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Abstract 
The use of Visible and Near Infrared (VNIR) imaging spectroscopy is a cornerstone of 

planetary exploration.  This work shall present an investigation into the limitations of scale, 

both spectral and spatial, in the utility of VNIR images for identifying small scale 

hydrothermal and potential hydrated environments on Mars, and regions of the Earth that 

can serve as martian analogues.  Such settings represent possible habitable environments; 

important locations for astrobiological research. 

 

The ESA/Roscosmos ExoMars rover PanCam captures spectrally coarse but spatially high 

resolution VNIR images.  This instrument is still in development and the first field trial of an 

emulator fitted with the final set of geological filters is presented here.  Efficient image 

analysis techniques are explored and the ability to accurately characterise a hydrothermally 

altered region using PanCam data products is established. 

 

The CRISM orbital instrument has been returning hyperspectral VNIR images with an 18 m2 

pixel resolution since 2006.  The extraction of sub-pixel information from CRISM pixels using 

Spectral Mixture Analysis (SMA) algorithms is explored.  Using synthetic datasets a full SMA 

pipeline consisting of publically available Matlab algorithms and optimised for investigation 

of mineralogically complex hydrothermal suites is developed for the first time.  This is 

validated using data from Námafjall in Iceland, the region used to field trial the PanCam 

prototype.  The pipeline is applied to CRISM images covering four regions on Mars identified 

as having potentially undergone hydrothermal alteration in their past.  A second novel use of 

SMA to extract a unique spectral signature for the potentially hydrated Recurring Slope 

Lineae features on Mars is presented.  The specific methodology presented shows promise 

and future improvements are suggested. 

 

The importance of combining different scales of data and recognising their limitations is 

discussed based on the results presented and ways in which to take the results presented in 

this thesis forward are given. 
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Chapter 1: Introduction 

1.1: Thesis motivation 

The search for life on Mars is a major driving goal of the ongoing and upcoming missions to 

the planet.  One of the first steps in this endeavour is to identify regions of the planet that 

may have once been habitable to early microbial life.  Current exploration of the surface of 

Mars is restricted to remotely operated instruments giving large scale aerial views (satellites) 

and smaller scale ground based vehicles (rovers and landers).  This difference in scale is an 

important factor in the search for specific environments known to be hospitable to life, and 

the accurate identification and characterisation of their mineralogy.    

 

One technique used by both types of exploratory vehicle is reflectance Visible and Near 

Infrared (VNIR) spectroscopy.  VNIR (defined in this thesis as the wavelength range from 0.35 

to 2.5 μm) spectral signatures can be used to identify the rocks and minerals within an 

instrument’s field of view (FoV).  VNIR imaging spectrometers currently in use and in 

development for martian exploration can be divided into two clear camps, distinct in their 

spatial and spectral resolution.  Orbital instruments such as the Compact Reconnaissance 

Imaging Spectrometer (CRISM) can produce images covering many kilometres with a 544 

point spectrum over 0.36 – 3.9 µm with spectral resolution as fine as 6.55 nm and a spatial 

pixel resolution of 18 m2 (Murchie et al., 2007).  Rover and lander VNIR capabilities are 

provided by multispectral cameras such as the 2018 ExoMars rover PanCam.  The ExoMars 

PanCam will be the newest in a series of similar instruments used on numerous ground-based 

vehicles starting with the NASA Pathfinder to the most recent MSL Curiosity rover.  It will 

return 12 point multispectral images in the wavelength range 400 – 1000 nm with pixel 

resolutions that can be as small as millimetres (Griffiths et al., 2006). 

 

Spectral resolution can have a significant impact on the level of information extractable from 

a VNIR image.  CRISM is a hyperspectral imager, the spectrum of each of its pixels contains 

hundreds of data points over a wavelength range of 0.362 – 3.94 µm (Murchie et al., 2007).  

The ExoMars PanCam on the other hand is a multispectral imager, returning only 12 point 

spectra over a much smaller wavelength range.  The majority of the mineralogically 

diagnostic spectral features occur in the near and mid infrared portion of the electromagnetic 

spectrum (Clark et al., 1990; Hunt, 1977).  Whilst CRISM covers these regions PanCam only 

sees a fraction of the NIR and is therefore not sufficient for uniquely identifying many of the 

minerals seen on the martian surface, in particular those that occur in hydrated 
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environments.  These diagnostic spectral features are also often much less than 100 nm wide 

(Gaffey, 1985; Hunt & Ashley, 1979; Hunt et al., 1971; Hunt & Salisbury, 1970; Hunt & 

Salisbury, 1971) and so even when they occur within the wavelength range of PanCam they 

are not fully resolvable due to the instrument’s coarse spectral resolution.  CRISM however 

has a narrow enough spectral resolution to distinguish the bulk of these diagnostic spectral 

features. 

 

Spatial scale can also greatly affect the level of detail extractable from an image.  Whilst an 

orbital spectrometer such as CRISM is, given enough years, theoretically capable of covering 

the entire planet at its optimal resolution, a rover is never going to be able to do the same in 

a reasonable time frame.  However the surface that is covered by the rover is done so at a 

much finer spatial resolution than the orbital instruments are capable of, with many 

significant structural surface features being on a spatial scale below that of the highest 

resolution orbital spectral imager.  Planetary exploration using both the orbital and ground-

based images is therefore a compromise between the amount of surface that can be covered 

and the spatial and spectral detail of that coverage.  

 

Numerous types of environment that are of interest in the search for life are characterised by 

mineral deposits and formations that are on a metre scale or less.  Regions of hydrothermal 

and hydrous alteration and hydrovolcanism are such environments (Cousins & Crawford, 

2011), as are the recently discovered Recurring Slope Lineae (McEwen et al., 2014, 2011).   

The fine structural and mineralogical details of these environmental types are within the 

spatial resolution of rover instruments such as PanCam but are too small to be picked out 

within a CRISM image, being obscured within individual pixels.  The ability to identify these 

environmental types from orbit is an important goal both as a guide with respect to choosing 

future rover landing sites and the more general expansion of our knowledge of the past 

habitability of Mars to cover more than the handful of locations ground-based missions have 

visited and will visit in the foreseeable future.  Analysis techniques are required that can 

expand the level of detail extractable from the orbital data, thereby increasing the small-

spatial-scale coverage our current suite of instruments are capable of.   

 

Spectral Mixture Analysis (SMA) is a family of techniques developed to extract sub-pixel 

spectral information from imaging spectrometers (Keshava & Mustard, 2002).  This is a multi-

step technique that has the potential to greatly expand the amount of information we can 

gather from the set of VNIR spectrometers that are currently or will shortly be exploring 
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Mars.  However, whilst the vast majority of the VNIR images returned from Mars are freely 

available to the entire planetary science community, the majority of the SMA algorithms that 

have been discussed in the literature are not, either as open source or commercial programs.  

Without the time and necessary skills to write large, often complex computer programs 

based on a single description paper these SMA algorithms therefore remain unusable to 

planetary scientists.  Investigating which SMA algorithms have been made available and how 

accurate they are when applied to mineralogically complex environments and CRISM data in 

particular will help the Mars science community to continue mining the vast wealth of 

imagery that has been collected and still remains to be studied in detail.  

1.2: Thesis outline 

This thesis will (i) assess the capabilities of both ground and aerial or orbital based VNIR 

spectrometers to identify small scale hydrothermal environments, (ii) detail the development 

of a full, publically available Spectral Mixture Analysis (SMA) pipeline designed to increase the 

amount of spatial and spectral detail extractable from existing orbital spectrometers, and (iii) 

field trail an emulator of the PanCam included in the science instrument payload on the 

European Space Agency (ESA)/Roscosmos 2018 ExoMars, testing both the fidelity of the 

spectral data captured and the utility of the instrument datasets in correctly identifying a 

hydrothermally altered Mars analogue environment.  This shall be broken down across the 

following seven chapters… 

 

Chapter 2 shall introduce the concept of Visible and Near Infrared (VNIR) reflectance 

spectroscopy, discussing the spectra of important and common hydrated mineral species, 

and detailing how this has been integrated into the creation of VNIR imaging spectrometers.  

The global mineralogy of Mars will be covered and evidence introduced for the presence of 

hydrothermal systems in various locations over the planets history.  The use of regions of the 

Earth to test instruments and techniques relating to the exploration and evolution of Mars 

are also discussed. 

 

Chapter 3 will detail the first deployment of the most recent incarnation of the Aberystwyth 

University PanCam Emulator (AUPE-2), an emulator of the ExoMars PanCam instrument, to a 

hydrothermally active region in Iceland.  The ability of the data returned to accurately 

characterise this environment is investigated, efficient and versatile data products are 

developed and the fidelity of the spectral data established. 
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Chapter 4 introduces the concept of Spectral Mixture Analysis (SMA) and gives an overview of 

the current suite of algorithms that have been developed for general purposes and those that 

have previously been applied to martian datasets. 

 

Chapter 5 details the development of a best practice full SMA pipeline using publically 

available algorithms written in the Matlab programming language.  This pipeline is optimised 

for application to hydrothermal environments, which represent a particularly challenging 

environment type for this technique.  Having established the pipeline using synthetic images 

created from publically available spectral library data it is further validated using aerial and 

ground-based hyperspectral data from the same Icelandic region explored in Chapter 3. 

 

Chapter 6 takes the SMA pipeline developed in Chapter 5 and applies it to CRISM data 

covering four regions on Mars, three of which have been postulated to have hosted 

hydrothermal systems in their history, none of which have previously been subject to 

quantitative mineralogical investigations.  Specific issues relating to the use of CRISM imagery 

are discussed and the benefits of including temporally coincident high resolution HiRISE 

imagery in the analysis introduced. 

 

Chapter 7 introduces a novel use of SMA that combines high spectral resolution CRISM data 

with high spatial resolution HiRISE data to extract for the first time a unique spectral 

signature for the Recurring Slope Lineae (RSL) on the slopes of the Palikir Crater. 

 

Chapter 8 summarises the findings of this thesis and discusses further the importance of scale 

(both spectral and spatial) in the application of VNIR imaging spectroscopy for detecting 

hydrated environments on Mars.  Finally suggestions for future research leading on from the 

work presented in this thesis are outlined. 
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Chapter 2: Spectral imaging, Mars and habitability 

2.1: Introduction 

This chapter shall cover the basic background theory and knowledge underpinning the rest of 

the thesis.  This shall include a brief explanation and overview of Visible and Near Infrared 

(VNIR) reflectance spectroscopy as applied to mineral exploration; the general mineralogy of 

Mars as currently understood; the concept of habitability and the role it plays in martian 

exploration; and the use of regions of the Earth as analogues for certain environmental types 

on Mars to test instruments and scientific concepts. 

2.2: Visible and Near Infrared (VNIR) geological reflectance spectroscopy 

Spectroscopy is a broad technique that uses the interaction of electromagnetic waves with 

atoms, molecules, crystal structures etc. to determine certain properties of the target 

medium.  VNIR reflectance spectroscopy refers to the particular specialisation where the 

incident light is in the visible and infrared range (a range that has no clear standard definition 

but shall in this thesis cover approximately 0.35 - 2.5 µm), and the data collected is the 

portion of that light that is reflected back off the surface of the target material.  The reflected 

spectrum is then compared to the known spectrum of the incident light (in the case of 

planetary remote sensing this light source is the sun) showing which wavelengths of light 

have been absorbed by the target.  Spectral features (e.g. absorption band locations, depths 

and widths) in the case of geological targets are attributed to specific atomic and molecular 

bonds within a mineral.  Decades of research have gone into this field covering the 

identification of specific wavelength absorptions and the physical mechanism responsible for 

them (e.g. Clark et al., 1990; Hunt, 1977; Pieters & Englert, 1993) and the spectral signature 

of specific minerals.  In the exploration of Mars, and in particular the search for previously 

habitable environments certain minerals are of key importance (see section 2.3 on Martian 

mineralogy), specifically those that form in the presence of liquid water and/or include O-H 

bonds within their crystalline structure.   

2.2.1: Physics of VNIR reflectance spectra 

Spectral absorptions are the result of two broad processes; molecular vibrational excitations 

and electronic transitions (Clark, 1999).  Vibrational absorptions appear in the near infrared 

(NIR) and short-wave infrared (SWIR) and are primarily the result of O-H, H2O and CO3 

molecules vibrating within the crystal lattice of a mineral (Hunt, 1977).  The vibrational 

absorption features can be subtly altered in shape and wavelength position by the 

neighbouring atoms within the crystal lattice and additional atoms attached to the molecule 
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(e.g. the bonding of Si, Al or Mg to O-H molecules in phyllosilicates) (Bishop et al., 2008), 

enabling diagnosis of specific minerals as well as confirmation of the presence of one of the 

aforementioned elements.  Each vibration has a number of fundamental modes and lower 

energy overtones, with the strength of the associated absorption decreasing with increasing 

modal number (Clark et al., 1990).  In the VNIR wavelength range (as defined in this thesis) it 

is primarily overtone vibrational absorptions that are seen with the low modal fundamental 

vibrations occurring at longer wavelengths in the thermal infrared range.  Important locations 

for vibrational absorptions are O-H around 1.4 µm and when combined with a metal ion (X-O-

H bond) between 2.2 – 2.3 µm (figure 2.1d), H2O at approximately 1.4 and 1.9 µm (figure 

2.1c) and CO3 around 2.3 and 2.5 µm (figure 2.1d) (Hunt & Salisbury, 1971).   

Electronic transitions are the result of transition metal cations moving between orbital levels 

within minerals.  Key transition metals are Fe, Ni, Cr and Mn.  Iron is the most common 

transition metal in minerals and is responsible for major diagnostic absorptions in the 0.4 – 

1.0 µm range (figure 2.1b) (Burns, 1993).  The position of the cation within the crystal lattice 

and the identity of the neighbouring atoms and molecules shifts the exact absorption 

wavelength allowing for distinction between different Fe3+ and Fe2+ minerals (Clark, 1999). 

2.2.2: Reflectance spectroscopy of minerals associated with hydrothermal alteration  

Hydrothermal alteration assemblages typically contain a mixture of mineral types, many of 

which have VNIR spectra with unique diagnostic features.  Primary igneous minerals and 

rocks on both the Earth and Mars include olivine and pyroxene.  Important mineral families 

formed as secondary weathering and hydrothermal alteration products of these basaltic 

materials include phyllosilicates, carbonates, sulfates, and iron-oxides, zeolites and 

hydroxides.   
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Figure 2.1: USGS Spectral library (Clark et al., 2007) spectra of minerals common to 

hydrothermal environments. a) All minerals grouped according to mineral species, from the 

bottom upwards, carbonates (reds), phyllosilicates (greens), silicates (blues), sulfates 

(oranges) and iron oxides (pinks).  b) The 0.4 – 1.0 µm portion of the spectrum showing the 

minerals with prominent Fe absorptions (from the bottom upwards, nontronite, olivine, 

jarosite, hematite, goethite and ferrihydrite).  c) The 1.3 – 2.1 µm portion of the spectrum 

showing the minerals with hydroxyl and water absorptions, (from the bottom upwards, 

saponite, nontronite, montmorillonite, kaolinite, opal, gypsum, jarosite and ferrihydrite). Note 

the lack of the prominent 1.9 µm feature in the kaolinite spectrum indicating that this mineral 

has hydroxyl bonds but not H2O. d) The 2.1 – 2.56 µm portion of the spectrum showing 

minerals with strong diagnostic features in this range (from the bottom upwards, siderite, 

dolomite, calcite, saponite, nontronite, montmorillonite, kaolinite and opal).  In the carbonate 

minerals the features around 2.3 and 2.5 µm are due to the CO3 molecule.  Saponite also has 

an absorption around 2.3 µm but without the accompanying 2.5 µm feature enabling it to be 
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clearly distinguished from the carbonates.  The 2.3 µm feature in the case of saponite is due to 

a combination stretch of the hydroxyl molecule and the Mg/Fe-O-H bond (Clark et al., 1990). 

All spectra in all figures are shifted along the y axis for clarity. 

2.2.2.1: Carbonates 

Carbonates are minerals dominated by the CO3 ion and frequently form in aqueous 

environments.  There are no strong distinguishing carbonate bands within the visible portion 

of the spectrum (figure 2.1a).  The near infrared (NIR) spectra of carbonates have a number 

of clear absorption bands whose positions and relative depths are not affected by particle 

size or packing, and suffer no interference from thermal emission (Gaffey, 1986).  NIR is 

therefore an ideal spectral range to use in the identification of carbonates with the majority 

of the strong absorption bands occurring between 1.6 µm and 2.5 µm (Hunt & Salisbury, 

1971).  Slight shifts in these band positions can help distinguish between different carbonate 

minerals such as calcite and dolomite (figure 2.1d) (Gaffey, 1986).   Carbonates that have 

formed with water inclusions or as hydrocarbonates will have additional bands at ~1.4 µm 

and ~1.9 µm due to absorptions by H2O and O-H molecules and bonds.  This second band can 

be broad and swamp the pure carbonate bands in that spectral region (Hunt & Salisbury, 

1971) complicating the identification procedure.   

2.2.2.2: Iron-oxides and hydroxides 

Fe2+ and Fe3+ oxides and hydroxides including hematite, goethite, ferrihydrite and magnetite 

are common minerals here on Earth and Mars, forming in a variety of different environments 

including as hydrothermal alteration and weathering products.  In the VNIR spectral range the 

diagnostic absorption features attributed to electronic transitions involving iron are in the 0.4 

– 1.1 µm range (Hunt & Ashley, 1979).  Goethite and hematite can be distinguished by the 

location of the major broad ≤ 1 µm band combined with the location of the absorption 

between 0.5 and 0.6 µm.  The NIR band is centred at 0.85 µm for hematite, but shifted up to 

and possibly above 0.9 µm it indicates goethite or possibly jarosite (Hunt & Ashley, 1979).   

2.2.2.3: Phyllosilicates 

Phyllosilicates are minerals comprised of sheets of silicate tetrahedral Si2O5.  This is a broad 

mineral grouping that includes a wide range of clay minerals (hydrous aluminium 

phyllosilicates) that commonly form as a result of weathering or low-temperature 

hydrothermal alteration of igneous rocks.   Many of the key VNIR absorption features in this 

group are due to vibrational stretches involving the hydroxyl molecule and occur between 

1.35 - 2.5 µm (Bishop et al., 2008) with the exact location of the absorption shifting according 

to the ion bonded to the hydroxyl molecule.  Bands at 1.4 and 1.9 µm occur in all of these 
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minerals but their exact location and depth can shift depending on the nature of the mineral 

structure (Hunt & Ashley, 1979).   A band with minima between 2.16 and 2.23 µm is due to 

the presence of aluminium (Hunt & Ashley, 1979).  Fe3+, Fe2+ and magnesium rich 

phyllosilicates can be identified by absorptions around 2.29 - 2.31 µm, 2.33 - 2.34 µm and 

2.35 - 2.37 µm respectively (Bishop et al., 2008).  

2.2.2.4: Silicates 

Silicates are a hugely important mineral class that comprise the majority of the rocks on the 

Earth and the other inner solar system bodies.  Mineral groups within this class include 

olivine, pyroxene, amphibole, quartz, zeolite and feldspar.  Spectra of this mineral class can 

vary greatly from the high reflectivity but spectrally featureless plagioclase feldspar, to the 

range of olivine types with ferrous iron absorptions near 1.0 µm, differing in depth depending 

on iron content (Hunt & Salisbury, 1970).  Pyroxenes also vary spectrally depending on their 

composition, with two characteristic broad bands being a Fe2+ ion absorption at 0.9 µm and 

another at 1.8 µm (Hunt & Salisbury, 1970).  Both pyroxene and olivine can be difficult to 

uniquely identify in the VNIR spectrum as they show a large range of spectral diversity 

depending on exact chemical composition and particle size (Horgan et al., 2014). 

2.2.2.5: Sulfates 

Sulfates are minerals that contain SO4
2- in their structure.  They are an important secondary 

product in hydrothermal and evaporitic environments.  A significant number of sulfate 

minerals are hydrous, i.e. they contain water molecules, and as such indicate the presence of 

liquid water during their formation.  Jarosite is an Fe3+, potassium sulfate with a key 

diagnostic absorption band centred at 0.43 µm.  This band is sharp and shallow and as such 

can be drowned out when jarosite makes up only a small portion of the rock under 

observation (Hunt & Ashley, 1979).  Gypsum is a common calcium sulfate dihydrite with little 

to distinguish it in the visible portion of the spectrum, but a number of key doublet and 

triplet absorption features around 1.4, 1.9 and 2.2 µm (figure 2.1a) (Hunt et al., 1971).  Sulfur 

itself in this wavelength range is almost featureless apart from an absorption at 0.5 µm 

followed by a sharp increase in reflectance and a high reflectivity in the rest of the VNIR range 

(Hunt et al., 1971).  

2.2.3: Imaging Spectroscopy 

Imaging spectroscopy is a decades old technique that uses VNIR spectroscopy to produce 

image cubes with three dimensions, two spatial (x and y) and one spectral (λ) (figure 2.2).   

The first civilian Earth observation satellite to carry an imaging spectrometer was Landsat 1 

launched in 1972, whose multispectral scanner had four broad spectral bands.  Multispectral 
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scanners with less than 10 bands remain commonly used, but increasing interest is focusing 

on hyperspectral imagers capable of capturing a high number of contiguously spread spectral 

bands.  Both multi and hyperspectral instruments have been of huge benefit to the 

exploration of Mars.  Orbiting spacecraft were first sent to Mars in the 1960’s and all have 

included cameras for capturing images of the Martian surface.   A number of these have been 

high-resolution imagers in addition to multi and hyperspectral imaging spectrometers in the 

visible, near-infrared and thermal infrared.  Orbiters are not the only spacecraft to be sent to 

Mars, a number of probes, landers and rovers have successfully reached the surface of Mars 

since NASA successfully landed the Viking 1 & 2 landers in 1976.  Many of these missions have 

also included multispectral imaging capabilities although no hyperspectral imagers.   

 

Figure 2.2: Hyperspectral imaging spectroscopy.  An imaging spectrometer produces data 

with three dimensions as shown using an example CRISM image of the Nili Patera region on 

Mars; two spatial dimensions (x and y) and one spectral dimension (λ).  Each individual pixel in 

the image has therefore a continuous spectrum as indicated. 

 

There are currently two operational spectral imagers on the surface of Mars; Pancam on the 

Mars Exploration Rover Opportunity and Mastcam on the Mars Science Laboratory (MSL) 

Curiosity rover.  The planned ESA/Roscosmos ExoMars rover will carry a similar spectral 

imaging system called PanCam, short for Panoramic Camera.  Further details of these 

instruments are discussed in Chapter 3, section 3.2.1.  There are a number of orbiting imaging 

spectrometers in operation around Mars, both multispectral and hyperspectral VNIR and 

thermal imagers.  The NASA Mars Reconnaissance Orbiter (MRO) hosts both the 

hyperspectral Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the 

three band High Resolution Imaging Science Experiment (HiRISE) camera capable of capturing 

images with 0.3 m/pixel resolution (McEwen et al., 2007).  CRISM has a spectral coverage of 

362 - 3920 nm over 544 channels split between two detectors with an average spectral 
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resolution of 6.55 nm and a minimum spatial resolution of 18 m/pixel (Murchie et al., 2007).  

Further details of CRISM are given in Chapter 6.  At the time of writing HiRISE has imaged 

approximately 2% of the planet and CRISM has covered a similar portion of the surface at its 

highest spatial resolution.  CRISM can also operate in a survey mode producing images with 

an approximate pixel size of 200 m and covering 72 channels rather than 544.  In this mode it 

has surveyed the majority of the surface.  Both of these instruments represent the highest 

spatial (HiRISE) and spectral (CRISM) resolution data currently available of Mars from orbit.  

There is one other currently operational satellite with a similar suite of instruments, ESA’s 

Mars Express.  The VNIR hyperspectral imager on board is the Observatoire pour la 

Minéralogie, l’Eau, Les Glaces, et l’Activité (OMEGA) which covers a spectral range from 360 - 

5100 nm in 352 bands at a minimum spatial resolution of less than 500 m/pixel (Bibring et al., 

2004).  Also included in its payload is the four band High Resolution Stereo Camera (HRSC) 

that captures colour images with up to 2 m spatial resolution and allows for the production of 

Digital Elevation Models from stereo pairs of images.   

2.3: Martian mineralogy 

The surface mineralogy of Mars has been studied on both a local and global scale since the 

Viking landers and orbiters of the 1970’s.   More recent observations from the Mars Express, 

Odyssey and Reconnaissance Orbiter satellites, the Mars Exploration Rovers Spirit and 

Opportunity, and most recently Mars Science Laboratory Curiosity rover have increased our 

knowledge, and revealed a significant complexity and spatial heterogeneity to the 

geochemical history and present day state of the Martian surface (table 2.1).  The ferric-oxide 

rich dust layer that covers the Martian surface (Ehlmann and Edwards, 2014; Poulet et al., 

2007) obscures much of the bedrock; where exposed rock is visible data from orbiting 

instruments, specifically the Thermal Emission Spectrometer (TES), the Thermal Emission 

Imaging System (THEMIS) and OMEGA, have been used to produced large spatial scale global 

maps showing the locations of specific mineral species.  Mineral species that have been 

mapped on this global scale include high and low calcium pyroxenes, ice, hydrated minerals 

and ferric oxides, quartz, sulfates, plagioclase, carbonates and sheet silicates (Bandfield et al., 

2003; Bandfield, 2002; Bibring et al., 2005).  The most abundant minerals are silicates of a 

basaltic to andesitic basaltic composition (Chevrier & Mathe, 2007), with high calcium 

pyroxenes corresponding to Hesperian terrain and low calcium pyroxenes being more 

prevalent in Noachian age regions.   These global maps show the large scale trends evident 

on the surface but higher spatial resolution orbital instruments (namely CRISM) have been 

able to identify numerous local mineral suites and environmental types.  Many of these 



28 
 

smaller mineral outcrops demonstrate the diversity of the aqueous history of Mars, including 

phyllosilicate deposits (Carter et al., 2013a; Ehlmann et al., 2011c) and hydrated sulfates 

(Carter et al., 2013a) and silicates (Ehlmann et al., 2009; Mustard et al., 2008) all of which 

form in the presence of liquid water.   The phyllosilicate deposits tend to be found in the 

oldest Noachian terrain (Carr & Head III, 2010) with the sulfates being more prevalent in late-

Noachian to early-Hesperian terrains (Carter et al., 2013a).  In addition to CRISM the various 

landers and rovers have provided mineral identification on sub-metre to metre scales 

including veins of gypsum at Endeavour Crater (Arvidson et al., 2014) and Gale Crater 

(Nachon et al., 2014), and perchlorate salts at the Phoenix landing site (Hecht et al., 2009) 

and in Gale Crater (Glavin et al., 2013).  

Table 2.1: Minerals detected on Mars from both orbital and ground-based observations 

(taken from (Ehlmann and Edwards, 2014), see this reference for full references to this table) 

 Class Group/mineral/phase Formula 

Primary Framework 

silicates 

Olivines (Mg,Fe)2SiO4 

 Orthopyroxenes ((Mg,Fe)0.95+X,Ca0.05-X)Si2O6 

  Clinopyroxenes (Ca,Mg,Fe)Si2O8 

  Plagioclase feldspars (Ca,Na)(Al,Si)AlSi2O8 

  Alkali feldspars (K,Na)AlSi3O8 

 Sulfides Pyrrhotite Fe1-XS 

  Pyrite/marcasite FeS2 

 Oxides Magnetite Fe3-XTiXO4 

  Ilmenite FeTiO3 

Secondary Oxides Hematite Fe2O3 

  Goethite FeO(OH) 

  Akaganeite Fe(O,OH,Cl) 

 Phyllosilicates Fe/Mg smectites (e.g. 

nontronite, saponite) 

(Ca,Na)0.3-0.5(Fe,Mg,Al)2-

3(Al,Si)4O10(OH)2·nH2O 

  Al smectites (e.g. 

montmorillonite, beidellite) 

(Na,Ca)0.3-

0.5(Al,Mg)2(Al,Si)4O10(OH)2·nH2O 

  Kaolin group minerals (e.g. 

kaolinite, halloysite) 

Al2Si2O5(OH)4 

  Chlorite (Mg,Fe2+)5Al(Si3Al)O10(OH)8 

  Serpentine (Mg,Fe)3Si2O5(OH)4 
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  High-charge Al/K 

phyllosilicates (e.g. muscovite, 

illite) 

(K,H3O)(Al,Mg,Fe)2AlXSi4-

XO10(OH)2 

 Other 

hydrated 

silicates 

Prehnite Ca2Al(AlSi3O10)(OH)2 

 Analcime NaAlSi2O6·H2O 

 Opaline silica (n > 0), quartz (n 

= 0) 

SiO2·nH2O 

 Carbonates Mg/Ca/Fe carbonates (Mg,Fe,Ca)CO3 

 Sulfates Kieserite (MgSO4·H2O); 

szomolnokite 

(FeSO4·H2O);Fe2+-, Fe3+-, and 

Mg-polyhydrated sulfates 

(Fe,Mg)SO4·nH2O 

  Gypsum (n = 2), bassanite (n = 

0.5), anhydrite (n = 0) 

CaSO4·nH2O 

  Alunite KAl3(SO4)2(OH)6 

  Jarosite KFe3(OH)6(SO4)2 

  Not a named mineral Fe3+SO4(OH) 

 Chlorides Chlorides e.g., NaCl, MgCl2 

 Perchlorates Perchlorates e.g., (Mg,Ca)(ClO4)2 

 

2.4: Environmental habitability 

2.4.1: Habitability and the exploration of Mars 

The search for life outside of the Earth has long been an important aspect of planetary 

exploration and this has largely focused on the identification of potentially and/or previously 

habitable environments.  Habitability is not an easy characteristic to define, and it becomes 

harder with each passing year as we learn more about the extreme environments that life has 

colonised here on Earth (Amils Pibernat et al., 2007; Harrison et al., 2013; Lever et al., 2015).  

The NASA Astrobiology Roadmap (Des Marais et al., 2003) defines a habitable environment as 

one that provides extended regions of liquid water, an energy source to sustain metabolism 

and conditions that favour the assemblage of complex organic molecules.  These criteria can 

obviously apply to a wide variety of environments including ones characterised by extreme 

properties such as high/low pH values, high/low temperatures or high/low pressures.  There 

is much evidence throughout the history of Mars that points to the possibility of at least 

some regions being habitable at different times (Cousins and Crawford, 2011; Martinez-Frias 
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et al., 2006; Schulte et al., 2006; Ulrich et al., 2012; Westall et al., 2013).  The primary 

habitability characteristic that has been used to identify these previously habitable regions is 

the presence of liquid water.  During both the Noachian and the Hesperian eras, liquid water 

is thought to have periodically existed on the martian surface in the form of fluvial and 

lacustrine systems and potential oceans.  The evidence for this is both structural (Tanaka et 

al., 2014) and mineralogical (Carter et al., 2013a) and the identified previous/potential 

habitable regions cover a range of environmental types.  The Mars Exploration Program 

Analysis Group (MEPAG) completed a review of potential habitable regions on Mars with a 

view to identify those regions of the planet that should be granted a higher planetary 

protection protocol than is currently in use (Rummel et al., 2014).  Areas they recommend be 

avoided due to the risk of contamination by/propagation of bacteria brought from Earth 

include the Recurring Slope Lineae (RSL) that are postulated to be the result of liquid water 

(McEwen et al., 2011) and large fresh impact craters that may house active hydrothermal 

systems (although none are currently believed to be in this state at the time of writing). 

2.4.2: Hydrothermal activity on Mars 

Evidence of hydrothermal activity on Mars is important from an astrobiological perspective as 

a hydrothermally active environment is a habitable one, providing both heat and a source of 

liquid water (Cousins and Crawford, 2011; Fairén et al., 2005; Schulze-Makuch et al., 2007).  

Low-temperature hydrothermal environments in particular are also likely to preserve any 

organics or biofabrics that may form, opening up the possibility of detecting past life 

(Summons et al., 2011).  Ground-based investigations by the Mars Exploration Rovers have 

revealed mineralogical evidence of potential hydrothermally altered impact breccias in the 

Meridiani Planum (Arvidson et al., 2014; Squyres et al., 2012) in addition to high 

concentrations of hydrothermally generated opaline silica (Squyres et al., 2008) and 

assemblages of temperature dependent aqueously altered iron-rich rocks and soils (Morris et 

al., 2008; Schmidt et al., 2009) in the Gusev Crater. Orbital data has surveyed far greater 

swaths of the Martian surface than the rovers and also found evidence of hydrothermal 

activity.  Some of this evidence is again mineralogical; in Nili Patera mounds of hydrated silica 

have been attributed to hydrothermal activity (Skok et al., 2010) and phyllosilicate and 

carbonate bearing assemblages in the coincident Nili Fossae region have been interpreted as 

the result of low-temperature hydrothermal activity (Brown et al., 2010; Ehlmann et al., 

2011b; Viviano et al., 2013).  Evidence from CRISM data of the presence of chlorite, 

serpentine, talc and prehnite in the Tyrrhena Terra region close to the Nili Fossae, have been 

interpreted as evidence of historical hydrothermal alteration (Viviano-Beck, 2015). CRISM 
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images covering the proposed potential MSL rover and ExoMars rover landing region of 

Mawrth Vallis show outcrops of smectite overlain with hydrated silica and phyllosilicates; 

McKeown et al. (2013) have used this evidence to suggest a complex aqueous environmental 

history for this region including periods of hydrothermal activity. 

The coverage of Mars by high resolution spectral and spatial imagers is low, with lower 

resolution thermal spectrometers and medium resolution cameras providing data over much 

larger swaths of the surface.  These datasets have enabled researchers to postulate 

numerous other locations of potential hydrothermal activity based on structural rather than 

mineralogical evidence.  Hydrothermal systems can form when there is an interaction 

between volcanism and ice, e.g. at a subglacial volcano.  Such interactions can leave behind 

distinctive landforms that on Mars may remain long after the ice has disappeared.  The 

Tharsis region is home to a number of volcanoes which show evidence of historical ice activity 

and potential hydrothermal alteration.  Kadish et al (2008) used THEMIS data in conjunction 

with HiRISE and other datasets to investigate the deposits on the north-west flank of 

Ascraeus Mons and conclude that they are indicative of volcano-ice interaction.  Geological 

maps of the late Amazonian Arsia Mons volcano created using CTX and HRSC images show 

evidence of glacial activity and deposits that likely formed as a result of volcano-ice 

interaction (Scanlon et al., 2015, 2014).  Ceraunius Tholus shows evidence of having once 

been crowned with a snowpack and caldera lake that melted to form the fluvial erosion 

features seen in MOLA and HRSC data running down the flanks of the volcano (Fassett and 

Head III, 2007).  Hecates Tholus, a volcano in the Elysium province, shows evidence of 

comparatively recent glacial activity (Hauber et al., 2005; Neukum et al., 2004) and loose 

sediments at the base of the cone that could be the result of an ongoing mud eruption (Kangi, 

2007), providing the necessary heat and water to create a transient hydrothermal system.  

The Cerberus Fossae are a series of fissures within the Elysium Planitia near the equator of 

Mars.  Athabasca Valles is an outflow channel series located nearby and thought to have 

been created in a related event (Head III et al., 2003).  This feature was considered as a 

potential MER landing site and as such many studies were conducted investigating the 

structure, composition and possible formation histories.  It is one of the martian regions 

where periglacial structures have been tentatively identified in the form of pingos and 

rootless cones (Balme et al., 2009; Burr et al., 2005).  These, together with the suggested 

rifting responsible for the formation of the Cerberus Fossae, imply subglacial hydrothermal 

activity.  The Aromatum Chaos is a small region of chaotic collapsed ground from which the 

Ravi Vallis emerges (Coleman, 2005).  The morphology of this area suggests it formed due to 
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melting of the underlying cryosphere due to volcanic activity (Leask et al., 2006), more 

specifically a dike intrusion creating a hydrothermal system through melting of permafrost 

(Craft et al., 2015), however there have been no high resolution VNIR spectroscopic studies 

performed to provide mineralogical evidence of this or any associated hydrothermal activity.   

The advent of the HiRISE instrument has allowed for small scale topographic features to be 

identified across Mars that may be the result of volcano-ice interaction.  Keszthelyi et al 

(2010) searched through the first year of HiRISE imagery to produce a catalogue of such 

features including rootless cones in Athabasca Valles and Cerberus Palus, pingos in Utopia 

Planitia and lahars on the flanks of Elysium Mons.   

Hydrothermal systems are not always the result of internal planetary processes, they can also 

form as the result of impact processes (Osinski et al., 2013).   The composition of the nakhlite 

martian meteorites points to a short-lived impact generated hydrothermal brine (Bridges and 

Schwenzer, 2012) providing mineralogical evidence for these hydrothermal systems.  A 

prominent Martian example of an impact crater showing spectral and morphological 

evidence of impact induced hydrothermal activity is Toro Crater (Marzo et al., 2010) on the 

northern edge of the Syrtis Major Volcanic Plains.   

 

 

Figure 2.3: Regions of Mars identified as being previously hydrothermally active.  See 

references in text for discussion of the evidence for each identified region. 
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2.5: Comparative planetology and analogue sites for Mars 

Interpretation of mineralogical and structural data from Mars to extract its evolutionary 

history relies heavily on our understanding of regions and formations with similar 

characteristics here on Earth: as a result the discovery and investigation of regions on the 

Earth that can serve as specific Mars analogues is crucial to Mars research.  Analogues can be 

picked for a number of different criteria.  Widely used general regions include the Atacama 

Desert in Chile, used for its geochemical similarities and arid climate (Navarro-González et al., 

2003; Wierzchos et al., 2013), Svalbard in the Arctic circle for its volcanic terrain (Treiman et 

al., 2002; Ulrich et al., 2011), the Dry Valleys in Antarctica for mineralogy and cold, arid 

climate (Bishop et al., 2012; Marchant and Head III, 2007) and the Mojave desert in the USA 

specifically for rover testing due to its morphological surface properties (Jolliff et al., 2002; 

Tunstel et al., 2002).  A recent ESA commissioned catalogue gives details of these and many 

other analogue sites including practicalities and references to key pieces of research 

performed in each region (Preston et al., 2013).  Analogue sites are particularly important for 

aiding the interpretation of remote sensing image data from Mars.  They provide us with 

information regarding the size and scale of specific environments that can be characterised 

by certain sets of minerals and what these mineral suites may be. 

 

Figure 2.4: Locations used as analogues to Mars.  The blue stars represent general analogue 

locations (Mojave desert in the USA, the Atacama desert in Chile, Haughton impact crater in 

the Arctic circle, the Dry Valleys in Antarctica and the Moroccan desert) and the white stars 

represent specifically hydrothermal analogues (Hawaii, Niciragua, the Pilbara Craton in 

Australia, Svalbard, Vargeão impact crater in southern Brazil, British Columbia and Iceland). 
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2.5.1: Earth analogues for hydrothermal systems on Mars 

Hydrothermal systems on the Earth occur in submarine, subaerial and subglacial volcanic 

environments (see (Pirajno and van Kranendonk, 2005) for review of hydrothermal systems 

on Earth) as well as in impact structures.  All of these types of hydrothermal systems provide 

potential analogues for martian paleoenvironments.  The mineral depositions associated with 

hydrothermal systems can tell us much about the nature of the system even if it is no longer 

active.  Of particular interest are systems where argillic alteration takes place.  Hydrothermal 

products include alteration haloes around active vents, fumaroles, and springs, as well as the 

deposition of mineral ores.  From the point of view of remote sensing instruments, the 

alteration haloes are more important as they lie on the surface whilst the potentially large 

ore deposits tend to be buried.  From an astrobiological analogue viewpoint epithermal 

systems are preferable to high-temperature hydrothermal environments.  Hydrothermally 

altered terrains on Earth have economic implications, and as such the detection and 

characterisation of them from aerial and satellite data is well documented (Crósta et al., 

2003, 1998; Huntington, 1996; Sabins, 1999; Yang et al., 1999).    

 

Hydrothermal analogue regions investigated specifically with respect to Mars and their likely 

detection with the technologies currently exploring Mars include volcanic islands and volcanic 

arcs in a variety of climates.  In-situ spectroscopy studies have been carried out in Nicaragua 

at the Cerro Negro, Momotombo and Telica volcanoes by Marcucci et al (2013).  These 

particular sites are analogues for small-scale, acidic-steam driven hydrothermal alteration, 

with a similar underlying basaltic composition to reported volcanic terrains on Mars (Morris 

et al., 1990).  A range of acid-sulfate minerals, phyllosilicates and hydrated silica phases were 

identified using VNIR spectroscopy.  This result demonstrated that all three can form together 

as part of the same hydrothermal environment, and that VNIR spectroscopy is capable of 

identifying them as a suite.  The Pilbara Craton in Western Australia contains some of the 

oldest rock formations in the world and has been used as a Mars analogue for various 

structural types (West et al., 2010) including flood lava basalts that make up much of the 

ancient Martian terrain (Brown et al., 2004).  Its age makes it especially compelling to 

astrobiologists looking to develop methods for identifying signs of early life on Mars 

(Philippot et al., 2009; van Kranendonk, 2006).  The North Pole Dome region within Pilbara 

Craton is home to numerous veins of epithermal alteration products that Brown et al (2005) 

investigated using airborne VNIR hyperspectral instrumentation.  Several alteration zones and 

veins were identified within 5 m/pixel data and dominant minerals identified including 

chlorite, serpentine and muscovite.  These results were compared to ground-truth samples 
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and found to agree.  However, all of the sub-regions investigated contained a greater variety 

of minerals than were identified from the aerial data alone, demonstrating one of the major 

limitations of remotely sensed data, namely the disparity that can exist between the spatial 

resolution of the remotely sensed data and the distribution of the minerals on the ground.  

The volcanic island chain of Hawaii has also been studied extensively as a geochemical and 

mineralogical analogue for a once active Mars.  The islands of Hawaii are all volcanic, the 

product of a hotspot under the Pacific Ocean.  As a result they are made of basaltic lavas and 

the soils that form from them comprise of basaltic minerals and their alteration products, 

namely silicate clays, oxides and volcanic ash (Morris et al., 1990).  Numerous laboratory 

based studies have focused on the alteration of basaltic tephra and the analysis of the 

Hawaiian soil using various instruments that have or will be included on Mars rovers and 

landers including VNIR, Mid Infrared (MIR), X-Ray Diffraction (XRD), and Raman and 

Mossbauer spectroscopy (Bishop et al., 2007; Hamilton et al., 2008).   Hamilton et al. (2008) 

investigated a series of altered basaltic tephras from Mauna Kea using VNIR and MIR 

spectroscopy concluding that the key absorption features easily allow differentiation 

between altered and unaltered samples.  In addition the specific type of alteration, 

hydrothermal alteration under acid-sulfate conditions, was deducible from the presence of 

jarosite and alunite.  The Vargeão impact crater in southern Brazil is one of the few impact 

structures on the Earth suitable for use as a martian analogue.  Yokoyama et al. (2015) 

identified evidence of an impact induced hydrothermal system at this crater and 

demonstrated that the mineral assemblages formed were discernible using laboratory-based 

VNIR imaging spectroscopy on collected samples.  Field based identification using imaging 

spectroscopy was not attempted. 

 

Subglacial hydrothermal environments are the result of volcanic activity beneath a glacier.  

