tymianski, 2000). Over the past decade, 

our knowledge of the mechanisms of NMDA-induced excitotoxicity has increased 

tremendously: the relative contributions of synaptic vs. extrasynaptic receptor activation 

to excitotoxicity, the role of NR2A- vs. NR2B-containing NMDARs on Ca2+ load, and 

the effects of mitochondrial Ca2+ accumulation on cell viability (Arundine and 

Tymianski, 2003; Palmer et al., 1993; Rego and Oliveira, 2003; Sattler and Tymianski, 

2000; Stanika et al., 2009). However, one potentially important aspect of excitotoxicity 

that needs more definition is how these molecular changes within individual neurons, 

especially mitochondria dysfunction, affect the dynamics of an interconnected 

microcircuit.  

 Mitochondria are key potential mediators in synaptic development and 

neuronal degeneration, and therefore are ideal candidates to play a significant role in 

reshaping a neural microcircuit after excitotoxic exposure.  Certainly, the role that the 
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mitochondria play in the intrinsic apoptosis pathway is well recognized, and targeting this 

pathway is a frequent theme in neuroprotection strategies for traumatic injury, stroke, and 

other neurodegenerative disorders (Chen and Chan, 2006; Mbye et al., 2009; van Horssen 

et al., 2012; Wood-Kaczmar et al., 2013). Recent work shows that caspase-3 activation 

and release of cytochrome C from mitochondria are key intermediary steps in the 

induction of long term depression at hippocampal synapses, expanding the role of 

caspase-3 activation beyond the well recognized role in neuronal apoptosis(Li et al., 

2010c). The movement and positioning of mitochondria near the base of synapses also 

seems to play a role in synaptic plasticity, given that synaptic activity will influence the 

relative residence time of synapses trafficking along dendrites in the vicinity of synapses 

and, more broadly, the association of mitochondria movement disorders with some 

neurological diseases.  Finally, the mitochondria are also important regulators of 

axonogenesis (Mattson and Partin, 1999) and the formation of the dendritic arbor 

(Chihara et al., 2007). Together, these past studies indicate that mitochondria can serve to 

change three aspects of the network structure – the number of neurons (nodes) in the 

network through apoptosis, the strength of connections among nodes through modulation 

of synaptic strength, and the number of connections (i.e., network degree) that occur 

within a network through the regulation of neurite outgrowth.  

 In this report, we used calcium imaging to assess the changes in neuronal network 

firing patterns and functional connectivity following NMDA stimulus. Given the 

pervasive role of mitochondria in supporting the energy demands of ongoing neural 
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activity, as well as its central role in calcium buffering, LTD, and excitotoxic death (Chen 

and Chan, 2006; Li et al., 2010b; Stanika et al., 2009), we investigated the role of the 

mitochondria in mediating neurodegeneration and neural circuit adaptation.  

 We found that a toxic dose of NMDA (100 uM + 10 um glycine), applied for as 

little as 30s, resulted in fast synchronized network activity and led to an activity-

dependent tolerance against subsequent longer exposure to NMDA. The same toxic dose, 

applied for 10min or 20min, resulted in ballooning of the mitochondria, depolarization of 

the mitochondrial membrane potential and loss of activity in a fraction of the population. 

Pretreatment with the mitochondrial permeability transition pore inhibitor, NIM811, 

prevented the mitochondrial shape changes, improved network function and attenuated 

cell death. Interestingly, we found that NMDA-induced changes in mitochondria 

morphology are influenced by mitochondrial motility.  

METHODS 

Cell culture and calcium imaging:  

Primary cortical neurons from E18 rats were isolated and cultured for DIV 18-21 as 

described in previous chapters. For calcium imaging, neurons were loaded with either 

fluo-4 or transduced with GCaMP3 for long-term imaging and the network activity 

analyzed as described in Chapter 2.  
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Drug treatments 

For excitotoxic injures, neurons were treated with NMDA (100uM) and glycine (10uM) 

in saline solution containing physiologic [Mg2+] = 0.8mM for various durations. 

NIM811 (20µM, Novartis), bicuculline (100 µM, Sigma-Aldrich), jasplakinolide (2 µM) 

Measuring mitochondrial morphology  

 Primary neurons were transfected with Mito eYFP protein overnight the day 

before imaging. The mitochondrially targeted eYFP construct (generously provided by 

Dr. Ian J Reynold, University of Pittsburgh, Pittsburgh, PA) consists of the gene for 

eYFP fused to subunit IV of cytochrome c oxidasae, inserted into the mammalian 

expression vector pCDNA3 (Rintoul et al., 2003). The construct was complexed with 

Lipofectamine 2000 (Invitrogen) with a reagent-to-plasmid ratio of 3:2. The complex was 

incubated in Dulbecco's Modified Eagle Medium (BioWhittaker, Basel, Switzerland) at 

room temperature for 20 min before it was added to the cells. Transfected cells were then 

incubated in Neurobasal medium for 4 h at 37
0
C and 5% CO2 before the media was 

replaced with feeding medium. Cells were ready for use the following day, and the eYFP 

tag allowed for a determination of mitochondrial morphology. On average, approximately 

10% of the cells in a culture were successfully transfected. Images of the mitochondria 

were collected prior to and following NMDA stimulus every 10s for a total 1 hour.  

 Each mitochondrion in an image was identified manually, and the outline of the 

mitochondrion was automatically identified using an adaptive threshold algorithm which 

accommodates for variation in the local background fluorescence of each mitochondria. 
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An aspect ratio (AR) was computed for each mitochondrion as the ratio of the maximum 

length to width of the outlined mitochondrion. Since the same set of neurons were 

imaged prior to and following NMDA stimulus, we computed the difference in the aspect 

ratio each mitochondrion. Normally, mitochondria in dendrites assume a long tubular 

shape (AR > 1) that can change to nearly spherical following NMDA stimulation (AR ~ 

1). Therefore, negative values for ΔAR indicate a contraction and swelling of 

mitochondria. Mitochondria were quantified from 8-11 cultures in each treatment group 

with an average of N = 50 ΔAR measurements per condition. 

Measurement of Δψm 

The mitochondrial membrane potential, Δψm, was estimated in individual neurons with 

the Δψm-sensitive fluorescent dye JC-1 per previous reports (Molecular Probes, Eugene, 

OR; (Hoyt et al., 2000; White and Reynolds, 1996). Briefly, neurons were loaded with 

JC-1 (3 µM) for 20 min at room temperature in CSS, rinsed with dye-free CSS for 10 min 

and then imaged on Leica SP5 confocal microscope using a 25X water-immersion 

objective (N.A. 0.95). Fields of neurons were illuminated with the 488-nm laser and 

emission at 530 and 590 nm was monitored. Once loaded into neurons, JC-1 exists in 

either aggregate or monomer forms, depending on Δψm (i.e. the more negative the Δψm, 

the greater the aggregation). By monitoring JC-1 fluorescence at 590nm (red, aggregate) 

and 530 nm (green, monomer), one can assess relative changes in Δψm. Mitochondrial 

depolarization is indicated by a decrease in the red to green fluorescence intensity ratio. 

Ratio values were obtained by dividing the signal at 590 nm by the signal at 530 nm on a 
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cell-by-cell basis and normalized to a starting value of 1 for comparison between cells. 

With this approach, a decrease in the normalized ratio represents mitochondrial 

depolarization. 

Cell viability 

Cell viability was assessed at six hours post-stimulus with a fluorescence based assay. 

Cells were incubated for thirty minutes with Hoechst 33342 (Invitrogen) and membrane 

impermeable ethidium homodimer (EtHD, Sigma-Aldrich) in order to stain total and 

dead/dying cells. Fluorescence images were taken at three wavelengths with FITC, TRIC, 

and DAPI filter sets to detect GCaMP, EtHD, and Hoechst, respectively. 

Cytoskeletal disruption and mitochondria motility:   

 Prior to mitochondrial labeling, cortical neurons were treated with drugs to disrupt 

the cytoskeleton, in order to elucidate the mechanisms involved in mitochondrial 

transport.  The actin cytoskeleton was stabilized with 2 µM jasplakinolide (Molecular 

Probes) for 30 min.   

 For each experimental well, the percent of mitochondria moving within a 2.5 

minute experimental period was determined.  The total number of mitochondria within 

three representative regions at onset of imaging were counted.  The mitochondria were 

then tracked for 2.5 minutes and any mitochondria that moved completely outside of the 

original region of interest were counted as moving.  The number of moving mitochondria 
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in all three regions was then summed and normalized to the total number of mitochondria 

within the three regions.   

 The distance and velocity of moving mitochondria was also determined using the 

object tracking feature in MetaMorph (Universal Imaging, Inc., West Chester, Pa.).  The 

tracking feature of MetaMorph was automated as much as possible but needed to be 

adjusted manually in regions of high mitochondrial density.  Up to six mitochondria were 

tracked within each experiment.  Mitochondria were chosen randomly as long as they 

moved at any time during the duration of the experiment, regardless of when they moved.  

Velocities of mitochondrial movement were only assessed when analysis was entirely 

automated.  In this case, mitochondrial density was generally low and mitochondria never 

came in contact with other mitochondria.   

 

Statistics 

Shape change measurements developed from time lapse images of mitochondrial 

morphology and relative changes in Δψm were analyzed using a one-way ANOVA, 

followed by Tukey posthoc testing. Changes in network properties are also analyzed 

using one-way ANOVA. Differences were considered significant at p< 0.05. All data are 

presented as mean ± SEM. 
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RESULTS 

Brief, high dose NMDA stimulus increases synchronized network activity and leads to 

activity-dependent preconditioning. 

 Despite the well-known neurotoxic effects of prolonged NMDAR overactivation, 

chronic low-dose NMDAR activation can offer neuroprotection against brain damage 

induced by ischemia, seizures, and closed-head injury (Damschroder-Williams et al., 

1995; Jonas et al., 2001; Kitagawa et al., 1991; Pagliaro et al., 2001; Sasahira et al., 1995; 

Soriano et al., 2006). We investigated whether brief exposure (30 s) to a toxic dose of 

NMDA (100 µM + 10 µM glycine) offered the same level of neuroprotection and 

investigated the underlying network activity pattern signature of a preconditioned culture. 

The bath application of NMDA and glutamate induced an intracellular Ca
2+

 transient 

(Figure 4. 1 A). Following washout, [Ca
2+

]i returned to pre-stimulus levels. However, we 

found that immediately following a brief NMDA stimulus, there was a significant 

increase in the frequency of Ca
2+

 transients in individual neurons (pre-stimulus frequency 

0.08 ± 0.05 Hz vs. 15 min post-stimulus .87 ± 0.22 Hz, p<0.01) (Figure 4. 1 F). 

Furthermore, individual neurons in the network were oscillating synchronously and were 

sensitive to TTX + MK801, suggesting that Ca
2+

 oscillations were synaptically driven 

(Figure 4. 1 B-C).  The frequency of oscillations and synchronization remained elevated 

up to 6 hr following the removal of the 30s NMDA stimulus (Figure 4. 1 F). This level of 

NMDA stimulus did not cause significant cell death at 6 hr or 24 hr (Figure 4. 1 G).  
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 Given that synaptic NMDAR activity boosts intrinsic antioxidant defenses 

(Papadia et al., 2008) and suppresses intrinsic apoptosis pathways (Al-Mubarak et al., 

2009), we hypothesized that the heightened synaptic activity following brief NMDA 

stimulus contributes to neuroprotection. To test, we applied an apoptotic stimulus 

(staurosporine)  to cultured neurons that were exposed to NMDA for varying durations 

(30s - 30 min). Compared to no death stimulus, cultures that were previously stimulated 

with brief (30s - 2 min) NMDA exposure had a significantly lower cell death following 

staurosporine treatment (Figure 4. 1 G). In contrast, NMDA applied for longer durations 

(10 min or 30 min) resulted in significant cell death, which was exacerbated with 

staurosporine. Consistent with the neuroprotective effects of synaptic activity, TTX + 

MK801 applied immediately following brief exposure to NMDA resulted in significantly 

more cell death with staurosporine. Interestingly, the neuroprotective effects of 

NMDAbrief were dependent on transcription since pre-treatment with actinomycin D 

prevented the establishment of synchronous network-wide Ca
2+

 oscillations and resulted 

in significantly elevated cell death following staurosporine. Together, these results 

suggest that a toxic dose of NMDA (100 µM) applied for very brief duration (30 s - 2 

min) promotes synchronized network activity and activates a transcriptional program, 

resulting in preconditioning and neuroprotection. In the absence of synchronized activity, 

the brief overactivation of NMDA receptors is unable to promote protection.  
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Figure 4. 1: Brief exposure to high dose NMDA enhances network activity and offers 

neuroprotection. A: Intracellular Ca
2+

 fluorescence trace of an individual representative neuron 

shows a stable baseline interrupted by spontaneous elevations, calcium transients. A 30-s NMDA 

stimulus caused an immediate increase in [Ca
2+

]i, which was quickly buffered. Following 
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washout, spontaneous activity was heightened at 15 min and remained elevated up to 6 hours (B). 

The temporal pattern of network activity showed a transition from sporadic activity (C) to higher 

frequency synchronized oscillations by 15 min (D) and remained synchronized up to 6 hr 

following the removal of the stimulus (E, F). Brief exposure (30s - 2 min) preconditioned 

neurons against the apoptotic stimulus, staurosporine. (G). This neuroprotection was activity-

dependent and required transcription (H). *p<0.05, **p<0.01 

NIM811 reduces mitochondrial dysfunction following excitotoxic injury. 

 Brief exposure to toxic dose of NMDA resulted in neuroprotection that was 

dependent on enhanced synaptic activity and enhanced functional connectivity (Figure 4. 

1). In contrast, longer exposure to NMDA (100 µM NMDA + 10 µM glycine for 10 min) 

resulted in significant cell death both at 6 hr and 24 hr (control 7% ± 3% cell death; 10 

min NMDA stimulus 36% ± 8% death at 6 hr and 52% ± 9% at 24 hr, ANOVA p<0.01). 

