118 research outputs found

    In vivo measurement of skin microrelief using photometricstereo in the presence of interreflections

    Get PDF
    This paper proposes and describes an implementation of a novel photometric stereo based technique for in vivo assessment of three-dimensional (3D) skin topographyin the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients tomitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian and African American subjects to demonstrate the accuracy of our methodand to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian and African American skin types. The results also illustrate the differences in recovered skin topography due to non-diffuse Bidirectional reflectance distribution function(BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin

    Crop Disease Detection Using Remote Sensing Image Analysis

    Get PDF
    Pest and crop disease threats are often estimated by complex changes in crops and the applied agricultural practices that result mainly from the increasing food demand and climate change at global level. In an attempt to explore high-end and sustainable solutions for both pest and crop disease management, remote sensing technologies have been employed, taking advantages of possible changes deriving from relative alterations in the metabolic activity of infected crops which in turn are highly associated to crop spectral reflectance properties. Recent developments applied to high resolution data acquired with remote sensing tools, offer an additional tool which is the opportunity of mapping the infected field areas in the form of patchy land areas or those areas that are susceptible to diseases. This makes easier the discrimination between healthy and diseased crops, providing an additional tool to crop monitoring. The current book brings together recent research work comprising of innovative applications that involve novel remote sensing approaches and their applications oriented to crop disease detection. The book provides an in-depth view of the developments in remote sensing and explores its potential to assess health status in crops

    Hyperspectral Imaging System Model Implementation and Analysis

    Get PDF
    In support of hyperspectral imaging system design and parameter trade-off research, an analytical end-to-end model to simulate the remote sensing system pipeline and to forecast remote sensing system performance has been implemented. It is also being made available to the remote sensing community through a website. Users are able to forecast hyperspectral imaging system performance by defining an observational scenario along with imaging system parameters. For system modeling, the implemented analytical model includes scene, sensor and target characteristics as well as atmospheric features, background spectral reflectance statistics, sensor specifications and target class reflectance statistics. The sensor model has been extended to include the airborne ProspecTIR instrument. To validate the analytical model, experiments were designed and conducted. The predictive system model has been verified by comparing the forecast results to ones obtained using real world data collected during the RIT SHARE 2012 collection. Results include the use of large calibration panels to show the predicted radiance consistent with the collected data. Grass radiance predicted from ground truth reflectance data also compare well with the real world collected data, and an eigenvector analysis also supports the validity of the predictions. Two examples of subpixel target detection scenario are presented. One is to detect subpixel wood yellow painted planks in an asphalt playground, and the other is to detect subpixel green painted wood planks in grass. To validate our system performance, the detection performance are analyzed using receiver operating characteristic (ROC) curves in a comprehensive scenario setting. The predicted ROC result of the yellow planks matches well the ROC derived from collected data. However, the predicted ROC curve of green planks differs from collected data ROC curve. Additional experiments were conducted and analyzed to discuss the possible reasons of the mismatch including scene characterization inaccuracy. Several subpixel target detection parameter trade-off analyses are given, including relative calibration error vs SNR, the relationship among probability of detection, meteorological range, pixel fill factor, relative calibration error and false alarm rate. These trade-off analyses explain the utility of this model for hyperspectral imaging system design and research

    An end-to-end hyperspectral scene simulator with alternate adjacency effect models and its comparison with cameoSim