They are especially relevant as a Mars analogue type with the surface of Mars bearing many 

signs of both volcanism and glaciation, often in the same area (Cousins et al., 2013).  Here on 

Earth there are widespread examples of subglacial volcanism, predominantly near the poles 

in Antarctica (Smellie and Skilling, 1994), British Columbia (Edwards et al., 2002) and Iceland 

(Cousins and Crawford, 2011; Cousins et al., 2013; Warner and Farmer, 2010).  Iceland in 

particular has attracted the focus of the Mars and Astrobiology research communities due to 

its relatively recently emplaced volcanic basalts, sparse vegetation and surface waters and 

glaciation; an environment thought to be similar to Noachian Mars (Ehlmann et al., 2011a).  

Ehlmann et al (2012) studied a suite of neutral to alkaline hydrothermally altered basalts 

using laboratory techniques including XRD analysis and VNIR and TIR (Thermal Infrared) 
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spectroscopy.  Cousins et al (2013) performed in-situ field analysis of waters and mineral 

alteration products in freshly exposed subglacial hot springs and their immediate 

surroundings using VNIR spectroscopy (400 – 1000 nm).  Field spectroscopy was found to be 

a useful component in identifying and characterising this type of environment but the limited 

wavelength range available was a problem.  Many of the minerals identified in later 

laboratory analysis have their diagnostic spectral features further into the infrared making a 

400 - 2500 nm spectrometer the far preferable instrument for in-situ identification.   

2.5.2: Field trials of Mars rover instruments in analogue sites 

Analogue sites are also key to the development of new exploratory instruments, in particular 

instruments that will form part of the payload of a rover or lander.  A major aspect of the 

development of any piece of new rover, as a whole and as individual instruments, is field 

testing and analogue sites are the ideal locations for this.  Prior to sending a rover to Mars 

each instrument in its payload is tested both individually and as a composite system, in the 

laboratory and in field tests designed to simulate the conditions it will experience on Mars.  

Over the course of 1999 to 2001 researchers working on the MER rover design and 

development performed a number of field tests.  These involved prototypes of specific 

instruments and were designed to test different aspects of the mission using a prototype 

rover named FIDO (Schenker et al., 2001).  Field tests using FIDO were undertaken at Silver 

Lake, California in 1999, Black Rock Summit, Nevada in 2000 and Soda Mountains, California 

in 2001.  The Marsokhod field test in 1999 at Silver Lake focused on field spectroscopy using a 

three band (650, 740, 855 nm) Pancam simulator and a hyperspectral Analytical Spectral 

Devices (ASD) FieldspecFR spectrometer with a spectral range of 350 – 2500 nm (Johnson et 

al., 2001).  Newsom et al (2001) used the 1999 field trial specifically to see if the rover and 

field spectroscopy could be used to detect signs of life.  One of the samples analysed had a 

clear chlorophyll signature that was found to be due to a layer of endolithic bacteria just 

beneath the surface of the rock in question.  The ASD spectrometer was capable of picking 

this up and the Pancam was useful in identifying the rock as worthy of further study due to a 

greenish tinge that was evident in the composite RGB image created from its three band 

data.  The 2000 Black Rock test used the same three band Pancam simulator as well as an 

Infrared Point Spectrometer (IPS) covering 1.3 - 2.5 µm (Arvidson et al., 2002).  Curiously this 

IPS is nothing like any of the instruments that were planned initially or finally to go on the 

MER’s although it shares many similarities to the Infrared Spectrometer for ExoMars (ISEM) 

that will form part of the ExoMars payload (Korablev et al., 2014).  The final MER Pancam 

configuration was subject to extensive laboratory testing as detailed in Bell et al (2003) and 
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underwent a number of in-house field tests that have not been published.   The ExoMars 

PanCam has been involved in a number of analogue field trails most extensively as part of the 

Arctic Mars Analogue Svalbard Expedition (AMASE) series of campaigns to Svalbard 

(Amundsen et al., 2010; Cousins et al., 2009; Schmitz et al., 2008; Steele et al., 2010).  The 

AMASE field trials have also included numerous instruments from the MER and MSL scientific 

payloads. 

2.6: Summary 
VNIR reflectance spectroscopy is a well-established, non-destructive technique for the 

identification of minerals.  Multi- and hyperspectral imaging spectrometers enable this 

identification to be undertaken from potentially great distances.  This has made them 

invaluable instruments in the continued exploration of Mars.  Regions of Earth that share 

similar properties to regions of Mars over the course of its lifetime have been utilised to 

ensure the spectral imaging data returned from Mars is being correctly interpreted.  One of 

the key driving forces behind the exploration of Mars is the identification of previously 

habitable environments, the first step in the search for extra-terrestrial life.  Hydrothermal 

environments are suitable and relevant candidates for habitable environments.  VNIR 

spectroscopy has been shown to be capable of identifying such an environment and 

numerous regions of Mars have been postulated to have hosted hydrothermal environments 

in the planets history.   

The following chapters will expand on the use of specific VNIR imaging technologies to 

identify hydrothermally altered regions and investigate the limitations both spectral and 

spatial scale can inflict on this task. 

 

 

 

 

 

 

 

 



38 
 

Chapter 3: ExoMars PanCam and hydrothermal alteration in 

Iceland* 

3.1: Introduction 

This chapter shall begin with the finest spatial and coarsest spectral scales dealt with in this 

thesis.  The ExoMars rover will carry a large suite of instruments when it is sent to Mars in 

2018, one of which is the PanCam, a stereoscopic, VNIR multispectral camera system.  The 

PanCam will be the ‘eyes’ of the rover enabling its operators and scientists to make 

deductions about the environments and minerals it will encounter and plan the most efficient 

and salient deployment of the rovers contact instruments, in particular the drill which will 

collect subsurface samples to be passed to the analytical payload for examination for signs of 

habitability and life.  The role of PanCam is thus a crucial one and it is imperative to establish 

that it is capable of providing the necessary data that will allow the rover operators to 

correctly identify potentially habitable environments and the ideal drill deployment location.  

This chapter shall detail the results of a unique field trial of an ExoMars PanCam emulator in 

Námafjall, a hydrothermally active region in the north-east of Iceland.  Whilst Námafjall is not 

a direct analogue for any of the final four candidate ExoMars landing sites it is a region with a 

rich diversity of relevant alteration species (Ehlmann et al., 2012).  The spectral accuracy of 

the multispectral data shall be validated; the utility of the data products produced to 

positively identify the environment established, and key analysis techniques identified in 

preparation for data that shall ultimately be returned from Mars. 

3.2: Background 

3.2.1: PanCam and ground-based spectral imagers on Mars 

The ExoMars PanCam concept is inherited from previous cameras included on numerous 

martian rovers, most recently both of the Mars Exploration Rovers (MER) - Spirit and 

Opportunity (Bell III et al., 2003).  The MER Panoramic Camera system (Pancam) is a 

multispectral, stereoscopic dual camera system designed to provide images that would allow 

the rover operators to assess the topography and geological context of the regions they were 

traversing as well as provide multispectral data to deduce mineralogical properties of the 

surface.  The basic concept of this instrument was based on the earlier Imager for Mars 

Pathfinder (IMP) that had been a component of the Mars Pathfinder lander (Smith et al., 
                                                           
* The bulk of this Chapter including all images has been published as Harris, J.K., Cousins, C. R., Gunn, 
M., Grindrod, P. M., Barnes, D., Crawford, I., Cross, R. E., Coates, I. A., Remote detection of past 
habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars PanCam emulator. 
2015, Icarus, 252, 284-300  
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1997).  The most recent NASA mission, the Mars Science Laboratory rover Curiosity has a 

similar instrument in the form of the MastCam (Grotzinger et al., 2012).  The unsuccessful 

ESA Beagle 2 lander was also equipped with a PanCam based on the earlier IMP and MER 

Pancams (Griffiths et al., 2005).  The ExoMars rover PanCam build directly on the Beagle 2 

PanCam heritage (Griffiths et al., 2006).   

 

 

Figure 3.1: PanCam narrowband geology filter wavelengths and bandpass widths at FWHM 

from recent Mars landers and rovers.   

 

The MER Pancam, the IMP and the ExoMars PanCam are all comprised of two identical wide 

angle cameras on either end of an optical bench.  In front of each camera in these three 

systems is a filter wheel with a selection of filters including three broadband visible filters to 

enable the construction of RGB images, and narrowband filters to build coarse spectra 

covering approximately 0.4 – 1.0 µm.  The Mastcam system is slightly different with each of 

the two cameras having a different angular field-of-view (FoV) from each other and a Bayer 

filter for RGB images as well as a filter wheel containing narrowband filters.  One of the key 

differences between the various Pancam-type imaging systems is the exact central 

wavelengths and band widths of these narrowband filters and how many there are (figure 3.1 

and table 3.1).  Each of the missions to feature a Pancam-type system has had slightly 

different mission goals and subsequently slightly different requirements from their 

multispectral imager.  MER Spirit and Opportunity were primarily focused on characterising 

the Fe-bearing rocks and soils in the regions they were exploring.  MSL Curiosity is aiming to 

assess the past and present habitability of Gale crater where orbital data points towards the 



40 
 

presence of large quantities of liquid water in its history (Grotzinger et al., 2012).  ExoMars 

however will be even more life focused with goals including actively searching for signs of 

past or present life and assessing the variety within the geochemical environment of its 

landing site (Griffiths et al., 2006).  Cousins et al (2012) conducted a thorough study of the 

different mineral types likely to be found by the rover based on these mission goals and as a 

result proposed a new filter set designed to optimise the variety of mineral types identifiable 

with ExoMars PanCam.  The field trial presented in this Chapter is the first trial of this new 

filter set. 

 

Table 3.1: PanCam geology filter wavelengths and bandpass widths (given as Full Width Half 

Maximum (FWHM)) from recent Mars landers and rovers.  

Pathfinder MER Beagle 2 

Filter (nm) FWHM Filter (nm) FWHM Filter (nm) FWHM 

443 6 432 32 440 22 

479 27 482 30 480 28 

530 30 535 20 530 32 

599 21 601 17 600 21 

671 20 673 16 670 17 

752 19 753 20 750 18 

801 21 803 20 800 20 

858 34 864 17 860 34 

897 41 904 26 900 42 

931 27 934 25 930 32 

966 30 1009 38 965 29 

1002 29   1000 28 

MSL ExoMars (FERRIC) AUPE-2 

Filter (nm) FWHM Filter (nm) FWHM Filter (nm) FWHM 

440 25 440 25 438 24 

525 20 500 20 500 24 

675 20 530 15 532 10 

750 20 570 12 568 10 

800 20 610 10 610 10 

865 20 670 12 671 10 

905 25 740 15 740 13 
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935 25 780 20 780 10 

1035 100 840 25 832 37 

  900 30 900 50 

  950 50 950 50 

  1000 50 1000 50 

 

Final flight ready versions of rover instruments cannot be used in the field here on the Earth.  

Therefore in order to test the configuration of the ExoMars PanCam and ensure the data that 

will be returned are capable of meeting the instrument science goals an emulator is used to 

conduct field trials in Mars analogue sites (see Chapter 2 section 2.5.2 for further details of 

field trials of previous Mars rover cameras and spectrometers).  The Aberystwyth University 

PanCam Emulator (AUPE-2) is a dedicated ExoMars PanCam emulator that has been 

constructed with commercial off-the-shelf cameras to replicate (as closely as possible) the 

data sets that will be acquired from the ExoMars PanCam.  It comprises of two wide angle (39 

x 33°) cameras (WACs) placed 50 cm apart along an optical bench, which in turn is fixed to a 

pan-tilt unit (Pugh et al., 2012). In front of each WAC is a filter wheel with 11 filter positions.  

Both filter wheels contain three broadband colour filters centred at 660 nm, 550 nm and 460 

nm, a luminance filter covering the visible region of the spectrum and an empty filter slot for 

panchromatic imaging.  Split evenly between the two WAC filter wheels and filling the 

remaining filter positions are 12 narrowband ‘geology’ filters spanning 440 - 1000 nm (see 

table 3.2 for filter centre wavelengths and bandwidths). The filters are all hard coated 

interference filters comprised of thin film stacks on glass substrates.  In addition to the WACs, 

a high resolution camera (HRC) with a FoV ~ 5° is mounted in the centre of the optical bench, 

which provides close-up high resolution images of targets within the WAC FoV, consistent 

with the ExoMars PanCam (Coates et al., 2012).  The HRC used in AUPE-2 provides only 

greyscale images unlike the ExoMars HRC that will provide colour images. 
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Table 3.2: Technical specifications of the current configuration of the ExoMars PanCam and 

the Aberystwyth University PanCam Emulator (AUPE-2). WAC filter bandpasses are given as 

Full Width Half Maximum (FWHM) values. 

  AUPE-2 (Gunn, 2013) ExoMars Panoramic Camera 

Wide Angle Cameras (WAC) 

Model Manta G-504B WAC 

Image type Mono (8-12 bit) Mono (10 bit) 

Sensor Sony ICX655 Cypress STAR 1000 APS 

Field of view 39° x 33° 38.3 x 38.3 (h x v)° 

Focal length 12 mm 21.85 mm 

Image resolution 1024 x 1024 1024 x 1024 

Aperture f/11 f/10 

Toe-In (cross over distance) 2.8° (5 m) 2.8° (5 m) 

WAC Filter Wheels and their centre wavelengths and FWHM bandwidthsa, b 

LWAC - Geology 1 438 (24) 440  (25) 

LWAC - Geology 2 500 (24) 500 (20) 

LWAC - Geology 3 532 (10) 530 (15) 

LWAC - Geology 4 568 (10) 570 (12) 

LWAC - Geology 5 610 (10) 610 (10) 

LWAC - Geology 6 671 (10) 670 (12) 

RWAC - Geology 1 740 (13) 740 (15) 

RWAC - Geology 2 780 (10) 780 (20) 

RWAC - Geology 3 832 (37) 840 (25) 

RWAC - Geology 4 900 (50) 900 (30) 

RWAC - Geology 5 950 (50) 950 (50) 

RWAC - Geology 6 1000 (50) 1000 (50) 

LWAC – Blue broadband 440 (120) 440 (120) 

LWAC – Green broadband 540 (80) 540 (80) 

LWAC – Red broadband 640 (100) 640 (100) 

RWAC – Blue broadband 440 (120) 440 (120) 

RWAC – Green broadband 540 (80) 540 (80) 

RWAC – Red broadband 640 (100) 640 (100) 

LWAC 545 (290) - Visible 925 (5) – Solar 

LWAC Empty – Panchromatic 935 (5) – Solar 
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RWAC 545 (290) – Visible 450 (5) – Solar 

RWAC Empty - Panchromatic 670 (5) – Solar 

High Resolution Camera 

Model Mantra G-146B HRC 

Image type Mono (8-12 bit) Mono (10 bit) 

Sensor Sony ICX267AL Cypress STAR 1000 APS 

Field of view  4.8°  4.8° 

Focal length 58 mm 180 mm 

Resolution 1024 x 1024 1024 x 1024 

Aperture f/11 f/14.4-20 

aFinal distribution and position of filters not yet determined. All filter centre wavelengths and 

bandpasses (in brackets) given in nm, with bandpasses at Full Width Half Maximum. 

bGeology filter centre wavelengths and bandpasses from Cousins et al. (2012). 

 

3.2.2: Námafjall and Iceland as a Mars analogue site 

Hydrothermal and glaciovolcanic terrains have been postulated to exist across Mars 

throughout its history (Keszthelyi et al., 2010; Schulze-Makuch et al., 2007) and are known to 

exist here on Earth where they provide a habitat for number of different extremophile 

species (Cousins et al., 2013).  Hydrothermally altered environments tend to be comprised of 

a wide variety of mineral assemblages, and with especial relevance to PanCam many of these 

mineral groupings have key spectral features in the 400 – 1000 nm wavelength range 

(Cousins et al., 2012).  Iceland with its cold climate and active volcanic and geothermal 

systems provides an ideal analogue location for testing the ability of PanCam to identify 

hydrothermally altered environments (Ehlmann et al., 2012). 
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Figure 3.2: Localities used for field-testing the ExoMars PanCam emulator “AUPE-2”. a)  

Volcaniclastic ridge where sites A04_Tuff, A07_Pillow, and A08_Vein are located, as viewed 

from site A06_Soils; b) Altered Holocene subaerial basaltic lava flows where site A06_Soils is 

located (as viewed from the summit of the ridge in (a); c) Map of Iceland showing the location 

of Námafjall within the northern volcanic zone - map inset shows the location of the Námafjall 

geothermal area; d) Colour composite sections of NERC ARSF Eagle swath data with all 4 sites 

shown (see Chapter 5, section 5.6.1  for full explanation of the NERC ARSF imagery). 

 

AUPE-2 was deployed in Námafjall, a geothermal region in the northeast of Iceland, (figure 

3.2) between 27/06/13 and 03/07/13.  Námafjall forms part of a graben within the active 

rifting zone of Iceland together with the nearby Krafla volcano.  The area is characterised by 

basaltic Pleistocene and Hologene subaerial lava flows (Thordarson and Hoskuldsson, 2002) 

and subglacially-erupted volcaniclastic deposits and pillow lavas.  The prominent Mt. 

Námafjall is comprised of a glaciovolcanic hyaloclastite ridge (Gudmundsson et al., 2010).  

Aqueous alteration of basaltic substrates in this region has produced discrete patches of 

diverse alteration mineral assemblages, including sulfate-phyllosilicate-ferric oxide rich soils 

and gypsum veins.  The region is still geothermally active with the majority of the fields being 

high temperature, high sulfur and acidic pH (Gudmundsson and Arnórsson, 2005).  Such a site 
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is an ideal Mars analogue site in terms of its formational history and mineralogy (Preston et 

al., 2013).  The primary aim of this field campaign was to test the ability of AUPE-2 to: i) 

detect the type and variety of mineral deposits produced in this environment and ii) compare 

the multispectral data products generated with the new filter set (Cousins et al., 2012) with a 

field spectrometer to ensure their fidelity.  Four different target areas were selected to 

capture the variety of structural and geochemical features that typify this type of 

environment (figures 3.2 and 3.3).  Three sites were along the top of a glaciovolcanic móberg 

ridge: A04_Tuff (65°38’42’’N, 16°49’01’’W), a collapsed series of hydrovolcanic sediment 

layers; A07_Pillow (65°38’24’’N, 16°49’15’’W), a weathered outcrop of subglacial pillow 

basalts, and A08_Vein (65°38’27’’N, 16°49’13’’W), a heavily altered series of geothermal soils 

surrounding a number of intrusive gypsum veins.  The fourth site, A06_Soils (65°38’15’’N, 

16°48’21’’W) was situated on a flat plain beneath the ridge and comprises a number of 

mostly inactive low mounds of semi-consolidated geothermally altered soils. 

 

 

Figure 3.3: Field photographs showing target sites. a) A04_Tuff with similar structure in the 

top right. b) A06_Soils (box, middle left) with surrounding similar soils and low mounds. c) 

A07_Pillow, the calibration target in this photo is not in the same position as figure 3.7, that 

region of the image is the front section of the pillow formation as highlighted.  d) A08_Vein 

showing exposed nature of target. Black boxes indicate approximately the regions imaged by 

AUPE-2 in figures 3.5 (3.3a), 3.6 (3.3b), 3.7 (3.3c) and 3.8 (3.3d). 
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3.3: Data collection and processing 

3.3.1: AUPE-2 

AUPE-2 was deployed in-situ at field localities, and a calibrated Macbeth ColorChecker© 

classic colour chart (X-rite) was included in one WAC image from each scene panorama to 

enable radiometric calibration of the AUPE-2 multispectral image data.  All distances between 

AUPE-2 and outcrops were measured from the centre of the AUPE-2 optical bench to the 

centre of the calibration target (table 3.4).  For all data acquisition, the AUPE-2 optical bench 

was positioned 2 m above the ground, consistent with the ExoMars rover configuration.   

AUPE-2 data were collected between 10:30 and 14:40 local time under uniform grey skies to 

minimise the atmospheric column the sunlight passed through and ensure consistent 

illumination during each dataset whilst eliminating the risk of specular reflections.  The 

incidence and emission angles for each target region are highly dependent on local 

topography and vary within each scene.  These conditions were largely dictated by the time 

and weather constraints inherent to fieldwork in Iceland but are also comparable to the use 

of MER Pancam on Mars (Farrand et al., 2007).  ExoMars PanCam operations are still to be 

finalised but will be similar to those used in this work and by the MER Pancam team. 

 

AUPE-2 multispectral data were processed using Exelis Visual Information Solutions ENVI 4.8  

and IDL software (Exelis Visual Information Solutions, Boulder, Colorado) into relative 

reflectance calibrated image cubes following the calibration pipeline presented in Barnes et 

al., (2011), two cubes for each frame, one for each WAC.  This pipeline encompassed flat-

fielding, dark frame subtraction, removal of detector bias and the calculation of relative 

reflectance calibration factors from the in-scene Macbeth ColorChecker© (see Appendix I for 

full pipeline and associated IDL code written to facilitate the processing used in this work).  

These final image cubes give R* values, where R* is defined by Reid et al., (1999) as "the 

brightness of the surface divided by the brightness of an RT [Radiometric Calibration Target] 

scaled to its equivalent Lambert reflectance."  Region of Interest (ROI) spectra were extracted 

from these processed cubes using ENVI version 4.8.  ROI footprints ranged in size from 20 

(A04_Tuff), 40 (A06_Soils; A08_Vein) to 160 (A07_Pillow) pixels.  Mean spectra were 

calculated over each ROI to be plotted with error bars representing the standard deviation 

over the pixels within each ROI.  Footprint pixel sizes varied depending on the scale of 

variation in the scene and the distance of AUPE-2 from the target but all correspond to spatial 

footprints of approximately 1 cm radius.  Principal Components Analysis (PCA) was performed 
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on the ROI AUPE-2 spectra taken from the four sites (n=20).  Additionally PCA images were 

generating using the PCA tool resident in ENVI version 4.8 for each site.   

3.3.2: Ocean Optics Jaz Spectrometer 

Immediately following imaging of outcrop targets with AUPE-2, corresponding 400 – 1000 nm 

reflectance spectra of ROIs were acquired using an Ocean Optics Jaz portable spectrometer. 

The Jaz spectrometer is a folded path diffractive grating spectrometer capable of detection of 

light in the range 370 – 1030 nm.  An order sorting filter is integrated into the system to block 

higher grating orders. The Jaz was used with an ISP-REF integrating sphere contact probe 

(used in 8° incident/total hemispherical reflectance geometry) with an internal light source 

and a 10 mm diameter sample port.  In the field the spectrometer was allowed to warm up 

for a minimum of five minutes to ensure the spectral stability of the light source.  Prior to 

each target measurement a dark current spectrum was taken by completely covering the 

probe aperture using a spectrally flat, black surface and ensuring no external light could 

enter.  Following this a white spectrum was taken using a block of Spectralon©, a standard 

calibrated surface designed to be both spectrally flat and 100% reflective across this 

wavelength range.  These were used to calibrate the signal prior to target measurement.  

These dark and white spectra were saved internally by the spectrometer software to 

radiometrically correct the target spectra but were then automatically discarded.  Target 

surfaces were chosen based on observable variability in the area to ensure the variety in the 

scene was captured.  In the case of soils the probe aperture was pressed into the surface to 

ensure no light leaking in from the sides.  For solid rock surfaces the flattest surface available 

was chosen and any sections that could leak in external light were blocked by hand.  The Jaz 

software internally averaged 10 spectra in real time for each measurement to minimise 

errors.  Each of these was automatically displayed on the operating laptop screen allowing 

any change in the target spectra to be monitored and if necessary the probe repositioned.  A 

minimum of three spectra were displayed on the screen before taking a measurement to 

ensure the signal had stabilised. 

3.3.3: X-Ray Diffraction and laboratory VNIR spectroscopy of rock and soil samples 

Rock and soil samples were retrieved immediately following a field spectrometer 

measurement from each ROI target for all outcrops imaged with AUPE-2.  These were divided 

into two aliquots, one of which was powdered and sieved to < 210 µm and the other left in its 

original consolidated state.  The powdered samples were analysed using X-Ray Diffraction 

(XRD) to determine bulk mineralogical composition of ROI targets, while both the powdered 

and original samples were analysed using an ASD FieldSpec Pro spectrometer (spectral range 
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350 - 2500 nm with a spectral resolution of between 1.4 and 2 nm) at the Natural 

Environment Research Council Field Spectroscopy Facility (NERC FSF) at the University of 

Edinburgh using a contact probe attachment with a FoV radius of 10 mm.  The Fieldspec Pro 

in comprised internally of three spectrometers, a VNIR (350 – 1050 nm) diffraction grating 

spectrometer with a 512-channel silicon photodiode single detector array with an order 

separation filter overlain.  The two SWIR spectrometers (900 – 1850 nm and 1700 – 2500 nm 

respectively) are concave holographic grating scanning spectrometers with a single InGaAs 

detector each.  The scanner measures each wavelength sequentially rather than 

simultaneously as the VNIR spectrometer does.  The collection technique used for this 

instrument followed the instructions provided by the FSF (MacArthur, 2007).  The 

optimisation routine (internal instrument calibration) was run either between every 6th 

target/sample or every 30 minutes (whichever was shorter) and a white reference captured 

before each target measurement from a calibrated block of Spectralon©.  A minimum of two 

stable spectra displayed in real time were acquired before a target spectrum was captured to 

ensure a stabilised measurement.  The internal averaging was set to 50 measurements to 

ensure a reasonable signal to noise ratio. 

 XRD analysis was carried out as per Cousins et al., (2013, 2012) using a Bruker D8 Advance 

XRD with a Vantec 1 detector at Aberystwyth University, calibrated using a corundum 

standard.  For analysis of phyllosilicates, additional XRD analysis was conducted at Birkbeck, 

University of London using a Philips PW 1730 Diffractometer using Cu Kα radiation.  The 

powdered samples for this analysis were prepared using standard methods described by 

Merriman and Peacor, (1999) to ensure preferential orientation of the phyllosilicates.  This 

preparation involved mixing the existing sieved powders with distilled water and centrifuging 

prior to removal of excess liquid.  The resulting slurry was emplaced onto frosted glass slips 

and allowed to dry overnight prior to analysis.  In both cases, sample spectra were compared 

to database mineral spectra using the International Centre for Diffraction Data database, and 

the RRUFF database (Downs, 2006). 

3.3.4: Spectral Parameters 

Spectral parameters are algorithms that can be utilised to emphasise features indicative of 

key minerals, bulk composition, or lithology in spectral data.  These parameters are usually 

selected to pick up on a unique spectral feature that can be used to identify the mineralogical 

identity of the reflective surface of a particular target of interest.  These have been used to 

analyse MER Pancam data (Farrand et al., 2008, 2006) and form a major component in the 

standard analysis chain of CRISM data (Pelkey et al., 2007; Viviano-Beck et al., 2014).  For the 
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analysis of AUPE-2 data in this work a set of parameters has been created based on the work 

of Anderson and Bell (2013), Cousins et al. (2012) and Farrand et al. (2008) (table 3.3).  The 

algorithms for band depth and spectral ratio normalise the data allowing values from 

different instruments to be directly compared.  The spectral slope calculation does not 

normalise the data in this way and therefore spectral slope values from different instruments 

cannot be directly compared.  However, broad similarities should still be evident such as a 

negative or positive gradient.  Spectral Parameters were calculated across entire 

multi/hyperspectral images and the results plotted as false-colour images for analysis. 

3.3.5: Principal Components Analysis (PCA) 

Principal Components Analysis (PCA) is a data interrogation technique that emphasises the 

variance in highly correlated multivariate datasets and is commonly used in spectral and 

remote sensing studies (Campbell, 2006; Davis, 1986; Richards and Jia, 1999).  It involves an 

orthogonal transformation of linearly correlated data into a new coordinate frame where the 

greatest variance lies along the 1st coordinate (PC1), the 2nd greatest variance along the 2nd 

coordinate (PC2) etc.  This technique produces a visual representation of the level of spectral 

variability within a given dataset enabling the analyst to make a first pass at creating spectral 

classes.  PCA has been shown to be useful in the analysis of multispectral imagery in Farrand 

et al. (2008) using data from the MER Spirit Pancam.  It is used in this Chapter to assess the 

level of variance within regional datasets from AUPE-2, and investigate how well this 

correlates with the variance of the sites as defined using visual, compositional and 

environmental criteria. 
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Table 3.3: Spectral parameters designed for AUPE-2 WAC multispectral data 

Name Description Rationale/Related 

Characteristic 

BD532 Depth of absorption band centred at 532 

nm 

1-(R532/[(0.53*R500)+(0.47*R568)]) 

Identifies ferric minerals, in 

particular hematite and 

related to degree of oxidation 

S532-610 Slope between 532 and 610 nm 

(R610-R532)/(610-532) 

Ferric minerals and dust 

BD900 Depth of absorption band centred at 900 

nm 

1-(R900/[(0.455*R840)+(0.545*R950)]) 

Strength of NIR absorption, 

related to ferric minerals 

S740-1000 Slope between 740 and 1000 nm 

(R1000-R740)/(1000-740) 

Strength and position of NIR 

absorption linked to ferrous 

minerals 

S950-1000 Slope between 950 and 1000 nm 

(R1000-R950)/(1000-950) 

Linked to hydrated minerals 

R740/1000 740:1000 nm ratio 

R740/R1000 

Ferrous minerals 

R671/438 671:438 nm (red:blue) ratio 

R671/R438 

Ferric minerals and dust 

BD610 Depth of absorption band centred at 610 

nm 

1-(R610/[(0.600*R568)+(0.400*R671)]) 

Can indicate goethite 

development and be 

influenced by olivine vs 

pyroxene 

BD950 Depth of absorption band centred at 950 

nm 

1-(R950/[(0.500*R900)+(0.500*R1000)]) 

Related to hydrous minerals, 

some clays and silicates 

S438-671 Slope between 438 and 671 nm 

(R671-R438)/(671-438) 

Related to degree of oxidation 
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3.4: Results 

For each of the four sites analysed using AUPE-2 datasets were collected as summarised in 

table 3.4. 

 

Table 3.4: Summary of data collected in-situ 

Site AUPE dataset 

(# of images in 

panorama) 

Distance of 

tripod foot 

from 

calibration 

target 

Number of 

in-situ Jaz 

spectra 

Number of 

rock/soil 

samples 

Comment 

A04_Tuff 1 (4) 7.75 m - - Same area from 

different 

distance, ROI’s 

extracted from 

set 2 

2 (1) 3.30 m 5 4 

A06_Soils 1 (2) 0.60 m (1.56 m 

from PTU) 

6 6  

A07_Pillow 1 (1) 8.10 m - - Same area from 

different 

distance, ROI’s 

extracted from 

set 2 

2 (1) 2.10 m 4 4 

A08_Vein 1 (3) 2.90 m 5 6  

 

A summary of contextual mineralogical and spectral data for all site ROI units identified in the 

rock and soil samples is given in table 3.5.  Broadly, alteration and secondary minerals 

identified in the ASD laboratory VNIR spectra (figure 3.4) include hematite, goethite, 

nontronite, montmorillonite, gypsum, and sulfur. Ferrihydrite, maghemite, and various 

zeolites also appear as minor constituents.  Sample XRD analysis is consistent with the 

laboratory VNIR results, revealing alteration phases to include all the above, but also 

kaolinite, anatase, natrojarosite, trace calcite and quartz.  AUPE-2 data for each of the four 

sites is described and interpreted in the following sections. 
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Table 3.5: Summary of site ROIs, their mineralogy, and VNIR spectral features (also see figure 

3.4) 

 Unit  Bulk mineralogy (XRD, 

VNIR) 

VNIR reflectance absorption 

features (µm) 

A04_Tuff, 65°38’42’’N, 16O49’01’’W 

A04_001 Grey slab smectite, plagioclase, augite, 

kaolinite 

olivine, quartz 

0.48, 1.09 (broad), 1.41 (small) 

1.92, 2.20, 2.29 

A04_002 Alteration soil kaolinite, smectite, iron 

oxide, quartz, augite, 

plagioclase 

chabazite, montmorillonite, 

nontronite 

0.49, 0.65 (small), 0.96 (broad), 

1.42, 1.91, 2.21, 2.29, 2.39 

A04_003 Grey slab plagioclase, smectite, 

kaolinite, quartz 

olivine, quartz 

0.47, 0.65 (small), 1.07 (broad), 

1.41, 1.92, 2.21, 2.30 

A04_005 Alteration soil mordenite, alunite, 

nontronite, iron oxide 

nontronite, montmorillonite, 

ferrihydrite, goethite 

0.49, 0.65 (small), 0.963 (broad), 

1.42, 1.91, 2.21, 2.29, 2.39 

A06_Mound, 65°38’15’’N, 16°48’21’’W  

A06_001 Bright-toned 

unit 

sulfur, anatase  

nontronite, montmorillonite 

0.44, 0.97, 1.42, 1.77, 1.92, 2.22-

2.26 

A06_002 Bright-toned 

unit 

sulfur, zeolite  

sulfur 

0.40 (major), 0.92, 1.41, 1.91, 

2.22 

A06_003 Dark red unit hematite, natrojarosite, 

augite, sulfur (trace) 

hematite 

0.53, 0.90, 1.41, 1.47, 1.91, 2.21, 

2.27 

A06_004 Bright-toned 

unit 

sulfur, zeolite  

sulfur 

0.40 (major), 0.96 (broad), 1.42, 

1.91, 2.22 

A06_005 Dark red unit natrojarosite, sulfur, zeolite 

goethite, montmorillonite 

0.49, 0.93, 1.42, 1.47 (tiny), 

1.91, 2.22, 2.27, 2.47 

A06_006 Bright-toned 

unit 

sulfur 

nontronite, montmorillonite 

0.44, 0.48, 0.91, 1.16 (tiny), 

1.41, 1.77, 1.91, 2.22, 2.26, 2.47 
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A07_Pillow, 65°38’24’’N, 16°49’15’’W 

A07_001 High albedo 

nodule 

calcite, plagioclase, 

mordenite 

zeolite 

1.05, 1.42, 1.92, 2.21, 2.30, 2.40 

A07_002 Dark quench 

rind 

smectite, calcite, stilbite 

nontronite, chabazite 

0.49, 0.99, 1.43, 1.78, 1.92, 2.29, 

2.40 

A07_003 Pillow core 

interior 

plagioclase, smectite, 

stilbite, iron oxide 

nontronite 

0.42, 0.48 (minor), 0.65 (minor), 

1.02, 1.42, 1.92, 2.19, 2.30, 2.39 

A07_004 Pillow core 

interior 

plagioclase, smectite, 

stilbite, kaolinite  

nontronite 

0.42, 0.48, 0.60 (shoulder, 

minor), 1.03, 1.42, 1.78 (minor), 

1.92, 2.20, 2.30, 2.40 

A08_Veins, 65°38’27’’N, 16°49’13’’W 

A08_001 Dark red unit 

(mineral vein) 

gypsum  

gypsum 

0.42, 0.49, 1.19, 1.45, 1.49, 1.54, 

1.75, 1.95, 2.22, 2.27, 2.42 

A08_002 Dark red unit plagioclase, smectite, 

zeolite, iron oxide, opal-a 

goethite, nontronite 

0.49, 1.01, 1.43, 1.92, 2.21, 2.29, 

2.40 

A08_003 Brown soil hematite, gypsum, smectite 

hematite, gypsum 

0.54, 0.89, 1.45, 1.49, 1.54 (both 

minor), 1.75, 1.94, 2.21, 2.27, 

2.43 

A08_004 Brown soil hematite, alunite, gypsum, 

smectite, zeolite 

hematite, gypsum 

0.53, 0.90, 1.44, 1.77, 1.93, 2.21, 

2.46 

A08_005 Brown soil gypsum, hematite, smectite, 

zeolite 

gypsum, goethite 

0.52, 0.65, 0.91, 1.45, 1.49, 1.54, 

1.75, 1.94, 2.21, 2.27, 2.43 

A08_006 Peach soil Gypsum, zeolite, smectite, 

hematite 

gypsum, montmorillonite 
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Figure 3.4: Laboratory ASD VNIR reflectance spectra of AUPE-2 ROI target samples. Individual 

sample names follow the format ‘Site#_ROI#’. Absorption lines are shown for Fe crystal field 

bands, vibrational bands relating to H2O and O-H, and key absorption bands for gypsum, 

montmorillonite (mont.) and nontronite (non.). 

3.4.1: A04_Tuff 

This outcrop was imaged first from a distance of 7.75 m (figure 3.5a) as a 4 x 1 RGB 

panorama, followed by a single field of view (FoV) full multispectral image set from a distance 

of 3.3 m.  The outcrop and similar nearby deposits are comprised of layered, semi-competent 

circular collapse features ranging in size from 5 - 15 m in diameter, surrounded by 

unconsolidated geothermal soils (figure 3.5b).  The edges of these circular collapse features 

have weathered and fragmented along sedimentary bedding planes into slabs approximately 

10 – 80 cm across.  Near-horizontal bedding planes and individual slabs, are visible in the 

LWAC RGB colour mosaic (figure 3.5b).  This outcrop is less oxidised than the surrounding 



55 
 

soils, exhibiting a low-albedo, spectrally flat reflectance profile (ROIs A04_001 and A04_003, 

figure 3.5c) consistent with the grey surface colour of this lithology.  This differentiation is 

clearly emphasised in the narrowband red:blue ratio (R671/438) spectral parameter image 

(figure 3.5e), highlighting the steeper ferric absorption slope of the soils.  Spectrally, the site 

forms three distinct units (figures 3.5c and 3.5e): the sedimentary grey slab unit (ROIs 

A04_001 and A04_003), and two alteration soil units (A04_002 and A04_005) surrounding 

the grey slab unit.  Despite the homogenous visible colour of the alteration soils, they show a 

clear variation in the ratio between red and blue (R671/438), highlighting those regions with 

a higher proportion of ferric minerals.  In addition, the same R671/438 spectral parameter 

image further reveals the sedimentary layering in the grey slab unit, even in areas where the 

colour image shows only shadow (figure 3.5e).  

 

AUPE-2 R*spectra measured from ROIs A04_001 and A04_003 within the grey slab unit show 

a consistent match in spectral profile to the in-situ reflectance spectrometer data (figure 

3.5c).  The only deviation in reflectivity is seen at the 950 nm band, with the AUPE-2 R* 

spectra showing a sharp increase in reflectance at this wavelength.  Overall, the grey slab unit 

spectra have a low albedo and are flat and featureless in this wavelength range.  Conversely, 

ROIs A04_002 and A04_005 from the surrounding alteration soils both show an Fe3+ 

absorption in the NIR in both R* and in-situ reflectance spectra, suggesting the presence of 

iron-oxide mineral species or nanophase material.  These NIR absorptions in the R* spectra 

are not as broad as the in-situ reflectance measurements, beginning at the 832 nm filter 

rather than at 780 nm in the in-situ spectra.  The R* spectrum for ROI A04_005 also captures 

the red shoulder seen in the in-situ spectrum at 640 nm, although due to the difference in 

spectral resolution it is captured at the 671 nm filter.  Again the R* spectrum displays a 

negative slope between 950 nm and 1000 nm that is not seen in the corresponding 

reflectance spectral data.   
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Figure 3.5: AUPE-2 datasets for site A04_Tuff. a) LWAC colour panorama of the outcrop (top 

left) and the surrounding area, with the 21.5 x 28 cm ColorChecker© for scale; b) Single LWAC 

FoV colour image showing location of AUPE-2 ROI targets (footprints not to scale), and arrow 

highlighting sedimentary bedding; c) AUPE-2 R* spectra and corresponding in-situ field 

spectra (grey); d) LWAC spectral parameter image of the 610 nm band depth (BD610); e) 

LWAC spectral parameter image of the narrowband red:blue ratio (R671/438). Black boxes in 

d) and e) indicate the location of the ColorChecker©. 
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The grey slab unit is characterised by finely-layered volcaniclastic sediments comprising of 

unaltered basaltic glass (sideromelane) clasts (<2 - 3 mm grain size) supported by a fine-

grained amorphous grey-beige matrix, typical of volcanic sediments emplaced via 

hydrovolcanism.  Clasts are angular and largely unsorted, suggesting deposition proximal to 

the source, though in some parts of the outcrop clasts form semi-defined bands of coarser 

and finer material, along which bedding planes form.  The fine-grained matrix itself is in the 

early stages of palagonitisation (Stroncik and Schmincke, 2002), and has undergone little 

oxidation.  Laboratory VNIR (350 - 2500 nm) spectra (figure 3.4) of grey slab unit ROIs 

A04_001 and A04_003 exhibit few absorption features in the 0.4 – 2.5 µm range, dominated 

only by a broad Fe2+ absorption centred around 1.0 µm and a minor H2O band at 1.9 µm. 

Surrounding soil target ROIs A04_002 and A04_005 both show a broad Fe3+ absorption at 0.9 

µm (consistent with the NIR absorption observed in the R*and in situ reflectance data) with 

well-defined O-H and H2O absorptions at 1.4 and 1.9 µm respectively, together with minor 

absorptions at 2.2 and 2.3 µm, indicative of smectite clay minerals montmorillonite and 

nontronite (Bishop et al., 2008).  XRD analysis is consistent with the results, showing the grey 

slab units to be predominantly plagioclase and smectite and the soils to be smectite and 

amorphous or poorly crystalline iron oxides.   

3.4.2: A06_Soils 

This target was imaged from a distance of 1.56 m in a 2 x 1 panorama.  The LWAC colour 

mosaic (figure 3.6a) of this target reveals a multitude of heterogeneous, loosely-consolidated 

soils, which broadly form a bright-toned grey-pink unit and a low-albedo dark-red unit.  These 

are emphasised by the narrowband red:blue ratio (R671/438) spectral parameter image 

(figure 3.6d).  Structurally, this region appears to be comprised of one poorly consolidated 

unit, with no observable internal structural units.  The LWAC PCA image (figure 3.6b) and the 

green – red slope (S532 – 610) spectral parameter image (figure 3.6e) show small scale 

spectral variation throughout the bright-toned unit implying a well-mixed soil composition on 

the sub-metre scale.  Six ROI targets were selected within this outcrop, and were chosen 

based on visible colour variations identified within the LWAC colour mosaic.  ROI A06_001 lies 

within the high albedo bright-toned unit, and exhibits a flat spectrum with no absorption 

features (figure 3.6c), potentially indicative of alteration minerals such as gypsum, opaline 

silica, zeolites, or magnesium sulfate (Cloutis et al., 2002; Ehlmann et al., 2012; Hunt and 

Ashley, 1979).  The AUPE-2 R* spectra for this ROI accurately captured this spectral profile at 

all wavelengths as identified with the corresponding spectrometer field measurement except 
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for the 440nm value.  The slightly steeper slope at this position is likely a result of a slight 

spatial mismatch between the measurements and the high variability of this target resulting 

in the AUPE measurement including slightly more sulfur than the in-situ measurement.  ROI 

A06_004 exhibits a sharp slope in the blue followed by a broadly flat spectrum through the 

visible and NIR.  This spectral shape is characteristic of sulfur, and like ROI A06_001, it is 

accurately captured by the AUPE-2 R* spectrum (figure 3.6c).  The ROI A06_005 spectrum 

from the low albedo dark-red unit displays features consisted with ferric iron-bearing 

minerals, and in the visible the AUPE-2 data captures the absorption at 510 nm followed by 

the shoulder at 600 nm (figure 3.6c), but fails to capture the deep, broad absorption that 

characterises the NIR, centred at 950nm.  Similarly, the R* spectrum for ROI A06_003 is 

consistent with the corresponding in-situ measured spectrum in the visible, but fails to 

capture the reflectance peak at 740 nm despite the presence of filters within this region.  