Given the central role of mitochondria in mediating outcome after excitotoxic injuries, 

we investigated the effects of mitochondrial dysfunction on network dynamics.  

 Several past reports suggest that NMDA stimulation will lead to an accumulation 

of mitochondrial calcium and the rounding of mitochondrial shape (Choo et al., 2012; 

Peng and Greenamyre, 1998; Rintoul et al., 2003). Normally, mitochondria exist as long 

tubular organelles throughout the dendrites. Similar to previous reports, we found that 10 

min NMDA stimulation caused a rapid change in mitochondria morphology throughout 

the dendrites, with these stimulated neurons showing a much more rounded mitochondria 

profile within 2 min of NMDA stimulation and lasting up to several hours following the 
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removal of the stimulus (Figure 4. 2 A, B, E). We confirmed that these changes in 

mitochondria shape parallel a functional impairment in mitochondrial membrane 

potential, Δψm. The Δψm was monitored with a fluorescent probe JC-1, where a decrease 

in the ratio of JC-1 fluorescence emission at 590 nm relative to the emission at 530 nm 

indicates Δψm depolarization. Exposure of neurons to excitotoxic concentrations of 

NMDA (100 µM, 10 min) caused a decrease in Δψm at 1 hr (Figure 4. 2 F, G, J). When 

NIM811, an mPTP inhibitor, was included during the NMDA exposure, there was a 

notable attenuation of the Δψm depolarization (Figure 4. 2 H, I, J) and a concomitant 

decrease in mitochondria swelling (Figure 4. 2 C, D, E), indicating that the mPTP is a 

critical regulator of mitochondria shape and function. 
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Figure 4. 2: Mitochondria dysfunction following NMDA stimulus is attenuated with 

NIM811 pretreatment. Individual mitochondria, tagged with eYFP, underwent a morphological 

change from elongated to spherical shape following 10-min NMDA stimulus (A, pre-stimulus, B 

- 1 hr following the removal of the NMDA stimulus). Pretreatment with the mitochondrial 
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permeability transition pore inhibitor, NIM811 significantly reduced mitochondria shape changes 

(representative images C, D; E summary statistics from n=69 mitochondria, N = 5 wells). 

Mitochondria membrane potential, Δψm, was measured with the fluorescent probe JC-1. 

Following NMDA stimulus, there was a significant decrease in the fluorescence emission 

intensity at 590nm relative to 530nm, indicative of membrane depolarization (F, G representative 

images of overlay intensity of 590nm and 530nm; red indicates polarized Δψm). Normalized JC-1 

fluorescence ratio significantly decreased following NMDA stimulus, which was attenuated by 

NIM811 pre-treatment (J, n = 142 cells).   

Inhibition of mitochondrial permeability transition pore reduces NMDA-induced AMPA 

receptor internalization. 

 Mitochondrial swelling is associated with the rupture of the outer mitochondrial 

membrane and the release of cytochrome c from the inter membrane space into the 

cytosol (Shalbuyeva et al., 2006). Once inside the cytosol, cytochrome c has been 

reported to activate caspse-3 and cause the internalization of AMPARs (Li et al., 2010b). 

Given that NIM811 reduced mitochondrial swelling following excitotoxic NMDA 

stimulus, we tested whether AMPA receptor internalization was also reduced by NIM811 

treatment. AMPA receptor trafficking is a fast and dynamic process that can occur on the 

time scale of minutes. To identify the relative fraction of surface to internalized AMPA 

receptors, we used an antibody-feeding assay. Before NMDA treatment, surface 

AMPARs were labeled with a primary antibody recognizing an extracellular epitope of 

the rat GluR1 subunit. Following the NMDA stimulus ± NIM811, cells were fixed and 

the previously labeled surface receptors were fluorescently tagged with a secondary 
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antibody. Cells were then permeabilized and the internalized AMPARs were tagged with 

a different fluorescent secondary antibody. To quantify, we computed the ratio of 

integrated fluorescence intensity of internalized GluR1 to the intensity of internalized + 

surface GluR1 and normalized to unstimulated untreated cells per (Lee et al., 2002). We 

found that an excitotoxic NMDA stimulus resulted in significantly greater internalization 

of AMPARs relative to untreated unstimulated cells (normalized GluR1 internalization 

276 ± 29 following NMDA stimulus vs. 100 ± 21 unstimulated, p <0.05, n=18 neurons). 

Antagonism of the mitochondrial permeability transition pore opening significantly 

significantly attenuated GluR1-containing AMPA receptor internalization (GluR1 

internalization 167 ± 18 NMDA+NIM811, p<0.05 relative to unstimulated and NMDA 

treated groups). This suggests that mPTP plays a significant role in synaptic receptor 

trafficking.  



137 

 

 

Figure 4. 3: Mitochondrial permeability transition pore inhibitor blocks NMDA-induced 

AMPA receptor internalization. The relative fraction of surface and internalized GluR1-

containing AMPA receptors were determined using an antibody-feeding assay. A: Representative 
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images of double-label immunostaining for surface GluR1 (red, first column) and internalized 

GluR1 (blue, second column) and merge (third column) following either NMDA stimulus, 

NMDA + NIM811 or untreated. B: Normalized fraction of internalized GluR1 significantly 

increased following NMDA-stimulus relative to unstimulated untreated cells. NMDA-induced 

internalization was attenuated with NIM811 pretreatment. n=18 neurons. *p<0.05 compared to 

untreated unstimulated.   

Network impairments following excitotoxity injury are reduced with NIM811. 

 Given that the detrimental effects of NMDA receptor overactivation (i.e. 

mitochondria swelling and internalization of AMPA receptors) are attenuated by blocking 

mPTP, we investigated whether this improves the functional recovery of neuronal 

networks.  In untreated cells, NMDA exposure elevated [Ca
2+

]i throughout the duration of 

stimulus, which returned to pre-stimulus levels by 30 minutes following washout. 

Spontaneous activity of individual neurons and the coordination of Ca
2+

 oscillations 

between groups of neurons were both significantly reduced following excitotoxic NMDA 

exposure at 1 hr, Figure 4. 4 A, B (change in synchronization -68% ± 23% following 

NMDA stimulus relative to 10.6 ± 6.8 unstimulated controls, p<0.01) . A large fraction of 

neurons either had no spontaneous calcium activity or their calcium activity had poor 

temporal correlation to other neurons, resulting in a significant decrease in functional 

connectivity (Figure 4. 4 C). Interestingly, we found a significant relationship between an 

individual neuron's functional integration in the network at 1 hr post stimulus and 

whether that neuron survived at 6 hr post-stimulus (logistic regression, p<0.001, n=432 

cells from 8 independent trials). Network impairment was significantly attenuated with 
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NIM811, resulting in fewer percent of neuronal de-integration and reduced cell death 

(Figure 4. 4 D). 

 

Figure 4. 4: Excitotoxic NMDA stimulus results in network dysfunction. The spontaneous 

activity of a mature neuronal culture (A) prior to NMDA stimulus showed many network-wide 
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simultaneous calcium oscillations. One hour following an excitotoxic NMDA stimulus, the 

activity was reduced and uncoordinated (B). The functional connectivity of the network, 

measured as the ratio of average number of functional connections per neuron to the total number 

of neurons, was significantly reduced following NMDA treatment, whereas NIM811 pretreatment 

attenuated the loss in functional connections (C). Representative functional connectivity maps are 

shown for unstimulated untreated network, following NMDA stimulus and NMDA + NIM811. 

Dots denote individual neurons (nodes) and blue lines indicate functional connections (edges). 

Red dots denote neurons that are functional disconnected from the rest of the network. D: The 

percent of neurons that de-integrated from the network acutely following injury (1 hr) correlated 

with percent cell death at 6 hr (logistic regression, p<0.01). E: The excitatory tone of the network, 

defined as the concentration of AMPA receptor antagonist NBQX needed to stop oscillations 

normalized to control levels decreased following NMDA excitotoxicity. NIM811 pretreatment 

reduced the loss in excitatory tone.   

 We next determined whether NMDA receptor overactivation correlated with 

changes in the excitatory tone of the network. Synchronized oscillations were forced 

using the GABA(A) antagonist, bicuculline, to abolish inhibitory input, followed by 

increasing doses of the AMPA receptor antagonist, NBQX, until synchronous oscillations 

stopped. The final concentration of NBQX required to impair activity within the 

excitatory network determined the excitatory tone (Patel et al., 2012; Volpicelli-Daley et 

al., 2011). We found a significant decrease in normalized excitatory tone 1 hr following 

NMDA stimulus that was attenuated with NIM811 pretreatment (unstimulated 1.0 ± .06, 

NMDA stimulated 0.24 ± 0.12, NMDA+NIM811 0.58 ± 0.16, ANOVA p<0.05, Figure 4. 
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4 E) . These functional estimates of excitatory tone are consistent our previous 

observation of increased AMPA receptor internalization following NMDA stimulus and 

the modulatory effects of NIM811. Together, these data suggest that mitochondrial 

swelling and mPTP opening contribute to network dysfunction following excitotoxic 

injury.  

Mitochondrial motility influences NMDA-induced changes in morphology 

 The spatial distribution of mitochondria within neurites is closely tied to synaptic 

activity to match the energy demands at these sites. An excitotoxic injury, modeled here 

with a bath NMDA stimulus, causes overactivation of the NMDA receptors of all active, 

inactive and silent synapses. We hypothesized that the positioning of mitochondria, i.e. at 

the base of an synapse or away from an inactive synapse, may influence the dynamics of 

Ca
2+

 uptake and the ensuing morphological change following bath NMDA stimulus.  

Indeed, we observed that increasing synaptic activity via network disinhibition reduced 

NMDA-induced mitochondrial swelling (change in shape factor following NMDA 

stimulus -2.1 ± 0.2 vs. with bicuculline pre-treatment -1.7 ± 0.13, p<0.05). To determine 

whether this was due to activity-induced redistribution of mitochondria, we first tested 

various cytoskeletal-targeted drugs to modulate mitochondria motility. Since 

mitochondria use the motor proteins kinesin and dyenin for transport, we hypothesized 

that stabilizing or destabilizing the microtubules may influence their motility. We 

performed time-lapse imaging of mitochondria within mature neurons with the 

fluorescent MitoTracker dye and tracked their motion using the particle tracker feature of 
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MetaMorph. Majority of the imaged mitochondria were stationary for the duration of the 

experiment (2.5 min), though an average of 7.4 ± 1.1% of the total mitochondria were 

mobile (Figure 4. 5 A, sequence of images illustrating mitochondrial movement over a 

7.5 minute period).  

 Depolymerizing actin filaments with latrunculin A did not alter the percent of 

moving mitochondria, whereas the percent moving mitochondria was significantly 

reduced (but not halted) when microtubules were depolymerized with nocodozole (Figure 

4. 5 B).  Mitochondrial movement was entirely halted when both microtubules and actin 

were depolymerized, indicating that mitochondria preferentially move along 

microtubules but can also move along actin when necessary.  Intriguingly, stabilizing the 

actin network with jasplakinolide completely halted mitochondrial movement though 

stabilizing the microtubule network with taxol had no effect on mitochondrial movement 

(Figure 4. 5 B). 

 Since jasplakinolide had the biggest effect on mitochondria motility, we pre-

treated cultures with jasplakinolide for 15 minutes and induced a brief period of 

heightened synaptic activity (bicuculline 5 min). These cultures were then stimulated 

with NMDA (100 µM, 10 min). Following the removal of all drugs, we found a 

significant portion of mitochondria underwent morphological rounding. Importantly, the 

distribution of NMDA-induced mitochondria shape change in jasplakinolide + 

bicuculline group was no different than jasplakinolide alone or no treatment. However, as 

noted before, bicuculline pre-treatment rescued a small fraction of mitochondria from 



143 

 

swelling. These results suggest that part of synaptic activity-induced neuroprotection is 

due to repositioning of the mitochondria which reduces their dysfunction following an 

excitotoxic injury.  
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Figure 4. 5: Activity-induced mitochondrial motility reduces NMDA-induced swelling. A: 

Representative time-lapse images of mitochondria movement recorded with the fluorescent dye 

MitoTracker. Binarized objects correspond to individual mitochondria are shown; red, green and 

yellow arrows track 3 mitochondria over a 7.5 min imaging session. B: Mitochondria motility 
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was significantly reduced with the actin stabilizing agent jasplakinolide (control 7.8% ± 1.2% 

moving mitochondria vs. jasplakinolide 0.4% ± 0.2%, p<0.01). C: Cumulative distribution of 

NMDA-induced changes in mitochondria shape. Negative values indicate mitochondrial swelling. 

Compared to untreated vehicle, heightened synaptic activity with bicuculline reduces 

mitochondria swelling (KS test, p<0.01). Activity-induced protection is abolished with 

jasplakinolide compared to vehicle (p>0.05). 

DISCUSSION 

 In this report, we investigated the mechanisms of network dysfunction following 

excitotoxic NMDA stimulus. We found that NMDA receptor overactivation causes two 

different types of changes at the network scale. Cultured neurons exposed to a high dose 

of NMDA for brief duration (30s - 2 min) showed a stable increase in synaptic activity, 

synchronization and functional connectivity that persisted for up to several hours. This 

level of stimulation was neuroprotective and depended on synaptic activity and 

transcription. In contrast, prolonged overactivation of NMDA receptors significantly 

depressed spontaneous activity, reduced synchronization and functional connections. 