    Get PDF
    In this research, we developed a new rendering-based end to end Hyperspectral scene simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System), which generates nadir images of passively illuminated 3-D outdoor scenes in Visible, Near Infrared (NIR) and Short-Wave Infrared (SWIR) regions, ranging from 360 nm to 2520 nm. MODTRAN TM (MODerate resolution TRANsmission), is used to generate the sky-dome environment map which includes sun and sky radiance along with the polarisation effect of the sky due to Rayleigh scattering. Moreover, we perform path tracing and implement ray interaction with medium and volumetric backscattering at rendering time to model the adjacency effect. We propose two variants of adjacency models, the first one incorporates a single spectral albedo as the averaged background of the scene, this model is called the Background One-Spectra Adjacency Effect Model (BOAEM), which is a CameoSim like model created for performance comparison. The second model calculates background albedo from a pixel’s neighbourhood, whose size depends on the air volume between sensor and target, and differential air density up to sensor altitude. Average background reflectance of all neighbourhood pixel is computed at rendering time for estimating the total upwelled scattered radiance, by volumetric scattering. This model is termed the Texture-Spectra Incorporated Adjacency Effect Model (TIAEM). Moreover, for estimating the underlying atmospheric condition MODTRAN is run with varying aerosol optical thickness and its total ground reflected radiance (TGRR) is compared with TGRR of known in-scene material. The Goodness of fit is evaluated in each iteration, and MODTRAN’s output with the best fit is selected. We perform a tri-modal validation of simulators on a real hyperspectral scene by varying atmospheric condition, terrain surface models and proposed variants of adjacency models. We compared results of our model with Lockheed Martin’s well-established scene simulator CameoSim and acquired Ground Truth (GT) by Hyspex cameras. In clear-sky conditions, both models of CHIMES and CameoSim are in close agreement, however, in searched overcast conditions CHIMES BOAEM is shown to perform better than CameoSim in terms of ℓ1 -norm error of the whole scene with respect to GT. TIAEM produces better radiance shape and covariance of background statistics with respect to Ground Truth (GT), which is key to good target detection performance. We also report that the results of CameoSim have a many-fold higher error for the same scene when the flat surface terrain is replaced with a Digital Elevation Model (DEM) based rugged one

    Multispectral texture synthesis

    Get PDF
    Synthesizing texture involves the ordering of pixels in a 2D arrangement so as to display certain known spatial correlations, generally as described by a sample texture. In an abstract sense, these pixels could be gray-scale values, RGB color values, or entire spectral curves. The focus of this work is to develop a practical synthesis framework that maintains this abstract view while synthesizing texture with high spectral dimension, effectively achieving spectral invariance. The principle idea is to use a single monochrome texture synthesis step to capture the spatial information in a multispectral texture. The first step is to use a global color space transform to condense the spatial information in a sample texture into a principle luminance channel. Then, a monochrome texture synthesis step generates the corresponding principle band in the synthetic texture. This spatial information is then used to condition the generation of spectral information. A number of variants of this general approach are introduced. The first uses a multiresolution transform to decompose the spatial information in the principle band into an equivalent scale/space representation. This information is encapsulated into a set of low order statistical constraints that are used to iteratively coerce white noise into the desired texture. The residual spectral information is then generated using a non-parametric Markov Ran dom field model (MRF). The remaining variants use a non-parametric MRF to generate the spatial and spectral components simultaneously. In this ap proach, multispectral texture is grown from a seed region by sampling from the set of nearest neighbors in the sample texture as identified by a template matching procedure in the principle band. The effectiveness of both algorithms is demonstrated on a number of texture examples ranging from greyscale to RGB textures, as well as 16, 22, 32 and 63 band spectral images. In addition to the standard visual test that predominates the literature, effort is made to quantify the accuracy of the synthesis using informative and effective metrics. These include first and second order statistical comparisons as well as statistical divergence tests

    Non-parametric Methods for Automatic Exposure Control, Radiometric Calibration and Dynamic Range Compression

    Get PDF
    Imaging systems are essential to a wide range of modern day applications. With the continuous advancement in imaging systems, there is an on-going need to adapt and improve the imaging pipeline running inside the imaging systems. In this thesis, methods are presented to improve the imaging pipeline of digital cameras. Here we present three methods to improve important phases of the imaging process, which are (i) ``Automatic exposure adjustment'' (ii) ``Radiometric calibration'' (iii) ''High dynamic range compression''. These contributions touch the initial, intermediate and final stages of imaging pipeline of digital cameras. For exposure control, we propose two methods. The first makes use of CCD-based equations to formulate the exposure control problem. To estimate the exposure time, an initial image was acquired for each wavelength channel to which contrast adjustment techniques were applied. This helps to recover a reference cumulative distribution function of image brightness at each channel. The second method proposed for automatic exposure control is an iterative method applicable for a broad range of imaging systems. It uses spectral sensitivity functions such as the photopic response functions for the generation of a spectral power image of the captured scene. A target image is then generated using the spectral power image by applying histogram equalization. The exposure time is hence calculated iteratively by minimizing the squared difference between target and the current spectral power image. Here we further analyze the method by performing its stability and controllability analysis using a state space representation used in control theory. The applicability of the proposed method for exposure time calculation was shown on real world scenes using cameras with varying architectures. Radiometric calibration is the estimate of the non-linear mapping of the input radiance map to the output brightness values. The radiometric mapping is represented by the camera response function with which the radiance map of the scene is estimated. Our radiometric calibration method employs an L1 cost function by taking advantage of Weisfeld optimization scheme. The proposed calibration works with multiple input images of the scene with varying exposure. It can also perform calibration using a single input with few constraints. The proposed method outperforms, quantitatively and qualitatively, various alternative methods found in the literature of radiometric calibration. Finally, to realistically represent the estimated radiance maps on low dynamic range display (LDR) devices, we propose a method for dynamic range compression. Radiance maps generally have higher dynamic range (HDR) as compared to the widely used display devices. Thus, for display purposes, dynamic range compression is required on HDR images. Our proposed method generates few LDR images from the HDR radiance map by clipping its values at different exposures. Using contrast information of each LDR image generated, the method uses an energy minimization approach to estimate the probability map of each LDR image. These probability maps are then used as label set to form final compressed dynamic range image for the display device. The results of our method were compared qualitatively and quantitatively with those produced by widely cited and professionally used methods