 

This target sites lies within a cluster of bright-tone, high albedo alteration patches that are 

clearly distinct from the surrounding unaltered basaltic terrain (figure 3.3b).  The 

interpretation of this is that the soils imaged by AUPE-2 may be representative of the 

neighbouring discrete alteration patches. Within the target itself, the low-albedo dark red 

unit (ROIs A06_003, A06_005) is comprised of a heterogeneous mix of hematite, goethite, 

montmorillonite, natrojarosite, jarosite, augite, sulfur, and opaline silica as determined by 

laboratory reflectance spectra (figure 3.4) and XRD data (table 3.5).  The bright-toned unit 

ROIs have a less-varied mineralogy.  ROIs A06_001 and A06_006 both comprise of smectite 

clays and sulfur, while ROIs A06_002 and A06_004 are dominated solely by sulfur.  The target 

is interpreted to be an extinct acid fumarole patch consistent with the nearby active 

geothermal area, with the sulfur-rich soils representing the highest-temperature parts of the 

fumarole. 
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Figure 3.6: AUPE-2 datasets for site A06_Soils. a) LWAC colour panorama with the 21.5 x 28 

cm ColorChecker© for scale, showing location of ROI targets (footprints not to scale) and 

region covered in b; b) LWAC Principal Component image (R = PC1, G = PC3, B = PC4) where 

red highlights white-coloured minerals, green highlights iron oxide-rich soils, and purple 

highlights sulfur; c) AUPE-2 R* spectra and corresponding field reflectance spectra (grey); d) 

LWAC spectral parameter image of narrowband red:blue ratio (R671/438), e) slope between 

532 and 610 nm (S532_610). Black boxes in d) and e) indicate the location of the 

ColorChecker©. 

3.4.3: A07_Pillow 

The context LWAC colour image, taken from a distance of 2.1 m, captures the distinctive 

morphology and cross-sectional structure of a pillow basalt sequence (figure 3.7a).  The 

outcrop surface is extensively weathered and altered, with the dark quench rinds of the 

individual pillows contrasting with the oxidised crystalline pillow core.  In the PCA LWAC 
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image (figure 3.7c) these quench rinds stand out as bright green structures, with the more 

oxidised base of the outcrop displayed in purple.  Millimetre sized cross-cutting mineral veins 

and larger nodules are strongly visible in yellow, and their emplacement does not appear to 

have been influenced by the existing pillow basalt structures.  The HRC image (figure 3.7e) 

confirms the presence of the high albedo mineral veins observed in the LWAC image.  These 

high albedo veins are also picked out as red in the narrowband red:blue ratio (R671/438)  

spectral parameter image (figure 3.7d), showing their distribution across the whole outcrop 

and not just within the footprint of the HRC target.  Concentric weathering rinds are well-

formed across the surface of the outcrop, and are visible in the context WAC colour and 

greyscale HRC images (figure 3.7a and 3.7e).  

 

 

Figure 3.7: AUPE-2 datasets for site A07_Pillow. a) LWAC colour image of the outcrop face 

(21.5 x 28 cm ColorChecker© for scale), showing ROI targets (footprint not to scale) and HRC 

footprint E; b) AUPE-2 R* spectra and corresponding field spectra (grey); c) PCA image (R 

=PC1, G = PC2, B = PC3) highlighting glass-rich quench rinds (green) and zeolite veins and 

nodules (yellow); d) LWAC spectral parameter image of the narrowband red:blue ratio 

(R671/438) showing the distribution of fine mineral veins throughout the outcrop; e) HRC 

image of the altered pillow cross-sections and cross-cutting zeolite mineral veins.  Black boxes 

in d) and e) indicate the location of the ColorChecker©. 
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Spectrally, ROI A07_001 from the high-albedo nodule shows the highest reflectance and the 

steepest visible slope (figure 3.7b) in the in-situ reflectance spectra.  The emplacement of this 

deposit as secondary mineral veins, together with its high albedo and featureless spectral 

profile, suggests these veins likely comprise of either low temperature phases such as 

gypsum, zeolite, calcite or opaline silica, or higher temperature phases such as quartz.  It is 

not possible to distinguish between these minerals from AUPE-2 multispectral data, due to 

the lack of absorption features within the PanCam spectral range of 440 – 1000 nm for these 

minerals.  The R* spectral profile of this ROI agrees with the in-situ reflectance spectra for the 

visible wavelengths only.  The near-infrared (NIR) part of the R* spectrum shows a deep 

skewed absorption from 832 to 1000 nm centred at 950 nm, which is inconsistent with the in-

situ reflectance spectrum (figure 3.7b).  The other three ROI’s are measured from the pillow 

core interior unit (A07_003 and 004) and dark quench rind (A07_002).  These are all low 

albedo, with a slight positive slope in the visible portion of the R* spectra and slight negative 

slopes in the NIR (figure 3.7b).  These three are consistent (within error bars) with the 

corresponding in situ spectrometer data up to 950nm.  The slight positive slope in these three 

AUPE-2 R* spectra from 950 to 1000 nm are not supported by the in situ reflectance spectra. 

A discrepancy at these bands is prevalent throughout the AUPE-2 dataset and is discussed 

more fully in section 3.5.1. 

 

Bulk mineralogy of ROI samples determined through XRD analysis and VNIR laboratory 

spectra shows the altered surface of the pillow basalt outcrop to comprise of nontronite, 

goethite, and ferrihydrite.  Basalt vesicles are infilled with zeolite amygdales, presumably 

originating from the same hydrothermal fluids that precipitated the mineral veins.  These 

amygdales are not identifiable in the WAC or HRC datasets due to their small size (< 3 mm), 

despite their prevalence throughout the outcrop.  The zeolites do however influence the 

laboratory reflectance spectra measured from the powdered and homogenised ROI 

subsamples, producing (or at least strengthening) the O-H and H2O absorptions at 1.4 and 1.9 

µm, increasing overall albedo, and producing a weak Fe2+ absorption at 490 nm in all samples 

(figure 3.4).  
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3.4.4: A08_Veins 

A 3 x 1 LWAC panorama was acquired at this site, from a distance of 2.90 m.  The region 

comprises exposed mineral veins surrounded by unconsolidated alteration soils (figure 3.3d). 

From the LWAC colour panorama, three distinct units can be identified: a structured dark red 

unit intercalated with higher-albedo linear ridges, a brown soil unit, and finally bright-toned 

alteration soils (figure 3.8a).  The red:blue ratio (R671/438) spectral parameter image (figure 

3.8c) highlights the spectral variety present across the whole scene.  The high albedo mineral 

vein ridges visible within the dark red unit are positioned prominently above the surrounding 

unconsolidated dark-red soils.  Conversely the bright-toned alteration soils to the right of the 

image form a distinctive ‘stripe’, but no structural prominence.  AUPE-2 R* spectra taken 

from the structured dark red and brown soil units agree well in the visible with the 

corresponding in-situ reflectance spectra (figure 3.8b), but the infrared portion shows 

disagreement beyond 740 nm.  In-situ reflectance spectra from ROI’s A08_003, A08_004 and 

A08_005 within the brown soil unit all show similar features including a slope increase 

between 530 and 550 nm, and a very broad absorption centred at 870 nm.  These features 

are captured by the AUPE-2 multispectral data.  ROIs A08_001 and A08_002 from the high 

albedo mineral vein ridges and surrounding soil respectively have a featureless in-situ 

reflectance spectra, with a long shallow positive slope in the visible levelling out to a flat 

slope in the infrared (figure 3.8b).  The corresponding R* spectra show a steeper visible slope 

for A08_001 and an absorption centred at 832 nm followed by a steeply negative slope from 

950 - 1000 nm.  This last feature is again unique to the R* spectra.  AUPE-2 R* A08_001 and 

A08_003 also both deviate from the in-situ spectral measurements in the visible at 440 nm 

outside of the error bars.  Both measurements however, do match the laboratory spectra 

suggesting that the in-situ measurements have been contaminated by dust in the field.  False 

colour (figure 3.9a) and spectral parameter (figure 3.9b) images highlight the bright-toned 

mineral veins within the dark red unit, showing them to be spectrally distinct from the 

surrounding soils and forming long, structurally-competent deposits.  HRC mosaics (figures 

3.9c and 3.9d) of these features reveal the undulating morphology of these veins.  Surface 

weathering can be seen on the exposed surfaces of the mineral veins, which has resulted in 

semi-rounded fragments of the deposit lying at the base of the vein (figure 3.9d).  These 

loose fragments are also clearly picked out in the false colour image (figure 3.9a).  Unlike the 

high-albedo cross-cutting mineral veins in the pillow basalt outcrop (A07_Pillow), these 

larger, more prominent veins are comprised of gypsum, as confirmed by both the laboratory 

VNIR spectroscopy and the XRD results.  The surrounding unconsolidated altered soils are 

broadly similar in mineralogical composition to the soils at Site A04_Tuff, being characterised 
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by smectite clays and iron oxides (montmorillonite and goethite at A04_Tuff; montmorillonite 

and hematite at A08_Vein).  The exception to this is that the soils at this site also contain 

gypsum, most likely weathered out from the surrounding veins.  

 

 

Figure 3.8. AUPE-2 datasets for site A08_Vein. a) LWAC colour panorama (21.5 x 28 cm 

ColorChecker© for scale) showing spectral units and ROI targets (footprints not to scale); b) 

AUPE-2 R* spectra of the two main spectral units and corresponding field spectra (grey); c) 

LWAC spectral parameter panorama of the narrowband red:blue ratio (R671/438), box inset 

shows footprint of Figures 3.9a) and b). The black box in c) indicates the location of the 

ColorChecker©. 
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Figure 3.9: AUPE-2 datasets for site A08_Vein. a) False colour image (R = R/B ratio, G = R, B = 

G) showing distribution of mineral veins in the dark red unit; b) LWAC spectral parameter 

image of the green slope (S532_610) minus the blue to red slope (S438_671) highlighting the 

mineral veins; c) and d) HRC monochrome mosaics of mineral veins, arrow shows a mineral 

vein fragment that has been weathered out of the original vein.  

3.4.5: Principal Components Analysis results 

Principal Components Analysis (PCA) was performed on the 19 ROI spectra extracted from 

the AUPE-2 multispectral images of the four target areas.  By treating these data as a single 

dataset it was possible to identify spectral groupings across the whole region.  99% of the 

PCA variance was contained within the first three principal components (91.19%, 5.88% and 

1.74% respectively).  By plotting these three principal components against each other a 
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number of clusters were identified, including the A04_Tuff grey slab unit ROIs and the 

A07_Pillow basalt ROIs.  ROIs containing high amounts of gypsum (ROI A08_001) and sulfur 

(ROIs A06_002 and A06_004) appear as outliers in the PCA plots (figure 3.10) and are distinct 

from both the volcaniclastic/basaltic lithologies and the iron and phyllosilicate-bearing 

alteration soils.  All gypsum containing ROIs are clustered within a single quadrant of both 

PCA plots.  This finding corresponds well with recent work by Farrand et al. (2014) who found 

that gypsum veins on Cape York imaged by Opportunity proved spectrally distinct from other 

identified rock classes. 

 

Figure 3.10: Principal Component Analysis plots showing the groupings of spectral classes as 

observed with AUPE-2 R* data.  Vertical lines divide Fe-oxide bearing targets from high albedo 

non-Fe oxide targets including gypsum, zeolite, and sulfur. Horizontal lines further define the 

quadrant for which all gypsum-bearing targets fall within (grey box).  Plots include all ROIs 

from sites A04_Tuff (black), A06_Soils (red), A07_Pillow (green), and A08_Vein (blue). 

3.5: Discussion of results 

3.5.1: Data quality and issues 

3.5.1.1: NIR/RWAC spectral discrepancies 

The most apparent potential flaw in the AUPE-2 multispectral data are the discrepancies 

between extracted R* spectra derived from the multispectral image cube acquired with the 

WAC geology filters and the ground-truth in-situ reflectance spectra (figure 3.11). 

Discrepancies in albedo alone between AUPE-2 R* and in-situ relative reflectance spectra are 

caused by differences in the viewing geometry between the two instruments.  The AUPE-2 

system viewed the ground plane at large angles, and the topography of the ground on the 
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decimetre scale meant that regions of interest could vary from normal incidence to almost 

tangential to the camera axis.  In contrast the integrating sphere contact probe on the Jaz 

field spectrometer was placed on the surface so that the measurements were always taken at 

8°.  At large angles most surfaces depart significantly from Lambertian behaviour and so 

differences in albedo are observed in the two measurements.  Without knowing the 

bidirectional scattering distribution of the objects in each scene it is impossible to calculate 

absolute reflectance values, and so the values presented for all spectral measurements here 

are relative reflectance values.  In every case either the incidence or emission angle of the 

AUPE-2 R* data are different from the corresponding in-situ spectral measurements and so a 

perfect match in albedo of the coincident datasets is not to be expected.  

 

Although a perfect match in albedo is not to be expected between the AUPE-2 spectra and 

the in-situ relative reflectance spectra it would be expected that the general spectral shapes 

should match.  Comparisons of the two datasets once they have been scaled to match albedo 

at 440 nm (figure 3.11) show that there are a number of significant discrepancies in overall 

shape and in particular the location of absorption features.  The majority of these spectral 

discrepancies are in the NIR and particularly at the 950 and 1000 nm filters, often producing 

erroneous slopes in the AUPE-2 spectra that are not present in the field spectrometer data.  

The in-situ field spectrometer results are broadly consistent with the laboratory VNIR spectra 

taken from the intact original surfaces of the ROI samples, confirming their validity.  

Therefore the observed spectral discrepancies between AUPE-2 R* spectra and the ground-

truth spectra are inferred to be genuine artefacts of the AUPE-2 system.  Due to this none of 

the NIR spectral parameters listed in table 3.3 have been used in this study. 
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Figure 3.11: Comparison of AUPE-2 R* spectra (solid line) with in-situ field spectrometer ROI 

measurements (dashed lines) and the ASD laboratory spectra (dotted lines) both resampled to 

AUPE-2 spectral bands.  Solid vertical line represents the centre wavelength of the AUPE-2 950 

nm filter, and grey region highlights the NIR region where hydration absorption features 

would be found (Rice et al., 2010).  
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3.5.1.2: NIR/RWAC image artefacts 

 

Figure 3.12: BD950 spectral parameter image from site A07_Pillow calculated using the 950 

and 1000 nm filter images showing prominent concentric circle artefacts caused by internal 

scattering within the WAC optics.  The black box indicates the location of the ColorChecker©. 

The same pattern is seen in all spectral parameter images calculated using the NIR/RWAC 

narrowband filters to a greater or lesser extent.  The pattern can also be seen in the individual 

NIR/RWAC images but is not as pronounced.  

 

Non-albedo differences are most evident in the NIR filters, with consistently unreliable R* 

values extracted from the 950 and 1000 nm multispectral data which often produced a false 

‘absorption’ at either 950 or 1000 nm (figure 3.11).  Images taken with some NIR filters (780 

to 1000 nm) showed concentric artefacts which contributed to the errors in data points at 

these wavelengths (figure 3.12).  The concentric artefacts were more prominent the longer 
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the filter wavelength.  These artefacts are ghost images produced within the WACs optics due 

to a combination of the stray light performance of the lenses and the mechanism by which 

the light enters the optical system† (Dr M. Gunn, personal communication).  The loss of data 

from the NIR end of the spectral range available to AUPE-2 (and therefore potentially the 

ExoMars PanCam) is of particular importance due to the location of the H2O and O-H 

absorption bands around 950 nm (Rice et al., 2010).  Given the utility of the 950 - 1000 nm 

absorption slope band parameter in identifying hydrated mineral species and mapping their 

distribution across a scene (Rice et al., 2010; Vaniman et al., 2014), it is imperative that this 

issue is resolved in the final flight-ready version of PanCam. 

3.5.1.3: Stereo field-of-view (FoV) limitations 

The WACs are separated by a distance of 50 cm laterally along the optical bench, to allow the 

acquisition of stereo images and subsequent 3D rendering of a target.  However, while this 

provides vital structural information, this means that the two WACs are not viewing exactly 

the same scene - there are regions in the LWAC FoV that do not fall within the RWAC FoV and 

vice versa.  This is an issue that has been faced by all stereo cameras on previous rover 

missions, however in the case of the ExoMars PanCam, this baseline separation of the WACs 

is significantly higher: 50 cm compared to 30 cm used for the MER Pancam (Bell III et al., 

2003).  In addition, slight vignetting from the multispectral narrowband filters in the AUPE-2 

system leads to unusable data in the corners once the images have been converted into R* 

values (e.g. figure 3.6d and 3.6e).  This vignetting will not be an issue for the ExoMars 

PanCam due to differences in the filter and camera detector design.  The final percentage of 

the scene that is covered by both WACs and gives usable, calibrated multispectral reflectance 

data is approximately 85%, although this varies with target distance.  The use of multiple 

frames to build up a panorama can go some way to alleviating this lack of overlap.  

3.5.1.4: AUPE-2 vs ExoMars PanCam 

AUPE-2 data were collected as 8-bit images.  The final ExoMars PanCam will collect 10-bit 

images.  The ExoMars PanCam data will therefore have a higher level of sensitivity than the 

AUPE-2 data presented in this Chapter.  With respect to the ROI data presented here 

however any differences due to bit depth will be negligible when compared to the level of 

standard deviation within an ROI due to the averaging over numerous pixels.  In the case 

where individual pixels are processed, i.e. when creating and interpreting Spectral Parameter 

                                                           
† For a fuller explanation of the cause of these concentric artefacts see Harris et al. (2015).  The 
explanation provided in this paper was the result of work performed by M. Gunn and R. Cross at the 
University of Aberystwyth. 
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images, this difference in sensitivity may become apparent with subtler variations in band 

depth and slope becoming clearer.  However it is equally possible that the extra sensitivity 

will just introduce more noise in the imagery.  Even with the Spectral Parameter images a 

single pixel would never be taken as evidence of the presence of a particular feature and its 

neighbours would always be considered.  In this way erroneous outliers are ignored and 

therefore the slight difference in sensitivity brought about due to pixel depth differences 

between AUPE-2 and the ExoMars PanCam are moot. 

 

The major difference between AUPE-2 and the ExoMars PanCam is in the internal geometry 

of the camera and the optical design of the lenses.  It is this difference that is thought to be 

responsible for the stray light artefacts evident in the NIR filter images.  This is an issue that 

was outwith the scope of this piece of work but that shall be investigated more thoroughly 

once a breadboard model of the ExoMars PanCam becomes available.  

3.5.2: Deduction of hydrothermal alteration and environmental type 

Full suites of AUPE-2 data were collected from four discrete sites within a 1 km2 region.  Each 

of the four sites showed unique structural or mineralogical features demonstrating the level 

of variation that can be found over small (centimetres to tens of metres) spatial scales.  In 

particular the mineral variation was on a spatial scale (< m’s) that would be below that of 

orbiting instruments such as CRISM (see Chapter 6 for fuller explanation and discussion of 

CRISM).  The engineering constraints on PanCam limit both the spectral range and resolution.   

Whilst research has been undertaken to identify the most efficient and flexible combination 

of narrowband ‘geology’ filters for hydrated mineral terrains (Cousins et al., 2012), subtle 

spectral features are inevitably missed and definitive identification of unique minerals is 

rarely achievable with the PanCam wavelength range alone.  However, even within this 

constraint it is still possible to identify some of the key minerals in this environmental type, 

including sulfur and iron-oxides, based on AUPE-2 data multispectral imagery alone.  The use 

of statistical clustering techniques such as PCA demonstrates that spectral units can be 

identified across distinct sites allowing for a wider geological interpretation of the entire 

region in addition to that of each individual target site.  The HRC imagery proved invaluable in 

detecting key small-scale textural features.  This was especially important in identifying the 

gypsum veins seen at site A08_Veins.  The gypsum spectral signature is not uniquely 

identifiable in the PanCam wavelength range but a hydrated band is in theory detectable with 

these filters (see section 3.5.1.2 for discussion of why this hydration absorption at ~950 – 

1000 nm was not found).  The key component that allowed the identification of these veins 
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was the high resolution HRC images that exposed their millimetre scale texture.  Together 

with the colour imagery and the spectral data this enabled a positive and accurate 

identification.  The WAC multispectral data also revealed some structural features not 

immediately obvious in the RGB images.  In particular the centimetre-scale layers seen in the 

grey slab units at site A04_Tuff were obscured in shadow in the RGB image but became clear 

in the R671/438 spectral parameter image.  Such sedimentary layers are an important target 

for Mars surface exploration having been identified at Gale Crater by MSL Curiosity as part of 

a putative past hydrated environment (Grotzinger et al., 2014).  In the Námafjall dataset 

these layers, when viewed in the mineralogical and larger scale structural context point 

towards a period of hydrovolcanism in the regions history.  

AUPE-2 (and PanCam) can acquire a range of data all of which can be used to provide a 

wealth of spatially-resolved geological information at scales of centimetres to tens or even 

hundreds of metres.  When taken together these data can be used to identify a 

hydrothermally altered environment such as the one investigated at Námafjall.   

3.6: Future work 

This field campaign has demonstrated the ability of PanCam to positively identify a 

hydrothermally altered environment; however this is just one environmental type that may 

be encountered in the search for habitability on Mars.  Further field tests in different types of 

environment are required.  These further field trial locations should be chosen to reflect the 

four shortlisted ExoMars landing sites, all of which are concentrated on Noachian aged 

terrains with significant phyllosilicate deposits and potential sedimentary layers (Loizeau et 

al., 2015).  The problems with the NIR filters and the internal optical scattering must be 

addressed by the instrument engineers to ensure the same issue does not hamper the final 

flight-ready version of PanCam.  Further analysis techniques should be explored including 

(but not limited to) Spectral Mixture Analysis (Farrand et al., 2013; Parente et al., 2009, and 

Chapters 5 - 7 of this thesis) and hierarchical clustering (Farrand et al., 2014, 2013). 

3.7: Summary 
This Chapter detailed the deployment of an ExoMars PanCam emulator at a hydrothermally 

altered glaciovolcanic site in Iceland.  The spectral data collected by AUPE-2 was validated 

against in-situ reflectance spectra and the in scene mineralogical identifications verified with 

rock and soil samples.  Using the entire AUPE-2 data suite it was possible through the use of 

RGB composites, Principal Components Analysis, spectral parameters and ROI spot spectra to 

accurately deduce the environmental and geological history of the region investigated.  This 

work is the first time an ExoMars PanCam emulator has been deployed in this type of 
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environment, and the first time the final ‘geology’ filter set has been field trialled in any 

setting.  A serious image artefact affecting the NIR geology filters was discovered hampering 

the detection of some key spectral features including the hydration absorption band at 950 – 

1000 nm.  It is thought this flaw is a flaw in the prototype and will not affect the final flight-

ready model but this remains to be established.  The limitations of the spectral resolution and 

the utility of the high spatial resolution of the imagery were discussed.   
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Chapter 4: Spatial scale, sub-pixel information and Spectral 

Mixture Analysis 

4.1: Introduction 

This Chapter shall introduce the concept of Spectral Mixture Analysis (SMA), discussing the 

historical and state-of-the-art algorithms that have been developed, the current limitations 

and unanswered questions regarding the applicability of the technique and previous 

applications of SMA to martian studies.  The need for a method that can extract details from 

orbital VNIR images at a sub-pixel level is laid out with emphasis on the importance of this 

method being as accessible as possible to the planetary science community who may not 

have the necessary time and/or expertise to write their own algorithms or have access to 

proprietary software and programs.  

4.2: Issues of spatial scale in spectral analysis on Earth and Mars 

Mineralogical data for the surface of Mars are primarily collected through satellite 

spectroscopy in the visible and near infra-red (VNIR) through to the thermal infra-red.  Whilst 

rovers and landers have been equipped with other instruments that are capable of definitive 

classifications of mm/cm-scale features, these are severely restricted in the amount of the 

surface they can cover.  Satellite coverage of the planet on the other hand, covers the entire 

surface at various spatial and spectral scales.  These scales place major restrictions on the 

level of structural and compositional detail achievable with these orbiting instruments.  

Whilst grey scale and three band colour (blue/green – red - infrared) images are being 

returned with spatial resolutions as high as ~0.3 m2 (McEwen et al., 2007) by HiRISE on the 

Mars Reconnaissance Orbiter (MRO), hyperspectral VNIR data is routinely limited to 15 – 19 

m2 pixels at best (Murchie et al., 2007) via the CRISM instrument, also on MRO.  The HiRISE 

images confirm that there are features and geological units on the surface of the planet at a 

spatial scale obscured within the hyperspectral data pixels in regions unexplored by ground-

based instruments.  The mineralogical make-up of the surface at this scale could provide the 

key piece of evidence for correctly characterising various habitable palaeoenvironments 

postulated to have once existed on Mars.  What is needed is a method for extracting sub-

pixel information from these hyperspectral images.  This is especially crucial in areas which 

have potentially been hydrothermally active, where the tell-tale mineral alterations can be on 

the scale of metres or even less. 

Spectral remote sensing has been used to create land cover classification maps for decades 

here on Earth since the launch of the first Landsat satellite (Nalepka et al., 1971).  This is 
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based on using spectral signatures within the image pixels to identify the materials on the 

ground.  These spectra are then interpreted using the assumption that each pixels worth of 

ground cover is composed of only one material, a so-called “pure” pixel, and the reflectance 

radiation detected by the instrument has not interacted with any other material once it has 

left the surface.  This frequently erroneous or at least over-simplified assumption has not 

prevented reasonably accurate and useful composition maps from being produced from 

instruments collecting data with only a small number of discrete and broad wavelength bands 

(Campbell, 2006; Richards and Jia, 1999).  A major disadvantage to these broadband 

multispectral instruments (such as in the long running NASA Landsat series of satellites) 

besides the often erroneous pure pixel assumption, is that such coarse spectra do not provide 

the necessary spectral resolution to differentiate between numerous target materials, 

especially in a mineralogical context (e.g. different types of phyllosilicate) regardless of the 

spatial resolution.  With the introduction of hyperspectral imagers, i.e. imaging 

spectrometers with hundreds of narrow contiguous bands, such spectral features are now 

detectable, and if the spatial resolution is good enough to provide pure pixels these can be 

definitively mapped.  If however the spatial resolution is larger than the spatial variance scale 

of the surface being imaged these subtle spectral features can be swamped or masked and 

the ability to break a spectral signature into its constituent spectra becomes desirable 

(Keshava and Mustard, 2002). 

4.3: Spectral Mixture Analysis 

Spectral Mixture Analysis (SMA) is the general term used to describe the many methods, 

techniques and algorithms that have been, and are still being, developed to extract sub-pixel 

spectral information from hyperspectral data (Keshava and Mustard, 2002).  This information 

includes the number of individual materials present in the scene (‘endmembers’ as they shall 

be referred to for the remainder of this thesis), the spectral signature of each of these 

endmembers and the abundance of each in every individual pixel. 

There are two general theories to how spectra can be mixed within the area covered by a 

pixel; linearly or non-linearly.  The first (and most mathematically and physically simple) is 

linear mixing.  This assumes that the mixing of the reflected radiance from each material 

happens at the detector and therefore each surface material is spatially distinct from the 

others as shown in figure 4.1.   
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Figure 4.1: Linear spectral mixture model, three materials (endmembers) within the pixel field-

of-view (FoV) illuminated by the sun and detected by a satellite.  The spectra of each 

endmember remains distinct from the others until it reaches the detector at which point they 

are mixed together to form a single signal.  The detector pixel spectrum is therefore linearly 

related to that of the three endmembers and their relative abundances within the pixel. 

The final spectrum x is therefore a linear mixture of the spectral endmember from each 

material covered by the pixel and can be expressed as 

𝒙 = ∑ 𝑎𝑖𝒓𝑖 + 𝜺 = 𝑹𝒂 + 𝜺
𝑝
𝑖=1         (4.1) 

Where x is the L x 1 pixel spectrum vector with L spectral bands, R is the L x p matrix whose 

columns are the L x 1 pixel endmember spectra (ri where i=1,…,p) and p is the number of 

endmembers, a is the p x 1 vector whose entries ai (i=1,…,p) are the abundances of the 

endmembers and ε is the L x 1 noise vector encompassing all the additive noise inherent in 

the observation from both the environment and the detector itself.  This theory assumes that 

each endmember is spatially distinct from the others and that there is no multiple scattering 

of radiation between the endmember materials.  To make the linear mixture model physically 

meaningful two constraints must be applied to the inverse unmixing.  The first is the 

abundance non-negativity constraint (ANC) which requires that ai ≥ 0, the second is the 

abundance sum-to-one constraint (ASC) that requires  ∑ 𝑎𝑖 = 1
𝑝
𝑖=1 . 
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Figure 4.2: Intimate/non-linear spectral mixing scenario with two intimately mixed 

endmember particles (red and yellow).  The incoming radiation interacts with both 

endmembers potentially multiple times before it is reflected back to the sensor. 

The materials that constitute the pixel however may not be clearly separate from each other 

and may be more intimately mixed or consist of a number of layers of different materials.  

This is almost certainly the case in geological scenes where mixed soils and sedimentary 

layers are a common occurrence.  In these cases a non-linear mixing model must be 

considered that can take into account possible multiple scatterings and spectral mixing prior 

to the radiation reaching the detector (figure 4.2).  This is a much more complicated scenario 

that can involve an infinite number sequence of powers of products of reflectances (Borel 

and Gerstl, 1994).  A number of models have been created to try and deal with the more 

realistic non-linear mixture model, however for the majority of real cases the far simpler 

linear mixture model is considered an acceptable approximation (Bioucas-Dias et al., 2012).   

Various non-linear approaches have included using Radiative Transfer Theory to model the 

interaction of photons with the particles in the pixel (Hapke, 2012; Shkuratov et al., 1999).  

This however is an incredibly complex problem that requires knowing numerous properties of 

the materials in the scene that are frequently either unconstrainable or unknowable in 

practice.  Even if all the necessary data is available the computational cost of performing this 

calculation across an entire scene is prohibitive.  Other techniques that are gaining increased 

attention include using machine learning neural networks (Licciardi and Del Frate, 2011) and 

kernel methods (Broadwater et al., 2009) to bring down the computational cost of non-linear 

models.   
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Detection of the type of endmember mixture in a pixel (i.e. linear or non-linear and if the 

latter which non-linear model) is an obvious issue that has had little attention, with most 

authors choosing to assume a specific mixing model prior to analysis based on a priori 

knowledge of the data in question, computational and temporal contraints and an 

acknowledgement that some errors are expected as a result of this assumption.  The exact 

quantification of the level of error introduced through the common use of a linear model on 

data that may be at least partially non-linear is not fully quantified in the literature with 

different authors reporting different values depending on the scene in question.  The 

Polynomial Post-Nonlinear Model (PPNM) of Altmann et al. (2013b) and the Kernelised Fully 

Constrained Least Squared (KFCLLS) algorithm of Broadwater and Banerjee (2011) have both 

been put forward as methods for identifying nonlinearly mixed pixels within a scene but only 

if the mixing within those pixels is best modelled by the relevant mixture model presented.  

Identification of mixture type is still a challenge to be solved. 

Regardless of the mixture model that best represents a specific spectral mixture there are 

three main steps in the spectral unmixing pipeline; 1) establish the number of endmembers 

present in the dataset, 2) establish the spectral signature of each endmember and 3) 

calculate the amount of each endmember present in each pixel.  Each of these steps 

represents a unique problem for which numerous algorithms have been developed, although 

a number of the algorithms that will be discussed in the following sections combine steps 2 

and 3.   

In the case of a geological scene and in particular a hydrothermally altered environment each 

of these steps is a non-trivial problem for a number of reasons including: i) textural 

differences within a single mineral can result in spectral differences, ii) spectral similarities 

between chemically similar minerals can make discrimination difficult, and iii) noise must be 

differentiated from signal even if the SNR is low.   

4.3.1: How many endmembers are present? 

The first step in the unmixing chain is to estimate p, the number of endmembers present.  

Identifying the number of land cover classes present in a scene is a common problem 

encountered when creating classification maps with remote sensing imagery (Campbell, 

2006).  Common solutions are to use Maximum Noise Fraction transformation (MNF) (Green 

et al., 1988) or Principal Components Analysis (PCA) (Smith et al., 1985) to reproject the data 

into an eigenvector space where the noise and signal can be separated out as specific bands 

in the transformed dataset.  However, neither of these algorithms identifies the underlying 
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number of endmembers, merely the minimum number of bands in the transformed MNF or 

PCA space required to capture the non-noise related variation present. 

A number of different algorithms to estimate this subspace dimensionality in mixed signals 

have been developed over the years in different disciplines and applications.  Examples of 

algorithms developed specifically for application to hyperspectral images include the 

Harsanyi-Farrand-Chang (HFC) method, Hyperspectral Signal Subspace Identification by 

Minimum Error (HySIME), Eigenvalue Likelihood Maximization (ELM) and Outlier Detection 

Methods (ODM).  The Harsanyi-Farrand-Chang (HFC) method (Chang and Du, 2004) based on 

Neyman-Pearson threshold detection statistics and also referred to in the literature as Virtual 

Dimensionality (VD).  This algorithm generates eigenvalues from the image correlation and 

covariance matrices.  The number of eigenvalues from each is equal to the spectral 

dimensionality of the dataset.  The eigenvalues can therefore be used as an alternative 

dimension space.  If there is only noise contained in a particular component then the 

corresponding correlation and covariance eigenvalues should be equal to each other.  A 

Neyman-Pearson test is then applied to test the similarity within an operator defined 

threshold, the number of times the test fails across the dataset is taken as the number of 

endmembers present, or the Virtual Dimensionality of the image.  The Hyperspectral Signal 

Subspace Identification by Minimum Error (HySIME) algorithm (Bioucas-Dias and Nascimento, 

2008) is an unsupervised eigen decomposition method that runs automatically without the 

need for any tuning parameters, unlike the HFC method.  HySIME first estimates the signal 

and noise correlation matrices of a dataset.  A least-squared minimum error threshold 

method is then used to select the eigenvectors from these matrices that best represent the 

signal subspace or number of endmembers present.  The authors of HySIME use a multiple 

regression theory-based method for estimating the noise within the image dataset however 

this is not prescriptive and the method for performing the noise estimation step is at the 

discretion of the analyst.  The Eigenvalue Likelihood Maximization (ELM) algorithm (Luo et al., 

2013) uses the distribution of the eigenvalues of the correlation and covariance matrices of 

the signal data and their differences.  In a similar manner to the HFC algorithm the ELM 

compares the corresponding correlation and covariance eigenvalues from each data point in 

an image.  If these are identical then they are considered to be representing only noise.  If the 

correlation matrix eigenvalue is larger than the corresponding eigenvalue from the 

covariance matrix then it is taken as representing an actual signal.  The total number of 

eigenvalue pairs that meet this second description gives the image endmember 

dimensionality.  Unlike the HFC this algorithm is parameter free and therefore can be run as 
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an unsupervised method.  The Outlier Detection Methods (ODM) (Andreou and Karathanassi, 

2014) is a recently developed method that is based on the idea that the bulk of an image is 

noise and any outliers are the actual signal.  It is made up of three steps.  Firstly as with 

HySIME the noise in the image matrix is estimated.  Following this the data is transformed 

into a noise-whitened subspace.  Now that the data is in a noise defined transformation 

outliers representing non-noise signal can be identified using interquartile range (IQR) outlier 

detection methods.  The number of outliers identified represented the signal dimensionality 

and the number of endmembers in the image scene.  ELM and HFC both assume the spectral 

mixture is linear.  HySIME and ODM make no such explicit assumption and the authors of 

HySIME specifically mention that it should work just as well on linear or non-linear mixtures.   

4.3.2: What are the endmember spectra? 

Once the number of endmembers has been determined, either through the use of an EDA 

such as the ones detailed in section 4.3.1, through prior knowledge of the scene or through 

use of an accompanying higher resolution image, the next step is to establish the spectral 

signature of each endmember.  Assuming that no ground-based, in situ spectra exist for the 

scene in question there are two major methods for this.  The existence of extensive spectral 

libraries have lead some analysts to use these data as image endmembers (e.g. Goudge et al., 

2015), selecting the best fit spectral library spectra for a mixture based on a specified mixture 

model.  There are a number of limitations to this approach.  Firstly some a priori idea about 

the types of minerals present is needed.  Secondly although basic absorption positions and 

major spectral features (e.g. the sharp blue slope of sulfur) should be present in both 

laboratory and in situ spectral measurements there can be significant differences in overall 

spectral shape and albedo across the spectrum.  These differences between the laboratory 

spectra, normally taken from mineralogically pure, powdered and dried samples and the in 

situ spectra can be a result of textural variation (Clark, 1999), differences in incidence and 

emission angle (Hapke, 2012) and varying water content and other contaminants that can 

affect the overall spectral shape. 

The alternative to using existing laboratory spectra is to extract the endmembers from within 

the image data themselves.  The extraction of mixed signals from within a single dataset is a 

long-standing issue that has been the focus of much research within the signal processing 

community (Belouchrani and Amin, 1998; Belouchrani et al., 1997; Cao and Liu, 1996; Lee et 

al., 1997; Thi and Jutten, 1995).  Over the years numerous different techniques specifically for 

extracting endmembers from within hyperspectral images have been developed.  These differ 

in computational cost, basic theoretical underpinnings, and whether they are supervised or 
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unsupervised (i.e. whether they can be performed purely by an automated computer 

program or if operator intervention is required).  Numerous review articles have been written 

covering the wide breadth of algorithms that have been developed, detailing their uses, 

complications and limitations (Bioucas-Dias et al., 2012; Dobigeon et al., 2014; Heylen et al., 

2014; Keshava and Mustard, 2002; Plaza et al., 2011; Quintano et al., 2012; Somers et al., 

2011) and the list of Endmember Extraction Algorithms (EEAs) is continually growing.      

4.3.2.1: Endmember extraction from linear mixtures 

One of the major groups of EEAs (and one of the oldest) are built around the assumption that 

for every endmember present in a scene there is at least one ‘pure’ pixel in the image.  With 

a high enough spatial resolution for some types of environment this is not an unrealistic 

assumption.  Orthogonal Subspace Projection (OSP) (Harsanyi and Chang, 1994), the Pixel 

Purity Index (PPI) (Boardman et al., 1995) and Vector Component Analysis (VCA) (Nascimento 

and Dias, 2005) are all based on the premise of reprojecting each spectrum in the dataset 

along new vectors and identifying the extreme pixels.  In OSP and VCA the scene pixel vector 

with the maximum length within the initial projection space is identified as the first 

endmember, where the projection space has a dimensional size of the number of data points 

in each spectrum.  The second endmember is then the image pixel with the maximum length 

when projected along the space orthogonal to the first.  This process is iterated until the user 

specified number of endmembers required is reached.  Others, mostly notably Chang and 

collaborators (Chang, 2005; Jiao et al., 2010) have continued to investigate this method and 

expand on its utility.  The PPI is based on a similar premise but first runs the dataset through 

an MNF transformation to separate out the noise from the data and in doing so reduce the 

dimensionality and therefore the computational burden of the data. These data are then 

reprojected along random unit vectors n times with the pixels that fall on the extreme end of 

each vector noted.  These “extreme” pixels are considered to be “pure” unmixed 

endmembers.  This is not an unsupervised approach however, as at this stage the operator is 

required to identify the final set of endmembers (Quintano et al., 2012) from those suggested 

by the algorithm.  PPI has become one of the classic techniques for endmember extraction 

thanks to its inclusion in the standard ENVI package.  An unsupervised version of PPI was 

introduced in 2006 by Chang and Plaza (2006) which produces similar results to PPI but at a 

lower temporal cost.  N-FINDR is another ‘pure’ pixels based method that works by 

calculating a volume space as opposed to the vectors calculated in the previous algorithms 

(Winter, 1999).  The basic premise is based around finding the pixels in N‡ spectral 

                                                           
‡ where in this case N is the same as the variable L that is used throughout this thesis 
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dimensions that form the p number of vertices of a volume simplex with the maximum 

possible volume encompassing all the pixels (figure 4.3a).  The algorithm starts by selecting a 

given number of random pixels to act as the initial set of endmembers.  The volume that 

encompasses these pixels in the image projection space is calculated and each endmember 

replaced with another random pixel spectrum.  The volume is calculated again and if it has 

increased that pixel replaces the initial endmember.  This is repeated until the maximum 

volume is found.  The N spectral dimensions are defined by the hyperspectral detector used 

and this can lead to a high dimensionality making this a computationally complex task.  To 

bring down this cost dimension reducing transformations can be used to shrink the original 

datacube such as MNF or PCA (Plaza et al., 2011).   

The assumption that there will be at least one spectrally pure pixel within an image 

corresponding to each endmember is not always realistic.  This is particularly true in 

numerous geological environments including hydrothermally altered ones, and when dealing 

with the large spatial resolution data returned from Mars.  There are a number of algorithms 

that have been developed to try and extract endmembers when the pure pixel assumption is 

violated.  These algorithms are still founded upon the assumption of linear mixing.  The most 

common approach of the non-pure pixel EEAs is based on the calculation of a bounding 

volume simplex around the scene dataset where the vertices of the simplex are the 

endmembers.  This is similar to the approach used by pure pixel based algorithms such as N-

FINDR, with the difference being that the vertices don’t have to be existing spectra in the 

dataset (figure 4.3b).  Algorithms based upon this premise include Minimum Volume 

Constrained Negative Matrix Factorization (MVC-NMF) (Miao and Qi, 2007), Simplex 

Identification via Split Augmented Lagrangian (SISAL) (Bioucas-Dias, 2009), Minimum Simplex 

Volume Analysis (MVSA) (Li and Bioucas-Dias, 2008; Li et al., 2015) and Robust Minimum 

Volume Enclosing Simplex (RMVES) (Ambikapathi et al., 2011).  The primary difference 

between MVC-NMF and the other three algorithms mentioned is that the other three all 

allow violations of the positivity constraint in order to minimise the volume fit.  Whilst this 

can lead to a smaller volume it has the down side of potentially introducing unreal values into 

the extracted endmembers.  This is particularly an issue with noisy data. The main difference 

between SISAL, MVSA and RMVES is the mathematical method used to minimise the 

bounding simplex volume, with SISAL and MVSA using augmented Lagrange multipliers to 

solve a sequence of convex optimizations, and RMVES using quadratic programming solvers.  

The Iterated Constrained Endmembers (ICE) (Berman et al., 2004) and its updated version 

Sparsity Promoting Iterated Constrained Endmember detection (SPICE) (Zare and Gader, 
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2007) are based on a similar premise to those outlined above but rather than minimising the 

volume that contains all of the points, this pair of algorithms minimise the sum of the 

squared distances between the vertices.  Bioucas-Dias et al (2012) found that MVC-NMF and 

SISAL performed better than the pure pixel based methods VCA and N-FINDR when mixed 

pixels were present.  However neither was able to identify realistic endmembers in the case 

of an image composed entirely of highly mixed pixels, although both produce good results in 

the case of a dataset with truncated fractional abundances.  Lin et al. (2015) investigated the 

accuracy of these minimum volume enclosing simplex (MVES) algorithms from a theoretical 

point-of-view and found that they all hold up well in the absence of pure pixels provided the 

mixing is not too heavy.   