These effects were mitigated by blocking the mitochondrial permeability transition pore 

with NIM811, which also reduced alterations in mitochondria morphology and attenuated 

the internalization of AMPA receptors. Interestingly, the motility of mitochondria prior to 

NMDA stimulus influenced the extent of swelling following the removal of the NMDA 

stimulus.  
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 The NMDA receptors have a recognized role in synaptic plasticity, pro-survival 

signaling, and excitotoxic death. Using high speed calcium imaging, we measured the 

network activity patters that underlie survival and death signaling. Previous reports 

suggest chronic low level activation of the NMDA receptor results in heightened activity 

and protects against excitotoxic insults (Soriano et al., 2006). We found that brief 

overactivation of the NMDAR for as little as 30s caused long-lasting increase in the 

frequency and synchronicity of neuronal network activity that was dependent on 

transcription. These changes are reminiscent of long-term potentiation induced by brief 

(15 min) application of bicuculline, which causes an increase in recurrent excitability up 

to several hours following the removal of bicuculline (Arnold et al., 2005). Prolonged 

overactivation of the NMDAR, on the other hand, caused a significant desynchronization 

of spontaneous activity, and many neurons completely de-integrated from microcircuit. 

Once de-integrated, these neurons were more likely to die, possibly as a result of reduced 

pro-survival signaling. In support of this, we found that increasing synaptic activity via 

network disinhibition significantly reduced cell death in cultures that were stimulated 

with excitotoxic dose of NMDA.  

 The alterations in functional connectivity and decreased synchronization 

following excitotoxic stimulus may underlie cognitive impairments associated with 

stroke, seizures or traumatic brain injury. Many of these changes were mediated by 

mitochondria dysfunction. Mitochondria not only supply the ATP demands of ongoing 

electrical activity, they are also high capacity Ca
2+

 buffers. It is not surprising that 
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overactivation of NMDARs caused many intact mitochondria to accumulate excessive 

Ca2+, resulting the opening of permeability transition pores. PTP opening causes an 

increase in the mitochondrial permeability to ions and solutes with molecular weight less 

than 1500 Da, matrix swelling and subsequent depolarization of the membrane potential. 

Swelling or ballooning of the mitochondria can cause rupture of the outer mitochondria 

membrane and release cytochrome c into the cytosol, where it has been shown cause 

internalization of AMPA receptors via caspse-3 activation (Li et al., 2010b). In support of 

this model, NIM811 pretreatment significantly reduced mitochondrial swelling, reduced 

AMPA receptor internalization, prevented the loss in excitatory tone, and improved the 

integration of individual neurons within the microcircuit. Similar improvement in 

network activity was seen when NIM811 treatment was initiated 30 min following the 

removal of the NMDA stimulus, suggesting a possible narrow therapeutic window. 

Indeed, the beneficial effects of NIM811 on neuronal network properties are consistent 

with a recent report of improved behavioral outcome following NIM811 treatment in a 

rodent model of severe traumatic brain injury (Readnower et al., 2011). Together, these 

studies prove a more clear mechanistic understanding of how mitochondria dysfunction 

cause network dysfunction and contribute to behavioral deficits.  

 A separate point of control is mitochondria motility, or more specifically, 

mitochondrial distribution within the cell. Mitochondria are dynamic organelles whose 

spatial distribution is closely tied to the energy demands of active synapses. Dysfunctions 

in mitochondria motility create an imbalance between energy supply-and-demand and are 
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thought to contribute to many neuromuscular disorders (Cho et al., 2010). Mitochondria, 

like many organelles, use the motor proteins kinesin and dynein for anterograde and 

retrograde transport respectively along the microtubules (Pilling et al., 2006). We found 

that stabilization of the actin cytoskeleton completely halted mitochondria as they 

became 'trapped' in stabilized actin nanodomains.  As a consequence of reduced motility, 

mitochondria swelling was worsened following excitotoxic NMDA stimulus. Some 

researchers have proposed that microtubule stabilizing drugs may prevent neurite damage 

following mechanical injury. However, these studies point to one potentially important 

role that structural cytoskeletal filaments may play in the transport and localization of 

mitochondria within dendrites.  
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CHAPTER 5: Automated analysis of rodent behavior tasks 

reveals a new mechanism for neuropsychiatric deficits 

following blast-induced mild traumatic brain injury 

ABSTRACT  

Although the significance of blast-induced traumatic brain injury is well known, the 

contributing mechanisms for the complex behavioral deficits created by blast exposure is 

not currently defined. In this study, we test if behavioral deficits following blast exposure 

are mediated by Elk-1, a transcription factor linked to both neuronal plasticity and 

survival. To overcome the time-intensive and often subjective methodology used for 

completely characterizing behavioral tasks in rodents, we develop and used the first 

open-source toolbox for automating the scoring of several common behavior tasks used 

by the neuroscience community.  Our systems-level analysis shows that bTBI creates a 

complex change in neuropsychiatric behavior, and that this change is significantly 

augmented following Elk-1 deletion.  To our knowledge, this is the first report of a 

specific molecular pathway that mediates posttraumatic anxiety, made possible with our 

open-source software system.  We expect the use of this open-source toolbox will provide 

a more consistent analysis of behavior across laboratories, promoting the rapid discovery 

of novel pathways mediating disease progression and treatment. 

INTRODUCTION  

 Blast induced traumatic brain injury (bTBI) is a well-recognized injury occurring 

in the modern military environment, and determining bTBI etiology is a major focus 
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across many laboratories.  Some contributing mechanisms for bTBI are shared with 

mechanisms for traumatic brain injuries in the civilian population, since some phases of 

bTBI include contact and inertial loading (acceleration) mechanisms (Bass et al., 2012). 

However, it is not yet clear if there are unique mechanisms associated with primary blast 

loading that contribute to the resulting neurological impairment of bTBI. There is some 

debate about the relative difference between blast and other types of TBI. Recently, our 

group examined common shock tube configurations used to study blast-induced brain 

injury in the laboratory, and concentrated on defining the optimal configuration to 

minimize the effect of torso overpressure and blast-induced head accelerations. We use 

this model to characterize the complex behavioral deficits of bTBI and investigate the 

possible role of Elk-1 in recovery from bTBI.  

   An increasing number of behavioral assays are available to the neuroscience 

community for identifying a phenotype in mouse behavioral studies.  Many of these 

behavioral tasks are linked to one or more neuroanatomic substrates(Balderas et al., 2008; 

Barker and Warburton, 2011; Broadbent et al., 2004; Phillips and LeDoux, 1992).  As 

such, rapidly defining a behavioral phenotype could bridge the gap between changes in 

brain structure and the advancement of new therapies for treating TBI treating 

neurological diseases.   

 Key bottlenecks limit the use of task-related experiments for behavioral 

phenotyping across laboratories. Many tests use time-intensive manual scoring 

techniques that limit the number of behavior tests performed and the extent of 
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quantitative analysis for each test. Moreover, manual scoring methods do not provide an 

opportunity to explore or “re-mine” data not collected during the initial scoring. 

Scientifically, manual scoring techniques are susceptible to inter-operator variability and 

can lead to poor reproducibility between laboratories even though individual behavioral 

tests are standardized(Cryan and Holmes, 2005; Richter et al., 2009).   

 Recognizing the benefits of an automated system, the neuroscience community 

has developed many different methods to automate the phenotyping of animals in their 

home-cage(Bonasera et al., 2008; Casadesus et al., 2001; Chen et al., 2006; Goulding et 

al., 2008; Millecamps et al., 2005; Steele et al., 2007; Tamborini et al., 1989; Tang et al., 

2002; Tang and Sanford, 2005). In contrast, automation of video recordings of task-

related experiments has lagged behind. Existing home-cage software, including most 

recent machine learning(Kabra et al., 2013)- or computer vision(Jhuang et al., 2010)-

based methods cannot be applied to score task-experiments, partly because these methods 

are primarily designed to classify the way in which a mouse's body deforms over small 

time intervals and assign behavioral labels such as rearing, grooming, or sitting.  Scoring 

task-related experiments requires an entirely different approach based on the temporal 

evolution of an animal’s interactions with the environment (e.g. exploration of objects in 

spatial object recognition or social interaction) or by the choices the animal makes (e.g. 

entry into different regions of an arena as in Y-Maze, place-preference, etc). Only 

recently have tools emerged to score some common tasks
18

 or, more generally, a more 

general purpose tools to develop automated scoring functions (JAABA). 
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 We now significantly extend the repertoire of computerized methods for scoring 

video recordings of many behavior tasks that span tests of anxiety, cognition, learning 

and memory. These include fear conditioning, open field, zero-maze, Y-maze, plus-maze, 

T-maze, place preference, spatial/novel object recognition, and two- or three-chamber 

social interaction. We overcome the limitations of existing methods that either required 

inking part of the animal for automatically identifying body landmarks(Rutten et al., 

2008) or required specialized equipment to monitor activity. For each behavior task, we 

use this new toolbox to automatically compute performance metrics that are commonly 

scored manually and achieved equal or better consistency compared to inter-observer 

variability. In addition, we introduce novel fine-grained measurements of task 

performance that are not available through manual scoring. We employ some of these 

tools and a systems-level analysis to evaluate how the aggregate behavior of animals 

changes with a genetic and/or experimental manipulation. This automated phenotyping of 

behavior, or autotyping, reveals a novel behavior pattern for a mouse model of blast-

induced traumatic brain injury (bTBI). Some, but not all, behavior impairments of bTBI 

are ameliorated by the genetic deletion of a transcription factor (Elk-1), associated with 

neuronal survival and degeneration (Besnard et al., 2011; Morris et al., 2012; Sharma et 

al., 2010). 
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METHODS  

Subjects 

All animal studies were conducted according to NIH guidelines and were approved by 

the University of Pennsylvania's Institutional Animal Care and Use Committee (IACUC). 

We studied the behavioral effects of bTBI using an Elk-1 knockout mouse (C57/BL6N 

genetic background) (Cesari et al., 2004) and wildtype littermate (WTLM) mice. All 

mice were 12-14 week old males at the time of injury and behavior testing. Prior to blast-

injury, each animal was either placed under isofluorane anesthesia and injured or simply 

placed under isofluorane (sham) and returned to its home-cage. Lights were maintained 

on a 12-hr light/dark cycle, and all experiments were performed during the light phase. 

Per previous experience, 10-12 male animals were used in each group for statistical 

power.  

Blast-induced traumatic brain injury (TBI) 

We used a shock-tube to generate a fully developed shock wave within an aluminum 

tube.  The animal was placed 16-mm from the exit of the tube, and experienced a typical 

blast overpressure loading – a rapid rise in pressure (40 microseconds) followed by a 

slightly longer pressure decay (0.615 milliseconds) per previous reports (Effgen et al., 

2012; Panzer et al., 2012). For all experiments, we used blast input conditions (peak 

overpressure: 215 kPa, duration: 0.65 milliseconds) that, when averaged across three 

pressure transducers placed along the periphery of the exit of the tube, varied less than 

5% across all animals tested, and caused an immediate impairment in righting reflex.  
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Once animals recovered their righting reflex, they were returned to a warmed recovery 

cage.   

 

Neurobehavior assay development 

We developed a test battery to evaluate potential impairments in cortical, cerebellar, 

amygdala, and hippocampal function following blast exposure.  We ordered tests to 

minimize potential confounding effects among the different tests that include: elevated 

zero-maze (day 1 post-blast), rotarod (days 1-3), open-field (day 4), spatial object 

recognition (days 4,5), and fear conditioning (days 8,9). Standard protocols were used to 

perform all tests. 

Elevated Zero-Maze (Day 1) 

The elevated zero maze was used to examine anxiety-related behavior. The apparatus 

comprised of an elevated annular platform with two opposite, enclosed quadrants and two 

open quadrants. Mice were placed in the walled region and left undisturbed for 5 minutes. 

The latency to first exit from the walled region and the cumulative time spent the open 

region were recorded.  In addition, a risk assessment measure was calculated. 

Rotarod performance (Days 1-3) 

Motor coordination and motor learning was assessed on days 1,2, and 3 following blast 

injury. Animals were placed on a rotarod apparatus (model: ENV-577M, MedAssociates 

Inc., Georgia, VT) that accelerates linearly from 4 to 40 RPM over a five-minute session. 
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Three trials, separated by an hour each, were conducted each day. Two measures were 

recorded for each rotarod test: the time lapsed until first fault, and the total time the 

animal remained on the rotating rod before falling. Fault is defined as making a complete 

revolution around the rotarod. In the event that an animal did not fault, we used fall time 

for fault.  

Open field test (Day 4) 

Individual mice were released in the corner of a rectangular (30cmx40cm) open field 

arena. Mice were left undisturbed and videotaped with a camera mounted on the ceiling 

above the center of the open field arena for 30 minutes. At the end of testing, mice were 

returned to their home cage.  

Spatial Object Recognition (SOR; Days 4, 5):  

Spatial object recognition was used to determine the effects of blast loading on memory 

storage.  On the day of training (d4), mice were placed in the training arena for a total of 

10-minute session. The first session consisted of context habituation without objects in 

the arena. During the next 3 sessions, mice were allowed to explore the arena with two 

distinct objects (a glass bottle and a metal tower). Each session lasted 10 minutes. Testing 

occurred 24 hours after the four training sessions in which one of the two objects was 

displaced. The mouse's preference for the displaced object over the non-displaced object 

was measured for all sessions.  
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Fear Conditioning (Days 8, 9):  

Contextual fear conditioning was performed to develop a complementary measure of 

hippocampal and amygdala function. On the training day (d8), the mouse was placed in 

the conditioning chamber for 2:28 minutes before the onset of a foot shock (2-sec 1.5 

mA). Contextual conditioning was assessed 24 hours later by placing the mouse back in 

the same chamber for 5 minutes.   

 

Mathematical Approaches for Automating Behavior Scoring 

Movement detection, tracking, and orientation overview:  

Several simple observations from the video record were automated: 1) determining 

whether the animal was moving and classifying the type of motion (goal-directed or 

exploratory), 2) determining the absolute location of the animal in an arena and relative 

to other objects, 3) identifying several landmarks on the animal's body, and 4) 

determining the animal's gaze direction and body curvature.  These movement classifiers 

were key for determining an automated score for a given test. All algorithms described 

below are implemented in MATLAB (MathWorks) and available on 

www.seas.upenn.edu/~molneuro. 

