5,031 research outputs found

    The dynamics of consensus in group decision making: investigating the pairwise interactions between fuzzy preferences.

    Get PDF
    In this paper we present an overview of the soft consensus model in group decision making and we investigate the dynamical patterns generated by the fundamental pairwise preference interactions on which the model is based. The dynamical mechanism of the soft consensus model is driven by the minimization of a cost function combining a collective measure of dissensus with an individual mechanism of opinion changing aversion. The dissensus measure plays a key role in the model and induces a network of pairwise interactions between the individual preferences. The structure of fuzzy relations is present at both the individual and the collective levels of description of the soft consensus model: pairwise preference intensities between alternatives at the individual level, and pairwise interaction coefficients between decision makers at the collective level. The collective measure of dissensus is based on non linear scaling functions of the linguistic quantifier type and expresses the degree to which most of the decision makers disagree with respect to their preferences regarding the most relevant alternatives. The graded notion of consensus underlying the dissensus measure is central to the dynamical unfolding of the model. The original formulation of the soft consensus model in terms of standard numerical preferences has been recently extended in order to allow decision makers to express their preferences by means of triangular fuzzy numbers. An appropriate notion of distance between triangular fuzzy numbers has been chosen for the construction of the collective dissensus measure. In the extended formulation of the soft consensus model the extra degrees of freedom associated with the triangular fuzzy preferences, combined with non linear nature of the pairwise preference interactions, generate various interesting and suggestive dynamical patterns. In the present paper we investigate these dynamical patterns which are illustrated by means of a number of computer simulations.

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A multi-demand negotiation model based on fuzzy rules elicited via psychological experiments

    Get PDF
    This paper proposes a multi-demand negotiation model that takes the effect of human users’ psychological characteristics into consideration. Specifically, in our model each negotiating agent's preference over its demands can be changed, according to human users’ attitudes to risk, patience and regret, during the course of a negotiation. And the change of preference structures is determined by fuzzy logic rules, which are elicited through our psychological experiments. The applicability of our model is illustrated by using our model to solve a problem of political negotiation between two countries. Moreover, we do lots of theoretical and empirical analyses to reveal some insights into our model. In addition, to compare our model with existing ones, we make a survey on fuzzy logic based negotiation, and discuss the similarities and differences between our negotiation model and various consensus models

    Matrix Game with Payoffs Represented by Triangular Dual Hesitant Fuzzy Numbers

    Get PDF
    Matrix Game with Payoffs RepresentedDue to the complexity of information or the inaccuracy of decision-makers’ cognition, it is difficult for experts to quantify the information accurately in the decision-making process. However, the integration of the fuzzy set and game theory provides a way to help decision makers solve the problem. This research aims to develop a methodology for solving matrix game with payoffs represented by triangular dual hesitant fuzzy numbers (TDHFNs). First, the definition of TDHFNs with their cut sets are presented. The inequality relations between two TDHFNs are also introduced. Second, the matrix game with payoffs represented by TDHFNs is investigated. Moreover, two TDHFNs programming models are transformed into two linear programming models to obtain the numerical solution of the proposed fuzzy matrix game. Furthermore, a case study is given to to illustrate the efficiency and applicability of the proposed methodology. Our results also demonstrate the advantage of the proposed concept of TDHFNs

    Fuzzy Logic Based Negotiation in E-Commerce

    Get PDF
    The evolution of multi-agent system (MAS) presents new challenges in computer science and software engineering. A particularly challenging problem is the design of various forms of interaction among agents. Interaction may be aimed at enabling agents to coordinate their activities, cooperate to reach common objectives, or exchange resources to better achieve their individual objectives. This thesis is dealing with negotiation in e-commerce: a process through which multiple self-interested agents can reach agreement over the exchange of scarce resources. In particular, we present a fuzzy logic-based negotiation approach to automate multi-issue bilateral negotiation in e-marketplaces. In such frameworks issues to negotiate on can be multiple, interrelated, and may not be fixed in advance. Therefore, we use fuzzy inference system to model relations among issues and to allow agents express their preferences on them. We focus on settings where agents have limited or uncertain information, ruling them out from making optimal decisions. Since agents make decisions based on particular underlying reasons, namely their interests, beliefs then applying logic (by using fuzzy logic) over these reasons can enable agents to refine their decisions and consequently reach better agreements. I refer to this form of negotiation as: Fuzzy logic based negotiation in e-commerce. The contributions of the thesis begin with the use of fuzzy logic to design a reasoning model through which negotiation tactics and strategy are expressed throughout the process of negotiation. Then, an exploration of the differences between this approach and the more traditional bargaining-based approaches is presented. Strategic issues are then explored and a methodology for designing negotiation strategies is developed. Finally, the applicability of the framework is simulated using MATLAB toolbox

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Classical Dynamic Consensus and Opinion Dynamics Models: A Survey of Recent Trends and Methodologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus reaching is an iterative and dynamic process that supports group decision-making models by guiding decision-makers towards modifying their opinions through a feedback mechanism. Many attempts have been recently devoted to the design of efficient consensus reaching processes, especially when the dynamism is dependent on time, which aims to deal with opinion dynamics models. The emergence of novel methodologies in this field has been accelerated over recent years. In this regard, the present work is concerned with a systematic review of classical dynamic consensus and opinion dynamics models. The most recent trends of both models are identified and the developed methodologies are described in detail. Challenges of each model and open problems are discussed and worthwhile directions for future research are given. Our findings denote that due to technological advancements, a majority of recent literature works are concerned with the large-scale group decision-making models, where the interactions of decision-makers are enabled via social networks. Managing the behavior of decision-makers and consensus reaching with the minimum adjustment cost under social network analysis have been the top priorities for researchers in the design of classical consensus and opinion dynamics models

    A web-based collaborative decision making system for construction project teams using fuzzy logic

    Get PDF
    In the construction industry, the adoption of concurrent engineering principles requires the development of effective enabling IT tools. Such tools need to address specific areas of need in the implementation of concurrent engineering in construction. Collaborative decision-making is an important area in this regard. A review of existing works has shown that none of the existing approaches to collaborative decision-making adequately addresses the needs of distributed construction project teams. The review also reveals that fuzzy logic offers great potential for application to collaborative decision-making. This thesis describes a Web-based collaborative decision-making system for construction project teams using fuzzy logic. Fuzzy logic is applied to tackle uncertainties and imprecision during the decision-making process. The prototype system is designed as Web-based to cope with the difficulty in the case where project team members are geographically distributed and physical meetings are inconvenient/or expensive. The prototype was developed into a Web-based software using Java and allows a virtual meeting to be held within a construction project team via a client-server system. The prototype system also supports objectivity in group decision-making and the approach encapsulated in the prototype system can be used for generic decision-making scenarios. The system implementation revealed that collaborative decision-making within a virtual construction project team can be significantly enhanced by the use of a fuzzybased approach. A generic scenario and a construction scenario were used to evaluate the system and the evaluation confirmed that the system does proffer many benefits in facilitating collaborative decision-making in construction. It is concluded that the prototype decision-making system represents a unique and innovative approach to collaborative decision-making in construction project teams. It not only contributes to the implementation of concurrent engineering in construction, but also it represents a substantial advance over existing approaches
    • …
    corecore