 

Figure 4.3: Examples of identifying endmembers from a simple linearly mixed 2D dataset with 

three endmembers. a) a pure pixel example, the black dots represent each pixel in the dataset, 

the red squares are the three extreme pixels that form the vertices of a bounding simplex 

encompassing all of the pixels in the image. b) an example this time without pure pixels, the 

red simplex that would be identified if the pure pixel assumption was enforced doesn’t 

encompass all of the pixels, the green squares and the simplex formed by them does 

encompass all of the pixels but the vertices are not themselves existing points within the 

dataset. 
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4.3.2.2: Endmember extraction from non-linear mixtures 

All of the EEA’s discussed so far rely on the underlying assumption of a linear mixing model.  

The linear assumption in the MVES algorithms takes the form of straight edges between the 

endmember vertices.  If non-linear mixing is present however, these edges may be better 

represented by convex (Close et al., 2012) or concave (Keshava and Mustard, 2002) lines.  

Attempts to integrate a non-linear mixing model to a pure pixel simplex volume algorithm 

have been recently presented by Heylen et al. (2011).  This work demonstrated accurate 

results, provided there are pure pixels, through the use of curved space to account for the 

non-linear simplex edges.   

Methods based on Bayesian statistics have been developed both to estimate a scene’s 

endmembers and assign abundance fractions to them within the same algorithm (Altmann et 

al., 2013a; Dobigeon et al., 2008; Gleeson et al., 2010; Schmidt et al., 2010).  The key benefit 

of the Bayesian methods is that they can allow for a certain amount of non-linearity in the 

mixing and don’t necessarily require the presence of pure pixels. 

4.3.3: How much of each endmember is present? 

The Endmember Extraction Algorithms described in section 4.3.2 provide a qualitative 

analysis of what materials a scene is comprised of.  In the final step in the SMA chain, the 

Abundance Estimation Algorithms (AEA), provide quantitative information, returning an 

estimation of the abundance of each endmember within each pixel of the scene.  The 

classic/standard method for doing this assumes the spectral mixture is best represent by the 

linear mixing model (Keshava and Mustard, 2002).  A number of variants exist with slight 

differences mostly on the constraints imposed on the algorithm.  Heinz and Chang (2001) 

published a fully constrained linear least squares (FCLLS) version (obeys both ANC and ASC) 

that uses a least-squared error minimisation routine whilst simultaneously enforcing both the 

ANC and the ASC on the resulting solution for each pixel in the image.  This algorithm has 

become the standard algorithm to compare new versions against (see following references to 

these newer versions). 

As discussed in the previous section the likelihood of a purely linear mixture within a 

geological scene is slim and non-linear methods have been explored (Dobigeon et al., 2014; 

Heylen et al., 2014).  The type of non-linearity associated with soils and sands is most likely 

highly intimate and therefore best modelled via a radiative transfer-based multiple scattering 

model such as the Hapke equation (Hapke, 2012, 1981) or the Shkuratov model (Poulet and 

Erard, 2004; Shkuratov et al., 1999).  The Hapke equation models the scattering of light from 

a particulate surface and requires values for a number of physical parameters including 
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number of particles per unit volume, average geometric cross section of the particles, their 

extinction, scattering and absorption efficiencies and their phase functions.  There are a 

number of assumptions regarding these physical parameters inherent within the Hapke 

model and it is not without its criticisms.  Chief amongst these are discrepancies in the single-

scattering phase function used to describe multiple scattering scenarios, approximations of 

anisotropies related to incidence and emergence angles and shadow effects in multiple 

scatterer scenes (Shkuratov et al., 2012).  Supporters of the model argue that all radiative 

transfer models are approximations and that the criticisms listed do not distract from the 

models ability to produce reasonable accurate results in the majority of cases (Hapke, 2013).  

Due primarily to its relative simplicity the Hapke model is the dominant theory used by the 

planetary science community (Poulet et al., 2002).  The model is considered valid for 

particulate mixtures of similar grain sizes and shapes and where the grain sizes are 

significantly larger than the wavelengths used (Mustard and Pieters, 1989). In practice the 

required parameters are incredibly difficult to determine (particularly the variation across the 

grain size and shape), meaning that approximations and best estimates must be used. The 

Hapke model approximation equation is given as: 

 

𝑅(𝑖, 𝑒) = [
𝑤

4(𝜇+𝜇0)
] [{1 + 𝐵(𝑔)}𝑃(𝑔) + 𝐻(𝜇)𝐻(𝜇0) − 1]    (4.2) 

 

Where R(i,e) is the reflectance at incidence angle i and emission angle e, w is the single 

scattering albedo (SSA), µ = cos(e),  µ0 = cos(i), H(µ) is Hapke’s approximation to 

Chandrasekhar’s multiple scattering equation and is given by (1 + 2µ) / (1 + 2µγ) where γ = (1 

– w)1/2, B(g) is the backscatter phase function and P(g) is the single particle phase function 

(figure 4.4) .  This equation can be further approximated as: 

 

𝑅(𝑖, 𝑒) = [
𝑤

4(𝜇+𝜇0)
] [𝐻(𝜇)𝐻(𝜇0)]     (4.3) 

 

This approximation is considered valid provided three criteria are met: i) none of the 

endmembers are high albedo substances (Guilfoyle and Althouse, 2001) (a problem when 

applied to hydrothermal alteration environments where a number of the common minerals 

are high albedo substances), ii) B(g) = 0 (holds as long as the phase angles involved are >15°) 

and iii) P(g) = 1 (holds if we assume that the particulate surface scatters isotropically).  One of 

the consequences of the Hapke equation is that a non-linear mixture of reflectance spectra 
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corresponds to a linear mixture of the same spectra converted to single scattering albedo 

(SSA) (Broadwater et al., 2009).  Provided the already listed assumptions hold, in addition to 

knowing the emission and incidence angles of the light and assuming a homogenous particle 

size it is possible to convert the reflectance mixed spectral data into SSA data and apply the 

FCLLS algorithm to it to calculate the endmember abundances (Goudge et al., 2015; Mustard 

and Pieters, 1989, 1987; Stack and Milliken, 2015).  

 

Figure 4.4: The basic geometry involved in the bidirectional reflectance Hapke model and 

equation 4.2 where e = angle of emission, i = angle of incidence, g = the phase angle, K = the 

azimuth angle between the planes of incidence and reflection, J = the incident radiation and R 

= the reflected radiation that reaches the sensor. 

The Hapke conversion to SSA has also been combined with Kernel Methods, machine learning 

algorithms used in computer sciences for pattern analysis, to automate and increase the 

speed of this task.  Kernel Methods can be run as supervised, unsupervised and semi-

supervised routines.  These have recently attracted some attention from the remote sensing 

community as a tool for performing SMA due to their ability to handle large complex datasets 

and combine both linear and non-linear spaces.  In addition kernel algorithms benefit from 

not requiring exact knowledge of the non-linear model by which the scattering is occurring 

(Dobigeon et al., 2014).  The most well-known Kernel Method is the Support Vector Machine 

(SVM).  A number of different kernels exist with simple ones including the Radial Basis 

Function (RBF) (Broadwater et al., 2009).  Broadwater et al. (2009) used this kernel type 
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together with a Support Vector Data Description (SVDD) endmember extraction routine to 

kernelise the FCLLS of Heinz and Chang (2001).  This was tested against three simulated 

images containing both pure and linearly and non-linearly mixed spectra taken at the RELAB 

facility.  The results were compared against those calculated using the non-kernel, FCLLS 

algorithm and found to be slightly more accurate in terms of fractional abundance 

estimation.  The algorithm was then tested using the AVIRIS Cuprite Nevada image (NASA JPL) 

used by numerous other SMA researchers.  These results were compared to both ground 

truth maps and results from the N-FINDR algorithm used together with a linear least squares 

unmixing algorithm.  The resulting abundance maps compare well with the ground truth 

maps and unlike the N-FINDR algorithm no “noise” endmembers are returned.  They 

acknowledge however that the Gaussian RBF used is not optimal for unmixing hyperspectral 

images and suggest instead a more physics based kernel (i.e. one based on a radiative 

transfer model) which when tested was found to provide better results than the RBF based 

kernel.  Further work performed by the same lead author (Broadwater and Banerjee, 2011) 

sought to extend this kernelised FCLLS algorithm and test it against a real world dataset with 

imperfect a priori knowledge of endmembers and imperfect atmospheric correction.  The 

algorithm was of use in identifying where non-linear pixels existed in the data.  However as 

pointed out in Dobigeon et al. (2014) Broadwater’s approach does not actually take into 

account non-linear interactions between materials and instead treats the non-linear pixels as 

distortions of the spectral signature of each endmember present.  A similar approach has 

been attempted using a reproducing Hilbert space kernel by various researchers including 

Imbiriba et al. (2014) and Chen et al. (2013) who report smaller pixel reconstruction errors 

when compared to the FCLLS model.  The optimal kernel for use in hyperspectral unmixing is 

still an open question. 

Neural networks are increasing in popularity for various different types of pattern 

classification and image analysis problems.  They can incorporate non-linear functions but do 

have the downside of potentially high computational cost.  Adaptive resonance theory (ART) 

(Lui et al., 2004) and multilayer perceptron (MLP) (Foody, 1996) are two classes of neural 

networks that have been used for non-linear unmixing models. 

One thing that all the authors in the literature agree upon is that using a non-linear model to 

calculate endmember abundances rather than a linear model greatly increases the 

computational complexity and temporal cost.  There appears to be no quantitative 

agreement however on how great an increase this is or what the alternative increase in error 

is from using the simpler linear model.  A major point with this comes from the inherent 
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complexity of real scenes that do not strictly conform to either the linear mixture models or 

any of the non-linear mixture models.  Additionally, without a method for accurately 

establishing the mixture model that best represents a scene it is difficult to estimate the level 

of error that is introduced from using one model over another.  It is for this reason that most 

researchers assume the linear model as it is easier and quicker to work with.  Chapter 5 will 

investigate this matter further. 

4.4: Spectral Mixture Analysis applied to Mars 

SMA as an analysis technique is still in its research and development phase; however its very 

inclusion in commercial products such as the image processing software ENVI suggests that it 

is considered robust enough to have become a standard tool in an image analyst’s toolbox.  

There is however, a lack of non-commercial hyperspectral imagery covering the Earth, which 

means that most of the scientific literature using SMA is concerned with developing new 

algorithms for one of the three unmixing steps rather than exploiting the existing ones in 

different environments and to answer different scientific questions.  This data constraint is 

not a problem for Mars researchers however, with both CRISM and OMEGA continuing to 

generate hyperspectral images of the surface that are made freely available.  Despite this 

plethora of data, there has been little published making use of SMA in the exploration of 

Mars.  One of the earliest attempts at spectral unmixing was with 6 band images returned 

from the Viking Landers (Adams et al., 1986).  The Pancam on the Spirit Mars Exploration 

Rover returns 11 band VNIR images which Farrand et al (2006) analysed using SMA, together 

with other spectral analysis techniques to identify which areas within the scene were dust 

free and spectrally unique.  Ceamanos et al (2011) investigated how well a range of SMA 

algorithms worked using CRISM imagery over the Russell Crater megadune located in the 

Noachis quadrangle of Mars.  The same data was used to evaluate a non-linear principal 

component based algorithm by Licciardi et al (2012) that incorporated the use of neural 

networks.  A similar study by Themelis et al (2012) compared three supervised unmixing 

algorithms including a Bayesian a priori maximum probability estimator (MAP) using an 

OMEGA image.  Another study by Schmidt et al (2010) used an OMEGA image to test their 

implementation of an unsupervised Bayesian Point Source Separation algorithm (BPSS) for 

endmember selection and abundance estimation.  Parente et al (2011) presented a new 

automated algorithm for endmember extraction specifically for use with CRISM images.  This 

paper is short and clearly just an introduction to their technique but it does present 

promising results.  To date however no longer version has been published.  The conversion of 

reflectance data to Single Scattering Albedo (SSA) detailed in Mustard and Pieters (1989 and 
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1987) has recently been applied to analysis of CRISM and TES data over the Kashira crater by 

Goudge et al. (2015)  using laboratory spectral library data combined with individual pixel 

spectra to identify kaolin-group deposits.  The Modified Gaussian Model (MGM) (Sunshine et 

al., 1990) deconvolves absorption bands caused by transition electrons, and estimates the 

modal abundances of the constituent minerals.  It was developed for the analysis of primary 

mafic mineralogy (i.e. pyroxene and olivine) spectra and therefore is ideally suited for 

analysis of the bulk mineralogy of Mars.  It is based on the physics of electron transition 

absorptions and not the vibrational absorptions that make up the major diagnostic bands in 

hydrated minerals.  It works through identification and fitting of the large broad absorptions 

caused by Fe transitions as Gaussian distributions and has proven accurate for binary and 

ternary mineral mixtures (Clénet et al., 2011).  It can help to emphasis weak spectral 

variations across a scene that are related to spatial variation in mineral composition (Clénet 

et al., 2013) and differentiate between different compositions of pyroxenes (Sunshine and 

Pieters, 1993) and olivines (Sunshine and Pieters, 1998) in laboratory spectroscopy data.  

However it is not a suitable algorithm for application to scenes with high p values (i.e. more 

than three endmembers) or those dominated by non-mafic igneous rocks.  Its sensitivity to 

numerous input parameters makes it a temporally expensive algorithm meaning it is most 

appropriately applied to individual spectra rather than large datasets and image cubes 

(Horgan et al., 2014).  Table 4.1 lists a selection of papers published to date utilising SMA 

processes (other than exclusively MGM) to quantitatively analyse VNIR martian data.  These 

papers cover only a portion of the different SMA algorithms that have been developed, and a 

tiny proportion of the Martian surface and the potentially suitable data available for 

processing. 

Table 4.1: SMA Algorithms used to analyse Mars spectral imagery 

SMA Algorithm Paper(s) 

PCA & FCLLS   (Adams et al., 1986) 

BPSS & FCLLS (Ceamanos et al., 2011; Douté et al., 

2011; Schmidt et al., 2010) 

VCA & FCLLS (Ceamanos et al., 2011; Douté et al., 

2011; Parente et al., 2011) 

N-FINDR & FCLLS (Ceamanos et al., 2011; Douté et al., 
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2011; Parente et al., 2011) 

MVC-NMF & FCLLS (Ceamanos et al., 2011; Douté et al., 

2011) 

MVES/SISAL & FCLLS (Ceamanos et al., 2011; Douté et al., 

2011) 

MELSUM/MESMA & FCLLS (Combe et al., 2008; Gou et al., 2014; 

Wendt et al., 2009) 

PPI & ASC-LLS (Farrand et al., 2013, 2006; Parente et 

al., 2011) 

FCLLS + Hapke SSA conversion (Goudge et al., 2015) 

Spectral Library + FCLLS & MGM (Le Deit et al., 2008) 

Non-linear principal components analysis 

(NLPCA) 

(Licciardi et al., 2012) 

Factor Analysis and Target Transformation (FATT) 

+ Hapke SSA conversion 

(Liu and Glotch, 2014) 

ELM + VCA + ANC-LLS (Luo et al., 2012) 

ICA + BPSS (Moussaoui et al., 2008) 

Nonnegative Matrix Factorization (Parente et al., 2009b) 

SMACC & FCLLS (Parente et al., 2011) 

Parente CRISM Endmember Algorithm & FCLLS (Parente et al., 2011) 

Spectral library + LinMin (Schmidt et al., 2014) 

Bayesian MAPs (Themelis et al., 2012) 

Sparse Bayesian Unmixing (Thompson et al., 2009) 

 

The standard method used for identifying minerals on the surface of Mars is to identify 

specific Spectral Parameters across entire CRISM and/or OMEGA images at a time (see 

Chapter 3, section 3.3.4 for explanation of Spectral Parameters).  Spectral Parameters are a 

quick and simple method for searching and identifying the presence of specific minerals, e.g. 

if you only want to map the locations of carbonates.  However there are drawbacks.  Firstly as 
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each spectral parameter is only calculating one feature be it a band depth or slope, they can 

only identify minerals for which there is one uniquely identifying feature or at very least a 

mineral type that all share the same unique feature.  Secondly, minerals will generally only be 

identified if they are the dominant mineral in the pixel meaning that many minor, but 

potentially interesting, minerals can go unnoticed.  Finally mixing and in particular non-linear 

mixing of spectra can diminish and weaken some key spectral features if they occupy a similar 

wavelength range to a more dominant feature, making it less likely that they will be extracted 

using Spectral Parameters alone.  Spectral Unmixing (or at least blind endmember extraction) 

can be used as one way of ensuring that the smaller minerals are still identified whilst taking 

into account the entire spectrum of each endmember and not just a single feature.     

4.5: Applicability, availability and accessibility of SMA 

A common theme in the most recent developments in SMA is the increasing use of complex 

algorithm types and machine learning.  Whilst accurate results are being returned through 

the use of neural networks, machine learning, kernels and Bayesian statistics, they all require 

a high level of computational skill and time.  Without the collaboration of signal process 

engineers and computer scientists these techniques are out of reach for many geological and 

planetary scientists.  The less computationally expensive algorithms such as the geometric 

EEAs have a long pedigree and have been shown to return accurate results in many 

situations, however the majority discussed in the literature have not been made publically 

available for use by other members of the remote sensing community.  Additionally despite 

the wide range of algorithms developed and tested against Earth imagery few of these have 

been applied to martian data, with a number of the martian SMA studies using algorithms 

developed and used exclusively in those publications (see table 4.1 for examples).   

There are some key differences between the hyperspectral images returned from Mars 

compared to those covering the Earth, namely the lack of vegetation and anthropogenic 

structures, and the different atmosphere the radiation passes through.  Whilst the first of 

these differences does mean that a large subsection of the SMA algorithms developed with 

Earth Observation in mind are inappropriate for application to Mars (i.e. all developed with 

vegetation and large bodies of water in mind), all of those developed for geological 

exploration should in theory be applicable.  The difference in atmosphere should not affect 

the applicability of any of the algorithms as in the case of both Earth and Mars imagery the 

effects of the atmosphere must be removed before SMA processing takes place.  It is a 

valuable task therefore to identify the SMA algorithms for each of the three steps in the chain 

that are i) publically available in an easily accessible and executable format that does not 
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require access to numerous expensive proprietary pieces of software, and ii) suitable to the 

potential types of geological environment that may be found on Mars even if they have not 

previously been applied to martian data.  This important issue shall be the focus of the 

following chapter with specific emphasis on hydrothermally altered environments.   

4.6: Summary 
The spatial resolution of imaging spectroscopy data can have significant ramifications for the 

level of information extractable from the dataset.  This is particularly the case with data from 

the martian instrument CRISM, whose pixel resolution of 18 m2 is such that much of the 

mineralogical diversity on the surface can be obscured.  The extraction of sub-pixel 

information through the family of techniques known collectively as Spectral Mixture Analysis 

has been presented with emphasis on its use in geological applications.  The three primary 

steps in the SMA pipeline have been discussed along with the major existing algorithms for 

performing each action.  The application of SMA to martian data has been presented and 

previous studies discussed.  The lack of availability of suitable SMA algorithms for a planetary 

scientist without the necessary time, programming skills or proprietary software was 

acknowledged.  It is this lack that the following chapter will address. 
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Chapter 5: Development of a best practice, publically available 

Spectral Mixture Analysis pipeline for the detection of small scale 

hydrothermal surface alteration 

5.1: Introduction 

This chapter shall cover the development of a full supervised spectral unmixing routine, 

tested and optimised for the specific complexities inherent in a hydrothermally altered 

environment.  From a spectral point of view a hydrothermal environment contains a number 

of specific complexities.  These features make the use of spectral unmixing more attractive 

for the analysis of such areas but also more challenging.  Of special interest are the following 

factors: 

• Large numbers of endmembers - Keshava and Mustard (2002) state that the number 

of endmembers that can be practically determined/distinguished is 3 - 7 but 

hydrothermal areas can have many more over a small (metres to 10’s of metres) 

area.   

• If specifically dealing with small scale regions then there may not be many pixels 

covering the region of interest (in the case of CRISM even a large region around 1km2 

may only be covered by a few thousand pixels and a region of hydrothermal surface 

alteration can be considerably smaller than this). 

• The types of minerals typically produced in hydrothermal alteration environments 

exhibit significant spectral variation due to textural and mineralogical variations, e.g. 

the spectral signature from phyllosilicates can alter due to varying water content, and 

differences in average particle size also produces spectral differences in all mineral 

types.  Additionally mineralogically similar minerals, e.g. iron oxides, can be spectrally 

similar in the VNIR wavelength range. 

• These environments tend to feature unconsolidated soils as well as lithified rocks and 

stones and as such the spectral mixing is best modelled as an intimate non-linear 

mixture, or at least a combination of linear and non-linear mixing. 

These features make spectral unmixing challenging but they also make other spectral analysis 

mapping techniques, such as spectral parameter analysis, less reliable if quantitative 

information is required.  Whilst techniques such as Minimum Noise Fraction transformation 

(MNF) and Principal Components Analysis (PCA) can still be used to produce mineral maps 

despite these complications, the end results they give are still based upon reading each pixel 
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as a single pure endmember transformed into a new dimensional space, and thus require 

interpretation in an attempt to attach a physical reality to the different extracted 

endmembers.  Additionally neither of these techniques allow for quantitative evaluation of 

the scene at a sub-pixel level. 

Much of the work that has been undertaken in the development of spectral unmixing 

algorithms has focused on only one of each the three steps involved (see Chapter 4 for 

further details and definition of the three steps), or has been developed for a generic 

environment and therefore not been tested at the extremes that can exist, meaning that the 

limitations on the applicability of this technique are not well understood.  A hydrothermal 

environment is one such extreme.  Additionally, although many papers describe various novel 

unmixing related algorithms, few of these algorithms have been made available to the end-

user community who may have neither the necessary time nor skills to write a computer 

program based on the descriptions given in the literature.  For these reasons it is necessary to 

investigate what algorithms have been made available as open source code covering all three 

steps in the unmixing chain and test them in the face of hydrothermal conditions to 

determine a best practice full unmixing pipeline to add to the suite of analysis tools available 

to remote sensing geologists.  In order to achieve this, a number of synthetic images were 

generated using data from publically available spectral libraries, each image designed to test 

the sensitivity of the algorithms to each of the complexities detailed above and gain a better 

understanding of the limitations of SMA and whether or not it is an applicable technique for 

analysis of a complex hydrothermal environment. 

5.2 Synthetic images 

Images were constructed using publically available library spectra.  Unless otherwise stated 

pure single mineral spectra were used as endmembers.  Random abundances were generated 

according to a Dirichlet distribution (Kotz et al., 2000) with the additional constraint that no 

single pixel be composed of more than 80% of an individual endmember.  Noise was added to 

each image as Gaussian non-zero white noise with varying Signal to Noise Ratio (SNR) in 10 

dB steps between 15 – 55 dB (where SNR dB = 20log(SNR(λ))). Endmember minerals were 

chosen based on minerals commonly found in hydrothermally altered surface environments, 

although in the case of non-linear mixtures the limited number of spectra available required a 

loosening of this constraint.  Spectra were taken from either the USGS spectral library (Clark 

et al., 1993) supplied as one of the spectral libraries with ENVI 4.8 or the RELAB spectral 

library (Pieters and Hiroi, 2004).  Plots of the endmembers in each image are given in 

Appendix II. 
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Table 5.1: details of the synthetic images used in section 5.4.  p = number of endmembers, L = 

number of spectral bands, N = number of pixels/datapoints 

Image 

# 

Mix 

type 

N p L Spectra/endmembers Spectral 

library 

Test? 

2a Linear 8100 6 420 Hematite: GDS27, FE2602, 

HS45.3 

Olivine: NMNH137044.b, 

KI3005, KI3054 

USGS  High spectral 

variation within 

single mineral 

type due to 

interspecies 

variation 

2b Linear 8100 6 420 Hematite: GDS69.c, 

GDS69.d, GDS69.e 

Olivine: GDS70.a, 

GDS70.b, GDS70.c 

USGS High spectral 

variation within 

single 

endmember due 

to textural 

variance 

3a Linear 8100 4 420 Hematite: GDS27, FE2606 

Goethite: WS219, WS220  

USGS Spectral and 

chemical  

similarity 

between 

endmembers 

3b Linear 8100 4 420 Montmorillonite: CM27, 

CM26 

Nontronite: SWa-1.a, 

SWa-1.b 

USGS Spectral and 

chemical  

similarity 

between 

endmembers 

4 Non-

linear 

8096 4 211 Olivine, Magnesite, 

Enstatite, Anorthite (see 

Mustard & Pieters, 1989 

for full description of this 

dataset) 

RELAB Intimate non-

linear mixtures 

5 Linear 

+ non-

linear 

8100 4 211 Olivine, Magnesite, 

Enstatite, Anorthite (see 

Mustard & Pieters, 1989 

RELAB Combination of 

linear and non-

linear mixing 
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for full description of this 

dataset) 

5b Linear 8100 4 211 As 5 RELAB Testing of effect 

of SSA 

conversion on 

linear mixtures 

7a Linear 8100 3 420 Opal TM8896 

Montmorillonite CM27 

Goethite WS220 

USGS Number of 

endmembers 

present 

7b Linear 8100 7 420 As 7a plus: 

Kaolinite CM9 

Stilbite HS4B2.3B 

Gypsum SU2202 

Jarosite GDS24 Na 

USGS Number of 

endmembers 

present 

7c Linear 8100 15 420 As 7b plus: 

Nontronite SWa-1.a 

Sulfur GDS94 

Augite WS592 

Andesine HS142.3B 

Hematite GDS27 

Rutile HS126.3B 

Quartz HS32.4B 

Montmorillonite SWy-1 

USGS Number of 

endmembers 

present 

10a.1 Linear 

+ non-

linear 

8100 12 211 Kaolinite + Opal JB-JLB-

81* 

Ferrihydrite + nontronite 

JB-JLB-80* 

Pyroxene + Hematite MX-

EAC-018 

Quartz + Alunite XT-CMP-

016 

Olivine + Magnesite XO-

CMP-01* 

Olivine + Enstatite XO-

RELAB Combination of 

intimate non-

linear mixing, 

and high p value 
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CMP-01* 

Olivine + Anorthite XO-

CMP-02* 

Olivine + Anorthite + 

Enstatite XO-CMP-030 

10a.2 Linear 

+ non-

linear 

290 12 211 As image 10a RELAB Combination of 

intimate non-

linear mixing, 

high p value and 

low number of 

pixels, N. 

10b Linear 

+ non-

linear 

8100 10 211 Kaolinite + Opal JB-JLB-

81* 

Ferrihydrite + nontronite 

JB-JLB-80* 

Quartz + Alunite XT-CMP-

016 

Olivine + Magnesite XO-

CMP-01* 

Olivine + Enstatite XO-

CMP-01* 

Olivine + Anorthite XO-

CMP-02* 

Olivine + Anorthite + 

Enstatite XO-CMP-030 

RELAB Combination of 

intimate non-

linear mixing, 

and high p value 

 

5.3: SMA related algorithms used in this work 

There are numerous programming languages and packages commonly used by the signal and 

image processing communities including Matlab, IDL, R and Python.  In order to maintain 

consistency in the final pipeline a single language was chosen to perform each step.  Matlab 

was chosen as a commonly used and relatively simple language, it was also the language that 

most of the publically available algorithms for each of the three steps have been made 

available in. 
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5.3.1: Endmember Dimensionality Algorithms (EDA) 

The first step in the unmixing pipeline is to determine the number of endmember present in 

the scene.  Four algorithms were selected for inclusion in this study; Harsanyi-Farrand-Chang 

(HFC), Hyperspectral Signal Subspace Identification by Minimum Error (HySIME), Eigenvalue 

Likelihood Maximization (ELM) and the Outlier Detection Methods (ODM) all of which are 

described in more detail in Chapter 4.  Of the four algorithms HFC is available within 

numerous spectral processing programs and packages.  The version used in this work can be 

found within the Matlab package Endmember Induction Algorithms Toolbox for MATLAB 

distributed by the Universidad del Paas Vasco, Spain.  Matlab code for HySIME is provided by 

the authors of the algorithm and can be found at http://www.lx.it.pt/~bioucas/code.htm.  

ELM and ODM were not publically available at the time of this study and Matlab code was 

written based on their description papers (Andreou and Karathanassi, 2014; Luo et al., 2013).  

This code can be found in Appendix III. 

The four algorithms can be divided into two categories; algorithms that produce a definitive 

final numerical result and algorithms that produce a graph that must then be interpreted by 

the analyst.  HFC and HySIME are both examples of the former type and ELM an example of 

the latter.  ODM claims in its description paper (Andreou and Karathanassi, 2014) to be of the 

former type but this was not borne out in this work.  My version of the code produced a 

graph from which the correct p value could be easily interpreted when applied to a simple 

dataset but was slightly more ambiguous when dealing with a complex image (figure 5.1).  In 

no case was the single numerical value returned the correct one, consistently returning a 

much greater number than the correct p value.  As it is only the final quoted value that is in 

error the flaw in the program must be in this final step where the authors have applied a 

simple interquartile range statistic.  The synthetic test data the algorithm authors’ use is not 

explicitly specified and so could not be verified in this work.  However the plots of the final 

algorithm product prior to the IQR step produced in this work appear to match the pattern 

shown in the same plots in the description paper (Andreou and Karathanassi, 2014) and do 

produce the correct p value when applied to non-complex data.  Efforts to contact the 

authors of the algorithm to investigate this discrepancy came to nothing and so all ODM 

values quoted in this and subsequent chapters have been read from the plot produced by my 

Matlab routine (see figure 5.1 for example plots). 
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Figure 5.1: Example ODM output plots showing the Euclidean Distance between the standard 

deviation values of the noise whitened transformed data versus band number (see Andreou 

and Karathanassi, 2014 for full explanation of these plots).  The point at which the plot 

plateaus represents the number of endmembers present, p.  In a low noise case with a low p 

value such as image 3a (ODM3a55dB) this value is easily identified correctly as p = 4.  

However this value is less obvious with higher p values as seen in ODM10b25dB and 

ODM10b55dB where in both cases the plot continues to slightly but significantly decrease 

after an initial sharper plateau point at a p value lower than the correct one. 

The accuracy of these four algorithms will be evaluated based solely on whether or not they 

produce the correct p value.  In terms of the accuracy of this value in a setting where the real 

p value is unknown some diagnostic output to be used as a confidence or quality flag would 

be useful.  For the ODM and the ELM algorithms the final graph produced gives some 

qualitative indication of the complexity of the problem and as the p value comes from an 

interpretation of these the harder they are to interpret the lower the level of confidence in 

the answer.  HySIME also produces a graph as part of its final output from which the program 

reads the final p value (figure 5.2).  The program read the minimum of the Mean Squared 

Error line as the p value, as with the ODM and ELM graphs the more ambiguous this appears 

to the analyst can give a qualitative assessment of the accuracy of the result.  HFC gives no 
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output beyond the p value.  However as the operator has to specify the false-probability 

alarm parameter that HFC runs with using a number of different values for this can give an 

indication of the confidence that should be assigned to the results.  If the returned p value is 

the same for a number of false-probability parameters this could be an indication that the 

result is robust.  It should be noted that in none of the four algorithms discussed are these 

quality indicators identified as such by their authors who instead validate their algorithms 

purely on the basis of how often they return the correct value for known scenes. 

 

Figure 5.2: Example HySIME output plots showing the means squared error values plotted 

against the k eigenvalue index number (see (Bioucas-Dias and Nascimento, 2008) for a full 

explanation of these plots).  The minimum of the solid blue line represents the p value, the 

number of endmembers estimated by the algorithm.  In a simple case such as that for image 

3a with SNR 55 dB the value is clear with a sharp minimum.  In the other more complex cases 

this minimum is more ambiguous. 

5.3.2: Endmember Extraction Algorithms (EEA) 

Once the number of endmembers in a scene has been established the next step is to extract 

the individual spectral signatures of each of these endmembers.  This is possibly the step that 

has seen the greatest concentration of effort in the signal processing community.  For a 
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thorough description of the wide range of algorithms developed see Chapter 4 and the 

referenced review articles within.  Few of the documented algorithms however have been 

made publically available.  In this work I have looked at four algorithms; VCA, SISAL, RMVES, 

and ICE. A copy of SISAL is publically available for Matlab via the author’s website 

(http://www.lx.it.pt/~bioucas/code.htm).  A Matlab version of RMVES was also acquired via 

the algorithm author’s website (http://mx.nthu.edu.tw/~tsunghan/Source%20codes.html).  

The Matlab code for running ICE was generated by modifying the version of the SPICE 

program written by Alina Zare copyright at the University of Missouri and the University of 

Florida (http://engineers.missouri.edu/zarea/2013/09/code-sparsity-promoting-iterated-

constrained-endmembers/).  The VCA Matlab code was included in the SISAL software 

package download referenced previously. 

A significant difference between the four algorithms is their dependence on the presence of 

‘pure’ pixels.  Both VCA and ICE assume that for each endmember there is at least one 100% 

pure pixel in the dataset being analysed.  SISAL and RMVES make no such assumption.  All 

four are based on the assumption of a linear mixture model. 

None of these algorithms include an estimation of error on the extracted endmembers or any 

other statistical diagnostic output.  SISAL includes in its output the eigenvalues of the 

normalised input matrix which can be used to give an indication of how difficult the problem 

is.  This however is not necessarily an indication of the accuracy of the resulting extracted 

spectra. 

5.3.3: Abundance Estimation Algorithms (AEA) 

This is arguably the most computationally difficult step in the spectral unmixing pipeline, 

especially when non-linearity is present, and as such it is the step with the fewest 

documented algorithms.  The only publically available algorithms in Matlab language are the 

Modified Gaussian Model (MGM) (Sunshine et al., 1990) and the Fully Constrained Linear 

Least-Squared (FCLLS) algorithm (Heinz and Chang, 2001).  The MGM, as discussed in Chapter 

4 section 4.4, is designed specifically for the deconvolution of mafic minerals and therefore 

not appropriate for the unmixing of a complex hydrothermal scene.  This leaves the FCLLS as 

the only AEA available for this study.  The version used in this work is available within the 

Matlab Hyperspectral Toolbox by Isaac Gerg which can be downloaded from github.  This 

algorithm assumes that the spectral mixture is a purely linear one and as previously discussed 

this is not a valid assumption for a hydrothermally altered scene.  The FCLLS algorithm 

produces no statistical quality flag with which to evaluate the accuracy of the results, 
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outputting only the estimated abundance matrix based upon the input image and 

endmembers.  Additionally, it is not clear from the literature the amount of error that can be 

expected when applying it to complex non-linear data with numerous other variables to be 

taken into consideration, and therefore it is worth establishing this.  

 

An additional step can potentially be added to enable FCLLS to take into account non-

linearity.  All of the algorithms so far described use relative reflectance value data (RR).  

Converting this data into Single Scattering Albedo (SSA) as described in Chapter 4, section 

4.3.3, should convert the non-linear RR data into linearly mixed SSA data, allowing the FCLLS 

to be used in such a way that encompasses the non-linearity of the spectral mixture. 

5.4: Results of testing the SMA algorithms on synthetic images 

Each of the algorithms listed in section 5.3 were applied to the synthetic images detailed in 

table 5.1 where appropriate.  Tables listing the full results of each test are given in Appendix 

IV with key results discussed below. 

5.4.1: Endmember Dimensionality Algorithm (EDA) Results 

Each of the four EDA algorithms (ELM, HFC, HySIME, and ODM) was applied to the synthetic 

images listed in table 5.1.  Each image was constructed to test the sensitivity of each 

algorithm to one of the specific complexities listed at the beginning of the Chapter. 

5.4.1.1: Number of endmembers (high p value)  

Images 7a, 7b, and 7c were all designed to investigate the ability of each algorithm to cope 

with increasing p value using minerals typically found in basaltic hydrothermally altered 

environments.  All four algorithms gave accurate results with linear mixtures of 3 and 7 

endmembers (images 7a and 7b).  At p = 15 the results were more mixed with HFC 

consistently underestimating the number of endmembers present regardless of the level of 

noise in the dataset.  The other three algorithms all gave accurate results provided the SNR of 

the data was at least 35 dB.  At lower SNR all three underestimated the value of p.  Images 4, 

5 and 10a.1 all looked at different numbers of endmembers where the mixing was at least 

partially non-linear.  Images 4 and 5 had only 4 endmembers and the only algorithm that 

calculated this correctly was the ODM.  At a higher p value (image 10a.1, p = 12) none of the 

algorithms were able to consistently extract the correct value; however, ODM gave the 

closest results with estimates ± 1 or 2 of the correct value depending on the SNR in the image 

(figure 5.5). 
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5.4.1.2: Number of pixels (low N value)  

Images 7a and 7b were run with varying values of N from 1000 to 10,000.  For these linear 

mixtures all algorithms estimated the correct number of endmembers regardless of the level 

of noise with one exception.  This exception was HySIME which greatly overestimated the p 

value for the lowest N value.  

5.4.1.3: Inter-endmember spectral variation 

Images 2a, 2b, 3a and 3b were all constructed to test the algorithm’s sensitivity to inter-

endmember spectral variation.  Images 2a and 2b focused on two spectrally and 

mineralogically distinct endmember minerals with the inter-endmember variation being due 

to either slight geochemical variations between different samples of the same mineral type 

(2a) or spectral variation due entirely to particle size differences between two aliquots of the 

same samples (2b).  Images 3a and 3b used mineralogically similar pairs of endmembers (two 

iron-oxides and two smectites respectively).  Image 3a incorporated further variation due to 

geochemical differences within a single species and image 3b incorporated spectral variation 

due to particle size differences.  Both of these types of variation are expected to exist in a real 

environment, in particular the spectral variation due to particle size or other structural and 

textural variables.  There are two levels of result here that could both be considered correct; 

i) the correct number of different spectra that have gone into the mixtures (i.e. 6 in images 2a 

and 2b and 4 in images 3a and 3b) and ii) the correct number of mineral species (i.e. 2 in all 

four images).  In every case except image 3b, regardless of SNR, HFC failed to identify either 

correct p value.  HySIME consistently estimated the higher potential p value provided the SNR 

was at least 35 dB.  This demonstrated a high sensitivity to inter-endmember variability.  

ODM struggled with both versions of image 2, estimating p values between the two correct 

ones, however, with images 3a and 3b it consistently returned the higher p values.  As an 

algorithm it is clearly sensitive to inter-endmember variability but not to as high a degree as 

HySIME resulting in some variation being missed.  ELM, the only remaining algorithm 

returned the correct higher p value in every case provided the SNR was 35 dB or higher. 
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Figure 5.3: Results of modal value across the SNR range investigated of EDAs results applied 

to images 2a, 2b, 3a, and 3b at SNR 15 – 55 dB.  HySIME and ELM are the only algorithms that 

consistently extract the p value correctly identifying the number of spectra in every image 

when SNR ≥ 25 dB.  None of the algorithms correctly identified the number of endmember 

minerals which in every case was lower than the number of endmember spectra used in the 

spectral mixture.  This figure does obscure the failure of all algorithms at the highest level of 

noise (SNR = 15 dB) in at least one of the images analysed. 

5.4.1.4: Non-linear mixing 

This is perhaps the most important variable and the most challenging to test.  Producing non-

linear mixtures from single mineral spectra that correspond to a realistic mixture model is 

computationally expensive, could potentially skew the results away from general non-

linearity to only being relevant to the specific mixture model used, and was ultimately 

beyond the time available to this study.  The alternative solution is to use library spectra 

produced from real mineral mixtures.  Both the USGS and RELAB spectral libraries contain a 

number of spectra taken from physical mixtures that are suitable for this task, but the vast 

majority either do not specify the exact abundances of the constituent minerals or are 

mixtures of at most 3 minerals.  Working within these restrictions images 4 and 5 were 

created with only 4 endmembers to test the sensitivity to intimate non-linear mixing.  The 

spectra used in these images were created for use in Mustard and Pieters (1989, 1987), early 

papers on SMA of intimate mixtures.  Only ODM was able to correctly identify the number of 
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endmembers present.  The other three algorithms all routinely overestimated the number of 

endmembers with higher p values returned the higher the SNR value of the image (figure 

5.4).    HFC consistently underestimated the number and both HySIME and ELM both under 

and over-estimated the value of p depending on SNR. Images 10a.1 and 10b were 

constructed using a higher number of endmembers (p = 12 and 10 respectively), and with 

such high p values none of the algorithms correctly estimated p.  The values returned by 

ODM had the smallest spread around the correct value across the range of SNR values (figure 

5.5). 

 

Figure 5.4: Results of the EDAs applied to image 5 at all SNR levels where the radial axis shows 

estimated p value.  ODM was the only algorithm to consistently estimate the correct p value 

of p = 4.  The other three algorithms all estimated increasingly higher p values the lower the 

level of noise present (and therefore the higher the SNR dB value). 

5.4.1.5: Optimum EDA 

Computational run time can also be a factor in choosing an algorithm for any calculation and 

whilst all four did take different amounts of time none took more than a few seconds even 

with the largest, most complex datasets.  Taking into account a scene with every complexity 

examined none of the algorithms was consistently accurate (figure 5.5). All showed sensitivity 

to noise emphasising the importance of using data that is a clean as possible.  The two that 

returned the most accurate results for the highest number of the examined variables were 
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HySIME and ODM, with ODM having the advantage of more accurate and precise results 

when applied to a non-linear mixture (figure 5.5). The higher sensitivity of HySIME to inter-

endmember species variation when applied to a real world scene is in most cases a 

disadvantage.  The inter-endmember species variation can come from a number of factors as 

previously discussed, and the factor responsible for variation in a hyperspectral image is 

highly unlikely to be determinable from this data alone.  For this reason it is more important 

to estimate the number of minerals present rather than the number of slightly different 

forms each of those minerals is present in.  The higher number of endmembers thus returned 

would be an unnecessary complication and potentially greatly increases the amount of time 

and work needed to conduct a full unmixing routine and correctly interpret the results.   

 

Figure 5.5: Results of EDAs applied to image 10a at two different values of N, 290 and 8100.  

The error bars represent the spread of results returned across the SNR levels investigated with 

the point showing the mean value.  The N = 290 HySIME value spanned 132 – 17 (15 – 55 dB) 

and as such has been excluded from the plot.  HFC consistently underestimated the p value 

and the ELM estimates span a large range.  The ODM estimates were the most noise invariant 

with the higher N value generating the most precise and accurate results. 

An additional constraint other than those already noted above or explicitly by the algorithm’s 

authors was discovered for both HySIME and ODM.  Both algorithms rely on an accurate 

estimation of the noise present in the data as their first step.  The code for estimating this 
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noise provided with HySIME and also used for ODM requires that N ≥ L otherwise the 

calculated noise correlation matrices are non-singular and the resulting values unreliable.  For 

a hydrothermal scene that may only include a few hundred pixels this could be an issue 

depending on the spectral resolution of the detector being used.  CRISM has 544 spectral 

channels but it is possible that any hydrothermal area being investigated could be covered by 

fewer pixels than this making it necessary to either remove bands or resample to a coarser 

spectral resolution. 

In the case of both HySIME and ODM a qualitative assessment of the accuracy of the result 

can be provided by looking at the output graph.  The sharpness and clarity of the HySIME 

minimum and the ODM plateau points both give an indication of the quality of the p value 

extracted, where the harder the respective point is to identify the more caution the result 

should be treated with.  If the p value is into double figures the confidence in the algorithms 

result decreases, although the level of noise left in the dataset and the mixture type have a 

more significant effect on the accuracy of the final result. 

5.4.2: Endmember Extraction Algorithm (EEA) Results 

The four EEAs (ICE, RMVES, SISAL, and VCA) were tested using the correct p value to give best 

case scenario results.  The accuracy of the resulting endmembers were evaluated using the 

Spectral Angle Mapper algorithm (SAM) (Kruse et al., 1993).  This commonly used algorithm 

calculates the angle between two spectra when mapped as vectors in L-dimensional space.  