Motion detection and tracking: 

  Our first objective was to define periods where the animal stopped moving for at 

least 2 seconds, showing a ‘freezing’ behavior that is traditionally recorded in fear 
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conditioning tests.  We used an image difference matrix, defined as the matrix created by 

subtracting an image at time ti with the preceding image at ti-1.  Theoretically, no motion 

between consecutive frames would yield a difference image matrix of all zeros.  

However, due to camera noise, a null image difference matrix rarely occurred.  We 

estimated hardware noise by recording a 1-minute video of an empty chamber, using 

consecutive image pairs and assigning a threshold motion limit (ε) equal to the 95th 

percentile of the matrix magnitude for image difference pairs.  Freezing was designated 

to occur when consecutive image difference matrices over 2-s or longer duration (15+ 

image frame pairs) showed a net difference magnitude < ε (Figure 5. 1 A).  A resulting 

bar code of activity (Figure 5. 1 A) denotes the periods of motion and inactivity over the 

5-minute monitoring period.   

 We next automated the process for determining the precise location of an animal 

and time spent interacting with an object or within a region of interest (ROI) (Figure 5. 1 

B). To our knowledge, the only other open-source automated software for object 

interaction requires inking the mouse's tail to denote a starting point and iteratively 

searches for position of the nose via multiple line fittings(Rutten et al., 2008), a process 

that can easily create cumulative errors.  In our experience, proprietary software (e.g. 

Clever Systems) often suffered from this limitation, restricting its utility.  Our algorithm 

consisted of segmenting the mouse in the image; determining locations of head, tail, and 

centroid; determining the direction of gaze; extrapolating whether the mouse's line of site 

crosses an ROI; and assigning a label (interacting or not interacting) to each frame. 



158 

 

Segmentation was accomplished by background subtraction (Figure 5. 1 C). Many 

sophisticated techniques exist to estimate the background of a scene(Oliver et al., 2000; 

Qin and Yaonan, 2008; Stauffer and Grimson, 1999). We used frame averaging to yield 

the background scene in a fast and accurate manner(Cucchiara et al., 2003).  

 The centroid of the moving object (mouse) and the coordinates of the head and 

tail were determined via geodesic distance transform (tail is the farthest point from the 

centroid and head farthest from the tail, Figure 5. 1 C). To determine the direction of the 

mouse's gaze, we drew a vector from the centroid to the head coordinates.  

Mouse trajectory was visualized by plotting its centroid coordinates (Figure 5. 1 D). 

Changes in the total distance travelled in an arena or the amount of time spent interacting 

with the same object across multiple exposures are common measures of 

habituation(Vianna et al., 2000), one of the most elementary nonassociative learning 

tasks in rodents. Our automated tracking computes this directly in real-time, and also 

allows us to plot the angle of each exploratory bout of an object (Figure 5. 1 E). 

Additionally, a heat-map plot of the mouse position during the test facilitates high-

throughput characterization of behavior through novel pattern recognition or machine 

learning algorithms (Figure 5. 1 F). The algorithm for detecting interaction with an 

object is also useful for measuring social interactions (Figure 5. 1 G-I) and regions 

explored by an animal in an open-field test (Figure 5. 1 J,K).  Finally, the automated 

tracking also facilitates defining periods when the animal is walking (straight and 
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relatively fast), exploring (slow, non-straight line paths), or sitting (no locomotion for at 

least 3 seconds) in the open field(Choleris et al., 2001) (Figure 5. 1 L).     

 

Figure 5. 1: Overview of automated analysis of neurobehavior. A: (Top) Discrimination of 

motion from freezing events using an estimate of camera noise (red line). (Bottom) Time strip 
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showing bout length of freezing behavior (white space) relative to movement bouts (black space) 

in fear conditioning. B-C: Overview of geometric algorithm to track the body and landmarks on a 

mouse. B, Example of a still frame image. The mouse was segmented by background subtraction 

(C1) and the centroid, tail (C2) and head (C3) coordinates determined. A vector from the centroid 

to head or extrapolation of the medial axis provided gaze direction (C4). D-L: Application of 

automated algorithm in neurobehavioral experiments. D-F: Response to novel objects and spatial 

novelty. D, The path traveled (black) by the mouse during the first exposure session to the objects 

(left) and during the second exposure where one of the objects is displaced (right). E, 

Exploration of the displaced and non-displaced objects represented by white lines that denote the 

angle of approach and the number of exploratory bouts. F, Heat-map representing the mouse 

position in the experimental arena, red = more time, blue = less time. G-I: Analysis of a social 

interaction experiment shows path traveled (G) and non-biased exploratory bouts (H) between the 

two non-social objects. Most time is spent in the neutral zone (I). J-L: Automated tracking (J) 

and measurement of the time spent in different regions of the open-field in any 5-minute interval 

(K), along with the time spent walking, exploring and sitting (I). 

Application to automated scoring of tasks 

 In an open-field experiment, we automatically partitioned the arena into outer 

periphery, inner, and center region and 4 corner quadrants. Using the automated tracking 

of the mouse centroid, the software computed the amount of time spent and the distance 

travelled in these subdivisions, Figure 5. 1 J,K. The ambulation data was further 

categorized as exploring, walking, or sitting behaviors, Figure 5. 1 L (Choleris et al., 

2001).  
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 In elevated zero-maze experiments, a user initialized the videos by identifying 

walled and open regions of the maze. In each frame, the software automatically identified 

the mouse's centroid, area, and major axis length.  We defined entry into the open regions 

when >95% of the mouse's area and its centroid were simultaneously in the open region. 

The amount of time spent in the open and walled regions was automatically recorded as a 

measure of anxiety-like behavior (Jacobson et al., 2007). Since experimentally altered 

locomotion can influence the time spent in open or walled regions, independent of 

anxiety, we also measured ambulation.  Risk assessment includes a stretch-attend posture 

in which the head extends into the open area but the remainder of the body stays in the 

walled compartment (Karlsson et al., 2005). This behavior was automatically identified 

when several empirical conditions were met: centroid of the mouse was in the walled 

region, head was in the open region, and the mouse's body length (major axis length of 

the segmented image) exceeded mean + 2*standard deviation of body length throughout 

the experiment.  

 In spatial object recognition testing, we determined the location and visual field 

of the mouse during the test procedure.  The user defined an ROI for each object in the 

arena, and the software computed the fraction time (% of total) the animal was interacting 

with the ROI.  During each bout of interaction, the instantaneous direction of gaze was 

also recorded to determine whether there were direction-approach biases (Figure 5. 1 E). 

For example, the software permits measurement of the interaction time with different 

sides of the object facing the center, walls or corners of an arena. This level of analysis 
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can be informative for models of autism in which gaze aversion or avoidance is a 

prominent phenotype (Clifford et al., 2007; Defensor et al., 2011).  

 In fear conditioning experiments, we used the freezing detection algorithm to 

determine the total fractional time the animal displayed freezing behavior over a five 

minute testing period.  Additionally, by recording these freezing events over time, we 

generated a bar code representation of the behavior that could be later analyzed for 

patterns of freezing over the different test conditions. Continuous scoring, rather than 

assessing freezing at arbitrary fixed time intervals, also permits analysis of cumulative 

freezing distributions.   

 In the social interaction task, we defined two separate ROIs that contain an 

inanimate and an animate object. Similar to spatial object recognition, we determined the 

interaction time for both ROIs, the approach angle during each bout of interaction, and 

distance travelled. Heat-map indicating cumulative time spent in different parts of the 

sociability apparatus is especially useful to visually inspect preferences between novel 

objects and novel mice.  

 A list of automated behavior tasks and commonly used performance metrics for 

each task are provided in Table 2. Modular implementation (object-oriented style) of 

these algorithms can facilitate automation of other behavior tasks not listed in Table 2. 
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Table 5. 1: Automated behavior tasks 

Behavior test Performance metric 
Open field Thigmotaxis 

  Total distance traveled 

  Time spent walking, sitting, exploring 

  Entries into the center of the arena 

Fear conditioning Total freezing time (test session) 

  
Freezing time immediately after foot shock (training 
session) 

Elevated zero maze Latency to first exit 

  Time in open/walled regions 

  Total distance traveled 

  Risk assessment 

Y-maze, T-maze Time spent and distance traveled in each of 3 arms 

  
Number of spontaneous transitions and total 
transitions 

  Conditional probability of transitions between arms 

Moris water maze Latency to the platform 

  Instantenous speed 

Barnes maze Latency to escape 

  Number of errors 

  Path length to the escape box 

  Strategy to escape - random, systematic or spatial 

Spatial/noval object 
recognition Time spent interacting with each object 

  Direction of approach for each interaction bout 

  
Spatial extent of object exploration - uniform or one-
sided 

  Distance, speed and exploratory tendencies 

Social interaction 
Interaction time with inanimate object vs. animate 
object 

  Visual gaze (direction) of exploration 
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Validation and Optimization of Automated Approaches: 

Comparison to manual scoring methods:  We compared the results obtained from 

automated analysis to those obtained by manual scoring (visual inspection by an expert 

observer). In each task, we created a Bland-Altman plot to analyze the limits of 

agreement between the two methods (manual scoring being the gold standard). At least 

20 videos each for fear conditioning, SOR, elevated-zero maze, and social interaction 

were manually scored. For each behavior task, we computed the mean and standard 

deviation of the difference between two values obtained by automated and manual 

scoring. Two expert observers scored the same videos to estimate inter-observer 

variability.  

Sensitivity analysis: 

Video quality: Videos were recorded in bright, even light conditions, using a high-

definition camera. Segmentation by background subtraction was fast (< 2 minutes for a 

10-minute video) and worked very well under these settings. To test its sensitivity to light 

conditions and video quality, we recorded a set of videos in lower resolution and in which 

the mouse was placed in an arena either dimly illuminated or not evenly illuminated.  

Fear conditioning threshold: Assessment of freezing depends on estimating hardware 

noise; freezing was defined when the difference between successive frames drops below 

noise. Given a distribution of hardware noise obtained by recording a 1-minute video of 

an empty chamber, we selected threshold values at the 50th, 70th, 90th and 95th 
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percentile. We manually scored several experimental videos and compared the accuracy 

of the automated algorithm as a function of varying thresholds.  

Interaction distance:  In our implementation, interaction is scored by first defining a 

gaze vector originating from the nose and extending in the direction of vision with 

magnitude x. When this gaze vector crosses a user-defined ROI, it is scored as an 

interaction. To find the user-specific optimal magnitude of the gaze vector, users scored 

SOR videos frame-by-frame and annotated each frame with "interacting" or "not-

interacting" labels. The same videos were processed with our algorithm. We swept 

through different magnitudes of the gaze vector (0" to 6", step-size 0.1") and for each 

vector length, we computed the total number of true positives and false positives. The 

user-specific interaction distance corresponds to the optimum point on the ROC curve, 

defined as the point on the ROC curve closest to the upper left corner (100% sensitivity 

and 100% specificity). 

Statistical Analysis: Statistical differences in task-related performance of animals in four 

experimental groups (wildtype littermate sham, wildtype littermate blast injured, Elk-1 

knockout sham, and Elk-1 knockout blast) were assessed via one-way ANOVA and 

Tukey's post-hoc test. Shapiro-Wilk test was used to assess normality and nonparametric 

tests (Kruskal-Wallis and Mann-Whitney U) were employed when needed. A repeated-

measures (RM) ANOVA was performed when the same measurement was obtained for 

an animal over multiple trials as in rotarod or habituation. Group sizes were: WT sham 

n= 13, WT blast n= 13, Elk-1 KO sham n= 11, Elk-1 KO blast n= 12. alpha-level 0.05, 
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*p<0.05 and **p<0.01 indicated significance.  For a given level of analysis, a Bonferroni 

correction for multiple comparisons was used. All values reported are mean ± s.e.m. 

unless otherwise noted. Significance of time in all RM-ANOVA, p<0.001 unless 

otherwise noted.  

Behavior pattern analysis: The standardization of test scoring also provides an 

opportunity for employing a statistical framework for analyzing behavior patterns across 

experimental groups.  Each animal was subjected to a battery of behavior tasks and 14 

performance metrics were computed. Principal component analysis (PCA) visualized the 

dataset in a lower dimensional space and identified a combination of the original 

variables that explained the largest possible variation. Following PCA, a MANOVA 

identified a linear combination of the original variables with the largest separation 

between groups. Relationships between group means were visualized in a distance 

dendrogram. Additionally, the ability to use a pattern of behavior to correctly identify 

group membership was assessed by multiclass support vector machine 

(SVMlight(Joachims, 1999)).  

RESULTS 

 Our goal was to develop, assess, and apply an automated analysis of commonly 

used behavior tasks, including open field test, spatial object recognition (SOR), novel 

object recognition (NOR), social interaction, zero-maze, and fear conditioning (Figure 5. 

1). We used this new toolbox and a systems-level analysis of behaviors tested to 
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characterize a new transgenic mouse line (Elk-1 knockout) and investigate the effects of 

bTBI on behavior. 