    Generic Object Detection and Segmentation for Real-World Environments

    Get PDF

    Visible and Near Infrared imaging spectroscopy and the exploration of small scale hydrothermally altered and hydrated environments on Earth and Mars

    Get PDF
    The use of Visible and Near Infrared (VNIR) imaging spectroscopy is a cornerstone of planetary exploration. This work shall present an investigation into the limitations of scale, both spectral and spatial, in the utility of VNIR images for identifying small scale hydrothermal and potential hydrated environments on Mars, and regions of the Earth that can serve as martian analogues. Such settings represent possible habitable environments; important locations for astrobiological research. The ESA/Roscosmos ExoMars rover PanCam captures spectrally coarse but spatially high resolution VNIR images. This instrument is still in development and the first field trial of an emulator fitted with the final set of geological filters is presented here. Efficient image analysis techniques are explored and the ability to accurately characterise a hydrothermally altered region using PanCam data products is established. The CRISM orbital instrument has been returning hyperspectral VNIR images with an 18 m2 pixel resolution since 2006. The extraction of sub-pixel information from CRISM pixels using Spectral Mixture Analysis (SMA) algorithms is explored. Using synthetic datasets a full SMA pipeline consisting of publically available Matlab algorithms and optimised for investigation of mineralogically complex hydrothermal suites is developed for the first time. This is validated using data from Námafjall in Iceland, the region used to field trial the PanCam prototype. The pipeline is applied to CRISM images covering four regions on Mars identified as having potentially undergone hydrothermal alteration in their past. A second novel use of SMA to extract a unique spectral signature for the potentially hydrated Recurring Slope Lineae features on Mars is presented. The specific methodology presented shows promise and future improvements are suggested. The importance of combining different scales of data and recognising their limitations is discussed based on the results presented and ways in which to take the results presented in this thesis forward are given

    Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data

    Get PDF
    Near-earth hyperspectral big data present both huge opportunities and challenges for spurring developments in agriculture and high-throughput plant phenotyping and breeding. In this article, we present data-driven approaches to address the calibration challenges for utilizing near-earth hyperspectral data for agriculture. A data-driven, fully automated calibration workflow that includes a suite of robust algorithms for radiometric calibration, bidirectional reflectance distribution function (BRDF) correction and reflectance normalization, soil and shadow masking, and image quality assessments was developed. An empirical method that utilizes predetermined models between camera photon counts (digital numbers) and downwelling irradiance measurements for each spectral band was established to perform radiometric calibration. A kernel-driven semiempirical BRDF correction method based on the Ross Thick-Li Sparse (RTLS) model was used to normalize the data for both changes in solar elevation and sensor view angle differences attributed to pixel location within the field of view. Following rigorous radiometric and BRDF corrections, novel rule-based methods were developed to conduct automatic soil removal; and a newly proposed approach was used for image quality assessment; additionally, shadow masking and plot-level feature extraction were carried out. Our results show that the automated calibration, processing, storage, and analysis pipeline developed in this work can effectively handle massive amounts of hyperspectral data and address the urgent challenges related to the production of sustainable bioenergy and food crops, targeting methods to accelerate plant breeding for improving yield and biomass traits
    • …
    corecore