By treating the spectra as vectors SAM is largely invariant to albedo differences.  The smaller 

the SAM value the more spectrally similar the two endmembers.  Additionally, when using 

large p values and non-linear mixtures an attempt was made to identify every endmember 

extracted using the Spectral Analyst tool in ENVI 4.8 which enables identification through 

comparison to spectral library entries.  Even if an extracted endmember isn’t identical to the 

input endmember if it is identifiable as the correct mineral then it is still a useful and valid 

result.  This would be a standard supervised routine used to identify extracted endmembers 

in a real situation.  One important caveat regarding this tool is the necessity of the presence 

of at least one example spectrum of a mineral endmember being present in the spectral 

libraries used to identify the endmembers.  If there is no example spectrum or if the mineral 

in question can have significant interspecies variation and this isn’t represented in the 

available libraries then it can be mis- or unidentified.  Tables detailing full SAM results from 

all tests discussed below are given in Appendix IV. 
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5.4.2.1: Number of endmembers (high p value) 

All four of the algorithms gave increasingly poor results with increasing number of 

endmembers.  At p = 15 (image 7c) RMVES generally gave the lowest SAM values  across the 

noise range, with the SISAL results a close second, however even at 35 dB SNR mismatches 

between the extracted and pure input endmembers were apparent that would lead to 

misidentification of at least one of the minerals present.  Once non-linearity was introduced 

at a high p value (image 10a.1, p = 12) none of the algorithms were able to extract 12 

correctly identifiable spectra.  For each algorithm the SAM results were comparable across 

the SNR levels with VCA and ICE giving poor results (high SAM values) regardless of the noise 

and RMVES and SISAL giving lower SAM values at all noise levels.  The identifiability of the 

extracted endmembers, however, did still correspond to noise with higher SNR giving 

endmembers that were more readily and accurately identified that the lower SNR images. 

5.4.2.2: Number of pixels (low N value) 

None of the algorithms appeared to be significantly affected by decreasing the number of 

pixels in the image.  The previous step in the unmixing process (EDA) requires that N ≥ L and 

therefore this variable isn’t considered an issue for the EEA step in the pipeline. 

5.4.2.3: Inter-endmember spectral variation 

Images 2a, 2b, 3a and 3b were all run with the higher p values associated with them (p = 6, 6, 

4 and 4 respectively).  This was both to test if the algorithms could correctly differentiate 

between the similar endmembers and also because this was the p value that was commonly 

extracted by the EDAs.  At high SNR values (35 dB and greater) all four algorithms managed to 

extract the correct endmembers and discriminate the sometimes subtle differences between 

the minerals and the different versions of each mineral.  At lower SNR values all of the 

algorithms returned some erroneous endmembers, e.g. at 25 dB SISAL and RMVES both 

returned two olivine and four hematite spectra for image 2b rather than the correct three 

olivine and three hematite.  Across the noise range no single algorithm consistently gave the 

lowest SAM values but SISAL and RMVES gave the best results overall when both SAM values 

and positive mineral identification were considered.   

5.4.2.4: Non-linear mixing 

A version of image 4 was created without the 80% pixel purity restriction as the already 

mixed input spectra guaranteed a maximum purity of 95%.  All algorithms extracted the 

correct endmembers with reasonable SAM values with SISAL consistently giving the lowest 

values.  A version of image 5 with the 80% pixel purity constraint returned similar results with 

SISAL and RMVES again giving the lowest SAM results at all SNR values.  Images 4 and 5 
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contained only four endmembers however and they were all quite spectrally distinct.  Images 

10a.1 and 10b with significantly higher p values (p = 12 and p = 10 respectively) returned 

poorer results.  This was to be expected as even with a purely linear mixture it had already 

been shown with image 7c that all four algorithms struggled with high p values.  VCA and ICE 

gave such poor visual results that calculating SAM values and attempting to identify minerals 

was not attempted.  SISAL and RMVES gave reasonable SAM values at high SNR but even at 

55 dB at least one endmember in both images was either unidentifiable or misidentified 

(figure 5.6).  When looking solely at the identifiability of the extracted endmembers the SISAL 

data gave the strongest results, especially when there was a reasonable level of noise in the 

data (figure 5.6).  The endmembers that both algorithms struggled with the most were the 

spectrally flat minerals; in the case of image 10b the quartz and magnesite spectra (figure 

5.6) with the difficulty increasing with overall albedo.  The algorithms compensated for this 

by extracting an additional match to one of the other endmembers to make up the correct 

number of endmembers and adjusting the relative albedos of the extracted endmembers in 

comparison to the input endmembers. 
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Figure 5.6: Image 10b endmembers extracted by SISAL and RMVES algorithms from versions 

with 35 dB and 55 dB SNR.  At 55 dB both algorithms give comparable results failing to 

correctly extract just one endmember, the high albedo, and spectrally featureless quartz.  The 

magnesite spectrum extracted by both has slightly exaggerated features but these are not 

enough to prevent correct identification.  When the noise increases to 35 dB a clear difference 

between the two algorithms is obvious.  Now SISAL returns the clearly superior results, again 

only failing to correctly extract the quartz endmember.  Erroneous features are also now 

evident in a number of the other endmembers but not to the extent that the endmembers are 
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unidentifiable or misidentified.  Of the RMVES endmembers only four (olivine, kaolinite, 

alunite and nontronite) are confidently identified and even they have erroneous features.  The 

remaining six extracted endmembers appear to be mixtures of these and the other pure input 

endmembers. 

5.4.2.5: Optimal EEA 

At the end of these tests the most consistently accurate algorithms were SISAL and RMVES.  

However these two algorithms are not without their issues.  Neither contains a restriction on 

the allowed reflectance values of the extracted endmembers.  As long as the mixed pixels are 

reconstructed with the correct values they allow for the endmembers having relative 

reflectance values outwith the range 0 – 1.  This is unrealistic and must be corrected for when 

attempting to attach mineral identities to the endmembers.  The Matlab RMVES code used in 

this work incorporates a normalisation to this ‘real’ reflectance value range as a final step 

however the SISAL code does not.   

Both SISAL and RMVES work by taking a random VCA selection of endmembers and then 

iteratively improving upon them to better encompass the dataset.  The key difference 

between these two algorithms is the method used for this iterative improvement.  Due to the 

random nature of this starting point both algorithms return slightly different results each 

time they are run on the same dataset.  If the dataset is a relatively simple one with a small p 

value and high dB SNR these differences between runs are marginal and insignificant.  If the 

dataset is more complex, with a large p value, these differences can be considerable, 

however if they are extracting the correct endmembers each time it should be possible to 

match the results from different runs to each other.  It was found that the results (both SAM 

values and mineral matches) from SISAL and RMVES could be improved by running the 

algorithms at least p times on a dataset and then matching endmembers across the runs and 

averaging over these matching sets to produce a final endmember selection.  In SISAL this 

had the added bonus of pulling the reflectance values back towards the ‘real’ value range if 

any endmembers were outside it in some of the runs as well as removing occasional 

obviously erroneous features in individual endmembers. 

Adding this requirement of averaging over multiple runs to both SISAL and RMVES improved 

the extracted endmembers from both at all SNR values.  This step also exposed a major 

difference between the two algorithms, namely the computational complexity and associated 

run time.  Using image 10a.1 as an example each of the SISAL runs took less than 1 second, 
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whereas the RMVES runs took over an hour each.  Given the requirement of a minimum of p 

runs this gives SISAL a clear advantage over RMVES. 

SISAL, in common with the other algorithms looked at in section 5.4.2, does not include as 

part of its output any statistical error or goodness of fit values.  However given the optimum 

use of the algorithm outlined this sub-section, using multiple runs over the same data to build 

up an average set of endmember spectra, a confidence test can be devised.  The complex and 

noisy images demonstrated a much higher variation across the matching endmembers of 

different runs than those from the simpler and low noise images.  Therefore a qualitative 

quality flag can be assigned to the extracted endmembers based on the level of variance 

within each one across the multiple runs with a low level pointing towards more accurate 

results. 

5.4.2.6: Wrong p value 

The results discussed so far only deal with the extraction of the correct number of 

endmembers.  However the EDA sensitivity tests showed that none of the existing algorithms 

can guarantee to estimate the correct p value when dealing with a complex dataset such as 

for a hydrothermal environment as shown in the EDA results for image 10a and 10b.  It is 

important therefore to gauge how much of a difference using the wrong p value will have on 

the extraction of endmembers.  For this step SISAL was tested on image 10b (p = 10) using p = 

9 (one less endmember) and p = 11 (one more endmember).  SISAL has already been shown 

to be the most reliable of the algorithms tested and it is only at high p values that the ODM 

algorithm failed to identify the correct p value.  Rather than the SAM values, the important 

aspect in this case is the ability to correctly identify the extracted endmembers.  For the p = 9 

endmembers four of the minerals known to be present were not identifiable in the resulting 

endmembers.  Magnesite and quartz are both spectrally flat with few features in this 

wavelength range, therefore based on results already discussed it is not surprising that these 

were not extracted.  However ferrihydrite and opal were also missing and these are minerals 

with sufficient distinguishing spectral features to expect the algorithm to find them.  The four 

unmatched endmembers appear to be mixtures of the actual endmembers (both those 

identified in the other five extracted endmembers and those not) but assuming no a priori 

knowledge of these actual endmembers they could not be identified.  Using p = 11 (one more 

than the true value) only two minerals are not identified, quartz and opal, with the additional 

extracted endmember being identified as olivine.  Again the quartz result is consistent with 

previous tests.  The opal is misidentified as montmorillonite.  The two have very similar 

spectral morphology with the key difference being the sharpness of the 2.21 µm absorption, 



112 
 

this feature in opal should be broad but in the extracted endmember it is sharp, more closely 

resembling montmorillonite.  The opal was correctly identified when using p = 10.  The 

correct p value is important to the accuracy of the EEA but if the correct value cannot be 

estimated with a high degree of accuracy it is better to use an overestimate than an 

underestimate. 

It is important to note the effect of noise in the data to the successful completion of this step 

in the unmixing chain.  Unsurprisingly all of the algorithms gave worse results when the SNR 

was lower.  CRISM was designed to have a minimum SNR of 400 or approximately 52 dB at 

2300 nm.  At 400 nm the SNR is expected to be at least 100 or 40 dB provided a sufficient 

integration time is allowed (Murchie et al., 2007).  However these values were calculated 

when CRISM was a new instrument.  As CRISM has aged its SNR has degraded (Bultel et al., 

2015) and thus an algorithm that can cope with higher levels of noise is required.   SISAL has 

been demonstrated to cope with a SNR as low as 35 dB even when the scene is complex 

provided there are no highly reflective, spectrally flat minerals present. 

5.4.3: Abundance Estimation Algorithm (AEA) Results 

The FCLLS algorithm was tested with the synthetic images in both RR and where appropriate 

SSA form.  The FCLLS requires both the original image pixels and the endmember spectra as 

inputs.  The synthetic images were tested using both the input ‘pure’ endmembers to test the 

best case results, and the SISAL extracted endmembers to establish how slight errors in 

endmember extraction could propagate through to errors in the abundance estimation step.  

Errors in pixel abundance estimation are presented as the percentage of the pixel that has 

been assigned to the wrong endmember.  The accuracy of the algorithm was therefore 

evaluated based on the maximum and mean endmember pixel abundance errors for each 

image.  Tables of full test results are presented in Appendix IV.  

5.4.3.1: Number of endmembers (high p value) 

Linear RR images 7b and 7c were tested at 25, 35, 45 and 55 dB noise levels using the pure 

input endmembers and the extracted SISAL endmembers.  At SNR ≥ 45 dB even with p = 15 

when using the correct endmembers the FCLLS was able to extract the abundances with an 

average maximum pixel error below 5%.  The SISAL endmembers at p = 15 gave poorer 

results only dipping below the 5% average maximum pixel error at 55 dB.  At the lowest SNR 

(25 dB) the pure endmembers returned errors as high as 20% and the SISAL endmembers as 

high as 30% on individual pixels.   
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5.4.3.2: Number of pixels (low N value) 

Due to the way the algorithm works (on a pixel by pixel basis) this variable will have no effect 

on the final outcome and has therefore not been included in the sensitivity testing for this 

step. 

5.4.3.3: Inter-endmember spectral variation 

Using images 2a, 2b, 3a and 3b two levels of accuracy were investigated for the FCLLS 

algorithm when applied to the RR datasets based on the two p values in each image.  The 

abundances for each individual endmember were calculated and the pixel abundance of each 

mineral type was also calculated.  At low SNR the average maximum error on each individual 

endmember was high, using the pure endmembers in image 2b it was as high as 40% at SNR = 

25 dB.  However, even with data this noisy when the mineral species abundances rather than 

the individual endmember abundances were calculated the same dataset gave an average 

maximum pixel error of 2%.  The algorithm is assigning weight to the wrong spectral 

endmember but still assigning the correct total amount to each mineral species.  This pattern 

held across all 4 images.  The SISAL derived endmembers in all cases above 25 dB or above 

were sufficiently accurate that the abundance results showed very similar average maximum 

pixel errors to those reported using the pure endmembers. 

5.4.3.4: Non-linear mixing 

Images 5 and 5b were used to test the assumption that the FCLLS when applied to a dataset 

containing non-linear mixing will return less accurate abundance estimations than for the 

identical endmembers in a purely linear mixture.  In keeping with previously reported results 

in the literature this assumption proved valid at all noise levels investigated when using the 

pure input endmembers. 

5.4.3.5: SSA conversion 

The conversion to SSA prior to abundance estimation has been previously investigated by 

Mustard and Pieters (1989, 1987) using laboratory mixtures of powdered samples.  They 

were able to show that provided the incidence and emission angles were known and that the 

particles were homogenous in size that the abundance estimations using least squares 

unmixing were greatly improved by converting the data to SSA prior to unmixing.  Their work 

used a small number of purely non-linear intimately mixed samples.  The spectra used in their 

paper are available from the RELAB spectral library and the FCLLS was tested on this small 

dataset (N = 16) in both RR and SSA versions.  The SSA converted data did return better 

results (an average maximum error of 25% versus an average maximum error of 59% for the 

RR data) however this error is still significantly larger than that reported by Mustard and 
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Pieters.  A key difference between their work and the work presented here is that they have 

dealt with each spectral mixture individually using only the two or three endmembers known 

to be present.  They have not allowed their model to consider the presence of any 

endmembers that were not present in each individual spectral mixture.  The work presented 

in this Chapter treated the 16 spectra as one whole dataset and therefore the algorithm was 

given all 4 endmembers present as potential components of each of the 16 datapoints 

despite the fact that none of the 16 input spectra contained all 4 endmembers.  The method 

by which the SMA pipeline is to be employed to real remote sensing imagery means that the 

data must always be treated as a whole and it is highly unlikely that the exact endmembers of 

each pixel could be known prior to the abundance estimation step.  Therefore the conversion 

of non-linear mixed reflectance data to SSA may yield more accurate abundances but not to 

the extent suggested in the literature.   

The conversion to SSA was tested against purely linear mixtures to test whether or not it 

could provide an improvement on these mixtures and therefore potentially be applied 

universally.  Images 2a and 3a at all SNR levels gave poorer abundance estimates using the 

SSA converted datasets compared to the results from the original RR datasets.  This was true 

for both the abundances of each individual endmember and each mineral. 

The synthetic images presented in this work that encompass non-linear effects are mixtures 

of linear and non-linear mixing.  This is considered a realistic scenario that replicates a typical 

hydrothermally altered scene where there may be discrete patches of mixed soils lying next 

to each other.  Image 5 with its linear mixture of non-linear mixtures gave a higher average 

maximum pixel abundance error after conversion to SSA.  The same result was found with 

image 10b, a linear mixture of non-linear mixed spectra of 10 different endmember minerals; 

at a relatively high SNR (45 dB) when the abundances in this image were calculated from the 

RR dataset the average maximum pixel error was only 8% compared to the SSA conversion of 

the same image that returned an average maximum pixel error of 16%.  The 28 non-linearly 

mixed spectra that were used to construct image 10b were also unmixed as a single N = 28 

dataset and this time the SSA conversion did improve the results (average maximum error of 

19% versus 23%).  The SSA conversion does appear to improve the abundance estimation but 

only in the cases where the spectral mixing is purely non-linear and therefore can be 

modelled using the Hapke equation.  When any element of linear mixing is present the SSA 

conversion diminishes the accuracy of the FCLLS. 

 



115 
 

5.4.3.6: Overall Scene Abundances 

The results presented so far are based on the accuracy of estimating the endmember 

abundance in each individual pixel in an image.  However it can also be useful to know the 

endmember abundance across the entire dataset/scene.  The overall scene endmember 

abundances were calculated for image 10b and image 5 to investigate if the errors introduced 

in an individual pixel by the non-linear mixing were cancelling each other out over the entire 

datasets.  For image 5 the scene errors when using the ‘pure’ endmembers at all noise levels 

were no more than 7% when using either the RR or SSA versions of the image.  When using 

the SISAL endmembers for image 5, the conversion to SSA improved the scene abundance 

estimates down from an error of approximately 25% to 15% across all of the noise levels 

investigated.  Image 10b showed a slightly different pattern.  Again the overall scene 

abundance estimates appeared reasonably invariant to the level of noise present in the data 

for both the pure and SISAL endmembers with the pure endmembers returning a maximum 

error of 6% and the SISAL endmembers a maximum error of approximately 22%.  This time 

however, the conversion to SSA resulting in higher errors in the case of both endmember 

sets.   

The large errors in the abundances calculated using the SISAL endmembers in the high p 

value images all corresponded to the most poorly extracted endmembers.  In the case of 

image 10b none of the extracted endmembers was identifiable as quartz and instead two 

were identified as olivine.  This led to an over estimation of the olivine present and obviously 

no estimate of the level of quartz present.  In a small scale hydrothermally altered 

environment it is expected that there will be a high number of endmembers and that they 

will be highly mixed in both linear and non-linear combinations.  Under these circumstances 

provided the SNR of the data is high and the endmembers have been accurately extracted 

then using the FCLLS on the original RR data should result in overall scene abundances within 

5% of the correct value.  Individual pixel abundances may be significantly worse than this.  If 

there are only a small number of endmembers (p ≤ 5) SSA conversion should be applied to 

improve upon the overall scene abundances with the understanding that the individual pixel 

abundance estimates may suffer as a result.  The primary source of error in the AEA step 

regardless of any of the variables discussed in this section is the accuracy of the endmembers 

extracted in the EEA step.  If these are not correct the estimated abundances will be 

inevitably significantly skewed. 
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5.4.3.7: Errors and timing 

The FCLLS algorithm used is computationally quick, taking no longer than a few seconds for 

even the largest number of pixels and the largest number of endmembers.  Converting to SSA 

adds extra analysis time but is again a computationally quick process. 

The results of the abundance estimations discussed here have been evaluated against the 

known abundances.  In a real world scenario these abundances are unknown and the FCLLS 

algorithm outputs no diagnostic parameter that can be used to gauge the likely error on the 

results.  In these cases where no groundtruth data is available to validate the abundance 

estimates the best confidence check is to rebuild the image from the extracted endmembers 

and estimated abundances using equation 4.1 and calculate the RMSE between the original 

image spectra and the pipeline spectra.  Low values and a random distribution would indicate 

a high level of confidence in the final pipeline results. 

5.5: Optimum pipeline based on results of synthetic image tests 

The final SMA pipeline based on the results discussed above is therefore: 

1. Ensure there are more pixels than spectral bands 

a. Attempt to include as many spectral bands as possible if they cover a 

wavelength range where key spectral features are expected to be found and 

don’t coincide with any major atmospheric interference regions. 

2. Clean the dataset as much as possible removing any excess noise but without 

removing potentially subtle surface absorption features. 

3. Use ODM and HySIME to estimate the number of endmembers present. 

a. Expect that HySIME will overestimate the p value but as both are quick 

algorithms use both to clarify result. 

b. It is better to have a slight overestimate of the number of endmembers than 

an underestimate. 

c. A qualitative assessment of accuracy can be made from the output graphs of 

both algorithms, for an accurate p value ideally want both graphs to have 

sharp turning points at the relevant point for each, a sharp minimum for 

HySIME and a sharp plateau point for ODM. 

4. Use SISAL to extract endmembers. 

a. Run a minimum of p times and calculate the spectral angle between each run 

to identify the matching sets across the runs. 
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b. Once identified, average across matching members to get a final endmember 

set.  At this stage any obviously erroneous spectra can be removed. 

i. A rough guide to the quality of these spectra can be established at 

this point by looking at the variance in each endmember set, a small 

variance means a more accurate extraction. 

c. If needed, normalise the endmembers to within 0 – 1 reflectance range.  The 

data produced by this step however should only be used in order to feed the 

spectra into a spectral analyst tool to assign a mineral identify to each 

endmember.  The original reflectance range values should be used in the AEA 

step even if they are unrealistic values themselves. 

5. Use FCLLS to calculate the abundances. 

a. If the number of endmembers is low (p ≤ 5) then convert to SSA prior to this 

step.  SSA should only be used in circumstances where the incidence and 

emission angles are known to a high degree of confidence. 

b. Calculate area wide abundances from resulting data as these will be more 

accurate than the individual pixel abundances. 

6. Reconstruct image using extracted endmembers and estimated abundances and 

calculate RMSE error between reconstructed image and original input image. 

a. Small errors with a random pattern give confidence that the pipeline has 

produced accurate results. 

The lack of quantitative diagnostic goodness-of-fit statistics produced for any of the outputs 

in the pipeline is an issue.  Steps are described that can give a qualitative/relative estimate of 

the level of confidence that the analyst should have in the outputs at each stage.  The final 

RMSE check can give an indication as to the overall accuracy of the pipeline but this is still 

mostly qualitative.  The minimum 5% error to be applied to the scene wide abundances is a 

reflection of this uncertainty and it should be borne in mind that it is a minimum and that the 

abundance errors on individual pixels could be much higher. 

In opposition to the earlier stated limitation of SMA by Keshava and Mustard (2002) the 

pipeline presented here is capable of corrected unmixing scenes with up to 15 endmembers 

provided a number of caveats are met: i) none of the endmembers are high albedo and 

spectrally flat, ii) the SNR is high (> 35 dB) and iii) the spectral contrast across the dataset is 

high.  Non-linear mixing between the endmembers is only a significant issue in the EDA and 

AEA steps, and if the number of endmembers is small (5 or fewer) it is not an issue for the 

EDA when using ODM.  The step with the highest level of uncertainty is the abundance 
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estimation, partly because it relies on accurate results in the previous steps, but also because 

it appears to be heavily influenced by the mixture model involved.  With high numbers of 

endmembers the level of confidence on the abundance estimation of individual pixels drops 

but provided the above caveats are met the scene wide abundances appear to be just as 

accurate (potentially as low as 5% error) as for low p value scenes when using the linear 

mixing model even if there is non-linearity within the scene although the individual pixel 

abundances can suffer from much higher errors. 

 

Figure 5.7: Flowchart detailing the optimum SMA pipeline for analysis of hydrothermally 

altered terrain. 

5.6: Test on real data from Námafjall, Iceland 

To fully understand the applicability and limitations of the above pipeline it is necessary to 

test it against real data with all of its inherent environmental and instrument noise.  Two 

datasets were acquired covering Námafjall, the same region in Iceland dealt with in Chapter 
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3.  The first is an aerial dataset and the second a groundbased dataset.  Both datasets cover a 

similar spectral range and resolution.  The full geological context and significance of the 

minerals present in this region is discussed in Chapter 3. 

5.6.1: Aerial dataset§ 

Aerial datasets of the Námafjall region were acquired from the archived dataset IPY07-09 

from the NERC Airborne Research and Survey Facility (ARSF), courtesy of the NERC Earth 

Observation Data Centre.  The dataset was collected on 05/09/2008 from an altitude of 

approximately 1410 m using the two hyperspectral instruments operated by ARSF at the time 

of data collection: an AISA Eagle and an AISA Hawk.  The Eagle is a VNIR hyperspectral sensor 

capable of collecting data spanning 400 - 970 nm at a maximum spectral resolution of 2.9 nm 

in a 1000 pixel swath.  The Hawk covers 970 - 2450 nm at a maximum spectral resolution of 8 

nm and a swath width of 320 pixels.  The hyperspectral data were supplied as L1b data (non-

georectified ‘radiance at sensor’).  The hyperspectral data was atmospherically corrected 

using the FLAASH module in Exelis Visual Information Solutions ENVI 4.8 (Exelis Visual 

Information Solutions, Boulder, Colorado) to generate ground surface reflectance values.  

These atmospherically-corrected datasets were then georeferenced to L3a level data using 

ARSF supplied software ‘azgcorr’ (Azimuth Systems UK, version 5.0.0, July 2005) and the 

supplied LiDAR DEM to a 2 m pixel resolution.  The LiDAR operated by the ARSF at this time 

was an Optech Airborne Laser Terrain Mapper 3033.  The LiDAR data was supplied as a final 

data product DEM supplemented with ASTER DEM data to fill any data gaps.  Regions of 

significant atmospheric H2O were removed from the final datasets leaving a total of 232 

spectral bands. 

5.6.2: Field dataset 

A 2 m2 grid was marked out over an 18 m by 18 m section of the flat altered soil plain partly 

imaged as A06_Soils in Chapter 3 (figure 5.8).  At each 2 m intersection of the grid a spectrum 

was collected using an ASD Fieldspec Pro following the routine detailed in Chapter 3 section 

3.3.3, adapted from the laboratory setting to the field.  This grid provided a dataset to test 

the unmixing pipeline on and additionally demonstrated the level of mineralogical variation 

that could potentially be contained within a single CRISM pixel.  An extra 20 spectra taken 

from nearby altered mounds with the same mineral composition were also included bringing 

the total dataset to 111 spectra.  The raw data contained 2151 spectral bands.  This was 

                                                           
§ This paragraph is taken from Harris, J.K., Cousins, C. R., Gunn, M., Grindrod, P. M., Barnes, D., 
Crawford, I., Cross, R. E., Coates, I. A., Remote detection of past habitability at Mars-analogue 
hydrothermal alteration terrains using an ExoMars PanCam emulator., 2015, Icarus, 252, 284-300 and 
was written entirely by the author. 
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resampled to be a point every 0.02 µm spanning 0.4 - 2.5 µm, giving 106 spectral bands in 

total.  This step was necessary for the application of the EDA step in the SMA pipeline that 

requires more data points than spectral bands. 

 

Figure 5.8: Field photo showing white outline of the 18 m by 18 m grid lain out on the flat 

altered plain.  The top corner from this photographs point of view coincides with the ROI 

A06_Soils detailed in Chapter 3. 

5.6.3: Groundtruth dataset 

Each individual spectrum from the field dataset was examined using the Spectral Analyst tool 

resident in ENVI 4.8 to identify the minerals present.  This identified the minerals present but 

gave no information regarding the abundances of each mineral in each point in the scene.  In 

addition a number of rock and soil samples collected from within the grid and from across the 

plain were mineralogically analysed using qualitative XRD spectroscopy and laboratory VNIR 

reflectance spectroscopy.  Full details of the ‘groundtruthing’ data collection and processing 

can be found in Chapter 3, section 3.3.3.  The grid and associated plain region contained 12 – 

14 minerals (table 5.2); gypsum, jarosite, anatase, andesine, augite, plagioclase, 

montmorillonite, hematite, sulfur, quartz, zeolite, goethite, kaolinite, and smectite.  In some 

cases it was not possible to uniquely identify the specific member of a mineral species 

present with either the spectral or XRD analysis; this was a particular problem with samples 

that contained zeolite, plagioclase or smectite.  This slight ambiguity is further evidence for 

the difficulty in uniquely identifying minerals in a hydrothermal environment, particularly 

using in situ data and technologies.  A full quantitative analysis was not possible however a 
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rough idea of the prevalence of each mineral based on the number of samples that each 

mineral was present in enabled some judgement to be made as to the accuracy of the final 

AEA step in the pipeline.   

Table 5.2: XRD and laboratory VNIR mineral identifications from the groundtruth samples 

collected from the altered plain region.  Anatase is identified in a number of the XRD results 

but not in the VNIR results.  Anatase is not a mineral that is contained in the USGS spectral 

library used in the VNIR identification process and therefore could not be identified using this 

method. 

 Unit  Bulk mineralogy (XRD, VNIR) 

A02_001 Dark red soil gypsum, alunite, jarosite  

jarosite, nontronite 

A02_002 Vesicle filled grey rock andesine, augite, zeolite  

jarosite, goethite 

A02_003 Bright alteration coating jarosite  

jarosite 

A02_004 Yellow soil gypsum, alunite, jarosite 

nontronite, zeolite, jarosite 

A02_005 White/grey soil gypsum  

gypsum, montmorillonite 

A02_006 Pink alteration coating anatase  

saponite, zeolite 

A02_007 Pink alteration coating plagioclase  

microcline, goethite 

A02_008 Dark red soil montmorillonite, hematite  

sauconite, montmorillonite 

A02_009 Alteration soil sulfur, anatase  

sulfur 

A02_010 Brown compacted soil plagioclase  

smectite 

A03_001 Grey slab plagioclase, anatase  

microcline, perthite 

A03_002 White soil gypsum  

gypsum, zeolite 



122 
 

A03_003 Yellow soil gypsum, jarosite  

jarosite, nontronite, gypsum 

A03_004 Coarse grey soil alunite, sulfur (trace)  

montmorillonite, zeolite 

A03_005 Bright brittle slab sulfur  

sulfur, microcline 

A03_006 Red soil hematite, sulfur, jarosite  

hematite, nontronite 

A03_007 Brown compacted soil plagioclase, augite  

perthite, smectite 

A03_008 Brown soil quartz, jarosite, augite, sulfur (trace)  

nontronite, ferrihydrite 

A03_009 Pink alteration coating jarosite, augite, hematite  

smectite, zeolite 

A03_010 Peach alteration coating jarosite, anatase  

nontronite, goethite 

A06_001 Bright-toned unit sulfur, anatase  

nontronite, montmorillonite 

A06_002 Bright-toned unit sulfur, zeolite  

sulfur 

A06_003 Dark red unit hematite, natrojarosite, augite, sulfur (trace) 

hematite 

A06_004 Bright-toned unit sulfur, zeolite  

sulfur 

A06_005 Dark red unit natrojarosite, sulfur, zeolite 

goethite, montmorillonite 

A06_006 Bright-toned unit sulfur 

nontronite, montmorillonite 
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5.7: Iceland data results 

5.7.1: Aerial data 

The full pipeline was applied to an ROI extracted from the aerial data (figure 5.9) at three 

different pixel sizes; 2 m, 4 m, and 18 m.  These different pixel sizes were achieved by simple 

amalgamation of neighbouring pixels using a nearest neighbour technique within ENVI 4.8.  

The 2 m pixel image was the highest spatial resolution available of the data and the down-

sampled larger pixel images were constructed to test if differences in spatial resolution would 

have a significant impact of the results of the unmixing pipeline.  The SMA pipeline was 

applied to each pixel size ROI in turn.  The ODM algorithm begins with an estimate of the 

noise present in the data and this value was largest for the 2 m pixel data.  Random noise will 

have been slightly smoothed out in the 4 m and 18 m datasets leading to their lower noise 

estimation. 

Table 5.3: EDA values for the aerial Iceland dataset.  The ODM algorithm is returning a p value 

within the value range expected given the groundtruth sampling of the region.  The HySIME is 

greatly overestimating as was expected given the structural and morphological variation on 

the ground.   

Pixel size (# of pixels) HySIME ODM 

2 m (17097) 54 11  

4 m (4312) 68 10  

18 m (282) 40 13  

 

In every case the HySIME greatly overestimated the number of individual minerals.  However 

it is possible that what it is picking up on is inter-mineral variation, e.g. differences in textures 

and particle orientations and slight geochemical variations from distinct locations across the 

scene.  The synthetic image tests detailed in section 5.3 demonstrated that this inter-

endmember variation is something that HySIME in particular is sensitive to.  All of the ODM 

results are roughly consistent with the groundtruth data.  
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Figure 5.9: Eagle RGB (bands 638.7, 548.4, 461.4 nm) 2 m pixel image with the extracted RIO 

outlined in black. The yellow box indicates the location of the 18 m2 grid of groundbased data. 

The ODM p values were fed into the EEA step of the pipeline and for each pixel size all but 

one of the endmembers were unidentifiable (figure 5.10).  Using the 2 m pixel data the only 

identifiable endmember is ARSF_6 which has a clear vegetation spectral signature.  

Vegetation’s identifying spectral features are all in the 0.4 – 1 µm wavelength range unlike 

the majority of the minerals present in a hydrothermal environment.  A number of the other 
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endmembers showed evidence of iron oxide in the visible portion of the wavelength range, 

ARSF_1, 2 and 8 in particular, but are otherwise swamped by a liquid H2O spectral signature 

prevalent across the scene.  Given the location, the time of year the data were collected 

(September) and the active hydrothermal fumaroles and pools in the local vicinity the entire 

scene was unsurprisingly saturated with surface water despite there being no water bodies 

within the ROI.  The wavelength regions that would show the strong water absorptions were 

removed due to the risk of uncorrected atmospheric interference although the edges of these 

atmospheric regions still show the beginnings and endings of strong absorption features.  This 

water saturation is seen therefore as the overall spectral shape of each realistic endmember 

that peaks around 0.7 - 1.0 µm and then shows a steeply negative continuum slop with 

increasing wavelength.  This strong water signature in the infrared appears to be what is 

obscuring the spectral variety known to be present even at the 2 m pixel resolution.  Due to 

the failure of the pipeline to produce identifiable results at this stage for any pixel size the 

final AEA step was not performed. 
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Figure 5.10: Mean SISAL extracted endmembers from the 2 m pixel ARSF ROI.  a) Full spectral 

range, gaps show where significant regions of atmospheric interference have been removed, 

b) Eagle only data where the majority of the variation is seen.  ARSF_8, 2 and 1 show high 

red:blue ratios indicating the presence of Fe-bearing minerals.  ARSF_6 is a vegetation 

spectrum; it is the only uniquely identifiable endmember.  ARSF_4 and ARSF_3 are not realistic 

looking spectral signatures.  Similar endmembers to this set were extracted from the 4 m and 

18 m ROI’s. Key spectral features are expected in the 1.9 – 2.5 µm portion of the spectrum 

however the heavy presence of water has significantly diminished the albedo of this region 

and obscured any diagnostic mineral absorptions. 
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5.7.2: Field data 

The full pipeline was applied to the N = 111 and L = 106 dataset.  The EDA returned values of: 

HySIME = 27 

ODM = 14  

Due to the small value of N this overestimate from HySIME was to be expected.  The fact that 

it is not higher reflects the high SNR of the dataset.  The ODM value is consistent with the 

groundtruth dataset that revealed 12 – 14 different minerals in the region.  The EEA step was 

run using p = 14, the ODM estimated value (figure 5.11).  Identification of the resulting 

endmembers was performed using the Spectral Analyst tool within ENVI 4.8 and the inbuilt 

USGS spectral library (table 5.4).  Of the resulting endmembers one was unidentifiable 

(ASD_10) and one was judged to be an addition of the algorithm to reconcile the albedo 

changes across the dataset likely due to imperfectly corrected heterogeneous atmospheric 

components across the scene and not a real mineral endmember (ASD_4).  The remaining 12 

endmembers were all positively identified as minerals (or members of a mineral species) 

present in the groundtruth dataset (table 5.2) with the addition of opal.  This mineral 

however was detected in samples from other ROIs in the Námafjall region (see Chapter 3, 

table 3.5) and is thus considered a realistic identification for this dataset given the small 

overall scene abundance of the opal endmember (ASD_3).  One endmember was not 

uniquely diagnosed, potentially matching to two different minerals, opal and 

montmorillonite, both of which were also identified as matching to two other endmembers.  

In total 11 minerals were identified.  The unreal endmember was removed and the remaining 

13 were run through the AEA step. 

The scene abundances appear to match reasonably well with the groundtruth with the 

dominant minerals being iron oxides and hydrated sulfates and silicates, the minerals most 

often identified in the grid manual analysis.  The RMSE value for the entire dataset is 0.0154 

with a peak in one spectral point of 0.072 and no discernible pattern with respect to the 

minerals known to be present in the ground samples (figure 5.12).  This suggests that there is 

no systematic error lending confidence to the endmember extraction routine.  The results of 

the synthetic image sensitivity tests suggest that a minimum error of 5% should be applied to 

these whole scene abundance results with higher errors expected in individual pixels such as 

the one with the high RMSE value.  Again as with the aerial data nearly every endmember 

shows evidence of the presence of H2O with significant absorption bands at 1.4 and 1.9 µm  

but without the strong negative general slope in the infrared (figure 5.11).  The weather at 
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Námafjall in the two to three days prior to the collection of the field dataset had been dry 

and thus the scene was not saturated with liquid water and the absorption bands at 1.4 and 

1.9 µm are interpreted as evidence of O-H and H2O within the endmember minerals rather 

than liquid water in the surface.  Both hematite and goethite can be formed as a direct result 

of hydrothermal alteration of basaltic materials, and also as a secondary mineral product due 

to weathering of iron rich soils and rocks.  Thus the dominance of these iron oxides is 

interpreted as a result of the fact that the spectral data is sampling the top few microns of 

the surface soil where the heaviest weathering is occurring and thus picking up on both 

primary hydrothermally altered soils and secondary mineral production due to weathering.  

Table 5.4: Endmember identifications and overall scene abundance percentages from the field 

data spectral dataset taken from the region highlighted in figure 5.7. 

Endmember Mineral match Scene abundance (%) 

ASD_1 Gypsum (hydrated sulfate) 9 

ASD_2 Erionitmite (zeolite) 3 

ASD_3 Opal (hydrated silica) 5 

ASD_4 Unreal N/A 

ASD_5 Rutile (titanium dioxide) 4 

ASD_6 Hematite (iron oxide) 2 

ASD_7 Sulfur 2 

ASD_8 Saponite (phyllosilicate) 5 

ASD_9 Montmorillonite (phyllosilicate) 3 

ASD_10 ? 5 

ASD_11 Ferrihydrite (iron oxide) 25 

ASD_12 Goethite (iron oxide) 28 

ASD_13 Microcline (alkali feldspar) 7 

ASD_14 Montmorillonite or opal 2 
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Figure 5.11: Mean SISAL extracted endmembers from ASD field spectrometer dataset prior to 

normalisation to the 0 – 1 reflectance range.  The entirely negative endmember ASD_4 is 

interpreted as an artefact of the SISAL process attempting to minimise the fit error in the 

dataset within the p value given and was removed from the final endmember set fed into the 

FCLLS step. It does not match the spectral signature of any natural material in the available 

spectral libraries. The slightly negative absorption at ~1.0 µm in ASD_12 is a result of SISAL 

not constraining the extracted endmembers to the 0 – 1 relative reflectance range and is not 

an error; normalisation of this endmember yields a realistic spectral signature matching to 

goethite.  Identifications of all endmembers shown are given in table 5.4. 
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Figure 5.12: RMSE values showing the error between the original ASD dataset and the dataset 

reconstructed from the pipeline extracted endmembers and estimated abundances.  a) a 

graph of the RMSE values for each point in the dataset, b) the RMSE values for the grid in the 

correct spatial layout showing a random distribution with the pixels with the highest error 

having no endmember or mineral composition in common. 
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5.8: Discussion of differences between synthetic sensitivity and Iceland results 

There are a number of key differences between the two Iceland datasets and the synthetic 

images which feed into the interpretation of the results of both.  The immediate difference is 

the environment in which they were taken.  The spectral library data used in the synthetic 

images were collected with a similar instrument to the Iceland field data but under controlled 

laboratory conditions.  In addition all of the spectral library samples were powdered prior to 

collection of their spectra (Clark et al., 2007; Pieters and Hiroi, 2004).  This has been shown 

(Clark, 1999) to alter a mineral’s reflectance spectrum, mainly with respect to general albedo 

and peak reflectance values.  The aerial data has the added complication of significant 

atmospheric interference that must be dealt with.  A full physics based method (FLAASH 

(Adler-Golden et al., 1998)) was used to remove the atmospheric contribution to the signal, 

but without coincident ground spectra to compare the results to it is not guaranteed that all 

the atmospheric signal was successfully removed.  The EDA step appeared reasonably 

insensitive to noise (both HySIME and ODM explicitly estimate the noise present and account 

for it) and as such returned reasonable results for the synthetic and both the aerial and field 

spectrometer datasets that were largely invariant to noise.  The major difference between 

the synthetic image results and the real scene results was seen in the EEA step.  The aerial 

Iceland dataset showed a single overarching spectral shape due to the presence of liquid 

water across the scene.  This was most likely due to a combination of incompletely removed 

atmospheric water vapour and a high level of water in the surface soils due to recent rain.  

This signature was so strong as to swamp any other identifiable spectral features.  In the case 

of the field data the absorption bands due to H20 and/or O-H were seen in every data point 

and in most of the extracted endmembers but the general spectral shape due to liquid water 

was not present and thus these hydration features were confidently interpreted as evidence 

of hydrated mineral species and not surface water.  This overarching environmental spectral 

shape is not an issue that arose in the synthetic data due to the laboratory environmental 

setting of all of the samples.  As a technique to use on Mars, a dominating liquid water 

signature such as seen here will not be an issue, but there is still the possibility of one general 

environmental signature swamping out the mineral variation on the surface.  On Mars this 

would be the ubiquitous dust coverage (Christensen, 1988; Szwast et al., 2006).  This surface 

and atmospheric dust is a long standing issue with any VNIR spectral imaging analysis of the 

surface of Mars, and there are spectral parameters designed specifically to perform a quick 

assessment of the level of dust coverage in an individual image (Pelkey et al., 2007; Ruff and 

Christensen, 2002; Viviano-Beck et al., 2014).  This would enable an analyst to quickly 

establish if an image is suitable for the application of the SMA pipeline presented in this work.  
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In order for SMA to be confidently applied to martian data the level of dust in the pixels being 

analysed needs to be low. 

5.9: Future work 

Both HySIME and ODM rely on an estimation of the noise present in the dataset as a first 

step.  The noise estimation code used in this work contained the assumption that the noise 

could be modelled as either Gaussian or Poisson with the option to specify which.  In real 

data neither of these assumptions are valid with the noise typically taking on a more complex 

shape.  Incorporating more accurate methods for estimating the noise should improve the 

EDA step in the pipeline.  An additional step that could greatly improve the abundance 

estimations would be establishing a method to determine the mixing model of each pixel, 

whether it is an intimate non-linear mixture or a linear mixture or even a combination of the 

two.  This is an acknowledged problem within the signal processing and remote sensing 

communities and some work has been attempted however the majority of the algorithms 

developed are based on the assumption of specific mixture models that may not be accurate 

in every case (Altmann et al., 2013c; Broadwater and Banerjee, 2011; Dobigeon et al., 2014; 

Imbiriba et al., 2014).  Finally, a quantitative estimate of the error introduced in each step in 

the pipeline should be established. 