Comparison of automated and manual analysis of behavior tasks 

 After confirming the robustness of our automated algorithms and calibrating them 

on a small subset of the recorded tests (Figure 5. 2), we tested the accuracy of the 

automated video analysis in 4 specific behavior tasks: fear conditioning, SOR, elevated 

zero-maze, and open field test. For each task, 20 videos were both manually analyzed by 

trained observers and scored using the automated approach, resulting in 2 data points for 

each video.  The mean biases of the automated approach relative to manual 

measurements were 5.24% for freezing time in fear conditioning task (Figure 5. 3 A), 

1.07-s for latency to first-exit in elevated zero maze (Figure 5. 3 B), -0.37s for amount of 

time spent in the open region in elevated zero maze (Figure 5. 3 C), 0.003 for thigmotaxis 

in open-field (Figure 5. 3 D), and 2.98% for object interaction time in SOR (Figure 5. 3 

E).  
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Figure 5. 2: Sensitivity of automated approach. A: Discriminating motion from freezing in 

automated scoring of fear conditioning experiments relies on choosing a threshold value for 

hardware noise. The accuracy of the automated approach compared to manual scoring 

approached >90% when point threshold value was at 95
th
 percentile of hardware noise (n=4). B: 

Object interaction was defined when a gaze vector of magnitude u extending from the mouse’s 

nose crossed a user-defined region of interest. This allowed us to calibrate the software to user’s 

definition of interaction by determining the optimum u for each user. Three different users scored 

the same SOR video, annotating each frame in the video with “interacting” or “not-interacting” 

labels. An ROC curve generated by varying u identified the optimum interaction distance for each 

user as the point on the ROC curve closest to the upper left corner (true positive rate = 1, false 

positive rate = 0), denoted by straight lines. 
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Figure 5. 3: Comparison of automated and manual scoring. Bland-Altman plots show 

excellent agreement between manual and automated scores for freeze fraction in fear conditioning 

(A, bias 5.24%, limits of agreement [-0.0511, 0.067] freeze fraction), latency to first exit (B, bias 

1.07-s, limits of agreement [-5.97s, 8.11s]), time spent in open region of the elevated zero maze 
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(C, bias -0.37s, limits of agreement [-5.78s, 5.04s]), thigmotaxis in open-field experiment (D, 

bias 0.003, limits of agreement [-0.046, 0.045]), and interaction time in spatial object recognition 

task (E, bias 2.98%, limits of agreement [-8.62%, 14.6%]). Bias and limits of agreement between 

automated and manual methods are denoted by horizontal solid and dashed lines in A-E (n≥20 for 

each task). Red dots indicate measurements that fall outside limits of agreement. The difference 

in interaction time of automated and manual methods is comparable to inter-observer variability 

(F, limits of agreement between automated and User A [-8.6%, 14.6%] and agreement between 

Users A and B [-17%, 21.8%]). 

 Automated methods for assessing behavior not only increase throughput, but may 

potentially reduce user bias and variability. Forty SOR videos were manually scored for 

object interaction time in SOR experiments by two independent expert human observers, 

user A and user B.  User A calibrated the automated approach using 3 videos chosen at 

random as described in Methods. All videos were then automatically processed using the 

definition of interaction provided by User A. We compared the percent difference in 

interaction time between automated and User A, and between User A and User B (Fig 

3F). The limits of agreement (bias ± 1.96*std) between automated and User A was [-

8.62%, 14.6%], compared to [-17%, 21.8%] for User A vs. User B. The improved 

agreement between automated and User A is likely because User A calibrated the 

software to his/her own specification of interaction, yielding better agreement with the 

software than with another human observer.  
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 Real-time tracking of the animal and scoring of object interaction is possible with 

our implementation. Our automated system consistently identified the correct coordinates 

of the nose and scored object interaction. There were few instances when the animal was 

sitting in a corner and in a curled posture where the algorithm did not correctly identify 

the head and tail coordinates. However, this did not pose a problem because objects are 

rarely placed in the corners and mislabeled events span less than 2-3 consecutive frames. 

Additionally, since each video frame is automatically annotated with "interacting" or 

"not-interacting" labels, we were able to quickly scroll through a set of interacting frames 

and remove false positives. In our experience, manual correction took less than 1 minute 

for a 10 minute video and improved the sensitivity to nearly 98%.   

Autotyping as a method to assess the influence of blast-injury and Elk-1 deletion 

 With these validated algorithms for automating the analysis of individual 

behavioral tasks, we examined if blast-induced traumatic brain injury (bTBI) caused a 

significant change in the normal behavior of C57/BL6N wildtype mice. In addition, we 

explored if there were significant behavioral differences that appeared when a neuronal 

transcription factor, Elk-1, was deleted completely from a C57/BL6N animal background 

and whether behavioral impairments following bTBI can be ameliorated with Elk-1 

deletion. Several recent reports implicate Elk-1 in neuronal loss and degeneration (Morris 

et al., 2012; Sharma et al., 2010), however it is unclear if a) Elk-1 is important for normal 

behavior and b) whether Elk-1 deletion improves outcome after bTBI. Studying a range 

of behavioral tasks, rather than a single task, is particularly important because of the 
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widespread changes that can occur throughout the brain following a gene deletion and 

bTBI alike (Davenport et al., 2012).    

Blast-injury increases generalized anxiety in wildtype animals while Elk-1 knockout mice 

are resistant to post-blast anxiety. 

 Our collective results from open-field and elevated zero-maze tests show that 

bTBI significantly increases anxiety-like behavior. Uninjured animals placed in an open-

field arena showed a typical spatiotemporal response to novel environment, spending 

most of their time along the periphery (thigmotaxis) during the first 5 minutes and 

gradually entering the central zone of the arena during the next two 5 minute intervals.  

We quantified thigmotaxis by determining the ratio of time spent along the periphery 

relative to time spent in the center over any five-minute interval as an index of anxiety 

(Simon et al., 1994).  Following bTBI, wildtype animals show increased thigmotaxis 

during the second 5 minute interval compared to sham group (mean ± SEM: 0.820 ± 

0.033 blast vs. 0.588 ± 0.039 sham, p = 0.0013, Figure 5. 4 A)). In addition, blast injured 

mice spent significantly more time sitting in an open-field arena compared to uninjured 

shams, another measure of anxiety (Prut and Belzung, 2003) (95.81s ± 9.19s blast vs. 

62.56s ± 8.83s sham, p = 0.0484, Figure 5. 4 B). The total distance traveled and time 

spent walking or exploring were not significantly different between sham and injured 

wildtype animals, suggesting that the spatial component important in thigmotactic 

behavior is being directly increased by blast.  
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 In contrast to wildtype littermates, blast-injured Elk-1 KO animals did not show a 

significant difference in thigmotaxis or total time spent sitting compared to uninjured 

sham Elk-1 KO controls (thigmotaxis: 0.626 ± 0.028 blast vs. 0.638 ±0.026 sham, 

p>0.05; sitting: 82.3s ± 9.69s blast vs. 73.4s ± 9.82s sham, p>0.05). Moreover, blast-

injury in Elk-1 KO group resulted in significantly less thigmotaxis compared to blast 

injured WTLM, suggesting a possible role for Elk-1 in post-traumatic anxiety (0.626 ± 

0.028 Elk+blast vs. 0.820 ± 0.033 WTLM+blast, p = 0.0081).   
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Figure 5. 4: Behavior deficits following bTBI in wildtype littermate and Elk-1 knockout 

mice. A-B: Open-field. A, Thigmotaxis decreased from the first five-minute interval to the 

second five-minute interval in wildtype sham (paired t-test p<.001, n=13), Elk-1 KO sham 

(p<.001, n=11) and Elk-1 KO blast injured animals (p<.001, n=12)  but was not significantly 

different in wildtype bTBI (p=0.194, n=12). B, Wildtype bTBI animals spent significantly more 

time sitting in the open-field compared to uninjured shams (p = 0.0484). Other open-field 

measures were not different across the 4 groups (ANOVA p >0.05). C-D: Elevated zero-maze. C, 

Latency to first exit of walled regions and risk assessment was significantly lower in Elk-1 KO 

bTBI compared to Elk-1 KO sham (p<0.01). However risk assessment was significantly elevated 

in wildtype bTBI relative to sham (p = 0.0312). D, Average heat-map showed an increased 

localization to the walled/open interface in wildtype bTBI group. E-F: Spatial object recognition. 

E, Object habituation was significantly impaired in wildtype bTBI compared to sham (RM-

ANOVA p <0.005) but was not different between Elk-1 KO sham and injured animals (p=0.181) 

F, Preference for the displaced object was >50% for wildtype sham, blast and Elk-1 KO sham 

groups suggesting acquisition of spatial memory. However, displaced object preference was 

reduced in blast injured Elk-1 KO (50.1%±3.4% Elk+blast vs. 59.3%±2.6% Elk+sham, 

p=0.0531). G, Elk-1 KO sham showed a deficit in fear conditioning compared to wildtype sham 

(p = 0.0213) and this impairment was not worsened by bTBI (p > 0.05). H, Motor coordination 

and motor memory was assessed by computing latency to fault on rotarod. On day 1, WTLM 

blast had significantly lower fault time compared to both WTLM sham and Elk-1 KO sham (WT 

blast 79.8s±10.8s vs. sham 117.9s±10.5s, p=0.0145; WT blast vs. Elk-1 sham 127.3s ± 13.5s, 

p=0.0074). An improvement in fault was observed over days 1-3 for all four groups, however, the 

improvement was greater for uninjured shams than injured animals, regardless of genotype 



176 

 

(repeated-measures ANOVA within subjects time p<0.001, between subjects sham vs. blast p = 

0.0037, wildtype vs. KO p = 0.8712). 

 An alternative test for anxiety-like behavior is the elevated zero maze. Indicators 

of increased anxiety include a relative increase in latency to first exit, decreased time 

spent in the open unprotected region, and increased risk assessment behaviors. We found 

increased risk assessment activity in WTLM blast group relative to uninjured sham (49.8s 

± 4.08s blast vs. 36.8s ± 3.41s sham, p = 0.0312, Figure 5. 4 C). No significant 

difference was found between WTLM blast and WTLM sham groups in latency to first 

exit or time spent in unprotected open regions (Figure 5. 4 C). We observed a very 

significant decrease in latency to first exit in Elk-1 KO blast injured mice relative to 3 

other groups (5.63s ± 1.14s Elk+blast vs. 40.82s ± 6.87s WTLM sham, 46.8s ±4.08s 

WTLM blast, 35s ± 4.9s Elk sham, p<0.001, Figure 5. 4 C). Similar to decreased 

latencies to exit, a decrease in risk assessment behavior appeared in Elk-1 KO blast 

injured mice (Figure 5. 4 C, D). The cumulative distance traveled in the zero-maze, as 

well as the peak instantaneous speed, were not statistically different between the 4 groups 

(ANOVA, p>0.05).  

 The behavioral alterations of animals using two anxiety-related assessments, 

open-field test and elevated zero-maze indicate heightened anxiety following blast-injury 

in WTLM. In contrast, blast-injury does not worsen anxiety-related behavior in Elk-1 KO 

mice relative to their sham counterparts.         
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Blast-injury to wildtype mice impairs object habituation but Elk-1 deletion recovers 

normal behavior 

 Habituation is one form of nonassociative learning that can be readily measured in 

the spatial object recognition test where exploration of the objects during consecutive 

training trials decreases as novelty decreases (i.e., before one of the objects is displaced). 

Therefore, we analyzed the duration of interaction with the non-displaced object in trials 

2-4 of the spatial object recognition test in mice that received bTBI prior to training. 

Uninjured wildtype sham mice habituate to the SOR arena as the duration of interaction 

with the non-displaced object significantly decreased over time (RM-ANOVA, p=0.0062, 

Figure 5. 4 E). In contrast, blast injured wildtype animals failed to show a significant 

decline in object exploration from trial 2 to trials 3 and 4 (RM-ANOVA p>0.05). Direct 

comparison between sham and blast injured wildtype animals showed a significant deficit 

in object habituation during trial 3 (blast: 42.8s ± 4.12s, sham: 26.1s ± 5.03s, p=0.0036).  

 In contrast to WTLM, blast injured Elk-1 KO animals did not show a deficit in 

object habituation compared to sham (multivariate RM-ANOVA, p>0.05). Both sham 

and injured Elk-1 KO groups spent equally large amounts of time interacting with the 

non-displaced object in trial 2 (first exposure to objects in the arena) and significantly 

less time in trials 3 and 4 (Trial 3: Elk-1 KO sham, 37.1s ± 2.36s compared to Elk-KO 

injured, 46.6s ± 2.26s, p = 0.2366).  
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Blast injury impairment spatial and associative memory only in Elk-1 knockout mice. 

 We assessed spatial memory by calculating the percent of total object interaction 

time that was devoted to the displaced object in the SOR test during trial 5. Typically, by 

trial 4, mice spend nearly equal time interacting with the two objects. Upon displacing an 

object in trial 5, both wildtype sham and blast injured animals spent significantly more 

time (>50%) interacting with the displaced object, consistent with acquisition of spatial 

memory. Preference for the displaced-object was not different between sham and injured 

wildtype animals (wildtype sham 58.1% ± 3.8% vs. wildtype injured 55.2% ±3.2%, 

p>0.05). Similarly, Elk-1 KO sham animals showed a preference for the displaced object 

in trial 5. However, the preference for displaced object was abolished in blast injured Elk-

1 KO group (Elk-1 KO sham 59.3% ± 2.6% vs. Elk-1 KO injured 50.1% ± 3.4%, 

p=0.0034) (Figure 5. 4 F).  

 Since blast injured WT animals still retained spatial memory, we next tested 

contextual fear memory, a distinct hippocampus-dependent form of associative memory. 

Pairing of an aversive foot shock to a novel environment resulted in freezing responses 

when mice were reintroduced to the same environment 24-hours following the shock. We 

found no statistical difference in total freeze fraction between sham and blast injured 

wildtype animals (sham: 0.390 ± 0.049, 0.3 ± 0.053, p = 0.18) suggesting that associative 

memory is not altered following blast-injury (Figure 5. 4 G).  

 Compared to wildtype mice, Elk-1 KO showed significantly less freezing 

behavior (wildtype sham freeze fraction: 0.3904 ± 0.0494, Elk-1 KO sham: 0.2198 ± 
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0.0492, p = 0.0213). However, the impairment in associative memory was not made 

worse by blast-injury (Elk-1 KO blast: 0.2069 ± 0.035, p > 0.05 compared to Elk-1 KO 

sham) (Figure 5. 4 G). A deficit in contextual fear conditioning in Elk-1 knockout mice 

suggests an important role for this transcription factor in associative memory. 

Blast-injury impairs motor coordination and motor learning. 