5.10: Summary 

In this chapter I have presented the development of a full spectral unmixing pipeline with 

specific focus on the spectral complexities inherent in small scale hydrothermally altered 

surface environments.  A number of publically available algorithms covering each of the three 

steps required for full unmixing were applied to a series of synthetic images to test their 

sensitivity to a suite of spectral issues.  At each stage the most consistently accurate 

algorithm was selected and any caveats with respect to its application noted.  The final 

pipeline was then applied to two sets of hyperspectral data taken from the Námafjall region 

in Iceland detailed in the Chapter 3.  These tests on both real and synthetic datasets 

demonstrated that provided the spectral image being analysed has a high SNR and no single 

overarching environmental signature, it should be possible to estimate the number of 

minerals present, extract their spectral signatures and estimate their overall scene 

abundance to within 5% accuracy.  
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Chapter 6: Application of Spectral Mixture Analysis on 

hydrothermally altered regions on Mars 

6.1: Introduction 

Chapter 5 detailed the development of a full spectral unmixing pipeline optimised for 

complex, small scale hydrothermal deposits utilising freely available algorithms.  This 

approach was then validated using synthetic images constructed from spectral library data 

and hyperspectral data from the Námafjall region in Iceland.  This chapter shall cover the 

application of this pipeline to regions on Mars which have been previously postulated to have 

experienced hydrothermal alteration.  Issues of data availability and the general applicability 

of the pipeline to CRISM data shall also be discussed. 

6.2: Data collection 

The selection of potential hydrothermal deposits for analysis using the SMA pipeline 

developed in Chapter 5 is based on two factors; 1) selecting areas that have been found to 

show evidence of past hydrothermal activity either through spectral data and/or structural 

features and 2) the availability of CRISM coverage over these regions that is of sufficient 

quality (i.e. relatively dust free with a high SNR) for SMA.   

6.2.1: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a VNIR and 

shortwave infrared (SWIR) imaging spectrometer on board NASA’s Mars Reconnaissance 

Orbiter (Murchie et al., 2007).  The instrument has been operational since autumn 2006 

returning thousands of hyperspectral images covering the spectral range 0.362 – 3.92 µm at 

6.55 nm resolution in that time.  This range is split between two internal spectrometers; the 

Shortwave VNIR spectrometer covering 0.362 – 1.053 µm and the Longwave IR spectrometer 

covering 1.002 – 3.92 µm.  The incoming light is collected through a 10 cm diameter Ritchey-

Chretien telescope and directed through a gold-plated nickel slit.  The radiation is then fed 

through a beam-splitter to two Offner convex-grating spectrometers.  The VNIR spectrometer 

is comprised of a silicon photodiode detector array with a fixed mounted filter to block higher 

orders from the grating.  The IR spectrometer comprises an HgCdTe detector array with a 

fixed-mounted three-zone filter that blocks higher orders from the grating as well as thermal 

background radiation.  Internal calibration systems monitor bias, dark current, thermal 

background, detector nonuniformity and behind slit responsivity.  Fuller technical details can 

be found in Murchie et al., (2007).  At 300 km altitude the spatial resolution when operated in 

Full Resolution Targeted (FRT) mode is 18 m/pixel (Murchie et al., 2007).  This is achieved 



134 
 

through use of a mechanical gimbal that allows the camera to track targets on the surface as 

it flies overhead, removing the bulk of the image blur due to motion.  CRISM data is publically 

available as Targeted Reduced Data Records (TRDR) processed through the internal team 

software (current version TRR3) to produce calibrated radiometric data in units of I/F.  I/F is 

defined as “the spectral radiance divided by the solar spectral irradiance of the Sun at Mars 

distance divided by p [p = angle of incidence].  Another way to put it is that it is the ratio of 

the radiance observed from a surface to that of a perfect white Lambertian surface 

illuminated by the same light but at normal incidence.”  (Bennett et al., 2011).   

CRISM was designed to have a SNR of 400 (approximately 52 dB) at 2300 nm and 100 

(approximately 40 dB) at 400nm and > 2700 nm.  The level of noise expected is not consistent 

across the instrument’s spectral range, varying with wavelength.  SNR estimates are based on 

system responsivity without any system binning and therefore include all instrument noise 

expected during an average target collection.  However these estimates were made assuming 

optimal viewing geometry and the actual SNR for each measurement will vary with 

integration time, illumination angle and target surface reflectance (Murchie et al., 2007).  

Additionally as discussed in chapter 5, section 5.4.2.6 these SNR estimates were made when 

the instrument was new and it is expected that they will have deteriorated slightly over the 

years the instrument has been in service, primarily due to degradation of the cooling system 

(Bultel et al., 2015; Parente et al., 2010).  Deterioration of the SNR due to failing of the 

cooling system means it is the IR section of the data that will be most affected with Bultel et 

al (2015) estimating that the SNR at 2300 nm in images taken in 2012 is closer to 200 than 

400 whilst the SNR at 400 nm remains unchanged.  

Basic processing of CRISM I/F images is possible through the CRISM Analysis Toolkit (CAT) 

(CRISM, 2013).  CAT is a plug-in for the software ENVI written in the IDL programming 

language.  It is a publically available toolkit and the standard method for processing CRISM 

images within the planetary science community.  CAT contains tools to convert I/F data to 

radiance and perform photometric correction, remove data spikes and stripes in the images, 

remove the major atmospheric CO2 contributions to the images and to georeference the 

images to a Mars datum.  The photometric correction is particularly important as the angle of 

incidence can alter the general shape of a spectral reflectance signature and to a lesser 

extent the depth of any absorption bands.  However this is only a significant effect at extreme 

angles far from nadir (Clark, 1999).  Such angles can occur within a CRISM image due to 

variations in local topography.  A photometric correction is performed prior to public data 

release that uses the MOLA global DEM dataset to correct for slope within each pixel.  The 
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photometric correction that is performed as a tool in CAT is a simple cosine correction using 

the angle of incidence.  This assumes a lambertian scattering behaviour from the scattering 

surface which has been shown to be a reasonable assumption for most low albedo martian 

surfaces (Bultel et al., 2015).  In addition to all of these pre-processing tools CAT allows the 

quick production of the spectral parameters listed in Pelkey et al. (2007).  CAT version 7.2.1 

has been used in the work presented in this thesis. 

6.2.2: Selection of hydrothermal targets 

Chapter 2 discussed a number of locations on the martian surface that have been identified 

as regions that have hosted hydrothermal systems in their past.  NASA’s Planetary Data 

System (PDS) Geoscience node together with the CRISM data map hosted by the Applied 

Physics Laboratory at Johns Hopkins University (http://crism-map.jhuapl.edu/) were searched 

for available CRISM images over locations already postulated to have been hydrothermally 

altered (Cousins and Crawford, 2011; Schulze-Makuch et al., 2007; Skok et al., 2010).  Data 

were restricted to images with both Short (VNIR) and Long (IR) detector coverage and 

preference given to those collected as Full Resolution Targeted (FRT) mode.  CRISM images 

with overlapping temporally coincident HiRISE imagery were given further preference.  The 

HiRISE images were important in enabling an initial visual inspection at a higher resolution in 

order to determine textural and structural features that may point towards significant 

spectral variation.  Additionally when the HiRISE images were temporally coincident they give 

a quick method of estimating the level of dust present on the surface.  In instances where no 

suitable FRT CRISM images were available covering the full spectral range, Half Resolution 

Targeted (HRT) images were examined for feasibility.  These HRT images cover the same 

spectral resolution as the FRT CRISM images but with half the spatial resolution, i.e. 36 m2 

pixels versus 18 m2 pixels. 

Initial examination produced four regions of Mars with suitable CRISM coverage (figure 6.1), 

three of which have been investigated by previous researchers and shown to have likely 

experienced hydrothermal activity at some point in their history.  These three regions are: 1) 

Aromatum Chaos [-1.03° N, 317.03° E], 2) Nili Patera [8.97° N, 67.17° E], and 3) Hecates 

Tholus [32.12° N, 150.24° E].  A fourth region covering a small unnamed crater was also 

examined [17.367° N, 291.213° E].  High energy impacts can trigger the formation of short-

lived hydrothermal systems (Osinski et al., 2013), and the crater in question showed a 

number of interesting bright patches near the central uplift structure of the crater in HiRISE 

images that warranted further spectral investigation.  Of the four examined regions, one 

CRISM image from each area was selected based on an initial visual inspection of the spatially 
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corresponding HiRISE and CTX coverage; this allowed for a first assessment of the potential 

spectral diversity present.  With the exception of Nili Patera the regions analysed in this 

Chapter have not been subject to much, if any, previous in-depth, high resolution spectral or 

mineralogical analysis. 

6.2.3: CRISM data processing 

Once suitable CRISM images were selected they were processed to produce cleaned, 

atmospherically corrected, georeferenced final products.  The tools necessary for standard 

pre-processing of CRISM images are available within the CRISM Analysis Toolkit (CAT) plugin 

for ENVI 4.8.  All images were photometrically corrected, random data spikes were removed 

using the Cirrus despike tool and linear stripes due to detector pixel variations removed using 

the MRO Destripe tool.  Finally the image cubes were map projected and a number of bands 

removed.  The common bands removed from all four images were those identified as 

potentially problematic by Murchie et al (2009) and include VNIR bands < 442 nm, 644 – 684 

nm, and 970 – 1023 nm, and IR bands < 1047 nm , 1648 – 1665 nm,  and bands > 2660 nm.  

Additional bands were removed based on visual inspection for each individual image and are 

noted where relevant in the following region-specific discussions.  Due to the size of each 

CRISM image smaller ROI’s of approximately 1 – 2 km2 were selected from each viable 

processed CRISM image based on the visual level of variability evident in spatially coincident 

colour (where available) HiRISE images from each region.  It is these ROIs that were 

processed through the SMA pipeline.  As discussed in Chapter 5, the higher the number of 

endmembers present in a scene the longer the SMA pipeline takes to perform and the lower 

the accuracy of the results at every stage.  In the following results any band centres identified 

are considered to have an error of ± 0.01 µm, the average spectral sampling of the 

instrument (Murchie et al., 2007). 
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Figure 6.1: a) MOLA global coverage elevation map with locations of the four regions 

analysed in this Chapter.  b) – e) CRISM (blue outlines) and HiRISE (red outlines) footprint 

coverage over the four regions taken from the JMars interface (Christensen et al., 2009) on 

13/06/15.  Each image shows MOLA elevation overlain on THEMIS IR daytime temperature 

measurements.  b) Unnamed (‘Kirkcaldy’) Crater, c) Aromatum Chaos, d) Nili Patera, e) 

Hecates Tholus.  Nili Patera is well covered by both instruments, the coverage over Hecates 

Tholus is patchy and coincident measurements are concentrated over the collapse feature on 

the north-western flank of the volcano.  Aromatum Chaos has very little coverage in either 

instrument and the coverage of the Unnamed Crater is concentrated solely on the central 

uplift feature. 
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6.3: SMA results 

6.3.1: Nili Patera 

The Nili Patera caldera forms a unit of the Syrtis Major volcanic province on Mars (Fawdon et 

al., 2015).  Early spectral imaging using the Soviet Imaging Spectrometer for Mars (ISM) on 

the Phobos 2 orbiter identified the Syrtis Major province as a region of high spectral 

variability with low homogenous global dust coverage, dominated by mafic basalts and their 

alteration products (Mustard et al., 1993).  Later studies have focused on specific regions 

within the Syrtis Major complex and discovered quartz and silica rich deposits near the 

Antoniadi Crater (Smith and Bandfield, 2012), phyllosilicates and carbonates in the Nili Fossae 

region (Brown et al., 2015, 2010; Ehlmann et al., 2009), and felsic igneous rocks (Wray et al., 

2013) and hydrated-silica mounds (Skok et al., 2010) within the Nili Patera caldera.  These 

various mineral assemblages have been interpreted as evidence of significant hydrothermal 

activity across the region leading both Nili Fossae and Nili Patera to be put forward as rover 

landing sites for the NASA MSL (Ehlmann et al., 2007) and NASA 2020 Mars rover (Skok et al., 

2014) missions respectively, both of which have an emphasis on habitability (Grotzinger et al., 

2012; Mustard et al., 2013).  As a result of these previous studies and the availability of 

relatively dust free CRISM images the Nili Patera region was selected as a test case for 

application of the SMA pipeline developed in Chapter 5.  Spectral unmixing has not previously 

been applied to this region but the strong spectral signatures and relative lack of the 

homogenous martian surface dust make this region an ideal unmixing candidate, with the 

existing spectral studies providing an element of groundtruthing with which to interpret and 

validate the results. 

CRISM image FRT00010628_07_IF165L/S_TRR3 was selected for unmixing analysis.  This 

image was used in the study by Skok et al. (2010) that identified a number of hydrated-silica 

mounds.  HiRISE image ESP_013582_185 overlaps the region covered by the CRISM image 

and was also used to provide some higher-resolution spatial context to aid the selection of 

the ROI to be unmixed (figure 6.2). A region in the south of the image was selected for SMA 

processing due the presence of a number of metre-scale and larger bright patches and high 

level of textural variation evident in the colour HiRISE image. This ROI has 5680 pixels of 

approximately 18 m2.  The CRISM image was pre-processed as described in section 6.2.3 with 

no additional cleaning performed or additional bands removed. 
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Figure 6.2: CRISM image FRT000106258_07_IFS_TRR3 RGB using bands 36, 22 and 9 with 

HiRISE image ESP_013582_185_COLOR overlain.  The ROI selected for analysis through the 

SMA pipeline is outlined in black in the south of the region covered by both images. 

The ODM algorithm was used to estimate the number of endmembers present in the ROI (p).  

It returned a p value of 13 although there were was an additional plateau point at the lower 

value of 8.  The higher value of 13 was taken forward to the endmember extraction step in 

the pipeline as an overestimate is preferable to an underestimate.  SISAL was then used to 

extract 13 endmembers.  The routine was run 13 times (as explained in Chapter 5, section 

5.3.2) and the results combined to create a final endmember set (figure 6.3).  The variation 

within matching set of endmembers across the 13 runs was small lending confidence to the 
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accuracy of the extraction and the accuracy of the number of endmembers.  Two of the 

endmembers were similar with the exception of one reversed feature in each centred at ~2.0 

µm (a large absorption in endmember 7 and in endmember 4 a matching large reflectance 

‘hump’), and their abundance maps showed similar distributions with a mean pixel 

abundance difference of only 0.6%.  This wavelength region is the location of a strong CO2 

absorption.  Whilst atmospheric correction had been performed and thus should have 

removed almost all traces of this gas it has been shown that the volcano-scan method can 

leave behind a residual ‘bowl-shaped’ feature centred around 2.0 µm (Wiseman et al., 2014).  

The large reflectance ‘hump’ in endmember 4 is interpreted to be an attempt by the 

algorithm to account for surface albedo differences in the face of heterogeneously-

distributed residual atmospheric CO2 imperfectly removed by the volcano-scan method.  

Endmember 7 is an attempt by the algorithm to counter the inclusion of endmember 4 in 

higher albedo pixels.  Given the level of agreement between these two endmembers 

abundance maps it was considered appropriate to take an average of them to remove the 

spurious reflectance feature.  The final 12 spectra were analysed using the Spectral Analyst 

tool in ENVI 4.8.  Both the USGS spectral library (Clark et al., 1993) and the CRISM spectral 

library (CRISM, 2006) were used as the necessary comparison datasets.  The CRISM spectral 

library is the library provided by the CRISM science team specifically for comparison with 

CRISM spectra.  The USGS spectral library provided with ENVI contains over 480 mineral 

spectra.  This is the largest mineral spectral library provided.  The endmember set all showed 

a common shape in the VNIR section (0.4 – 1.0 µm), and this region was not used in the 

identification of the endmembers.  Potential identifications are listed in table 6.1.  Matches to 

every endmember were not found in each spectral library with three endmembers going 

unmatched in either library.  Individual visual inspection revealed no significant diagnostic 

features in these three from which to make a manual identification.  A number of common 

absorptions were seen across a number of the spectra that can be quickly identified as 

instrument artefacts.  These are the small, sharp features at ~ 0.66 µm and 1.66 µm (Murchie 

et al., 2009).  Additionally, despite the atmospheric correction performed in the pre-

processing steps the subtle triplet of absorptions within the shallow broad absorptions at 

~2.01 µm are likely residual atmospheric CO2 features that have not been fully removed (see 

above comments on endmembers 4 and 7).  Other common subtle absorptions at 1.21, 1.31 

and 2.57 µm are also uncorrected remnants of atmospheric components, primarily CO2 

(Wiseman et al., 2014).  Another sharp absorption is seen in endmembers 2, 6 and 13 at 2.39 

µm.  A mirroring sharp reflectance peak at this same wavelength is seen in endmembers 9 

and 12.  An O-H combination overtone can be found at this wavelength (Ehlmann et al., 
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2009), however, in this case due to the mirroring reflectance peaks it is considered an 

artefact of noise and not a mineralogical absorption. 

Table 6.1: Nili Patera SISAL (p = 13) ENVI Spectral Analyst results matching the endmembers 

to spectra in both the USGS and CRISM spectral libraries. “?” indicates that no strong match 

was found in the specified spectral library database. In these cases the endmembers typically 

displayed no strongly diagnostic absorptions and could have been a match to a large number 

of spectral library entries.  Total ROI scene abundances are also given as calculated using the 

Fully Constrained Linear Least Squared (FCLLS) algorithm. 

#p USGS identity CRISM library identity FCLLS scene % 

1 ? ? 8 

2 opal (silica) Siliceous sinter 4 

3 ? A phyllosilicate (smectite) mixture 7 

5 olivine ? 6 

6 diopside clinopyroxene 8 

8 pyrite pyroxene 9 

9 ? kaolinite-serpentine 11 

10 plagioclase feldspar plagioclase/olivine mixture 8 

11 ? kaolinite-serpentine or basalt 9 

12 ? ? 9 

13 opal (silica) ? 4 

4&7 ? ? 14 
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Figure 6.3: SISAL extracted endmember spectra from the CRISM ROI.  a) full wavelength range 

endmembers, endmembers 4 and 7 show prominent mirror features centred at 2.0 µm.  This 

feature is considered erroneous and to remove it from the final results the two endmembers 

have been averaged together to create a single new endmember shown in brown as 

endmember 4&7 in the figure. Spectra names are listed in order of highest albedo as 
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measured at ~2.4 µm. b) the IR section of the extracted spectra, continuum removed and 

offset for clarity.  In both images dotted lines highlight known instrument artefacts, solid lines 

indicate subtle absorptions due to imperfectly removed atmospheric components and the 

shaded region highlights the prominent hydrated silica absorption band.  The low albedo of 

endmember 12 leads it to show high levels of noise in the continuum removed version. 

The mineral identification results listed in table 6.1 from the two spectral libraries are not 

always in agreement, and a number of the minerals given are not uniquely identifiable from 

the spectral data available.  Examples of these include the plagioclase, pyrite and olivine 

spectra.  In every case existing knowledge of the region has been used to make a suitable 

identification, but they should only be treated as the most likely candidates.  It is also 

possible that a number of these endmembers are themselves still mixtures of more than one 

mineral; endmember 10 is a good example of this, matching in different wavelength ranges 

to both plagioclase and olivine spectra in the CRISM library.  Looking at the abundance maps 

generated for each endmember strengthens the identifications of some of the endmembers 

(figure 6.4).  Endmembers 2 and 13 have been identified as hydrated silica (opal in the USGS 

library) due to the broad absorption at 2.21 µm (Rice et al., 2013b; Smith et al., 2013) and in 

the case of endmember 2 also at 1.96 µm.  They show the strongest presence in the large 

bright patches in the NE section of the ROI (together accounting for up to 80% abundance as 

shown in figures 6.4c and 6.4m respectively) that have been previously identified as hydrated 

silica by Skok et al. (2010).  Endmember 5, identified as likely olivine, also shows its highest 

concentration over the major central bright patch (figure 6.4f).  A number of the 

endmembers show abundances that appear as roughly north to south streaks (endmembers 

9, 11 and 4&7).  This suggests that they are picking up on uncorrected image artefacts not 

fully removed by the destriping step in the cleaning process, as there is no evidence of 

structural features in the HiRISE image that match to this pattern. 
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Figure 6.4: Abundance maps for SISAL extracted endmembers 1, 2 and 3 shown in figure 6.3.  

In each image a green to red scale is used to show increasing abundance % from green 

through yellow to red. a) ROI portion of HiRISE image, b) abundance map for endmember 1 (?) 

overlain on HiRISE image, c) abundance map for endmember 2 (opaline silica) overlain on 

HiRISE image, d) abundance map for endmember 3 (smectite?) overlain on HiRISE image. 
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Figure 6.4: Abundance maps for SISAL extracted endmembers 4&7, 5 and 6 shown in figure 

6.3.  In each image a green to red scale is used to show increasing abundance % from green 

through yellow to red.  a) ROI portion of HiRISE image, e) abundance map for endmember 

4&7 (?) overlain on HiRISE image, f) abundance map for endmember 5 (olivine) overlain on 

HiRISE image, g) abundance map for endmember 6 (clinopyroxene) overlain on HiRISE image. 
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Figure 6.4: Abundance maps for SISAL extracted endmembers 8, 9, and 10 shown in figure 6.3.  

In each image a green to red scale is used to show increasing abundance % from green 

through yellow to red.  a) ROI portion of HiRISE image, h) abundance map for endmember 8 

(pyrite) overlain on HiRISE image, i) abundance map for endmember 9 (kaolinite-serpentine) 

overlain on HiRISE image, j) abundance map for endmember 10 (plagioclase) overlain on 

HiRISE image. 
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Figure 6.4: Abundance maps for SISAL extracted endmembers 11, 12 and 13 shown in figure 

6.3.  In each image a green to red scale is used to show increasing abundance % from green 

through yellow to red.  a) ROI portion of HiRISE image, k) abundance map for endmember 11 

(basalt) overlain on HiRISE image, l) abundance map for endmember 12 (?) overlain on HiRISE 

image, m) abundance map for endmember 13 (opaline silica) overlain on HiRISE image. 
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Figure 6.5: a) HiRISE image of Nili Patera ROI, b) RMSE values for the CRISM image 

reconstructed from the extracted endmembers and their estimated abundances. 

The abundances in each individual pixel were calculated using the Fully Constrained Linear 

Least-Square (FCLLS) algorithm on the I/F data.  Due to the number of endmembers used the 

data were not converted to SSA prior to this step.  Total scene abundances are listed in table 

6.1 and are expected to be correct to within 5% although the individual pixel abundances 

shown in figure 5 could be in error by as much as 15% based on synthetic image results 

presented in chapter 5.  The reconstructed scene RMSE is 0.00063 and the plot of individual 

pixel RMSE shows no correlation between any of the endmember abundance maps in figure 

6.4.  There is a slight correlation between high RMSE values and regions that in the HiRISE 

image appear to have significant topographic variation but this is not a consistent 

observation.  The random distribution of the RMSE values lends confidence to the pipeline 

results with the EEA step already giving a high degree of confidence as discussed above.  The 

scene can be described as 31% unknown, 8% opaline silica, 18 – 27% phyllosilicates, 24 – 42% 

primary igneous products (olivine, pyroxene, and plagioclase) and 0 - 9% iron sulfide.  The 

large fraction of unidentified material reflects the difficulties in uniquely identifying many of 

the primary igneous minerals and rock types within the wavelength range used in this study.  

Given the high concentrations of plagioclase and high-Ca pyroxene identified in the region 

using the 16 km/pixel Thermal Emission Spectrometer (TES) data (Bandfield, 2002) it is likely 

that the unidentified endmembers are one of these rock types, both of which have highly 

variable and slightly ambiguous spectral signatures in the VNIR making them hard to 
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definitively identify.  The silica, phyllosilicates and iron sulfide are all minerals produced 

through hydrothermal alteration and weathering of primary igneous materials, which 

matches well with the interpretations of the previous studies already discussed, identifying 

this region as one that has undergone hydrothermal alteration. 

6.3.2: Hecates Tholus  

Hecates Tholus is the northern most of the three Elysium volcanoes and shows structural 

evidence of both explosive eruptions and glacial activity on its slopes dating from 

approximately 5 Myr (Hauber et al., 2005; Neukum et al., 2004) or as recently as 440 kyr ago 

(De Pablo et al., 2013).  Together these observations point to the possibility of some relatively 

recent hydrothermal activity in the region.  The general mineralogy of the volcano is assumed 

to be basic to ultrabasic (Hauber et al., 2005; Sgavetti et al., 2009).  Global mineralogical 

maps constructed from 16 km/pixel TES data show some patches with an elevated 

abundance of sheet silicate/high silica glass, particularly over the north western collapse 

feature, and elevated concentrations of plagioclase at the peak of the volcano (Bandfield, 

2002).  CRISM coverage over the volcano is patchy and centred on glacial features on the 

volcano’s flanks (primarily the north western collapse feature) and the central caldera (figure 

6.1e).  Hydrothermal systems are commonly found within volcanic calderas on the Earth 

(Todesco, 2008) and HiRISE coverage (ESP_017055_1975) over the Hecates Tholus volcanic 

caldera shows a number of metre-scale high albedo patches that warrant further spectral 

investigation using a coincident CRISM image.  No FRT images of sufficient quality were 

available and thus a HRT image, HRL00007331_07_IF183L/S_TRR3, with pixels of 

approximately 36 m2 was used.  This CRISM image was processed as described in section 

6.2.3 with no additional cleaning or extra spectral bands removed.  Using the HiRISE image as 

a guide two ROI’s were identified and extracted for analysis in the SMA pipeline (table 6.2 

and figure 6.5). 

Both ROI’s gave a p value of 5 using ODM with clear plateau points in each output graph.  

SISAL was run 5 times for each ROI and in both cases the variation within each endmember 

matching set was low giving confidence to their accuracy. 
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Figure 6.6: a) CRISM image HRL00007331_07_IF183S_TRR3 RGB composite of bands 43, 29 

and 16 overlain with the much smaller HiRISE image ESP_017055_1975_COLOR.  The black 

and white boxes mark the two ROI’s selected for analysis through the SMA pipeline. b) 

ROI2_north HiRISE section showing subtle small scale spectral variation in the lower half of 

the ROI and the presence of small mounds and dunes. c) ROI1_south HiRISE section showing a 

prominent crater with a small ejecta blanket and varied small scale structure in the 

surrounding terrain with slight spectrally differences in the HiRISE image within two distinct 

albedo units. 

Table 6.2: Hecates Tholus ROI’s for SMA and resulting ODM p values estimating the number of 

endmembers present in each ROI. 

ROI # of pixels ODM p value 

ROI1_south 1584 5 

ROI2_north 1225 5 
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Figure 6.7: SISAL extracted endmembers from both ROI1_south and ROI2_north in the 

Hecates Tholus CRISM image. The two sets of spectra are remarkably similar to each other 

and show little in the way of significant variation within themselves. a) The SISAL extracted 

endmembers for ROI1_south, b) IR section of the ROI1_south endmembers shown with the 

spectral continuum removed and the resulting spectra offset for clarity, c) the SISAL extracted 

endmembers for ROI2_north, d) IR section of the ROI2_north endmembers shown with 

continuum removed and the resulting spectra offset for clarity.  The vertical lines in plots a) 

and c) indicate the subtle absorptions common to all 10 spectra due to uncorrected 

atmospheric components.  The two vertical lines in plots b) and d) indicate the chlorite 

absorptions at 2.25 - 6 and 2.33 µm, the latter of which is not present in the ROI2_north 

spectra. The spectra in b) and d) have been smoothed using a Savitzky-Golay filter with a 

window size of 11 to remove extraneous noise and emphasis the absorption features. The 

chlorite features are still discernible in the non-smoothed spectra confirming they are not just 

artefacts of the smoothing process. 

The extracted endmembers from each ROI show little variation within each dataset and 

between each other (figure 6.7) and analysis using the Spectral Analyst tool returned no 

convincing diagnoses.  All endmembers in both sets share a number of common features 

including subtle absorptions at 1.22, 1.31, 1.44, 1.57 and 2.39 µm (figure 6.7a and c).  The 

first four of these are all atmospheric features that have been imperfectly corrected 

(Wiseman et al., 2014).  With the exception of the 1.44 µm feature, which could also be 

evidence of surface CO2 ice, all of these absorptions can be safely ignored as they do not 

correspond to any significant mineralogical features.  Due to the presence of all these 

atmospheric features the 1.44 µm absorption is in this case also interpreted as atmospheric 

and not as a surface component.  The major feature that differs between endmembers is a 

shallow broad absorption centred at ~2.0 µm evident in three of the endmembers in each 

set.  Whilst this is a spectral region that must be carefully interpreted in martian spectra due 

to the presence of a strong CO2 absorption, this should have been removed by the 

atmospheric correction step preformed in the pre-processing.  However, the volcano-scan 

atmospheric correction method has been shown to leave behind a ‘bowl-shaped’ feature 

centred at ~2.0 µm (Wiseman et al., 2014).  The shallow but broad absorption in this position 

in ROI1_south endmembers 3, 4, and 5 and ROI2_north endmembers 2, 3, and 5 is therefore 

interpreted as this particular artefact introduced by the atmospheric correction.  An 

alternative explanation is that this could be tentative evidence of the presence of small 

amounts of H2O ice (Clark, 1999).  In the wavelength range used here this feature is the 
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strongest H2O ice absorption, however an ice component would be expected to also show a 

skewed absorption at 1.5 µm.  The lack of this accompanying absorption is why this feature is 

considered to be atmospheric CO2 and not surface H2O ice.  The reflectance spike at ~2.0 µm 

in ROI1_endmember 2 and ROI2_endmember 1 is interpreted to be an artefact introduced by 

the algorithm to account for the heterogeneously distributed residual atmospheric CO2 and 

therefore further evidence of imperfect atmospheric correction.  There is also a subtle 

absorption in all of the endmembers at 2.39 µm (as noted above) and another at 2.25 µm in 

ROI2_north and 2.26 µm in ROI1_south.  In ROI1_endmembers 1 and 5 this 2.26 µm feature 

is accompanied by an absorption at 2.33 µm.  Taken together these two absorptions indicate 

the presence of AlMg and MgMgMg hydroxyl bonds respectively due to a chlorite mineral 

(Bishop et al., 2008).  Chlorite forms as a hydrothermal alteration product and has been 

previously identified on Mars as a common component of alteration assemblages and crustal 

clay units (Ehlmann et al., 2011b, 2011c).  The stronger 2.39 µm absorption is also an O-H 

combination absorption feature,  seen in Mg-bearing phyllosilicates such as saponite (Smith 

and Bandfield, 2012), but not chlorite, suggesting that these endmembers are not pure 

minerals but are themselves still mixtures.  The 2.33 µm feature is not seen in the ROI2_north 

endmembers and thus the 2.25 µm feature in these endmembers cannot be definitively 

confidently explained as chlorite.  The presence of both the 2.25/2.26 and 2.39 µm 

absorptions in both ROIs points towards the widespread presence of Mg and Al-bearing 

phyllosilicates in this region. 
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Figure 6.8A: Hecates Tholus ROI1_south FCLLS abundance maps using SISAL extracted 

endmembers shown in figure 6.5.  A green-yellow-red scale is used to indicate increasing 

abundance % in each pixel.  a) HiRISE image of ROI, b) abundance map for endmember 1 

overlain on HiRISE image, c) abundance map for endmember 2 overlain on HiRISE image, d) 

abundance map for endmember 3 overlain on HiRISE image, e) abundance map for 

endmember 4 overlain on HiRISE image, f) abundance map for endmember 5 overlain on 

HiRISE image. 
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Figure 6.8B: Hecates Tholus ROI2_north FCLLS abundance maps using SISAL extracted 

endmembers shown in figure 6.5.  A green-yellow-red scale is used to indicate increasing 

abundance % in each pixel.  a) HiRISE image of ROI, b) abundance map for endmember 1 

overlain on HiRISE image, c) abundance map for endmember 2 overlain on HiRISE image, d) 

abundance map for endmember 3 overlain on HiRISE image, e) abundance map for 

endmember 4 overlain on HiRISE image, f) abundance map for endmember 5 overlain on 

HiRISE image. 
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Table 6.3: Total scene abundance percentages for the Hecates Tholus SISAL extracted 

endmembers shown in figure 6.5. Total scene abundances are given with an error of ±5%.  

Mineral ID’s are not included for all endmembers due to lack of uniquely diagnostic spectral 

features. 

Endmember ROI1_south ROI2_north 

1 18% (chlorite bearing endmember) 15% 

2 16% 20% 

3 25% 20% 

4 21% 15% 

5 20% (chlorite bearing endmember) 29% 

 

Abundance maps were produced from the CRISM I/F data without conversion to SSA due to 

the high level of topographic variance in the scene making the incidence and emission angles 

for each pixel uncertain.  Given the high confidence in the EDA and EEA results earlier in the 

SMA pipeline these scene wide abundances are expected to be correct to within 5% however 

errors on individual pixels could be as high as 20% based on results from similar synthetic 

images in chapter 5.  The results predominantly map to the different albedo units in the 

HiRISE image (figure 6.8).  For ROI1_south, endmembers 1, 3, 4 and 5 all clearly correspond to 

the different albedo units with the lowest albedo chlorite bearing endmember, endmember 

1, showing the highest abundances in the central crater, endmember 3 showing the highest 

abundances in the dark NW corner of the ROI, endmember 4 (the highest albedo 

endmember) corresponding to the bright, highly illuminated slope to the SW of the crater 

and endmember 5, the second chlorite bearing endmember, mapping over the primary beige 

unit covering the eastern portion of the ROI.  ROI1_endmember 2 shows no obvious spatial 

coincidence with any topographic or structural features in the HiRISE image.  

ROI1_endmember 2 is also the endmember that appears to be accounting for the 

uncorrected atmospheric CO2 with a slight reflectance bump centred at ~2.0 µm.  The 

atmospheric CO2 distribution is expected to be heterogeneously distributed and not to match 

to any surface structural features.  The effect this atmospheric CO2 has on the albedo of each 

pixel will therefore not match to the differences in albedo due to surface mineralogical and 

structural variation.  The algorithm has accounted for this by introducing a reflectance 

feature rather than an absorption feature in one endmember over these bands.  The random 

nature of ROI1_endmember 2’s abundance supports this interpretation.  The abundance 
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maps for ROI2_north show a similar pattern with all maps corresponding approximately to 

different albedo units with the exception of that from endmember 1, the endmember that 

matches ROI1_south endmember 2 and is most likely representing uncorrected atmospheric 

CO2 in the image and again shows a random abundance distribution within the ROI.  

 

Figure 6.9: a) HiRISE image of Hecates Tholus ROI1_South, b) RMSE values for the CRISM 

image reconstructed from the extracted endmembers and their estimated abundances, c) 

HiRISE image of Hecates Tholus ROI2_north, d) RMSE values for the CRISM image 

reconstructed from the extracted endmembers and their estimated abundances. 
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The reconstructed ROI’s from the extracted endmembers and estimated abundances gave 

scene RMSE values of 0.0006 (ROI1_south) and 0.00071 (ROI2_north).  The individual pixel 

RMSE maps (figure showed no clear correlation between high RMSE values and any one of 

the extracted endmember abundance maps nor do they show any consistent coincidence 

with any topographic or albedo features with the exception of slightly higher RMSE values 

over the central crater in ROI1_south (figure 6.9a and b).  These overall low RMSE values and 

their largely random distribution give confidence to the pipeline results. 

Based on the general spectral similarity within the two ROI endmember results and the 

corresponding abundance maps, the unmixing is mostly picking up on textural, structural and 

illumination differences in this scene.  There is little in the way of mineralogical variation to 

be seen in the SMA extracted endmembers, with the only mineral identifications being that 

of chlorite.  The identification of chlorite, a sheet silicate, in the southern ROI supports the 

much lower spatial resolution TES observation of isolated, elevated sheet silicate and 

plagioclase concentrations (Bandfield, 2002) over the caldera.  The presence of chlorite, a 

mineral commonly associated with hydrothermal ore deposits (Shanks III, 2010), also lends 

evidence to the existence of a hydrothermal system at some point in the history of this 

region.   

The CAT pre-processing pipeline contains the optional final step of calculating the CRISM 

spectral parameters defined by Pelkey et al. (2007).  Within the two analysed ROI’s these too 

revealed little significant mineral variation or definitive mineral types, and where there is a 

discernible pattern it matches to illumination and albedo differences due to topography and 

texture.  The chlorite identified in ROI1_south does not match to any of the spectral 

parameters built into CAT version 7.2.1 and was thus not picked up by this standard analysis 

technique.   

6.3.3: Aromatum Chaos 

The Aromatum Chaos depression located in the Xanthe Terra region near the north-south 

dichotomy boundary of Mars (figure 6.1a), shows morphological and structural evidence of 

an ancient flood caused by volcanic activity disrupting the cryosphere (Leask et al., 2006).  

Global mineralogical maps constructed using 16 km/pixel TES data show elevated 

abundances of sheet silicates or high silica glass and low quantities of pyroxene, plagioclase 

and olivine (Bandfield, 2002).  No high resolution mineralogical studies have been performed, 

likely due to the lack of suitable data.  The coverage with both CRISM and HiRISE is limited 

with only one coincident pair near the eastern section of the depression (figure 6.1c).  HiRISE 
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coverage of the area shows both spectral and topographic variation in regions with 

coincident CRISM coverage making it a good candidate for analysis with the SMA pipeline.  

HiRISE image ESP_026891_1790 was used to select a region within the CRISM image 

FRT00024F8_07_IF165L/S_TRR3 to analyse with the SMA pipeline (figure 6.8).  The CRISM 

image was processed as described in section 6.2.3 with the removal of additional bands 

spanning 1.178 – 1.198 µm and 1.716 – 1.737 µm which showed consistent, erroneous spikes 

across the image.  The VNIR detector data was discarded as a manual inspection revealed no 

significant variation within these wavelengths (0.44 – 1.1 µm).  The final dataset analysed 

contained only the IR data with 230 spectral bands (L = 230).  A single ROI was selected with 

8307 pixels.  This CRISM image is a full resolution targeted (FRT) image meaning its pixels are 

approximately 18 m2.   

The ODM step in the pipeline estimated the number of endmembers present to be p = 7 with 

a clear plateau in the output graph at this value indicating it is an accurate estimate of the 

number of distinct endmembers present.  This value was used to extract a final set of seven 

SISAL endmembers showing a number of interesting spectral features (figure 6.11) and with a 

low level of variance between the matching endmembers across the 7 SISAL runs suggesting 

they were accurately extracted.  All seven endmembers have a broad skewed absorption 

centred at 1.5 µm and six endmembers also feature a broad absorption of varying depth 

centred at 2.01 µm.  Whilst the broad 2.0 µm could be an artefact of the imperfect volcano-

scan atmospheric correction the presence of the strong skewed 1.5 µm absorption suggests 

that this is a real feature due to the presence of H2O ice (Clark, 1999; Vincendon et al., 2010).  

This interpretation matches the morphological interpretation of Leask et al (2006) that the 

chaos is a result of volcanic activity causing a flood due to melting of large amounts of ice.  

The varying band depths relate to the amount of ice in each endmember material, however 

this relationship is not a simple linear one and therefore cannot be used to quantify the 

amount of ice present (Milliken and Mustard, 2005).  The most that can be said is that the 

endmembers with the deeper ice absorption bands are likely to be relatively richer in icy 

material than those with shallower bands.  Besides these features the major spectral 

variation is in the overall albedo of each endmember with all of them having a very similar, 

mostly flat, general spectral shape.  All endmembers also have subtle absorptions at 1.21 and 

2.39 µm.  The 1.21 µm feature is interpreted as an uncorrected remnant of atmospheric CO2 

as it was for the Hecates Tholus endmembers in section 6.3.2.  The 2.39 µm feature indicates 

an O-H combination tone absorption (Ehlmann et al., 2009), however there are no other 

clear, diagnostic absorptions to determine which atom is in combination with the hydroxyl, 



160 
 

and subsequently which mineral is present.  Endmember 4 does not have the broad 2.0 µm 

absorption seen in all of the others.  There are two possible interpretations of this; i) this 

endmember contains hydroxyl but not H2O or ii) as discussed for Hecates Tholus and Nili 

Patera uncorrected randomly distributed atmospheric CO2 has been accounted for in a single 

endmember by introducing an increased albedo over these bands.  Given the presence of 

other uncorrected atmospheric artefacts the second explanation is considered more 

probable.  Other than the presence of H2O ice there are not enough diagnostic spectral 

features from which to make mineral assignations to the endmembers.   

 

 

Figure 6.10 Aromatum Chaos CRISM image FRT000247F8_07_IF165S_TRR3 RGB composite of 

bands 43, 29, 16 and overlain HiRISE image ESP_026891_1790_RED.  The ROI selected for 

analysis through the SMA pipeline is outlined in black near the centre of the two images. 
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Figure 6.11: IR wavelength range of SISAL extracted endmembers from the Aromatum Chaos 

ROI highlighted in figure 6.8.  All but one of the endmembers show strong H2O ice absorptions 

at ~1.5 µm and 2.0 µm as their dominant spectral features highlighted in the figure with the 

grey boxes. The unspecified subtle hydroxyl combination overtone absorption is also 

highlighted at 2.39 µm.  Endmember 4 appears to be compensating for the uncorrected 

atmospheric CO2 hence its lack of absorption at 2.0 µm. 

 

 

 

 



162 
 

 

Figure 6.12: Aromatum Chaos ROI FCLLS abundance maps using SISAL extracted endmembers 

shown in figure 6.11.  A green-yellow-red scale is used to indicate increasing abundance % in 

each pixel.  a) HiRISE image of ROI, b) abundance map for endmember 1 overlain on HiRISE 

image, c) abundance map for endmember 2 overlain on HiRISE image, d) abundance map for 

endmember 3 overlain on HiRISE image, e) abundance map for endmember 4 overlain on 

HiRISE image, f) abundance map for endmember 5 overlain on HiRISE image, g) abundance 

map for endmember 6 overlain on HiRISE image, h) abundance map for endmember 7 

overlain on HiRISE image. 
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FCLLS was used to produce abundance maps from the I/F data, SSA conversion was not 

performed due to the high number of endmembers used.  Further interpretation of the 

extracted endmember spectra is possible based on the resulting abundance maps.  The 

abundance maps (figure 6.12) can be grouped into three different classes; endmembers 3 

and 5 show their highest abundances over the tops of the hillocks, endmembers 4 and 6 

show their lowest abundances over the tops of the hillocks, (these two units are largely 

opposite of each other), and endmembers 1, 2, and 7 show no pattern matching to 

underlying morphology.  Endmember 3 is the highest albedo endmember and its high 

abundance on the hilltops is likely a reflection of the high illumination in these regions.  

Endmember 6, with the lowest abundance over the hilltops is the lowest albedo endmember 

again lending credence to the interpretation that these endmembers are reflecting 

illumination differences rather than compositional differences.  The interpretation given in 

the previous paragraph for the lack of broad 2.0 µm absorption in endmember 4 being due to 

a compensation for uncorrected atmospheric CO2 would suggest a random distribution, 

however this is not what is seen, there is a pattern corresponding to the ROI’s morphology.  

This is possibly another artefact of the illumination conditions with the albedo correction in 

these bands being needed more in the regions of low illumination.   

The RMSE for the reconstructed image from the extracted endmembers and estimated 

abundances was 0.0011, the highest of any of the regions examined in this chapter.  The 

CRISM image used was also the most recent, being taken in 2012, and therefore is expected 

to have the highest level of noise of the images examined in this chapter.  The individual pixel 

RMSE values do not map to any obvious topographic or albedo features or any one 

endmember abundance lending weight to the confidence of the final pipeline results.  Given 

the lack of unique mineral identification for the endmembers the abundance estimates (table 

6.4) are perhaps of less importance than for Nili Patera or Hecates Tholus.  They are still 

expected to be correct to within 5% with individual pixel abundances potentially having 

higher errors, as much as 20%. 

Aromatum Chaos is located close to the equator (-1.03 N latitude) and as such it is not 

expected that water ice would be stable in the upper microns of the surface at this location 

(Carrozzo et al., 2009).  The water ice spectral signature is prevalent across the ROI and 

doesn’t correspond to any particular topographic features or structural units.  An alternative 

interpretation of the spectra is therefore that rather than detecting water ice crystals in the 

upper microns of the surface, the water ice is atmospheric.  Water ice is known to exist in the 

martian atmosphere where it forms clouds (Curran et al., 1973).  Such an atmospheric 
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contribution would not be removed by the volcano-scan atmospheric correction method as it 

is only designed to remove atmospheric molecular CO2 contributions (McGuire et al., 2009).  

The heterogeneous blanket distribution of the icy spectral signature would match to a thin 

water ice cloud layer in the atmosphere.  Water ice on a planetary surface is a high albedo 

substance and it would be expected that any deposits significant enough to contribute to the 

spectral signature would be visible as bright features on the surface (Bell III et al., 1996).  

Whilst cloudy features are normally obvious in the RGB composite of a CRISM image 

(Vincendon et al., 2011) (and these were not seen in the CRISM image examined here), the 

lack of correlation between the icy spectral signature and any bright surface features leads to 

the conclusion that in this case the H2O ice is most likely atmospheric.   

 

Figure 6.13: a) HiRISE image of Aromatum Chaos ROI, b) RMSE values for the CRISM image 

reconstructed from the extracted endmembers and their estimated abundances.  

The unmixing has not revealed any variations in mineralogy, and nothing that would indicate 

the previous existence of a hydrothermal system.  The Spectral Parameters generated as a 

part of the image pre-processing also revealed no significant mineral variation and the water 

ice absorption bands are prominent when the spectral profile of the individual pixels is 

examined.  In this case the use of SMA has not revealed any information or details about the 

regions that could not be discerned using quicker and simpler methods. 
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Table 6.4: Aromatum Chaos SISAL extracted endmember ROI total abundance quoted with 

and error of ±5%, no mineral assignments are given due to a lack of spectral features making 

diagnostic identifications impossible. 

Endmember Scene % 

1 9 

2 18 

3 12 

4 14 

5 15 

6 16 

7 16 

 

6.3.4: Unnamed (Kirkcaldy) Crater (17.367 N, 291.213 E) 

Impact craters are obvious features on the surface of Mars and the energy that creates them 

can also trigger the creation of a temporary hydrothermal environment (Osinski et al., 2013).  

An unnamed crater approximately 45km in diameter, centred at 17.367° N, 291.213° E in the 

north western corner of the Hesperian aged Lunae Planum (Warner et al., 2015) near the 

Sacra Fossae, has been imaged with both HiRISE and CRISM as part of the HiRISE broader 

science theme investigating impact processes (McEwen et al., 2007).  Global mineralogical 

maps constructed from OMEGA VNIR spectral data show this general region to have a low 

pyroxene but high ferric oxide content (Bibring et al., 2006).  The HiRISE image 

ESP_017055_1975 shows a texturally and structurally diverse terrain within the impact 

crater, with numerous spectrally bright patches below the resolution of CRISM that could 

indicate the presence of hydrothermally altered mineralogy.  For this reason this crater was 

selected for spectral unmixing using the spatially coincident CRISM image 

FRT00017463_IF165L/S_TRR3.  A single ROI to the south of the central uplift feature was 

selected containing 3976 pixels (figure 6.14).  In addition to the bands removed as part of the 

standard processing described in section 6.2.3 spectral bands 1.178, 1.184, 1.191, 1.198, 

1.2537, 1.250 and 1.263 µm were also removed due to erroneous spikes in the data at these 

wavelengths.  For the purposes of this work this crater shall be informally referred to as 

Kirkcaldy Crater, a name that follows the IAU planetary feature naming conventions. 
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Figure 6.14: Kirkcaldy Crater CRISM image FRT00017463_07_IF165S_TRR3 RGB composite of 

bands 43, 29, 16 with HiRISE image ESP_017055_1975_COLOR overlain.  The black box 

highlights the region extracted for analysis with the SMA pipeline. The blue/green line in the 

HiRISE image is due to a missing red CCD strip. See figure 6.13a for a larger version of the ROI 

outlined in the black box in this figure. 

The ODM step gave a p value of 10 but this was not a clear plateau point and therefore 

confidence of the accuracy of this value was low.  SISAL was first run with p = 10.  The 

resulting endmembers revealed one dominated by noise (endmember 9, figure 6.15a) and 

another with a prominent erroneous reflection feature mirroring an absorption feature 

centred at ~2.03 µm (endmember 4, figure 6.15a).  This feature is interpreted as an attempt 

by the algorithm to account fully for albedo differences and uncorrected atmospheric CO2 as 
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seen in the Nili Patera and Hecates Tholus analyses.  Due to the low level of confidence on 

the initial p value, the high variance between matching members of the 10 SISAL runs and the 

height of the reflectance spike without an obvious mirror endmember it was decided to 

increase the p value estimate to investigate if this could mitigate the erroneous feature.  The 

p value was increased by increments of 1 until a suitably realistic set of endmembers was 

extracted.  This iterative method was chosen to find the smallest number of endmembers 

that encompass the level of variation present without the inclusion of such a large erroneous 

feature.  Using p = 12 the extracted endmembers are all realistic with a low level of variance 

between the matching members of the 12 SISAL runs and for these reasons considered to be 

acceptable final endmembers reflecting the reality of the scene (figure 6.15b).  The variation 

in this endmember set is subtle.  One major feature that is evident in the majority of the 

spectra is a broad absorption feature at 2.03 µm.  This is interpreted to be evidence of H2O 

ice when accompanied by a skewed absorption feature at 1.5 µm (Clark, 1999) as it is in a 

number of the endmembers.  When this 1.5 µm feature is not present the broad 2.0 µm 

feature is attributed to uncorrected atmospheric CO2 as it was in the Nili Patera and Hecates 

Tholus analyses.  Other absorption features are seen across the set at 1.21 and 1.80 µm that 

are remnants of uncorrected atmospheric gases (Wiseman et al., 2014).  A number of subtle 

absorptions are seen in the 2.1 – 2.6 µm range (figure 6.15c), an important wavelength range 

for mineralogical stretching and bending overtones (see Chapter 2).  The absorption at ~2.37 

seen in endmembers 4, 5, 8, 9, 10 and 12 is once again an unspecified O-H combination 

absorption (Swayze et al., 2014), and the 2.55 – 2.57 µm absorption in endmembers 5, 6, 8, 

10 and 12 is an uncorrected atmospheric component.  A subtle absorption is seen at 2.24 µm 

in endmembers 7, 9 and 11 and at 2.26 µm in endmembers 1, 2 and 12 in the smoothed 

spectra (figure 6.15c).  However when viewed in the non-smoothed version (figure 6.15b) 

these features are no longer discernible above the general signal noise.  This suggests that in 

this particular case these very subtle features are artefacts of the smoothing process rather 

than real mineralogical absorptions. 
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Figure 6.15: SISAL extracted endmembers from Kirkcaldy Crater ROI highlighted in figure 6.14. 

a) endmembers using p = 10, note the reflectance bump centred at ~ 2.0 µm in endmember 4 

and the level of noise in endmember 9.  b) endmembers using p = 12, the ~2.0 µm reflectance 
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bump has disappeared leaving behind a fully realistic endmember set, c) the IR portion of the 

SISAL endmembers shown in b) smoothed using a Savitzky-Golay filter with a window size of 

13 to remove extraneous noise and emphasis the absorption features. Grey shaded areas 

indicate the location of H2O ice absorption bands, the solid vertical line indicates the O-H 

combination absorption and the dotted vertical lines indicate the uncorrected atmospheric 

artefacts. 

There is not enough variation or clear absorption features in the spectra to enable unique 

mineralogical identification of each individual endmember, but endmembers with an H2O ice 

component were identified.  The scene abundances and individual pixel abundances were 

calculated from the I/F data using FCLLS (table 6.5).  Although the initial p value was 

uncertain the high level of confidence in the final extracted endmember set means that these 

total scene abundances are expected to be correct to within 5%.  Individual pixel abundances 

however could be in error by as much as 15%.  Approximately 46% of the scene is comprised 

of icy material but there do not appear to be any significant regions where this is 

concentrated, with different icy endmembers concentrating in different regions. 

Table 6.5: Totally scene abundances and identification of icy material within the composition 

of the endmembers extracted from Kirkcaldy Crater ROI using p = 12. An endmember was 

identified as icy if it had both a clear 1.5 and a clear 2.0 µm absorption. 

# Icy Material Scene % 

1 Yes 10 

2 Yes 7 

3 No 8 

4 No 10 

5 Yes 4 

6 Yes 4 

7 No 18 

8 Yes 8 

9 Yes 9 

10 Yes 4 

11 No 10 

12 No 8 
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As was seen in the unmixing results for Nili Patera a number of the endmembers (6, 8, 10 and 

11) show abundance patterns as roughly north to south running streaks (figure 6.16) which 

are again interpreted as uncorrected instrument artefacts. The HiRISE coverage of this region 

shows a number of broad structural units including a dune/ripple unit in the south of the ROI 

orientated approximately SW – NE, a smooth unit to the east of the dunes/ripples and a 

similar looking unit in the north of the ROI.  The rest of the ROI is comprised of small outcrops 

and raised sections surrounded by small bright patches below the resolution of CRISM.  

Endmember 1 appears to roughly correspond with the smoother sections of the scene and 

endmembers 2 and 4 show higher abundances in the areas with the small pale patches 

although these high abundances are not in identical areas.  Endmember 3 also has its highest 

abundances in the regions with a high number of the small bright patches in the HiRISE 

image, predominantly along the eastern ridges of the ROI.  The spectrally flat endmember 7 

shows the largest abundance with concentrations to the south of the ROI and again over the 

smoother/sandier units. 
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Figure 6.16: Abundance maps for Kirkcaldy Crater ROI. a) ROI portion of colour HiRISE image, 

b) abundance map for endmember 1 (icy), c) abundance map for endmember 2 (icy), d) 

abundance map for endmember 3, e) abundance map for endmember 4, f) abundance map 

for endmember 5 (icy), g) abundance map for endmember 6 (icy), h) abundance map for 

endmember 7, i) abundance map for endmember 8 (icy), j) abundance map for endmember 9, 

k) abundance map for endmember 10 (icy), l) abundance map for endmember 11, m) 

abundance map for endmember 12.  All abundance maps are plotted over a greyscale HiRISE 

image to show spatial context. 

Endmember 11 is absent in the rippled/dune unit and shows highest concentrations in the 

areas with high shade and visual elevation change (figure 6.16l).  The highest concentrations 

of the small bright pale patches are in two units in the far east of the ROI, one in the northern 

corner and one in the southern.  The endmembers that appear most abundant over these 

pixels with the small pale patches (endmembers 2, 3 and 4) fall into both of the broad 

spectral categories (icy, non-icy and non-icy respectively) suggesting they can be explained as 

exposed icy material surrounded by a non-icy material.  The presence of the uncorrected 

image stripes in the abundance maps makes a clear interpretation of the results challenging.   
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The RMSE of the reconstructed scene using the extracted endmembers and associated 

estimated abundances is 0.00097 with the individual pixel RMSE values not mapping to any 

obvious topographic or albedo feature or any of the abundance distributions of the 

endmembers (figure 6.17). 

 

Figure 6.17: a) HiRISE image of Kirkcaldy Crater ROI, b) RMSE values for the CRISM image 

reconstructed from the extracted endmembers and their estimated abundances. 

The potential for any H2O ice to be atmospheric rather than surficial was discussed in section 

6.3.3 with respect to similar spectral signatures extracted from Aromatum Chaos.  Kirkcaldy 

crater is located further from the equator than Aromatum Chaos at approximately 17°N.  

Carrozzo et al. (2009) have previously reported detection of surface water ice at this latitude 

range, primarily in shaded regions, based on observations made with OMEGA of the 1.5, 2.0 

and 3.0 µm absorptions.  These findings have been disputed by Vincendon et al. (2010) who 

concluded the same observations were the result of atmospheric H2O ice.  There are traces of 

what could be H2O ice clouds in the northern section of the full RGB composite CRISM image 

from which the analysed ROI was taken, however these do not extend to the southern 

regions where the ROI is located.  This lack of cloud and the presence in the HiRISE image of 

small high albedo patches lead to a tentative conclusion that the H2O ice detected here is 

surficial rather than atmospheric. 

The SMA pipeline results have revealed the significant presence of slightly icy material and 

provided tentative spectral evidence that the small pale bright patches in the HiRISE image 

are a significant source of this H2O ice.  No clear spectral evidence of hydrothermal activity is 

revealed. 
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6.4: Hydrothermal region unmixing discussion 

The four regions analysed above are all examples of different environments that could have 

at some point in their past experienced hydrothermal alteration.  Nili Patera is the only region 

showing strong spectral, mineralogical evidence of hydrothermal alteration in the SMA 

results, in keeping with previous studies (Fawdon et al., 2015; Skok et al., 2010), with the 

other three regions generating more ambiguous results.  Nili Patera and Hecates Tholus were 

the only regions where it was possible to assign mineralogical identities to the extracted 

endmembers and even these were often tentative and incomplete.  This lack of diagnostic 

spectral identification is not necessarily a short-coming of the SMA technique, but rather a 

reflection of the lack of uniquely diagnostic spectral features in the wavelength range used 

for a number of common minerals expected in these environments.  However, even with this 

restriction the results allowed for quantitative estimation of the presence of certain minerals 

that have previously only been qualitatively discussed, in particular the hydrated silica 

identified in Nili Patera first described in Skok et al., (2010).  The identification of chlorites 

and Mg-bearing phyllosilicates in the northern section of the Hecates Tholus central caldera 

has not previously been reported as no previous high-resolution spectral studies have been 

performed on this region.  The identification of chlorite-bearing units was not possible using 

the available Spectral Parameters and to manually inspect each pixel would be an unrealistic 

use of time.  This demonstrates the utility of the SMA technique that allows a large region to 

be distilled down to a handful of spectra that can then be manually inspected for subtle 

features.  The addition of high resolution colour imagery in the form of HiRISE images was 

vital to the interpretation of the unmixing results, enabling identification of instrument 

artefacts with confidence and the matching of endmembers with structural units.  Even when 

it was not possible to assign unique mineralogical identities to individual endmembers, the 

SMA process allowed for some qualitative results.  Aromatum Chaos and Kirkcaldy Crater 

both showed evidence of water ice but the interpretation of this as a component of the 

surface material and not thin atmospheric clouds was only possible for Kirkcaldy Crater.  A 

tentative association for the H2O ice with the surface composition was possible for Kirkcaldy 

Crater based on bright patches in the associated HiRISE image and heterogeneous icy 

signature distribution.  Two classes of endmembers were identified in Kirkcaldy Crater, those 

that contained H2O ice and those that did not.  This enabled an estimate of the amount of icy 

material present in the ROI analysed (46%).  SMA application to the Aromatum Chaos ROI 

revealed nothing extra beyond that which could be deduced using the CAT spectral 

parameters and visual inspection of the individual pixel spectra, a quicker and simpler 

combination of analysis techniques.  Both Aromatum Chaos and Hecates Tholus showed little 
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spectral variation within the extracted endmembers and when they were mapped to the 

terrain they predominantly corresponded to larger scale albedo variations.  These were also 

however the two regions analysed that showed the least small scale colour and albedo 

variation in the HiRISE coverage giving an indication that this would be the case prior to the 

SMA processing. 

The four CRISM images used in this chapter were taken in different years and this is reflected 

in the results of the SMA.  The two regions that yielded identifiable mineral spectra and from 

which the SMA technique gave new information were the two oldest images, with the Nili 

Patera image being taken in 2009 and the Hecates Tholus image from 2007.  The image that 

gave the poorest results with the highest RMSE and ambiguous SMA results, Aromatum 

Chaos, was from 2012 and was expected to have a higher level of instrument noise than the 

earlier images.   The lack of quantitative error statistics within the SMA pipeline makes it 

difficult to estimate how much error instrument noise is adding to the final results but it is 

clear from the work presented here that it is an important factor and that early CRISM images 

are preferable for SMA than more recent ones.  

Two prominent issues appeared in the analysis of all four regions, both related to the pre-

processing of the CRISM images.  Firstly uncorrected atmospheric artefacts were found in all 

SMA endmember sets.  In most cases these were easily identifiable as components of the 

atmosphere (e.g. slight absorptions at 1.21 and 2.57 μm amongst others) and didn’t interfere 

with the mineralogical interpretation of the endmembers.  The imperfect removal of the 

major CO2 triplet of absorptions around 2.0 μm however could result in misidentifications.  In 

the analysis presented here the possibility of any features around this wavelength containing 

a remnant of the atmosphere was considered and taken into account in the endmember 

diagnoses.  However it would be preferable if a more accurate removal of the atmosphere 

could be performed.  This imperfect atmospheric correction using the volcano-scan method 

has been previously noted by other authors and improvements suggested, but these focus 

only on the 2.0 µm region (McGuire et al., 2009; Morgan et al., 2011).  The volcano-scan 

method is the only one available through CAT but it does have a number of different 

parameters in its run settings.  These were experimented with using the Nili Patera image and 

the default setting of allowing the program to pick the best volcano-scan column for the 

image returned the spectra with the lowest visual level of potential CO2 at the 2.0 µm region.  

An alternative, radiative transfer, physics-based approach, has been investigated by a number 

of authors who have reported improved results using a model called DISORT (Liu and Glotch, 

2014; Wiseman et al., 2014, 2012).  DISORT is a complex method that requires significant 
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time and expertise to use.  It is not available as an off-the-shelf product and as such it was not 

utilised as a part of this study.  Secondly the failure to completely remove vertical stripes in 

the images due to differences within the instrument detector array was also found to have a 

serious effect on the abundance maps of the final endmembers.  In the case of Kirkcaldy 

Crater this made confident interpretation of the final abundance maps impossible.  In every 

case presented the MRO destriping routine was used.  CAT does provide an alternative to this 

in the form of the CIRRUS destriping routine.  Every image described in section 6.3 was also 

processed using the CIRRUS routine and in each case the stripe removal with the MRO was 

superior.  A recent paper by Carter et al (2013) detailed an alternative method to those 

contained in the CAT plugin for removing the vertical stripes as a part of the pre-processing 

stage.  They reported good results, especially when faint and subtle spectral signals were 

expected in the CRISM images.  This method has not however been made available as a 

public piece of code and as such was not included in this study. 

6.5: Future Work 

An alternative to the CAT CRISM image pre-processing routine shall be developed.  A full 

radiative transfer based atmospheric correction such as DISORT shall be investigated as well 

as the destriping method presented in the Carter et al. (2013) paper.  In each image only a 

small portion was analysed using the SMA pipeline.  All regions, and in particular the Nili 

Patera and Hecates Tholus images, would benefit from further ROIs being analysed after a 

more rigorous cleaning process to ensure the removal of the vertical stripes, and the 

atmospheric CO2. The abundance errors reported in this chapter are based on comparison to 

qualitative analysis of synthetic images with known values, a fuller quantitative estimate of 

error throughout the SMA pipeline with specific attention paid to the error contribution of 

CRISM instrument noise should be established.  

6.6: Summary 

This Chapter has presented test cases of the application of the SMA pipeline developed in 

Chapter 5 to potentially hydrothermally altered terrain on Mars.  CRISM images were 

selected from four regions that may have hosted hydrothermal systems in their past.  Small 

sections within each image were selected for analysis using spatially and temporally 

coincident HiRISE imagery and run through the SMA pipeline developed in Chapter 5.  Results 

were varied, with clear evidence of hydrothermal alteration shown for Nili Patera together 

with quantitative estimates of key mineral abundances and more tentative evidence in the 

caldera of Hecates Tholus.  Even where the SMA results were not sufficient to enable unique 

mineralogical identification of all endmembers, key features could still be picked out and 
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mapped giving an idea of their abundance across scenes.  The importance of pre-processing 

was shown, particularly with respect to atmospheric contributions to the signal, and 

alternatives to the standard CAT processing tools suggested for future work. 
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Chapter 7: Spectral Mixture Analysis applied to Recurring Slope 

Lineae 

7.1: Introduction 
Chapters 5 and 6 demonstrated the utility of Spectral Mixture Analysis (SMA) in the 

identification and exploration of hydrothermally altered environments.  This chapter shall 

detail a novel use of SMA to investigate the mineralogy of Recurring Slope Lineae (RSL), 

narrow seasonal features that have been potentially linked to the existence of liquid water in 

the shallow sub-surface of Mars and identified as potentially habitable environments 

(Rummel et al., 2014).  The Endmember Extraction Algorithms (EDA) and Abundance 

Estimation Algorithms (AEA) utilised in Chapter 6 shall be used on hyperspectral data from 

CRISM together with spatially and temporally coincident high resolution imagery from the 

HiRISE instrument. 

7.2: Recurring Slope Lineae (RSL) 

The hydrothermal environments discussed in Chapters 5 and 6 are just one example of small 

scale potentially hydrated and previously habitable regions on the surface of Mars.  Another 

example of a potentially hydrated and habitable environment (Rummel et al., 2014) that has 

been gaining increasing attention in the last five years are regions containing Recurring Slope 

Lineae (RSL). Recurring Slope Lineae (RSL) are transient streak-like features that have been 

identified on steep equatorial facing slopes in the southern mid-latitudes of Mars (McEwen et 

al., 2011) and more recently in the northern mid-latitudes and equatorial regions (McEwen et 

al., 2014).  Multiple HiRISE images taken over different martian seasons show RSL as dark 

streaks that grow and darken with the summer months and shrink back again with the 

winter.  They can be tens of metres in length but are only 1 - 5m in width (McEwen et al., 

2011), meaning they are visible in HiRISE imagery but are below the spatial resolution of any 

of the imaging spectrometers currently operational around Mars, including CRISM.  As such, 

the exact geochemical nature and formation mechanism of RSL have yet to be determined.  

One leading explanation is that they are the result of near surface liquid brines, resulting 

from either melting and subsequent release of a subsurface frozen brine source (Chevrier and 

Rivera-Valentin, 2012; McEwen et al., 2011), or release of water through deliquescence of 

hydrated salts (Kossacki and Markiewicz, 2014) with increased surface temperatures during 

spring and summer months.  Similar terrestrial features have been identified in Antarctica 

(Levy, 2012) and Alaska (Hooper and Dinwiddie, 2014), and were found to be the result of 

seasonal melting of permafrost.  Liquid water is not stable at the martian surface  but the 

addition of salts could lower the freezing, melting and sublimation points of brines 
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sufficiently to allow them to exist as transient liquids on the surface of present day Mars 

(Hanley et al., 2012).  Evidence of the chemicals necessary for such brines have been found in 

the martian soil by ground-based missions; in particular perchlorates have been found at 

both the Phoenix landing site (Hecht et al., 2009) and more recently in Gale crater (Glavin et 

al., 2013; Leshin et al., 2013).  The exact chemical nature of these perchlorates and the brines 

they could form has not been established but Mg, Ca, and Na brines have all been modelled 

and proposed as possible martian surface brines (Chevrier et al., 2009; Cull et al., 2010; 

Marion et al., 2010).   

7.3: RSL and Spectral Unmixing 

A major impediment to the compositional investigation of RSL is their small size relative to 

the spatial resolution of the imaging spectrometers currently orbiting Mars, including the 

Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA, ≥ 300 m/px) and 

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, ≥ 18 m/pixel).  This small 

size means no hyperspectral pixels are comprised 100% of the surface RSL and as such there 

has been no unique spectral signature extracted for RSL to date.  SMA would therefore be an 

ideal technique to further investigate RSL.  Mushkin et al (2010) combined CRISM and HiRISE 

data to investigate the spectral properties of low-albedo slope streaks in two locations in the 

Olympus Mons Aureole.  They used SMA to demonstrate that the streaks were not 

shadowing effects or mixtures of the surrounding soils but made no attempt to identify the 

geochemical makeup of the RSL themselves.  More recently Ojha et al (2013) used CRISM 

imagery to investigate the spectral properties of 13 confirmed RSL sites.  Spectral ratioing was 

employed to enhance any potential faint spectral features that could exist in pixels with RSL 

components.  They found no evidence of water but did detect enhanced abundances of ferric 

or ferrous minerals in the presence of RSL.  Many of the sites they investigated had spectrally 

limited CRISM coverage with only data from the short wavelength detector covering 0.362 – 

1.053 µm.  At this wavelength range many important diagnostic features including the major 

H2O absorptions at ~1.4 and 1.96 µm are not covered meaning their work did not rule out the 

presence of water in all 13 investigated RSL sites.  They also provided no evidence that the 

increased ferric and ferrous mineral content came from the RSL themselves and not the soils 

immediately surrounding them. 

A new technique using SMA to extract a unique spectral signature for RSL is presented in this 

Chapter.  The work detailed in Chapter 6 demonstrated the usefulness of coincident HiRISE 

and CRISM coverage in the interpretation of SMA products and this utility shall be further 

exploited here to provide a groundtruth image from which to interpret the SMA abundance 
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results.  HiRISE images are necessary to confirm the existence of RSL and in some cases 

CRISM images were taken at the same time.  Unlike the structurally complex hydrothermal 

environments investigated in the previous Chapters, the areas containing RSL are often 

simpler, containing only two or three basic units; the RSL themselves and one or two 

background material units surrounding the RSL. These units can be easily determined by 

visual inspection of the HiRISE imagery.  The area covered by the RSL can be estimated from 

the HiRISE images.  If there is temporally and spatially coincident CRISM coverage the 

abundance of RSL in each CRISM pixel can therefore be established.  If the number of 

endmembers and their relative abundance has been estimated from the HiRISE imagery then 

there is only one step in the SMA pipeline left to perform, the endmember extraction.  The 

remainder of this Chapter will detail an attempt to validate the use of SMA using both HiRISE 

and CRISM imagery to extract a spectrum for the RSL and attempt to identify their 

mineralogical and chemical composition. 

7.4: Image preparation 

Coincident pairs of HiRISE and CRISM datasets of confirmed RSL locations (Ojha et al., 2014) 

were acquired from the Planetary Data Systems Mars imagery archive.  HiRISE images with 

few RSL and/or significant variation in the background material including large numbers of 

boulders were discarded.  This left one region suitable for the SMA method proposed in this 

Chapter.  Palikir Crater [-41.623° N, 202.282° E] is host to a particularly dense suite of 

confirmed RSL that are found on a slope free from large numbers of boulders (Ojha et al., 

2014).  The images used in this work are CRISM image FRS00029F0C_01_IF170L/S_TRR3 and 

HiRISE image ESP_032381_1380.  The CRISM image was pre-processed using the CAT (CRISM 

Analysis Toolkit) v7.2.1 plugin in ENVI 4.8.  First the image was converted to I/F reflectance 

values as described in (Murchie et al., 2009, 2007).  Photometric correction to correct for 

angle of incidence effects was applied and atmospheric correction performed using the 

volcano-scan method with the updated McGuire band selection (McGuire et al., 2009).  

Stripes due to instrument artefacts and spikes due to noise were removed.  Finally the data 

were map projected and georeferenced to a Mars datum.  At this stage the image was 

examined and any remaining bands with obviously erroneous data spikes in the area of 

interest were removed leaving 336 spectral bands.  A number of bands and band ranges in 

CRISM are known to return unreliable values (Murchie et al., 2009), as listed in Chapter 6, 

section 6.2.3.  Any features in the bands listed in that section were discounted as image 

artefacts in the final interpretation of the SMA results. 
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Figure 7.1: a) Section of HiRISE image ESP_032381_1380 showing prominent RSL.  b) outlined  

section of a), RSL areas are highlighted in pale yellow and the outline of the extracted CRISM 

pixels is shown in black.  75 pixels are outlined in this figure however eight were discarded 

from the final analysis due to the presence of boulders.  The three band HiRISE image has 

been contrast stretched to emphasise the RSL and the colour variation in the background soils. 

Any slight spatial mismatches between the pair were corrected to allow for accurate co-

registration of the map projected CRISM and HiRSE images.  Central subsections covering the 

RSL locations were extracted from both processed images.  The 899 nm CRISM band was then 

georeferenced to the NIR HiRISE band in a process similar to that used in Ceamanos et al. 

(2011) to co-register HiRISE and CRISM imagery in a SMA algorithm comparison study.  Using 

a moving window of 31 pixels, tie-points were identified by matching the grey-scale values in 

either band.  A minimum correlation value of 0.65 was enforced resulting in 30 tie-points all 

within the region shown in figure 7.1a with a matching root mean square error (RMSE) of 

0.1989.  The full CRISM subsection was then warped to the HiRISE image using a Delaunay 

triangulation.  RSL were outlined manually in the HiRISE image and the percentage of RSL in 

each of the overlain CRISM pixels was calculated (figure 7.1b).  These together with a number 

of RSL-free pixels were extracted for the spectral unmixing process giving a total of 75 pixels.  

Each pixel was then re-examined to ensure that no boulders or obvious extra endmembers 
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were present beyond the RSL and the background material, and eight pixels removed leaving 

a total of 67 for use in the SMA process. 

Visual inspection of the HiRISE image showed albedo variation in the soils surrounding the 

RSL and so a p value of 3 was assigned to allow for two background soil endmembers. The 

extracted CRISM dataset was analysed through two EEA algorithms; RMVES and SISAL.  Each 

EEA was run 26 times.  Each of the 52 sets of extracted endmembers were run through the 

FCLLS algorithm to calculate the relative abundance of each endmember in each pixel.  These 

abundance results were compared to those calculated directly from the HiRISE image.  The 

difference between the extracted endmember abundance (ai’) and the HiRISE derived 

abundance measurements (ai) were calculated as 

𝐸 =
1

𝑝
∑ min

𝑗
(
1

𝑁
∑ |𝑎𝑖𝑘

′ − 𝑎𝑗𝑘|)
𝑁
𝑘=1

𝑝
𝑖=1      (6.1) 

as used in Heylen et al (2011).  Equation (6.1) calculates the difference in the abundance of 

each endmember in each pixel between the FCLLS calculated data and the HiRISE data and 

averages this value.   
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7.5: SMA results 
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Figure 7.2: a) the extracted endmember set with the smallest E value and best fit to the HiRISE 

calculated abundances.  Spectrum 1 (the solid black line) and Spectrum 2 (dotted red line) 

together account for the background soils.  Spectrum 3 (the green dashed line) correlates with 

the RSL abundance.  The background spectra have been offset by 0.05 for clarity. b) The three 

extracted endmembers with the continuum removed to emphasis key spectral absorption 

features.  The solid vertical line marks the centre of the background endmembers major IR 

absorption and the two dashed vertical lines mark the centre of the RSL endmember’s two IR 

absorptions. The green and red spectra have been offset by 0.05 for clarity. c) The IR portion 

of the spectrum only, emphasising the key absorptions, these spectra have not been offset. d) 

example spectra from spectral libraries offset by 0.1 for clarity, pyroxene and olivine from the 

Johns Hopkins spectral library and mafic basalt from the CRISM spectral library.  The NaClO4 

spectrum taken from Hanley et al [2014] with the ~2.23 µm absorption highlighted.  The other 

major absorption in this spectrum at 1.96 µm is an H2O absorption band not present in the 

extracted endmembers. 

A common spectral pattern was found in all 52 SMA runs.  The primary difference between 

the numerous runs was the depth of the absorptions in the three spectra rather than the 

central wavelengths of the absorptions.  The three endmembers in each run were assigned to 

either the RSL or the background based on their match to the pixel endmember abundances 

extracted from the HiRISE image.  The endmember set from both the SISAL and RMVES runs 

with the lowest overall abundance error, E, as calculated using equation (6.1) were identical, 

with an E value of only 0.00029.  The best fit three spectra produced by the SMA all follow 

the same general spectral shape but with a number of subtle differences (figure 7.2).  

Spectrum 1 and Spectrum 2 are identical above 1.5 µm with their primary difference being a 

lower general albedo in Spectrum 2 (figure 7.2) in the 0.4 – 1.5 µm range and a shift in the 

band centre around 1 µm, the Spectrum 2 band centred at 1.0 µm and the Spectrum 1 (figure 

7.2) band centred at 1.03 µm.  Spectrum 1 and Spectrum 3 show a sharp discontinuity at 1.03 

µm which is an instrument artefact showing where the VNIR and IR detectors overlap 

(Murchie et al., 2007).  This is not as evident in Spectrum 2.  It is most likely masked by the 

1.0 µm band centre.  The combined calculated abundance for Spectrum 1 and Spectrum 2 

matches well to the abundance calculated for the background material using the HiRISE 

image.  The HiRISE image (figure 7.1) shows that the background material does become 

darker at the northern end of the region of interest and these two endmembers are reflecting 

this.  This albedo difference is most likely the result of differences in particle size or length of 

surface exposure time rather than any mineralogical differences as reflected in the very 
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similar endmembers.  The calculated abundances of Spectrum 3 (24% over the whole scene) 

were a numerical match to the RSL abundances (23% over the whole scene).  Spectrum 3 has 

a lower albedo than the combined background spectra (Spectrum 1 and Spectrum 2), 

consistent with previous observations (Mushkin et al., 2010; Ojha et al., 2013).  All three 

spectra show a strong 690 nm shoulder, however this is a well-documented instrument 

artefact due to a detector filter boundary at 650 nm (Murchie et al., 2007).  All three 

endmembers also exhibit a slight absorption at 0.5 µm due to crystal field transitions in ferric 

iron and a broad ~1.0 µm absorption due to a crystal field transition in ferrous iron (Hunt and 

Ashley, 1979).  The background endmembers (Spectrum 1 and 2, figure 7.2) also exhibit a 

broad shallow absorption centred at ~ 2.17 µm.  These features together constitute a basaltic 

soil (Horgan et al., 2014) of pyroxene + olivine and possibly some iron oxide, a fairly typical 

mix for weathered martian soil (Chevrier and Mathe, 2007).  The RSL endmember Spectrum 3 

also has this broad 2.17 µm feature but superimposed on it are two shallow broad 

absorptions centred at 2.01 and 2.26 µm (figure 7.2).  This suggests the RSL material is the 

same basaltic soil as the other two endmembers but with a minor additional component.  The 

2.01 µm broad absorption feature is subtle and given its location should be treated with 

caution as atmospheric CO2 results in significant (but sharp) absorptions features at ~2.0 µm.  

These atmospheric features are seen as a triplet at approximately 1.97, 2.01 and 2.07 µm 

(Bernstein et al., 2005).  This triplet of sharp features is evident here suggesting that the 

atmospheric correction may not have removed all of the atmospheric CO2 correctly.  

None of the endmember spectra show the deep absorption bands associated with hydration 

at ~1.4 µm and 1.96 µm.  Massé et al (2014a) demonstrated in laboratory experiments that 

the absence of VNIR spectral signatures of water did not necessarily mean an absence of 

water activity. It is therefore possible that the liquid water within the brines forming the RSL 

sublimated shortly after exposure to the Martian surface, thereby resulting in the low-albedo 

features observed and the absence of water absorptions in endmember Spectrum 3. 

Alternatively, if we assume that the 2.01 µm feature would remain after a more robust 

atmospheric correction then it could be explained as a shifted hydration feature.  

Crystallisation of certain hydrated salts (namely MgCl2 and MgSO4) has been shown to cause 

the 1.96 µm H2O absorption in previously wet basaltic soils to shift to longer wavelengths 

(Massé et al., 2014b).  It does not seem unreasonable to assume this shift could be seen in 

the presence of other similar salts as well.  This particular H2O feature has also been shown to 

shift to longer wavelengths and broaden as the water freezes (Clark, 1999).  Massé et al 

(2014b) also note that CRISM measurements are made outside the soltime during which 
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liquid water is stable and thus if the RSL are the result of liquid water at the surface it could 

have refrozen prior to the CRISM measurement. 

The 2.26 µm feature is harder to interpret.  Many sulfates and chlorides have absorptions in 

the neighbourhood of this wavelength (Bishop et al., 2014; Hunt et al., 1971) but in these 

mineral types this absorption is always accompanied by stronger absorptions in the 2.35 – 2.5 

µm range.  Such accompanying absorptions are not seen in Spectrum 3.  The favoured 

hypothesis in the community to explain RSL is the presence of salts, in particular chlorates or 

perchlorates that have been previously found in the soils at various martian localities (Dundas 

and McEwen, 2015; Hecht et al., 2009).  There has been little work however in this 

wavelength range investigating the spectral signatures of chlorates and perchlorates and how 

their absorption features may change and shift with particle size, temperature and 

accompanying minerals.  Work by Hanley et al (2014) investigating the spectral properties of 

chlorates and perchlorates as they might appear under the environmental conditions of the 

Icy moons of the outer solar system, show that sodium perchlorate (NaClO4) exhibits an 

absorption band at ~2.23 µm when at low temperatures without the strong ~2.4 µm 

accompanying feature (figure 7.2d).  Earlier work by the same authors (Hanley et al., 2010) 

showed similar features from sodium chlorate (NaClO3) with an even stronger 2.22 µm 

absorption.  This feature however, while near to the unidentified feature in Spectrum 3 is not 

in the exact same location and therefore cannot be used to explain the absorption at 2.26 

µm.  Exploration of the literature revealed no convincing candidate to explain the 2.26 µm 

absorption. 

7.6: Discussion of SMA results – a suitable technique for RSL? 

The spectral variance in the extracted endmember set is subtle and there are numerous 

sources of error in the technique described that must be considered.  The estimation of the 

RSL abundance in a CRISM pixel is dependent on the accuracy of the co-registration of the 

HiRISE and CRISM images.  The method employed in this work provides reasonably accurate 

results but some error is expected (in this work this is estimated to be as a spatial 

displacement of up to 2 HiRISE pixels).  This error in turn feeds into error in the groundtruth 

HiRISE estimated abundances in each CRISM pixel.  Without an accurate groundtruth of the 

RSL abundances it is difficult to assess the accuracy of the extracted SMA endmembers and 

their associated FCLLS calculated abundances.  The COSI-Corr program has been shown to 

have some promise for use in improving the accuracy of co-registering HiRISE and CRISM 

images (Rice et al., 2013a).  This technique however, is still in the development phases and 

was unavailable for this study.  Due to the subtlety of the spectral features present slight 
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errors introduced in the processing of the CRISM image can have a significant impact, as seen 

in the potential CO2 absorptions left in the SMA endmembers.  The volcano-scan method is 

the atmospheric correction method provided to the general CRISM user community but it has 

been shown to be less accurate than radiative transfer based methods (Wiseman et al., 

2012).  A number of authors have reported improved results removing the atmospheric 

effects in CRISM images using the DISORT radiative transfer code (McGuire et al., 2008; 

Wiseman et al., 2012).  Atmospheric correction of CRISM data using radiative transfer 

modelling is however a time consuming task and it was not possible to perform as part of this 

study.  The SMA abundance calculation was performed using the FCLLS algorithm assuming 

linear mixing in the scene.  Whilst this is a reasonable assumption between the RSL and the 

background endmembers the two background endmembers in this case are likely a non-

linear intimate mixture.  This adds another source of error to the unmixing routine making it 

more difficult to assess the accuracy of the extracted endmembers.  Use of conversion to SSA 

reflectance could improve on this source of error but the unmixing results on synthetic 

images presented in Chapter 5 suggest that this would not provide a significant decrease in 

error and could potentially make the results worse.  Finally the results presented here are 

from just one image set, in one region.  Although there exists CRISM coverage of other RSL 

sites it is not all coincident with HiRISE imagery, and of those that are, all others examined 

were unsuitable for this technique due to additional complexity, primarily in the form of 

boulders littering the soils around the RSL. 

7.6: Future work 

Despite the number of sources of error in the technique described here some intriguing 

results were still extracted.  SMA using temporally coincident CRISM and HiRISE imagery 

shows promise and if the COSI-Corr and DISORT algorithms could be integrated into the 

image pre-processing steps the unmixing results would be substantially more robust.  

Understanding RLS is a high priority goal for the Mars science community and thus there is 

hope that more CRISM and coincident HiRISE images will be taken as long as the instruments 

remain operational.  The remaining issue remains that of limited spectral libraries to compare 

the resulting endmember spectra to. This is a problem for interpretation of planetary 

reflectance spectroscopy data across the board and is gradually being addressed on a long-

term scale within the planetary community and beyond. 
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7.7: Summary 
This chapter has presented the results of a proof-of-concept test using SMA of CRISM data 

together with spatially and temporally coincident HiRISE images to determine the spectral 

and mineralogical signature of RSL.  A CRISM and HiRISE image covering RSL on the slopes of 

Palikir Crater were co-registered and the SISAL algorithm used to extract spectral 

endmembers.  The FCLLS algorithm was used to calculate the pixel abundances of these 

endmembers.  RSL pixel abundances were also estimated from the coincident HiRISE image 

and these values used to match the extracted spectral endmembers to either the background 

medium or the RSL.  The background was identified as basaltic soil.  A unique spectrum was 

extracted for the RSL themselves.  Whilst it was not possible to identify the 

chemical/mineralogical source of the unique spectral feature this is an issue of incomplete 

spectral libraries available for comparisons rather than a failing of the analysis technique. The 

RSL endmember featured two subtle extra features compared to the background signature; 

one was interpreted as tentative evidence of water ice although it may be uncorrected 

atmospheric CO2 and the other remained unidentifiable.  The spectral signature of the RSL is 

subtle and numerous sources of possible error exist primarily in the image pre-processing 

stage.  Methods to improve the pre-processing (the atmospheric correction and the image 

co-registration) were suggested that if implemented would make this a promising technique 

for characterising the chemical nature of RSL.     
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Chapter 8: Conclusions 
 

The preceding Chapters have investigated the utility of VNIR spectral imaging in the 

exploration and identification of small scale hydrated environments on Earth and Mars, in 

particular hydrothermally altered surfaces and Recurring Slope Lineae.  Both environment 

types are of particular importance as potentially habitable environments.  Two types of 

instrument have been investigated whose data differ in key aspects of scale; the high spatial, 

low spectral resolution PanCam, and the low spatial, high spectral resolution CRISM.  A 

solution to the limitations imposed by the low spatial resolution of CRISM was investigated in 

the form of Spectral Mixture Analysis (SMA), focusing on its availability to the planetary 

science community and its applicability to mineralogically complex hydrothermally altered 

environments.  Both the PanCam and the CRISM levels of scale demonstrated their own 

advantages and disadvantages.  The findings of this thesis shall be summarised and discussed 

more fully in this final chapter. 

8.1: PanCam – high spatial, low spectral resolution 
The PanCam is a multispectral, stereoscopic, panoramic imaging system planned for inclusion 

in the 2018 ESA/Roscosmos ExoMars rover payload.  The Aberystwyth University PanCam 

Emulator (AUPE-2), an emulator of the PanCam instrument, was field trialled in Námafjall, 

Iceland, a hydrothermally active region exhibiting significant mineralogical and structural 

heterogeneity over small spatial scales.  Engineering constraints limit the spectral capabilities 

of PanCam to a 12 point spectrum spread between 400 – 1000 nm, a coarse spectral 

resolution over a less than ideal wavelength range for geological applications.  Given the 

ExoMars science goals to identify signs of extinct and extant life, the ideal filter set to detect 

the broadest range of minerals likely to form in habitable environments was identified in 

previous work by Cousins et al. (2012).  The work presented in this thesis represents the first 

field trial of these filters, testing their applicability to the identification of a hydrothermal 

environment and ensuring the fidelity of the data returned.  Despite the spectral limitations, 

the datasets collected with AUPE-2 proved sufficient to correctly characterise the study 

region as a hydrothermally altered glaciovolcanic environment when the spectral data were 

used in conjunction with contextual WAC and HRC imaging.  Whilst the majority of the 

minerals present could not be uniquely identified from PanCam data alone, certain key 

characteristics were captured including diagnostic Fe absorptions and sharp blue slopes 

indicating the presence of sulfur.  The use of specifically designed spectral parameters and 

well established techniques including Principal Components Analysis proved to be quick and 
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efficient analysis methods; highlighting commonalities across different ROI targets within the 

wider area, and emphasising discrete spectral units within the multispectral image cubes.  