 We assessed motor coordination and motor learning in rotarod task by measuring 

the latency to fault. Fault is defined when an animal makes a complete revolution around 

the rotarod and is a more sensitive measure of motor coordination than latency to fall. On 

first exposure to the rotarod (day 1), wildtype blast injured animals had significantly 

lower fault time compared to wildtype sham, suggesting a deficit in motor coordination 

as a result of blast (wildtype blast fault 79.8s±10.8s vs. wildtype sham 117.9s±10.5s, 

p=0.0145) (Figure 5. 4 H). Interestingly, Elk-1 KO animals were resistant to blast-

induced deficits in motor coordination (Elk sham fault: 127.3s ± 13.5 vs. Elk blast fault: 

104.2 ± 12.2, p=0.2097).  

 An improved performance on the rotarod during subsequent trials 2 and 3 is 

indicative of acquisition of motor memory. All four groups showed an improvement in 

latency to fault over days 1-3, but the increase in performance was greater for uninjured 

shams than blast-injured animals regardless of genotype (RM-ANOVA, within subjects 

time p<0.0001, between subjects sham vs. blast p = 0.0037, wildtype vs. KO p = 0.8712). 

Together, blast-injury impairs the acquisition of motor memory in wildtype littermates 

and Elk-1 knockout mice equally.   



180 

 

Multivariate analysis reveals the relative effects of genotype, injury and genotype*injury 

on behavior outcome. 

 A summary of behavioral alterations in WT blast, Elk-1 knockout sham and Elk-1 

knockout blast relative to WT sham animals are provided in Table 5.2.  

 

Table 5. 2: Summary of behavior alterations relative to wildtype littermate (WTLM) sham 

Task Metric 
Elk 
sham 

WTLM 
blast 

Elk 
blast 

Open Field Walking n.s n.s n.s 

  Sitting n.s ↑ n.s 

  Exploring n.s. n.s. n.s. 

  Total ambulation n.s. n.s. n.s. 

  Thigmotaxis n.s. ↑ n.s. 

Elevated zero maze Latency to first exit n.s. n.s. ↓ 

  Time in open region n.s. n.s. n.s. 

  Risk assessment n.s. ↑ n.s. 

Spatial object 
recognition Habituation n.s. ↓ n.s. 

  
Displaced object 
preference n.s. n.s. n.s. 

Fear conditioning freeze fraction ↓ n.s. ↓ 

Rotarod Latency to fault, day1 n.s. ↓ n.s. 

  
Improvement over 
days 1-3 n.s. ↓ ↓ 

 

Given the complex phenotypic spectrum, we applied principal component analysis (PCA) 

followed by MANOVA to identify a linear combination of the original behavior variables 

with the largest separation between groups (Figure 5. 5 A), followed by MANOVA to 

identify a linear combination of the original behavior variables with the largest separation 

between groups. We found a significant difference in overall group mean centroids, 
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Wilk's lambda p = 0.0011. Genotype alone did not have an effect on multivariate group 

mean differences (WTLM vs. Elk-1 KO, p=0.0825), however, injury severity (sham vs. 

blast, p=0.0007) and genotype*injury (p=0.0018) were both significant. We projected 

these multivariate behavior scores for each mouse onto a canonical subspace and color-

coded each group (Figure 5. 5 B).  Inspection of the group mean centroids (+ marker) 

and 95% confidence bounds reveals intersecting groups with no significant difference 

from each other (WTLM sham vs. Elk sham), while non-intersecting domains represent 

groups that are significantly different from each other (e.g., Elk-1 KO sham vs. Elk-1 KO 

injured).  Using this canonical representation, a dendrogram constructed from pair-wise 

Mahalanobis distances between each pair of group means identified the hierarchical 

similarity among groups - WTLM sham and Elk-1 KO sham were phenotypically most 

similar; blast-injury affects the two genotypes differently, - wildtype injured mice are 
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most affected while Elk-1 KO injured have milder phenotypic alterations (Figure 5. 5 C). 

 

Figure 5. 5 : Multivariate analysis reveals the relative effects of genotype, injury and 

genotype*injury on behavior outcome. A, Projection of 14 behavior attributes for each animal 

onto the first 3 principal components did not reveal obvious groupings. B, Multivariate ANOVA 

identified differences in the population means of the 4 groups (Wilks' λ = 0.0011). The 

multivariate behavior scores are projected onto a MANOVA canonical subspace and color-coded 

by experimental groups (dots represent the aggregate neurobehavior of individual mice, + marker 

indicates group centroids with 95% confidence bounds shown in circles). C, Dendrogram of pair-



183 

 

wise group centroids reveals the hierarchical similarity among groups. D, Confusion matrix. A 

multiclass support vector machine was trained using multivariate behaviors to determine whether 

a pattern of task-related behaviors can accurately predict injury severity or genotype. The fraction 

of a group of mice (along the rows) that were classified as each of the four alternative groups 

(along the columns) are indicated in the confusion matrix.  

 With the ability to quickly screen several tasks simultaneously, we then tested 

whether the patterns of task-related behaviors could accurately predict the injury severity 

or genotype of an animal. We trained and tested a linear multiclass support vector 

machine using the 14 behavior attributes. The results of a leave-one-animal-out cross 

validation are shown in a confusion matrix (Figure 5. 5 D). The confusion matrix 

indicates the fraction of a group of mice (along the rows) that were classified, on the 

basis of its pattern of behavior, as each of the four alternative groups (along the columns). 

Larger values along the diagonal indicate successful classification. As expected, the 

classification accuracy for wildtype sham and blast-injured groups is the largest, while 

there is some confusion in accurately classifying animals into WTLM sham and Elk-1 

KO sham groups - 85% of true wildtype sham animals were correctly classified as 

wildtype sham, while 15% were falsely classified as Elk-1 KO. However, the overall 

classification accuracy was 90.2% suggesting that automated behavioral assessment can 

successfully phenotype animals. 
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DISCUSSION:   

 We identified and incorporated a number of automation algorithms to generate a 

new, open access software platform for scoring and analyzing several common 

behavioral tasks. Automated scoring can be done in real-time and the results matched 

manual measurements within the limits of inter-observer variability.  We then applied 

automated tools to phenotype animals carrying a genetic manipulation (Elk-1 KO), 

experimental manipulation (blast TBI), and the combination of these two effects. 

Examining the behaviors separately, we discovered that blast-injury significantly 

increased the level of anxiety and impaired the ability to habituate to a novel 

environment. Elk-1 KO animals were resistant to these detrimental effects of blast-injury, 

but showed a deficit in associative memory after blast exposure.  A multivariate analysis 

designed to identify differences in aggregate behavior showed that Elk-1 KO and 

wildtype animals were not significantly different prior to blast-injury. Following injury, 

wildtype animals showed more severe changes in behavior than Elk-1 KO animals.  

 Blast-injury is characterized by modest neuronal loss or pathologic remodeling 

that can disrupt both anatomic and functional connectivity throughout the brain (Levin et 

al., 2010; Mac Donald et al., 2013; Magnuson et al., 2012; Sponheim et al., 2011). Given 

this potential broad disruption of brain networks, our automated screening tool was an 

ideal method to scan across multiple behavior tasks and develop a behavioral phenotype 

for each animal. The early signs of anxiety observed in our wildtype mice are reminiscent 

of symptoms associated with post-traumatic stress disorder in human blast TBI, and is 
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consistent with some evidence from other rodent models of bTBI (Park et al., 2013).  At 

the level of blast exposure studied, we saw no significant memory deficits using two 

independent measures of associative learning - contextual fear conditioning, and spatial 

object recognition. However, we found a significant reduction in motor memory 

following blast. The consistent appearance of a memory deficit is not a universal 

consequence of bTBI in rodents, and some of these deficits appear to be linked to the 

head accelerations induced by the blast exposure (Goldstein et al., 2012).  

 To our knowledge, this work presents the first evidence that Elk-1 plays an 

important role in the recovery of function after a neurological injury.  One key 

modulatory point for controlling the function of Elk-1 is its multisite phosphorylation 

‘state’.  The mitogen activated protein kinase ERK phosphorylates Elk-1 on multiple 

sites, and the ERK pathway is activated in several models of TBI (Carbonell and 

Mandell, 2003; Otani et al., 2002; Raghupathi et al., 2003). However, many of the 

controlling phosphatases and kinases that regulate the control of Elk-1 within its 

transactivation domain, as well as the domain that controls its neurodegenerative function  

are not known (Barrett et al., 2006; Sharma et al., 2010; Yang et al., 2002).  Based on our 

current data, we cannot conclude if the behavioral differences between Elk-1 KO and 

wildtype littermates is simply because the knockout animals have lost the ability to prune 

dysfunctional neurons from hippocampal and cortical circuits, or if these changes are 

more linked to Elk-1 dependent changes in gene expression. Determining the key 

regulating mechanisms that mediate these Elk-1 dependent effects is particularly 
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important because we found that Elk-1 deletion can eliminate posttraumatic anxiety.  

Given that posttraumatic stress disorder is a condition commonly associated with soldiers 

exposed to blast, a more thorough exploration of these Elk-1 dependent mechanisms of 

anxiogenic behavior may yield important insights for a significant clinical condition.  

 From a broader perspective, the rapid scanning of several behaviors in parallel 

facilitates a new framework to assess the broad effects that can occur in a rodent model of 

neurological disease.  Compared to manual scoring, our automated analysis can reduce 

user-to-user variability or observer bias. This leads to more consistent findings within and 

across laboratories. Further, an automated method greatly speeds up data analysis and 

lessens the time burden on researchers, making more complex behavior protocols 

possible. Our open-source algorithms are intuitive to use, provide biologically relevant 

information for each task and overcome limitations of existing proprietary systems. We 

expect the broader behavior spectrum that can be analyzed with our autotyping system 

will permit a more complete and rapid understanding of disease models in rodents, with 

the goal of using this same toolbox to test potential treatment strategies. 
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CHAPTER 6: Conclusions and future directions 

Dissertation summary 

 The goal of this work was to examine how traumatic brain injury affects 

information flow within neuronal networks and to identify the mechanisms of acute 

network dysfunction that are thought to underlie cognitive and behavioral deficits 

associated with mild brain injuries. Previous reports have used calcium imaging to 

examine the microarchitecture of the brain, however, its use in TBI research has been 

limited.  

Chapter 2 

 In Chapter 2 of this dissertation, we first carefully assessed fluorescence based 

imaging methods for mapping neural network properties. We then created an open-

source, interactive software for automated quantification of numerous biologically 

relevant features of both the calcium dynamics of single-cells and network activity 

patterns, including automated spike detection, synchronization analysis, and inference of 

functional connectivity. We validated our method against physiological and pathological 

conditions known to cause a change in network function, including how the 

developmental maturation of neurons in cultures affects network activity and  the effects 

of α-synuclein and tau pathology on neuronal networks.  

Chapter 3 

 In Chapter 3 of this dissertation, we used calcium imaging to measure changes in 

network behavior following mild mechanical injury to cortical networks in vitro. First, 
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we found that a 35% stretch causes an acute loss in network synchrony, changes in the 

network topology, and a reduction in the excitatory tone that is not recovered up to 6 h 

following injury. In contrast, a milder level of injury (10% stretch) caused heightened 

activity, but the network returned to its pre-injury state within 1 h. Next we investigated 

the mechanisms for network impairment following 35% stretch. A more detailed analysis 

of the same neuronal network before and after injury revealed a highly nonlinear 

relationship between pre-stretch and post-stretch connectivity of individual neurons. 

Notably, highly connected neurons tended to lose less connections than sparsely 

connected neurons, however, some of these low degree neurons gained new functional 

connected post-injury. These changes in the functional connectivity were completely 

preventable by blocking the activation of NMDARs prior to injury, suggesting a key role 

for these receptors in network remodeling. Given the heterogeneous response of 

individual neurons to injury, we investigated whether there were biomarkers that 

predicted if individual neurons will de-integrate, remain integrated or re-integrate 

following injury. We used a novel method to phenotype the NMDAR subtype content for 

each neuron prior to injury and found that neurons with high NR2B content were most 

adversely affected by injury whereas neurons with high NR2A content were resistant to 

injury-induced alterations in functional connectivity. Mechanistically, we showed that the 

NR2B-containng NMDARs, not NR2A, lose voltage-dependent Mg
2+

 block following 

injury A multi-scale computational model showed that the NR2B receptors undergo 

many irregular transitions between glutamate-bound/open and glutamate-bound/close 
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states. With a reduced Mg
2+

 block, these receptor "flickering" events contribute to 

temporally uncoordinated electrical and calcium activity at the network-scale. Indeed, we 

were able to unmask synchrony in an injured network by inhibiting NR2B receptor 

activation. Functionally, a voltage-dependent Mg
2+

 block is the crux of the "coincidence 

detection" property of the NMDA receptor which allows dendritic Ca
2+

 influx only 

during coordinated pre-synaptic release and post-synaptic depolarization. The precise 

spatiotemporal pattern of synaptic activation is key for the induction of plasticity. We 

found that neurons within an injured network lose their ability to change their functional 

connections with other neurons in the network. Pairing a chemical LTP stimulus with an 

NR2B receptor antagonist rescued plasticity in an injured network. These studies 

highlight a new role for the NR2A and NR2B subtypes in the modulation of network 

activity patterns and point to a new strategy for improving cognitive outcome following 

TBI.  

Chapter 4 

 In Chapter 4 of this dissertation, we investigated how mechanical injury is 

different from excitotoxicity. We used a bath NMDA stimulus to overactivate the NMDA 

receptors for varying durations and recorded changes in the network properties. Brief 

NMDAR overactivation (both synaptic and extrasynaptic) heightened synaptic activity, 

similar to a 10% mechanical stretch. However, different from stretch injury, brief NMDA 

stimulus led to a persistent stabilization of the network activity and preconditioned 

neurons from further injuries. These effects were dependent on activity and transcription. 
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On the other hand, longer NMDAR overactivation caused significant decrease in network 

connectivity and synchrony, similar to 35% mechanical stretch. However, unlike 

mechanical stretch, the balance of NR2A or NR2B activation did not influence network 

activity patterns following bath NMDA stimulus. Instead, mitochondria played a key role 

in shaping network outcome following excitotoxic injury. Similar to previous 

observations, we found that NMDAR overactivation caused an increased permeability of 

the mitochondrial inner membrane resulting in depolarization of the mitochondrial 

membrane potential and mitochondria swelling. Our new studies showed that acute 

functional de-integration of individual neurons from the network was predictive of 

delayed cell death. Inhibiting the mitochondrial permeability transition pore with 

NIM811 attenuated NMDA-induced mitochondria swelling and improved network 

connectivity, in part due to reduced AMPA receptor internalization. Separately, we found 

that mitochondrial motility was closely tied to morphology. Acute synaptic priming 

reduced NMDA-induced mitochondria swelling, however, this protection was lost when 

mitochondria movement was halted.  

Chapter 5 

 Neuronal circuits exhibit a rich repertoire of context-dependent activity patterns 

that subserve numerous cognitive and behavioral tasks. Understanding the dynamics of 

spontaneous network activity following TBI has been the focus of this dissertation. 

Ultimately, these research findings in vitro will have to be tested in vivo to determine the 

therapeutic potential of network repair on behavioral outcomes following TBI. However, 
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complete characterization of behavior is time-intensive, prone to subjective scoring, and 

often requires specialized equipment. In Chapter 5, to facilitate rapid discovery of disease 

causality and screen potential therapeutic agents, we created the first toolbox of its kind 

for automating the scoring of several common behavior tasks used by the neuroscience 

community. Our software requires minimal user interaction, is robust under different 

video recording conditions and computes accurate results that are within limits of inter-

observer variability. Our automated tool also allowed us to identify novel behavioral 

patterns that are not accessible with manual scoring. We applied the automated 

algorithms and used a systems-level analysis to study the alterations in behavior that 

occur following blast-induced traumatic brain injury (bTBI) and to examine the impact of 

bTBI in an Elk-1 knockout mouse. Elk-1 is a neuronal transcription factor that has been 

implicated in both neuronal plasticity and neurodegeneration and cell death. Among other 

behavioral impairments following blast injury, notably we found that blast injured 

animals show increased generalized anxiety. Interestingly, deletion of Elk-1 prevented 

post-trauma anxiety. Given that posttraumatic stress disorder is a condition commonly 

associated with soldiers exposed to blast, a more through exploration of these Elk-1 

dependent mechanisms of anxiogenic behavior may yield important insights for a 

potentially broadly significant clinical condition. To our knowledge, this work presents 

the first evidence that Elk-1 plays an important role in the recovery of function after a 

neurological injury.  
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 In summary, we created novel tools for interrogating neuronal networks and for 

classifying phenotypic patterns of neurobehavior. These tools have broad applications in 

basic and translational neuroscience and will permit a more complete and rapid 

understanding of neurological, neurodevelopmental and psychiatric diseases, with the 

goal of using these same tools to test potential treatment strategies. We used these tools to 

study the microarchitecture of neuronal networks and changes in neurobehavior 

following mild TBI. We believe that mTBI is a disorder of network function. Our studies  

point to a new strategy for repairing injured networks by identifying and targeting unique 

nodal biomarkers that confer susceptibility to mechanical injuries.  

Limitations and future directions 

CNS tissue preparation: in vitro to in vivo 

 We choose in vitro approached, rather than in vivo or in situ, for two main 

reasons (a) the ability to measure changes at the single cell level, while also measuring 

the network connectivity, is best suited in vitro systems; the same measures are far more 

technically challenging with in vivo or in situ imaging and (b) we can rapidly screen 

through different testing conditions (stretch level, drug treatments, targeted genetic 

manipulations) and identify the key circuit remodeling features. Dissociated cell cultures 

have robust and consistent spontaneous activity that is often lacking in organotypic or 

acute slice preparations. Further, dye loading in an acute slice is technically more 

challenging for the cortex and even more challenging when slices are prepared from adult 

animals. An acute slice is arguably the best experimental CNS tissue preparation as it 
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preserves the anatomical connectivity of different neurons and cell types. 

Electrophysiology recordings allow one to measure the field potentials from the 

activation of different brain regions, however, this requires an external stimulus since 

spontaneous activity is nearly nonexistent.  These studies preclude the investigation of 

how individual neurons change their integration in the network following injury and the 

mechanisms for network remodeling and/or repair. 

In vivo multi-cell bolus loading   

 Recording the activity of individual neurons within an in vivo cortical circuit 

should be the next step for this project. Using a simpler in vitro system, we developed 

and validated the tools for interrogating network function and applied them to investigate 

neuronal phenotypes that confer mechanosensitivity. These conclusions should be tested 

in vivo. Due to technical limitations, we cannot record the activity of the same set of 

neurons before and after injury, but we may still learn whether the spontaneous cortical 

oscillations of an injured animal are different from controls. To make progress on this 

front, we already began to use multi-cell bolus loading of membrane-permeable 

fluorescent calcium indicators to record the activity from cells in the mouse cortex. 

(Garaschuk et al., 2006). Briefly, 10-12 week old C57BL6 mice were anaesthetized with 

an intraperitoneal injection of 1.5g/kg urethane. After achieving surgical plane, animals 

were fixed in the stereotactic device and the skin was removed giving access to the skull. 

Although optical imaging through a thinned skull preparation has been reported, which 

offers smaller motion artifacts from respiration and heart beat, we used an open-skull 
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preparation for better imaging quality. We gently created a small 2-mm craniotomy 

above the somatosensory cortex and a head plate with an imaging window was 

superglued onto the skull. The animal was positioned on a Leica SP5 confocal 

microscope and an optically transparent membrane placed over the opening of exposed 

brain to reduce motion artifacts. An epidural SR101 (100 µM) was applied to label pial 

astrocytes and to create contrast for visual guidance of needle containing the calcium 

indicator (Figure 6. 1).  

 

Figure 6. 1: Epidural SR-101 (100 µM) was used to highlight cortical surface and to 

create contrast between blood vessels and brain parenchyma. 

We filled a sterile finely pulled glass capillary (0.2 µm opening diameter, Femtotip II, 

Eppendorf) with a solution of 1mM fluo-4 and 100 µM SR101 in aCSF. A 

micromanipulator was used to position the needle above the dura and carefully guide it to 
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a depth of 150-200 µm below the cortical surface, at a 30
0
 angle. Continuous imaging 

with 820nm IR laser was used to visualize needle placement and to avoid blood vessels. 

The dye was ejected from the needle with a pressure pulse (1 min, 70kPa) generated with 

a FemtoJet (see Figure 6. 2 for time-lapse images of dye injection at 200 µm depth). We 

estimated that ~400 femtoliters were delivered per injection. Multiple injections 

separated by 200 - 300 µm were performed to obtain a wide area of labeled cells.  
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Figure 6. 2: Injection of fluo-4 and SR101 in an anaesthetized mouse. A pulled glass capillary 

needle was positioned 200 µm below the cortical surface with micromanipulator assist. 

Approximately 400 femtoliters of dye was ejected with a pressure pulse delivered through a 

FemtoJet injection system.  
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 Following 1 hr incubation for dye loading, we imaged the calcium fluorescence of 

labeled cells, using SR101 to discriminate between neurons and astrocytes (Figure 6. 3).   

 

Figure 6. 3: Multi-cell bolus loading of fluo-4 in vivo. Images of cells loaded with the 

fluorescent calcium indicator, fluo-4 at increasing depths from the cortical surface. 

Approximately 300 - 400 cells are labeled at 150 µm depth. 

 Although we were able to load neurons with calcium indicator in vivo, we 

observed significant background and low levels of spontaneous activity. To capture both 
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long and short duration calcium events, we acquired images of a 1 mm
2
 brain region at 20 

Hz frame rate. However, we noted significant motion artifact. We did however induce 

synchronized oscillations with bicuculline. We believe that the level of spontaneous 

activity in an anaesthetized animal is critically dependent on the animal's heart rate, 

temperature, blood pressure, and the level of sedation. We did not have the equipment to 

track these vital signs, which could be a complicating factor for low level of activity. 

Troubleshooting motion artifact and loading conditions might allow us to perform in vivo 

measurements of network activity. The same network could then be injured with a micro-

impactor as described previously by our lab (Choo et al., 2013) and would provide an in 

vivo correlate to the in vitro stretch injury experiments.   

Calcium imaging is a proxy for electrical activity 

 We made extensive use of calcium imaging to understand the dynamics of neural 

activity within microcircuits. Strictly speaking, action potential induced rise in somatic 

[Ca
2+

]i is only a proxy for electrical activity. Although majority of [Ca
2+

]i fluctuations are 

related to APs, changes in Ca
2+

 homeostasis following injury, e.g. altered Ca
2+

 buffering 

capacity or de-coupling of synaptic receptor activation and the increase in intracellular 

Ca
2+

, may manifest as alterations in calcium dynamics. Therefore, we were careful to 

make the distinction between electrical activity and inferred activity using Ca2+ imaging. 

Our estimates of synchronization and functional connectivity relate to the dynamics of 

intracellular Ca
2+

 only.  Furthermore, measurements with different GCaMP indicators 

may be confounded by an overexpression of the protein, which could cause an enhanced 
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buffering of calcium within the cytosol and an apparently lower activity level. We 

performed several side-by-side experiments comparing the activity and network indices 

of age matched cultures using GCaMP3, 5, 6 and fluo-4. We found that activity 

measurements with fluo-4 were more comparable to GCaMP 5, 6 than GCaMP3.  

 To demonstrate that Ca
2+

 imaging results correlate with electrical activity, we had 

previously cultured neurons on microelectrode arrays (MEAs) and performed 

simultaneous measurements of extracellular field potentials and intracellular Ca2+ 

dynamics. Although we found a good correlation, interpretation of these results was 

complicated because we often detected an electrical spike that lagged the onset of Ca
2+

 

transient. Also, since an MEA electrode recorded the changes in extracellular field 

potential from many neighboring neurons, it was difficult to pair changes in calcium 

activity with electrical activity, even after using sophisticated spike sorting algorithms.  

 Instead, we propose to measure the calcium activity of a population of neurons 

and simultaneously patch into individual neurons to measure changes in membrane 

potentials. Similarly, a combined Ca
2+

 imaging and mEPSC or mIPSC recording may 

provide useful information of the relative balance of excitatory and inhibitory input to 

individual neurons and how that affects network activity patterns. 

NR2B receptor activation following stretch 

 We showed that following mechanical stretch injury, the NR2B-containing 

NMDA receptors preferentially undergo a loss in voltage-dependent Mg
2+

 block. We 
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used a stochastic diffusion-reaction scheme to simulate NMDA receptor activation 

following vesicular release of glutamate at a prototypical dendritic spine. These 

simulations showed that once bound to glutamate, the NR2B subtypes undergo many 

rapid transitions between glutamate-bound/open state and glutamate-bound/closed state. 

With a physiological [Mg
2+

] = 0.8mM, these flickering events contribute very little 

calcium influx at the spine, however, a complete loss of Mg
2+

 block significantly 

increased the total Ca
2+

 influx and resulted in a noisier Ca
2+

 trace over time. We argued 

that the changes in synchrony at the network-scale are a manifestation of altered receptor 

kinetics of the NR2B subtypes. To validate these simulations, one could measure single 

channel characteristics of NR2B-subtypes at rest and following injury using an inside-out 

patch clamp. We expect greater current through these channels following injury, 

consistent with flattening of the current-voltage relationship of the NMDA receptor at the 

soma level. Single channel activity measurement may reveal changes in the transitions 

between closed and open states following injury. Alternatively, changes in open 

probability, frequency of opening or mean open time may also influence somatic 

membrane potential and the timing of firing of APs.  

Recovery of injured circuits over time 

In this work, we focused on the acute changes in network activity following mechanical 

injury to cultured neurons and identified the NR2B subtypes as one of the key regulators 

for network dysfunction. We showed that the NR2B contribution to [Ca
2+

]i oscillations 

increased following injury, which reduced task learning in a model of chemical model of 
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long-term potentiation. Over time, NR2B receptors that underwent stretch-induced 

reduction in [Mg
2+

] block will likely be replaced with newly synthesized receptors that 

have an intact [Mg
2+

] sensitivity. Over the same timescale, however, stretch-induced 

calcium accumulation causes delayed activation of the neural protease calpain. 

Additionally, overactivation of the NMDAR receptor may lead to mitochondria 

dysfunction and further exacerbate the effects of primary mechanical stretch. It is unclear 

if the injured network will continue to degrade over the ensuing hours to days or whether 

there are compensatory/homeostatic mechanisms that rescue activity in an injured circuit. 

If the injured network repairs itself over a course of several days, we need to identify the 

mechanisms of recovery so that the recovery process could be hastened. Given that 

individual neurons responded differently to mechanical injury, it is likely that some 

neurons may recover faster than others. Some, but not all neurons may need to recover to 

fully restore network function. If so, it will be important to identify neuronal phenotypes 

associated with recovery versus demise. Alternatively, the injured network may never 

return to its pre-injured state, in which case we need to identify a therapeutic window 

where administration of either NR2B antagonists or mitochondria and cytoskeleton 

targeted agents prove most beneficial.  

 In order to perform these experiments, we need to monitor the activity of the same 

set of neurons over multiple days. In vitro cultures are ideal for this task. We have 

already begun preliminary set of experiments and recorded the activity of an injured 

network at 1 day, 3 day and 5 days post injury. However, due to technical limitations, 
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specifically the lack of an environmental chamber, we did not record the same set of 

neurons over this time period. Nonetheless, we found that the frequency of Ca
2+

 activity 

remained significantly reduced at 1 day post-injury however the amplitude of Ca
2+

 

oscillations had returned to pre-injury state. By 5 days post-injury, the frequency and 

coordination of calcium oscillations were no different that age-matched controls.  

Na
+
 channels and network recovery 

Sodium channel proteolysis is a key early event after ischemia and traumatic brain injury. 

Previous reports show that calpain cleaves voltage gated sodium channel α-subunit 

following mechanical stretch injury, suggesting a mechanism for altered action potential 

initiation or propagation. In support of this, we found that preventing the activation of 

calpain (MDL-28170 pretreatment) rescued synchrony in mechanically injured networks 

(Patel et al., 2012). However, it is unclear if cleaved NaChs are replaced with functional 

NaChs over time and whether this coincides with network recovery. The experiments 

outlined above should be combined with Nav1.2 immunocytochemistry to identify 

whether the recovery of networks or the integration of individual neurons is related to 

changes in NaCh expression. These studies are currently underway and show promising 

preliminary results. Alternatively, one could overexpress the endogenous calpain 

inhibitor, calpastatin, in a subset of neurons and investigate whether the functional 

integration of calpastatin + neurons is significantly improved. Such targeted genetic 

manipulation may allow one to determine the fraction of neurons that need to be 

"rescued" in order to repair the circuit. 
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Figure 6. 4: Changes in the immunoreactivity of Nav1.2 at 1, 3, and 5 days following stretch 

injury. Note the increased expression at 1 and 3 days and the prominent appearance of axonal 

fascicles.  

Tau and traumatic brain injury 

 Repeated concussions are correlated with histopathological changes reminiscent 

of neurodegeneration of aging. Once described as dementia pugilistica, there is lot of 

debate over the causal role of repeated brain injuries in the pathogenesis of chronic 
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traumatic encephalopathy (CTE). A characteristic finding in CTE is the presence of 

hyperphosphorylated microtubule associated protein tau and deposition of pathological 

tau aggregates or fibrils in various brain regions. The spatial distribution of tauopathy of 

TBI, however, is distinct from other common tauopathies such as Alzheimer's disease or 

fronto-temporal dementia with Parkinson's disease. We investigated if mechanical stretch 

injury to cortical neurons in culture causes increase tau phosphorylation, tau aggregate 

formation and whether these changes in tau influence the activity of the neuronal 

network. We assessed tau phosphorylation with immunocytochemistry (AT8 antibody) at 

5 hours, 1 day, and 7 days post-stretch injury and found significant increase at all time 

points relative to uninjured controls (Figure 6. 5). Under physiological conditions, tau 

associates with the microtubules and stabilizes the cytoskeleton. Tau phosphorylation 

reduces its association with the microtubules. We saw evidence of axonal bundling 

following injury with AT8 immunocytochemistry, suggesting possible changes in 

microtubule structure. Treatment with a microtubule stabilizing agent, such as taxol, may 

be effective in reducing structural remodeling associated with axonal injury. 
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Figure 6. 5: Increased tau phosphorylation following stretch injury appears as early as 5 hr 

and is persist for 7 days. 

 Glycogen synthase kinase 3 (GSK3) is a known kinase of tau. We tested whether 

GSK3 inhibitors reduced tau phosphorylation following stretch. Indeed, both Li+ and 
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AR-A014418 reduced tau phosphorylation, though neither drug or in combination 

completely return tau phosphorylation to control levels.  

 Since insoluble tau aggregates are thought to be pathogenic, we tested whether 

stretch injury caused the hyperphosphorylated tau protein to insolubalize. We used two 

separate methods to test for insoluble aggregates. First, we extracted the soluble fraction 

with 1% Triton and performed immunocytochemistry to detect remaining insoluble tau 

with AT8 antibody. Alternatively, we used the MC-1 antibody which specifically 

recognizes the pathological tau confomers. Neither approach showed evidence of tau 

aggregates. This is not surprising because induction of tau aggregates in vitro is nearly 

impossible, even when neurons are derived from a transgenic mouse line that 

spontaneously forms tau fibrils in vivo.  

 It remains unclear if repeated stretch injuries, spaced apart by 24 hours, can 

recreate tau fibrils in vitro. Furthermore, it is unclear if changes in tau phosphorylation 

and microtubule destabilization adversely affects neuronal networks. Additionally, we 

noted varying degree of tau phosphorylation in individual neurons. Combined calcium 

imaging and tau immunocytochemistry may reveal a possible relationship between the 

connectivity of individual neurons and the extent of tau phosphorylation, providing nodal 

biomarkers of injury.  
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Repairing an injured circuit 

 In this dissertation, we examined the integration of individual neurons within the 

microcircuit and identified some common features that determine whether a neuron is 

likely to de-integrate, remain integrated or show enhanced integration following injury. 

In the follow-up studies outlined above, it will become apparent whether there are 

additional nodal biomarkers, such as the level of NaCh breakdown or the level of tau 

phosphorylation, that are associated with node loss or remodeling. With this knowledge, 

it may be possible to identify subsets of neurons that are the most "damaging" to the 

network, or alternative, if there are sets of neurons that promote synchronous activity. 

Passive calcium imaging can aid in identifying the functional network connectivity. 

Active manipulation of individual neurons may be a strategy for repairing an injured 

circuit. For example, we already identified that neurons with high NR2B content are 

likely to be affected more adversely than those with high NR2A content. These NR2B-

rich neurons contribute to asynchronous oscillations and disrupt the rhythms of the entire 

network. An optogenetic inhibition of these select neurons may be enough to restore the 

activity patterns of an injured circuit.  

 Towards this goal, we already began to combine optogenetics with calcium 

imaging. We first investigated whether the calcium activity of specific neurons could be 

silenced with ArchT, a light driven proton pump that hyperpolarizes the membrane 

potential (Han et al., 2011). We expressed GFP-tagged ArchT in excitatory neurons 

through the CaMKII promoter (AAV2/1.CaMKII.ArchT.GFP.WPRE.SV40, University 
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of Pennsylvania Vector Core). We transduced cortical cultures at DIV 10 (1.28*10
9
 GC) 

and found strong ArchT-GFP expression by 1 week (Figure 6. 6 A). In order to 

simultaneously measure calcium activity and inhibit selected neurons, we could not use 

the traditional green-channel calcium indicators such as fluo-4, GCaMP or Oregon Green 

because ArchT was tagged with GFP. Additionally, ArchT is maximally activated at 559 

nm, precluding the use of red-shifted calcium indicators such as X-rhod1. Instead, we 

loaded cells with the ratiometric calcium indicator dye fura-2. Fura-2 excites at 340 nm 

and 380 nm and the ratio of emissions at these two wavelengths at λem = 510 nm is 

correlated to intracellular calcium. We used two-photon excitation of fura-2 at λex = 800 

nm obtain maximal spectral separation; this wavelength excites the 380 nm species so 

rather than a rise in fluorescence with an increase in [Ca
2+

]i, we observe a decrease in 

fluorescence.  To summarize, ArchT expression was determined in a field of view with 

GFP (λex = 488 nm). Spontaneous calcium activity was monitored with fura-2 under 2P 

excitation (λex = 800 nm). Selected neurons that expressed ArchT were then excited with 

(λex = 561 nm), while simultaneously measuring changes in [Ca
2+

]i of the network with 

fura-2.  We observed synchronized Ca
2+

 oscillations with bicuculline (Figure 6. 6 B, C) 

that could be blocked in specific neurons by selective activation of ArchT (Figure 6. 6 D). 

Activity continued uninterrupted in rest of the network when only 2 neurons were 

silenced. This method could be useful to determine the minimum number of neurons that 

need to be silenced in order to stop network activity, providing an independent estimate 

of functional connectivity.  Separately, we could specifically silence neurons that are 
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most desynchronized from the rest of the population to bring back synchrony. Similarly, 

we could also activate select driver nodes with channelrhodopsin-2 to cause a more 

permenant change in the activity patterns.  

 

Figure 6. 6: Selective silencing of calcium activity with ArchT in vitro. GFP-tagged ArchT 

was expressed in excitatory neurons under CaMKII promoter (A). The calcium activity of the 
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excitatory network was monitored with the fluorescent calcium indicator fura-2 under 2P 

excitation (λex 800nm) (B). The network displayed spontaneous synchronized calcium oscillation 

(fluorescence trace of 3 highlighted ROIs shown in C). Of the 3 highlighted neurons, 2 neurons 

indicated by purple and orange ROIs expressed ArchT while the green ROI did not. Selective 

ArchT excitation of these three ROIs (λex = 561nm) completely stopped calcium oscillations in 

the two neurons that expressed ArchT while oscillations continued uninterrupted in the other 

neurons (C).  

Glial modulation of neuronal networks 

 In this dissertation, we focused on identifying the mechanisms of network 

dysfunction caused by mechanical stretch injury. The brain is, however, an 

inhomogenous and irregularly-shaped viscoelastic organ. This means that TBI is likely to 

create local areas of high deformation, surrounded by regions of little or no deformation. 

The mechanisms of injury propagation from the site of impact to the mechanical 

penumbra should be the focus of future investigation. Already previous work from our 

lab has shown that astrocytes are one of the key players that carry the injury response 

beyond the initial site of injury both in vitro and in vivo in the form of propagating 

intracellular calcium waves (Choo et al., 2013). We replicated those results and found 

that mechanical injury causes intracellular calcium waves in the penumbra (Figure 6. 7A 

time-lapse images of calcium wave propagation into the mechanical penumbra; site of 

injury was one field of view below; fluorescence trace of 4 highlighted astrocytes located 

in the mechanical penumbra before and after stretch injury, B, C). Our new findings 

include a chronic enhancement in astrocytic calcium oscillations that persist for several 
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days following mechanical injury (Figure 6. 7 D). Calcium activity within the astrocyte 

network was significantly attenuated with the ATP degrading enzyme, apyrase and 

completely blocked with the calcium chelator BAPTA (Figure 6. 7 E-G). 

 Astrocytic modulation of neuronal network activity is a debated topic. Although, 

mounting evidence suggests that astrocytes release glutamate and ATP following a rise in 

intracellular Ca
2+

. Astrocytic glutamate may activate either presynaptic NR2B-NMDA 

receptors, changing the probability of vesicular release or extrasynaptic NR2B receptors 

and influence post-synaptic currents. Additionally, astrocytic ATP can suppress neuronal 

activity via activation of purinergic receptors. Thus, we tested whether intracellular 

calcium waves within astrocytes of the mechanical penumbra influence the activity of 

neuronal networks. After mechanical injury, astrocyte intercellular calcium waves 

appeared in the mechanical penumbra (Figure 6. 8 A), and both the frequency of neuronal 

calcium activity and the temporal coordination of activity decreased significantly with the 

onset of intercellular wave (p<0.01; Figure 6. 8 B versus C, G and H). Mixed cultures 

pretreated with either BAPTA-AM, PPADS or apyrase blocked the calcium wave from 

appearing in astrocytes within the mechanical penumbra (Figure 6. 8 D) and maintained 

post-traumatic neuronal activity at a level similar to pre-injury values (Figure 6. 8 E versus 

F, G and H; for both metrics: p>0.2 when treated with BAPTA-AM; p>0.1 when treated 

with PPADS+apyrase).  



212 

 

 



213 

 

Figure 6. 7: Injury causes long-lasting increase in astrocytic calcium activity in the 

mechanical penumbra. A: Time-lapse images of intracellular Ca
2+ 

fluorescence within 

astrocytes of the mechanical penumbra show a propagating calcium wave following mechanical 

injury (site of injury was one field of view below). Intracellular calcium activity remained 

elevated up to 4 days post-injury. Representative fluorescence trace of 4 highlighted astrocytes, 

located in the mechanical penumbra, before (B), immediately after (C), and 4 days following 

injury (D). Astrocytic Ca
2+

 oscillations were significantly reduced with apyrase (E) and 

completely abolished with the calcium chelator BAPTA (F). n=125 astrocytes, N = 4 wells, 

**p<0.01, *p<0.05. 

 

Figure 6. 8: The activity of in vitro neuronal networks in the mechanical penumbra is 

influenced by intercellular waves in astrocytes and purinergic signaling. Mechanical injury 
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triggered a calcium transient in astrocytes of the mechanical penumbra within 30 s of injury (A). 

Spontaneous activity in neurons located in the mechanical penumbra decreased after injury (B 

before injury versus C-recording period beginning 80 s after injury when calcium wave has 

passed through). Pretreating mixed cultures with BAPTA-AM or a combination of PPADS and 

apyrase blocked the calcium wave from propagating into the mechanical penumbra (D) and 

reduced post-traumatic changes in neural activity patterns (E versus F). Both spontaneous burst 

events and the synchronized activity were decreased in the penumbra after injury, and these 

changes were blocked with PPADS + apyrase or BAPTA-AM treatment (G and H). n = 4/group.  

 These preliminary results suggest that astrocytes play a potentially important role 

in spreading the influence of the mechanical injury to neuronal networks outside the area 

of initial injury. It is unclear, however, whether this is a one-time event or whether 

reactive changes in astrocytes continue to disrupt neuronal networks over time. 

Furthermore, since astrocytic calcium oscillations were attenuated with the broad 

spectrum purinergic receptor antagonist PPADS, it will be important to identify specific 

purinergic receptor subtypes that can modulate astrocytic activity and thereby modulate 

neuronal networks. However, since cortical neurons also express purinergic receptors, it 

may be difficult to ascribe possible improvements in neuronal network activity to 

inhibition of gliotransmission. For a more direct answer, one could culture cortical 

neurons from dnSNARE transgenic animals where a dominant-negative expression of the 

SNARE protein in astrocytes blocks vesicular release. Alternatively, recently developed 

fluorescent glutamate sensor could be selective expressed in astrocytes and the calcium 

activity in neuronal networks as well as astrocytic glutamate-release could be monitored 
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simultaneously. These experiments in vitro will provide a mechanism for network 

disruption in the mechanical penumbra and identify a therapeutic window. The results 

from these studies will inform animal studies and potentially lead to a new class of 

targets for treating TBI - drugs that are glio-centric rather than neuro-centric.  
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