The PanCam filter set is also capable of capturing the absorption around 950 – 1000 nm 

related to hydrated minerals (Rice et al., 2010), however this was not reflected in the 

collected data.  This was found to be due to a flaw in the AUPE-2 optical system that affected 

the longest wavelength filters.  Detection of such faults is an important aspect of field trials 

and this early detection should allow the PanCam engineering team enough time to ensure a 

similar problem does not affect the final flight-ready instrument, particularly given the 

importance of the 900 - 1000 nm spectral region in identifying hydrated mineral deposits, as 

demonstrated by MER Pancam and MSL Mastcam.  The major factor that enabled the 

accurate characterisation of the environment, despite the frequently ambiguous and 

sometimes flawed spectra, was that these spectra were not collected as isolated data points, 

but instead as high spatial resolution images.  Centimetre, and in the case of the 

accompanying HRC images, millimetre scale textures and structures were visible providing 

extra information together with the necessary spatial context needed to fully interpret the 

admittedly limited spectral data. 

8.2: CRISM and SMA – high spectral and low spatial resolution 
The work presented using the PanCam showed the utility of coarse spectral resolution 

imagery provided the spatial resolution is high.  Such data is one of the two forms of VNIR 

imagery available from Mars, both currently and as part of future planned missions.  The 

other is orbital data from the CRISM and OMEGA instruments.  In opposition to the PanCam 

data these orbital instruments return imagery with a high spectral resolution (hundreds of 

spectral bands) over a wide spectral range (0.362 – 3.92 µm in the case of CRISM), but with a 

much lower spatial resolution; CRISM has the smallest pixel size of the orbital VNIR 

spectrometers with a standard full resolution product producing pixels of approximately 

18 m2.  The PanCam fieldwork performed at Námafjall demonstrated that a significant 

mineralogical and structural variation can exist within such a small area.  Such variety would 

be smeared and obscured within the CRISM pixels and standard analysis techniques (e.g. 

spectral parameters or spectral ratioing) are incapable of extracting the full level of 

information contained within these mixed pixels, most notably the quantitative detail.   

The family of techniques known as Spectral Mixture Analysis (SMA) are designed to extract 

qualitative and quantitative sub-pixel information from within a hyperspectral dataset.  There 

is an extensive literature describing a wide range of SMA related algorithms, however few of 

these have been tested against the complexity of a hydrothermal environment or with 
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martian data.  Additionally few have been made available as fully executable code to the 

wider community, effectively excluding this method from the toolbox of the general image 

analyst or planetary scientist.  A full SMA pipeline was developed using publically available 

pre-existing algorithms written in the Matlab language.  This pipeline was optimised for 

sensitivity to the complexities inherent in a hydrothermally altered surface environment.  

These included large number of minerals (> 10), spectral similarities between minerals and 

spectral differences within mineral species, and non-linear intimate spectral mixing.  This 

pipeline was validated using synthetic images constructed from publically available spectral 

library data as well as hyperspectral data covering the Námafjall region from both ground-

based and aerial hyperspectral instruments.   

Having established the utility of SMA and the particular algorithms used to build this pipeline 

it was applied to CRISM data covering a number of regions on Mars postulated to have 

hosted hydrothermal systems at some point in their history; Nili Patera, Hecates Tholus, 

Aromatum Chaos and an unnamed crater informally named Kirkcaldy Crater for the purposes 

of this work.  These analyses returned mixed results.  For the first time a quantitative 

estimate for the amount of hydrated silica in some of the bright toned mounds previously 

identified as such by Skok et al. (2010) was extracted using the SMA pipeline.  The presence 

of a chlorite-bearing unit was identified in the caldera of Hecates Tholus.  This unit was not 

identifiable using the published CRISM spectral parameters (Pelkey et al., 2007; Viviano-Beck 

et al., 2014) but was quickly identified in the SMA extracted spectral endmembers.  The 

Aromatum Chaos and Kirkcaldy crater showed evidence of significant quantities of icy 

material.  Only in the case of Kirkcaldy crater however, was the SMA pipeline able to add 

extra information to this identification beyond that available from more standard analysis, 

with an estimate of the amount of icy material within the crater.  In both cases surface water 

ice is not expected to be stable and the possibility of the spectral signature of ice coming 

from thin atmospheric clouds had to be considered.  In both analyses the coincident HiRISE 

image combined with the endmember abundance maps allowed for an assessment of the 

likelihood of the ice being either atmospheric or surface.  The lack of bright surface patches 

and the heterogeneous distribution of the icy signature in the Aromatum Chaos data pointed 

to the ice being atmospheric.  The coincidence of the icy signatures highest abundances over 

areas with numerous small high albedo patches in Kirkcaldy Crater lead to a tentative 

diagnosis of surface ice rather than atmospheric.  This use of high spatial resolution HiRISE 

images was also key to the analysis of the other two regions both to identify an ROI to 
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analyse and then to interpret the abundance maps, matching surface structures and units to 

the endmember abundance distributions. 

A second use of SMA was also investigated combining temporally and spatially coincident 

HiRISE and CRISM imagery to extract a unique spectrum for the Recurring Slope Lineae (RSL) 

in Palikir Crater.  Through accurate co-registration of the images, area pixel abundances for 

the RSL were calculated from the HiRISE image and used to validate the abundance 

calculations of the spectral signatures extracted from the CRISM image using SMA.  Three 

spectral signatures were extracted and through pixel percentage abundance comparison 

identified as representing the RSL and two background materials that differed only in their 

albedo.  The RSL signature did display a subtle spectral difference from that of the 

background material but it was not possible to identify the cause of the primary unique 

feature.  This lack of identification was not a fault of the SMA process but rather a result of 

incomplete spectral libraries to compare the feature to.  The building of spectral libraries is 

an ongoing task within the planetary science and mineral spectroscopy communities and it is 

hoped that re-analysis in the future will enable a diagnostic identification of the RSL signature 

to be performed.  RSL are subject to ongoing monitoring and further HiRISE and CRISM 

images of both currently known and new RSL locations are expected over the remainder of 

the MRO’s operational life.  With improved image pre-processing the SMA technique 

described in this thesis could prove invaluable to the question of what is causing these 

transient features to form. 

Analysis of CRISM images is commonly undertaken using the technique of spectral 

parameters.  The analysis of an entire image on an individual pixel-by-pixel basis would be 

unrealistic and the use of spectral parameters allows for a quick search of an image for key 

absorption features.  It is not a technique without its disadvantages however.  Spectral 

parameters presuppose the existence of specific features and do not allow for significant 

variation within that feature.  As was discussed in Chapter 2 key features for numerous 

minerals can shift based on various factors including grain size, crystalline structure and slight 

geochemical impurities.  Numerous spectral parameters have been developed specifically for 

CRISM data first by Pelkey et al. (2007) with revised versions being described by Viviano-Beck 

et al. (2014).  The analysis of Hecates Tholus demonstrated that not all mineral absorptions 

are featured in these two sets of parameters which could be leading minerals to go 

undiscovered in some images.  A major advantage of SMA is that it distils potentially 

thousands of pixels down to only a handful.  Where it would be unrealistic to examine 

thousands of spectra on an individual basis, the analysis of only ten is feasible.  This allows for 
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the picking up of unusual absorptions for which no spectral parameter has been developed 

whilst at the same time taking into account entire spectral shape and multiple absorption 

features, both of which can prove crucial in identifying the mineral composition of the 

surface. 

8.3: Importance of image pre-processing 
The two different applications of SMA presented in this thesis treat the data in different ways 

appropriate to the environmental type being investigated and the data available.  Both 

however revealed a number of similar issues related to the pre-processing of the CRISM 

images and in particular the removal of noise, both instrumental and environmental, from 

the images.  All of the CRISM imagery used in this thesis had been processed through the 

CRISM Analysis Toolkit (CAT) pipeline prior to the application of the SMA algorithms.  This 

basic processing toolbox provided by the CRISM team to the general community sadly proved 

inadequate in these situations, failing to completely remove both the atmospheric 

contributions to the data and major instrument artefacts, in particular the vertical stripes due 

to detector pixel response variations.  These vertical stripes were not an issue in the RSL 

investigation but this is likely because so few pixels were utilised in that analysis.  The vertical 

stripes did show up in the final step of the SMA pipeline in the hydrothermal region 

exploration for two of the four regions studied.  Mineralogical concentrations in vertical 

swaths that did not correspond to any structural feature were seen in both the Nili Patera 

and the Kirkcaldy Crater abundance maps.  A common method of dealing with detector pixel 

line artefacts that remain after CAT processing is to take spectral ratios of pixels of interest 

and ‘neutral’ pixels from the same detector pixel.  This removes any common errors in the 

pixel due to the detector (as well as the spectral continuum) and can therefore emphasis 

subtle spectral features.  It is of most use when only one or two particular absorption 

features are of interest and the ‘neutral’ pixel can be chosen with respect to those features.  

Otherwise this technique has the potential to introduce artificial features or mask other 

potentially interesting subtle spectral absorptions.  It is also a fix that has to be applied on a 

pixel by pixel basis to non-georeferenced data rather than across entire images or ROIs and 

does not address differences between the detector pixels.  In the case of SMA it is not 

believed by this author that such spectral ratioing is a suitable fix to the detector stripe issues 

for these reasons.  Additionally in every image analysed imperfect atmospheric correction 

introduced uncertainties in the identification of surface spectral absorptions, particularly at 

around 2.0 µm.  The atmospheric correction had been performed using the volcano-scan 

method using the recommended parameter settings for this tool (Morgan et al., 2009).  
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Alternative input parameters were experimented with and found to have no positive impact 

on the final output.  Previous researchers have shown that this method does not remove all 

of the atmospheric contribution to a CRISM image (Wiseman et al., 2012).  The atmospheric 

remnants can be subtle but when the features that are being revealed through SMA are also 

subtle any remaining atmosphere is an issue.  Alternative methods for atmospheric cleaning 

have been discussed including the radiative transfer based DISORT algorithm; however all 

require a significant amount of time and specialist software to use, potentially placing them 

out of reach for some CRISM data users.   

8.4: Scale, why it matters and how it can be enhanced 
Two different scale resolutions have been investigated over the course of this thesis, the low 

spectral resolution PanCam and the high spectral resolution CRISM.  In both cases the 

information extractable from the spectral images was greatly enhanced by the 

addition/combination of high spatial resolution data.  In the case of PanCam this was the 

same data as well as the additional HRC images, and in the case of CRISM this was the HiRISE 

imagery.  These HiRISE images enabled image artefacts to be confidently detected (i.e. the 

vertical stripes in the SMA abundance maps that did not correspond to any structural 

features) and the correct spectral signature to be assigned to sub-CRISM pixel features 

including the small patches of hydrated silica in the NE corner of the Nili Patera ROI and the 

RSL.  Clearly the ideal instrument would have both high spectral and spatial resolution but in 

the meantime combining datasets with different scales can enhance the level of information 

available.  This combination of different resolution data from different instruments will be 

available for ExoMars with PanCam being enhanced through conjunction with data from the 

Infrared Spectrometer for ExoMars ISEM (Korablev et al., 2014).  This instrument shall return 

hyperspectral point spectra across the wavelength range 1.15 - 3.3 µm specifically from 

targets within the FoV of the PanCam.  The work presented in Chapter 3 showed how ASD 

point spectra from in frame samples often provided the necessary data to conclusively 

identify the minerals present.  The ISEM will perform the same task over a slightly different 

wavelength range, essentially expanding the wavelength range used to analyse ROIs within a 

PanCam scene enabling more confident mineral diagnosis to be performed than for PanCam 

data alone. 
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8.5: Future work 

A number of tasks remain from this thesis that should be carried forward into further 

research: 

1. A quantitative assessment of the error attached to each step in the SMA pipeline should 

be established.  This would give more confidence in the results specifically in the case of 

CRISM data where groundtruth data is rare. 

 

2. The inclusion of more robust atmospheric (DISORT or anther technique to be 

determined) and instrument artefact removal routines to the SMA pipeline is a priority.  

A more rigorous pre-processing pipeline shall be developed addressing these two points.  

This will enable more confident interpretation of the SMA results and allow for 

application to a wider range of environments.   With greater cleaning applied to the 

CRISM data the SMA techniques presented in this work show the potential to return 

significant, new results from an existing instrument with a large backlog of data still 

waiting to be thoroughly examined.   

 

3. Post inclusion of improved pre-processing methods to the SMA pipeline, further ROIs 

covering more of the Nili Patera and Hecates Tholus caldera region should be processed 

and the existing ROIs reprocessed.  Both regions showed evidence of significant 

mineralogical variation which points towards the existence of previous hydrothermal 

systems.  In this case of Nili Patera this work is particularly relevant in light of the area’s 

proposal as a Mars 2020 landing site (Skok et al., 2014). 

 

4. AUPE-2 field trials should continue, covering a wider range of potentially habitable 

analogue environmental types, in particular those featuring sedimentary layering and 

phyllosilicates that can act as analogues for the four shortlisted ExoMars candidate 

landing sites.  Integration of an ISEM emulator or prototype into these field trials would 

be especially beneficiary to further investigate the utility of combining high spatial, low 

spectral resolution PanCam data with high spectral, low spatial resolution point 

spectrometer data. 

 

5. Integration of AUPE-2 data and aerial or orbital hyperspectral data should be attempted.  

The ARSF data used in Chapter 5 was not of sufficient quality to attempt this in this work 

however better quality data may be available covering future field trial locations.  The 
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applicability of mineralogical deductions made with the ground-based instruments to 

validate, or at least constrain, the extracted endmembers and estimated abundance 

maps shall be examined.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



197 
 

References 

Adams, J.B., Smith, M.O., Johnson, P.E., 1986. Spectral Mixture Modeling: A New Analysis of 

Rock and Soil Types at the Viking Lander 1 Site. J. Geophys. Res. 91, B8, 8098–8112. 

doi:10.1029/JB091iB08p08098 

Adler-Golden, S.M., Berk, A., Bernstein, L.S., Richtsmeier, S.C., Acharya, P.K., Matthew, M.W., 

Anderson, G.P., Allred, C., Jeong, L.S., Chetwynd, J.H., 1998. FLAASH, A MODTRAN4 

atmospheric correction package for hyperspectra data retrievals and simulations, in: 7th 

Annual JPL Earth Science Workshop. JPL, pp. 98 – 104. 

Altmann, Y., Dobigeon, N., McLaughlin, S., Tourneret, J.-Y., 2013a. Nonlinear Spectral 

Unmixing of Hyperspectral Images Using Gaussian Processes. IEEE Trans. Signal Process. 

61, 10, 2442–2453. doi:10.1109/TSP.2013.2245127 

Altmann, Y., Dobigeon, N., Tourneret, J.-Y., 2013b. Nonlinearity detection in hyperspectral 

images using a polynomial post-nonlinear mixing model. IEEE Trans. Image Process. 22, 

4, 1267–76. doi:10.1109/TIP.2012.2210235 

Altmann, Y., Dobigeon, N., Tourneret, J.-Y., Bermudez, J.C.M., 2013c. A robust test for 

nonlinear mixture detection in hyperspectral images, in: IEEE International Conference 

on Acoustic, Speech and Signal Processing (ICASSP). IEEE, Vancouver, pp. 2149–2153. 

Ambikapathi, A., Chan, T.-H., Ma, W.-K., Chi, C.-Y., 2011. Chance-Constrained Robust 

Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing. IEEE Trans. 

Geosci. Remote Sens. 49, 11, 4194–4209. doi:10.1109/TGRS.2011.2151197 

Amils Pibernat, R., Ellis-Evans, C., Hinghoferr-Szalkay, H., 2007. Life in Extreme Environments, 

3rd ed. Springer. 

Amundsen, H.E.F., Westall, F., Steele, A., Vago, J., Schmitz, N., Bauer, A., Cousins, C.R., Rull, F., 

Sansano, A., Midtkandal, I., 2010. Integrated ExoMars PanCam, Raman, and close-up 

imaging field tests on AMASE 2009, in: EGU General Assembly. Vienna, Austria, p. 8757. 

Anderson, R.B., Bell III, J.F., 2013. Correlating Multispectral Imaging and Compositional Data 

from the Mars Exploration Rovers and Implications for Mars Science Laboratory. Icarus 

223, 1, 157–180. doi:10.1016/j.icarus.2012.11.029 

Andreou, C., Karathanassi, V., 2014. Estimation of the Number of Endmembers Using Robust 

Outlier Detection Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 1, 247–256. 

doi:10.1109/JSTARS.2013.2260135 

 



198 
 

Arvidson, R.E., Squyres, S.W., Baumgartner, E.T., Schenker, P.S., Niebur, C.S., Larsen, K.W., 

Seelos, F.P., Snider, N.O., Jolliff, B.L., 2002. FIDO prototype Mars rover field trials, Black 

Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field 

science. J. Geophys. Res. 107, E11. doi:10.1029/2000JE001464 

Arvidson, R.E., Squyres, S.W., Bell III, J.F., Catalano, J.G., Clark, B.C., Crumpler, L.S., de Souza, 

P.A., Fairén, A.G., Farrand, W.H., Fox, V.K., Gellert, R., Ghosh, A., Golombek, M.P., 

Grotzinger, J.P., Guinness, E.A., Herkenhoff, K.E., Jolliff, B.L., Knoll, A.H., Li, R., 

McLennan, S.M., Ming, D.W., Mittlefehldt, D.W., Moore, J.M., Morris, R. V., Murchie, 

S.L., Parker, T.J., Paulsen, G., Rice, J.W., Ruff, S.W., Smith, M.D., Wolff, M.J., 2014. 

Ancient aqueous environments at Endeavour crater, Mars. Science 343, 6169, 1248097. 

doi:10.1126/science.1248097 

Balme, M.R., Gallagher, C.J., Page, D.P., Murray, J.B., Muller, J.-P., 2009. Sorted stone circles 

in Elysium Planitia, Mars: Implications for recent martian climate. Icarus 200, 1, 30–38. 

doi:10.1016/j.icarus.2008.11.010 

Bandfield, J.L., 2002. Global mineral distributions on Mars. J. Geophys. Res. 107, E6, 5042. 

doi:10.1029/2001JE001510 

Bandfield, J.L., Glotch, T.D., Christensen, P.R., 2003. Spectroscopic identification of carbonate 

minerals in the martian dust. Science 301, 5636, 1084–1087. 

doi:10.1126/science.1088054 

Barnes, D.P., Wilding, M., Gunn, M., Pugh, S., Tyler, L., Coates, A.J., Griffiths, A.D., Cousins, 

C.R., Schmitz, N., Bauer, A., Paar, G., 2011. Multi-spectral vision processing for the 

ExoMars 2018 mission, in: 11th Symposium on Advanced Space Technologies in 

Robotics and Automation - ASTRA 2011. 

Bell III, J.F., Calvin, W.M., Ockert-Bell, M.E., Crisp, D., Pollack, J.B., Spencer, J., 1996. Detection 

and monitoring of H2O and CO2 ice clouds on Mars. J. Geophys. Res. 101, E4, 9227. 

doi:10.1029/96JE00689 

Bell III, J.F., Squyres, S.W., Herkenhoff, K.E., Maki, J.N., Arneson, H.M., Brown, D., Collins, S.A., 

Dingizian, A., Elliot, S.T., Hagerott, E.C., Hayes, A.G., Johnson, M.J., Johnson, J.R., Joseph, 

J., Kinch, K., Lemmon, M.T., Morris, R. V., Scherr, L., Schwochert, M., Shepard, M.K., 

Smith, G.H., Sohl-Dickstein, J.N., Sullivan, R.J., Sullivan, W.T., Wadsworth, M., 2003. 

Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. 

Res. 108, E12. doi:10.1029/2003JE002070 

 



199 
 

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E., 1997. A blind source 

separation technique using second-order statistics. IEEE Trans. Signal Process. 45 (2), 2, 

434–444. doi:10.1109/78.554307 

Belouchrani, A., Amin, M.G., 1998. Blind source separation based on time-frequency signal 

representations. IEEE Trans. Signal Process. 46 (11), 11, 2888–2897. 

doi:10.1109/78.726803 

Bennett, K., Scholes, D., Wang, J., Zhou, F., 2011. CRISM product primer, in: Planetary Data 

Systems (PDS) Geosciences Node, Orbital Data Explorer, Version 3.0, User’s Manual. 

Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., Huntington, J.F., 2004. ICE: a 

statistical approach to identifying endmembers in hyperspectral images. IEEE Trans. 

Geosci. Remote Sens. 42, 10, 2085–2095. doi:10.1109/TGRS.2004.835299 

Bernstein, M.P., Cruikshank, D.P., Sandford, S.A., 2005. Near-infrared laboratory spectra of 

solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus 179, 2, 527–534. 

doi:10.1016/j.icarus.2005.07.009 

Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., 

Arvidson, R.E., Mangold, N., Mustard, J.F., Drossart, P., 2005. Mars surface diversity as 

revealed by the OMEGA/Mars Express observations. Science 307, 5715, 1576–81. 

doi:10.1126/science.1108806 

Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R.E., Gendrin, A., Gondet, B., 

Mangold, N., Pinet, P., Forget, F., Berthé, M., Gomez, C., Jouglet, D., Soufflot, A., 

Vincendon, M., Combes, M., Drossart, P., Encrenaz, T., Fouchet, T., Merchiorri, R., 

Bellucci, G., Altieri, F., Formisano, V., Capaccioni, F., Cerroni, P., Coradini, A., Fonti, S., 

Korablev, O., Kottsov, V., Ignatiev, N., Moroz, V., Titov, D., Zasova, L., Loiseau, D., 

Mangold, N., Pinet, P., Douté, S., Schmitt, B., Sotin, C., Hauber, E., Hoffmann, H., 

Jaumann, R., Keller, H.U., Duxbury, T., Forget, F., Neukum, G., 2006. Global 

mineralogical and aqueous mars history derived from OMEGA/Mars Express data. 

Science 312, 5772, 400–404. doi:10.1126/science.1122659 

Bibring, J.-P., Soufflot, A., Berthé, M., Langevin, Y., Gondet, B., Drossart, P., Bouyé, M., 

Combes, M., 2004. OMEGA : Observatoire pour la Minéralogie , l ’ Eau , les Glaces et l ’ 

Activité. European Space Agency. 

 

 



200 
 

Bioucas-Dias, J.M.B., 2009. A variable splitting augmented Lagrangian approach to linear 

spectral unmixing, in: 2009 First Workshop on Hyperspectral Image and Signal 

Processing: Evolution in Remote Sensing. IEEE, pp. 1–4. 

doi:10.1109/WHISPERS.2009.5289072 

Bioucas-Dias, J.M.B., Nascimento, J.M.P., 2008. Hyperspectral Subspace Identification. IEEE 

Trans. Geosci. Remote Sens. 46, 8, 2435–2445. doi:10.1109/TGRS.2008.918089 

Bioucas-Dias, J.M.B., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J., 

2012. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse 

Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 2, 354–

379. doi:10.1109/JSTARS.2012.2194696 

Bishop, J.L., Franz, H.B., Goetz, W., Blake, D.F., Freissinet, C., Steininger, H., Goesmann, F., 

Brinckerhoff, W.B., Getty, S., Pinnick, V.T., Mahaffy, P.R., Darby Dyar, M., 2012. 

Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance 

spectroscopy and current flight-like instruments for CheMin, SAM and MOMA. Icarus 

224, 2, 309–325. doi:10.1016/j.icarus.2012.05.014 

Bishop, J.L., Lane, M.D., Dyar, M.D., Brown, A.J., 2008. Reflectance and emission spectroscopy 

study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and 

micas. Clay Miner. 43 (1), 1, 35–54. doi:10.1180/claymin.2008.043.1.03 

Bishop, J.L., Schiffman, P., Dyar, M.D., Drief, A., Lane, M.D., 2007. Characterization of 

alteration products in tephra from Haleakala, Maui: a visible-infrared spectroscopy, 

Mössbauer spectroscopy, XRD, EMPA and TEM study. Clays Clay Miner. 55, 1, 1–17. 

doi:10.1346/CCMN.2007.0550101 

Bishop, J.L., Ward, M.K., Roush, T.L., Davila, A.F., Brown, A.J., McKay, C.P., Quinn, R.C., 

Pollard, W., 2014. Spectral properties of Na, Ca-, Mg- and Fe-Chlorides and analyses of 

hydrohalite-bearing samples from Axel Heiberg Island, in: LPSC XXXXV. Houston, USA, p. 

2145. 

Boardman, J.W., Kruse, F.A., Green, R.O., 1995. Mapping Target Signatures Via Partial 

Unmixing of AVIRIS Data. Jet Propulsion Laboratory. 

Borel, C.C., Gerstl, S.A.W., 1994. Nonlinear spectral mixing models for vegetative and soil 

surfaces. Remote Sens. Environ. 47, 3, 403–416. doi:10.1016/0034-4257(94)90107-4 

Bridges, J.C., Schwenzer, S.P., 2012. The nakhlite hydrothermal brine on Mars. Earth Planet. 

Sci. Lett. 359-360, 117–123. doi:10.1016/j.epsl.2012.09.044 



201 
 

Broadwater, J., Banerjee, A., 2011. Mapping intimate mixtures using an adaptive kernel-

based technique, in: 2011 3rd Workshop on Hyperspectral Image and Signal Processing: 

Evolution in Remote Sensing (WHISPERS). IEEE, pp. 1–4. 

doi:10.1109/WHISPERS.2011.6080881 

Broadwater, J., Banerjee, A., Burlina, P., 2009. Kernel Methods for Unmixing Hyperspectral 

Imagery, in: Camps-Valls, G., Bruzzone, L. (Eds.), Kernal Methods for Remote Sensing 

Data Analysis. John Wiley & Sons. 

Brown, A.J., Bishop, J.L., Viviano-Beck, C.E., 2015. Spectral analysis of carbonate deposits at 

Nili Fossae, Mars, in: LPSC XXXXVI. LPI, Houston, USA, p. 2701. 

Brown, A.J., Hook, S.J., Baldridge, A.M., Crowley, J.K., Bridges, N.T., Thomson, B.J., Marion, 

G.M., de Souza Filho, C.R., Bishop, J.L., 2010. Hydrothermal formation of Clay-Carbonate 

alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. 297, 1-2, 

174–182. doi:10.1016/j.epsl.2010.06.018 

Brown, A.J., Walter, M.R., Cudahy, T.J., 2005. Hyperspectral imaging spectroscopy of a Mars 

analogue environment at the North Pole Dome, Pilbara Craton, Western Australia. Aust. 

J. Earth Sci. 52, 3, 353–364. doi:10.1080/08120090500134530 

Brown, A.J., Walter, M.R., Cudahy, T.J., 2004. Short-Wave Infrared Reflectance Investigation 

of Sites of Paleobiological Interest: Applications for Mars Exploration. Astrobiology 4, 3, 

359–376. doi:10.1089/ast.2004.4.359 

Bultel, B., Quantin, C., Lozac’h, L., 2015. Description of CoTCAT (Complement to CRISM 

Analysis Toolkit). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. pre-press, 99, 1–11. 

doi:10.1109/JSTARS.2015.2405095 

Burns, R.G., 1993. Mineralogical applications of crystal field theory, 2nd ed. Cambridge 

University Press. 

Burr, D.M., Soare, R.J., Wan Bun Tseung, J.-M., Emery, J.P., 2005. Young (late Amazonian), 

near-surface, ground ice features near the equator, Athabasca Valles, Mars. Icarus 178, 

1, 56–73. doi:10.1016/j.icarus.2005.04.012 

Campbell, J.B., 2006. Introduction to Remote Sensing, 4th ed. Taylor & Francis, London. 

Cao, X.-R., Liu, R.-W., 1996. General approach to blind source separation. IEEE Trans. Signal 

Process. 44 (3), 3, 562–571. doi:10.1109/78.489029 

Carr, M.H., Head III, J.W., 2010. Geologic history of Mars. Earth Planet. Sci. Lett. 294 (3-4), 3-

4, 185–203. doi:10.1016/j.epsl.2009.06.042 



202 
 

Carrozzo, F.G., Bellucci, G., Altieri, F., D’Aversa, E., Bibring, J.-P., 2009. Mapping of water frost 

and ice at low latitudes on Mars. Icarus 203, 2, 406–420. 

doi:10.1016/j.icarus.2009.05.020 

Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., Murchie, S.L., 2013a. Hydrous minerals on 

Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. 

Geophys. Res. 118, E4, 831–858. doi:10.1029/2012JE004145 

Carter, J., Poulet, F., Murchie, S.L., Bibring, J.-P., 2013b. Automated processing of planetary 

hyperspectral datasets for the extraction of weak mineral signatures and applications to 

CRISM observations of hydrated silicates on Mars. Planet. Space Sci. 76, 53–67. 

doi:10.1016/j.pss.2012.11.007 

Ceamanos, X., Douté, S., Luo, B., Schmidt, F., Jouannic, G., Chanussot, J., 2011. 

Intercomparison and Validation of Techniques for Spectral Unmixing of Hyperspectral 

Images: A Planetary Case Study. IEEE Trans. Geosci. Remote Sens. 49, 11, 4341–4358. 

doi:10.1109/TGRS.2011.2140377 

Chang, C.-I., 2005. Orthogonal subspace projection (OSP) revisited: a comprehensive study 

and analysis. IEEE Trans. Geosci. Remote Sens. 43, 3, 502–518. 

doi:10.1109/TGRS.2004.839543 

Chang, C.-I., Du, Q., 2004. Estimation of Number of Spectrally Distinct Signal Sources in 

Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 42, 3, 608–619. 

doi:10.1109/TGRS.2003.819189 

Chang, C.-I., Plaza, A., 2006. A Fast Iterative Algorithm for Implementation of Pixel Purity 

Index. IEEE Geosci. Remote Sens. Lett. 3, 1, 63–67. doi:10.1109/LGRS.2005.856701 

Chen, J., Richard, C., Honeine, P., 2013. Nonlinear Unmixing of Hyperspectral Data Based on a 

Linear-Mixture/Nonlinear-Fluctuation Model. IEEE Trans. Signal Process. 61, 2, 480–492. 

doi:10.1109/TSP.2012.2222390 

Chevrier, V.F., Hanley, J., Altheide, T.S., 2009. Stability of perchlorate hydrates and their liquid 

solutions at the Phoenix landing site, Mars. Geophys. Res. Lett. 36, 10, L10202. 

doi:10.1029/2009GL037497 

Chevrier, V.F., Mathe, P., 2007. Mineralogy and evolution of the surface of Mars: A review. 

Planet. Space Sci. 55, 3, 289–314. doi:10.1016/j.pss.2006.05.039 

Chevrier, V.F., Rivera-Valentin, E.G., 2012. Formation of recurring slope lineae by liquid brines 

on present-day Mars. Geophys. Res. Lett. 39, 21, L21202. doi:10.1029/2012GL054119 



203 
 

Christensen, P.R., 1988. Global albedo variations on Mars - Implications for active aeolian 

transport, deposition, and erosion. J. Geophys. Res. 93, B7, 7611–7624. 

doi:10.1029/JB093iB07p07611 

Christensen, P.R., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., Weiss-Malik, M., 

2009. JMARS - A Planetary GIS, in: American Geophysical Union, Fall Meeting 2009. 

AGU, San Fransisco, USA, p. IN22A–06. 

Clark, R.N., 1999. Spectroscopy of Rocks and Minerals and the Principles of Spectroscopy, in: 

Rencz, A.N. (Ed.), Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth 

Sciences. John Wiley & Sons, New York, pp. 3–58. 

Clark, R.N., King, T.V. V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High spectral resolution 

reflectance spectroscopy of minerals. J. Geophys. Res. 95, B8, 12653–12680. 

doi:10.1029/JB095iB08p12653 

Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V. V., Calvin, W.M., 1993. USGS, Digital 

Spectral Library: Version 1: 0.2 to 3.0 microns - Open File Report 93-592. 

Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007. USGS 

digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231 [WWW 

Document]. U.S. Geol. Surv. Digit. Data Ser. 231. URL 

http://speclab.cr.usgs.gov/spectral.lib06. (accessed 1.1.12). 

Clénet, H., Pinet, P., Ceuleneer, G., Daydou, Y., Heuripeau, F., Rosemberg, C., Bibring, J.-P., 

Bellucci, G., Altieri, F., Gondet, B., 2013. A systematic mapping procedure based on the 

Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes 

mixtures: Application to the Syrtis Major volcanic shield on Mars. J. Geophys. Res. 118, 

E8, 1632–1655. doi:10.1002/jgre.20112 

Clénet, H., Pinet, P., Daydou, Y., Heuripeau, F., Rosemberg, C., Baratoux, D., Chevrel, S., 2011. 

A new systematic approach using the Modified Gaussian Model: Insight for the 

characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene 

mixtures. Icarus 213, 1, 404–422. doi:10.1016/j.icarus.2011.03.002 

Close, R., Gader, P., Zare, A., Wilson, J., Dranishnikov, D., 2012. Endmember extraction using 

the physics-based multi-mixture pixel model, in: Shen, S.S., Lewis, P.E. (Eds.), Imaging 

Spectrometry XVII. SPIE, San Diego, p. 85150L. doi:10.1117/12.930288 

 

 



204 
 

Cloutis, E.A., Asher, P.M., Mertzman, S.A., 2002. Spectral reflectance properties of zeolites 

and remote sensing implications. J. Geophys. Res. 107, E9, 5067. 

doi:10.1029/2000JE001467 

Coates, A.J., Griffiths, A.D., Leff, C.E., Schmitz, N., Barnes, D.P., Josset, J.-L., Hancock, B.K., 

Cousins, C.R., Jaumann, R., Crawford, I.A., Paar, G., Bauer, A., 2012. Lunar PanCam: 

Adapting ExoMars PanCam for the ESA Lunar Lander, in: Planetary and Space Science. 

pp. 247–253. doi:10.1016/j.pss.2012.07.017 

Coleman, N.M., 2005. Martian megaflood-triggered chaos formation, revealing groundwater 

depth, cryosphere thickness, and crustal heat flux. J. Geophys. Res. 110, E12. 

doi:10.1029/2005JE002419 

Combe, J.-P., Le Mouélic, S., Sotin, C., Gendrin, A., Mustard, J.F., Le Deit, L., Launeau, P., 

Bibring, J.-P., Gondet, B., Langevin, Y., Pinet, P., 2008. Analysis of OMEGA/Mars Express 

data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model 

(MELSUM): Methodology and first results. Planet. Space Sci. 56, 7, 951–975. 

doi:10.1016/j.pss.2007.12.007 

Cousins, C.R., Crawford, I.A., 2011. Volcano-ice interaction as a microbial habitat on Earth and 

Mars. Astrobiology 11, 7, 695–710. doi:10.1089/ast.2010.0550 

Cousins, C.R., Crawford, I.A., Carrivick, J.L., Gunn, M., Harris, J.K., Kee, T.P., Karlsson, M., 

Carmody, L., Cockell, C.S., Herschy, B., Joy, K.H., 2013. Glaciovolcanic hydrothermal 

environments in Iceland and implications for their detection on Mars. J. Volcanol. 

Geotherm. Res. 256, 61–77. doi:10.1016/j.jvolgeores.2013.02.009 

Cousins, C.R., Griffiths, A.D., Schmitz, N., Paar, G., Barnes, D.P., 2009. Wide Angle Camera 

testing during the 2009 AMASE expedition for the ExoMars PanCam instrument. EPSC 

Abstr. 2009 4, 813. 

Cousins, C.R., Gunn, M., Prosser, B.J., Barnes, D.P., Crawford, I.A., Griffiths, A.D., Davis, L.E., 

Coates, A.J., 2012. Selecting the geology filter wavelengths for the ExoMars Panoramic 

Camera instrument. Planet. Space Sci. 71, 1, 80–100. doi:10.1016/j.pss.2012.07.009 

Craft, K.L., Lowell, R.P., Potter-McIntyre, S., 2015. Aromatum Chaos: Heating up, melting ice, 

and letting it flow - A preliminary analysis, in: LPSC XXXXVI. LPI, Houston, USA, p. 2999. 

CRISM, S.T., 2013. CRISM Analysis Toolkit. 

CRISM, S.T., 2006. CRISM Spectral Library. 

 



205 
 

Crósta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C., 2003. Targeting key alteration 

minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and 

principal component analysis. Int. J. Remote Sens. 24, 21, 4233–4240. 

doi:10.1080/0143116031000152291 

Crósta, A.P., Sabine, C., Taranik, J. V., 1998. Hydrothermal Alteration Mapping at Bodie, 

California, Using AVIRIS Hyperspectral Data. Remote Sens. Environ. 65, 3, 309–319. 

doi:10.1016/S0034-4257(98)00040-6 

Cull, S.C., Arvidson, R.E., Catalano, J.G., Ming, D.W., Morris, R. V., Mellon, M.T., Lemmon, 

M.T., 2010. Concentrated perchlorate at the Mars Phoenix landing site: Evidence for 

thin film liquid water on Mars. Geophys. Res. Lett. 37, 22, L22203. 

doi:10.1029/2010GL045269 

Curran, R.J., Conrath, B.J., Hanel, R.A., Kunde, V.G., Pearl, J.C., 1973. Mars: Mariner 9 

Spectroscopic Evidence for H2O Ice Clouds. Science (80-. ). 182, 4110, 381–383. 

doi:10.1126/science.182.4110.381 

Davis, J.C., 1986. Statistics and Data Analysis in Geology, 2nd ed. John Wiley & Sons. 

De Pablo, M.A., Michael, G.G., Centeno, J.D., 2013. Age and evolution of the lower NW flank 

of the Hecates Tholus volcano, Mars, based on crater size-frequency distribution on CTX 

images. Icarus 226, 1, 455–469. doi:10.1016/j.icarus.2013.05.012 

Des Marais, D.J., Allamandola, L.J., Benner, S.A., Boss, A.P., Deamer, D., Falkowski, P.G., 

Farmer, J.D., Hedges, S.B., Jakosky, B.M., Knoll, A.H., Liskowsky, D.R., Meadows, V.S., 

Meyer, M.A., Pilcher, C.B., Nealson, K.H., Spormann, A.M., Trent, J.D., Turner, W.W., 

Woolf, N.J., Yorke, H.W., 2003. The NASA Astrobiology Roadmap. Astrobiology 3, 2, 

219–35. doi:10.1089/153110703769016299 

Dobigeon, N., Tourneret, J.-Y., Chang, C.-I., 2008. Semi-Supervised Linear Spectral Unmixing 

Using a Hierarchical Bayesian Model for Hyperspectral Imagery. IEEE Trans. Signal 

Process. 56, 7, 2684–2695. doi:10.1109/TSP.2008.917851 

Dobigeon, N., Tourneret, J.-Y., Richard, C., Bermudez, J.C.M., McLaughlin, S., Hero, A.O., 2014. 

Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms. IEEE Signal 

Process. Mag. 31, 1, 82–94. doi:10.1109/MSP.2013.2279274 

 

 

 



206 
 

Douté, S., Ceamanos, X., Luo, B., Schmidt, F., Jouannic, G., Chanussot, J., 2011. Validation of 

spectral unmixing algorithms applied on CRISM/MRO hyperspectral images, in: 2011 3rd 

Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 

(WHISPERS). IEEE, pp. 1–4. doi:10.1109/WHISPERS.2011.6080903 

Downs, R.T., 2006. The RRUFF Project: an integrated study of the chemistry, crystallography, 

Raman and infrared spectroscoy of minerals, in: Program and Abstracts of the 19th 

General Meeting of the Internationa Association. Kobe, Japan, pp. O03–13. 

Dundas, C.M., McEwen, A.S., 2015. Slope activity in Gale crater, Mars. Icarus 254, 213–218. 

doi:10.1016/j.icarus.2015.04.002 

Edwards, B., Russell, J., Anderson, R., 2002. Subglacial, phonolitic volcanism at Hoodoo 

Mountain volcano, northern Canadian Cordillera. Bull. Volcanol. 64, 3-4, 254–272. 

doi:10.1007/s00445-002-0202-9 

Ehlmann, B.L., Bish, D.L., Ruff, S.W., Mustard, J.F., 2012. Mineralogy and chemistry of altered 

Icelandic basalts: Application to clay mineral detection and understanding aqueous 

environments on Mars. J. Geophys. Res. 117, E11. doi:10.1029/2012JE004156 

Ehlmann, B.L., Edwards, C.S., 2014. Mineralogy of the Martian Surface. Annu. Rev. Earth 

Planet. Sci. 42, 1, 291–315. doi:10.1146/annurev-earth-060313-055024 

Ehlmann, B.L., Mustard, J.F., Bish, D.L., 2011a. AQUEOUS ALTERATION OF BASALTIC LAVAS IN 

ICELAND: AN ANALOGUE FOR NOACHIAN MARS., in: LPI - Analogue Sites for Mars 

Missions. Houston, USA, pp. 4–6. 

Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., Murchie, S.L., 2011b. Evidence for low-

grade metamorphism, hydrothermal alteration, and diagenesis on mars from 

phyllosilicate mineral assemblages. Clays Clay Miner. 59, 4, 359–377. 

doi:10.1346/CCMN.2011.0590402 

Ehlmann, B.L., Mustard, J.F., Harvey, R.P., Rampey, M., 2007. Traversing the Noachian-

Hesperian contact: Syrtis Major volcanics to Nili Fossae phyllosilicates, in: 2nd MSL 

Landing Site Workshop. 

Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Bibring, J.-P., Meunier, A., Fraeman, A.A., 

Langevin, Y., 2011c. Subsurface water and clay mineral formation during the early 

history of Mars. Nature 479, 7371, 53–60. doi:10.1038/nature10582 

 

 



207 
 

Ehlmann, B.L., Mustard, J.F., Swayze, G.A., Clark, R.N., Bishop, J.L., Poulet, F., Des Marais, D.J., 

Roach, L.H., Milliken, R.E., Wray, J.J., Barnouin-Jha, O.S., Murchie, S.L., 2009. 

Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context 

near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E2. 

doi:10.1029/2009JE003339 

Fairén, A.G., Dohm, J.M., Uceda, E.R., Rodriguez, A., Baker, V.R., Fernández-Remolar, D., 

Schulze-Makuch, D., Amils, R., 2005. Prime candidate sites for astrobiological 

exploration through the hydrogeological history of Mars. Planet. Space Sci. 53, 13, 

1355–1375. doi:10.1016/j.pss.2005.06.007 

Farrand, W.H., Bell III, J.F., Johnson, J.R., Arvidson, R.E., Crumpler, L.S., Hurowitz, J.A., 

Schröder, C., 2008. Rock spectral classes observed by the Spirit Rover’s Pancam on the 

Gusev Crater Plains and in the Columbia Hills. J. Geophys. Res. 113, E12. 

doi:10.1029/2008JE003237 

Farrand, W.H., Bell III, J.F., Johnson, J.R., Jolliff, B.L., Knoll, A.H., McLennan, S.M., Squyres, 

S.W., Calvin, W.M., Grotzinger, J.P., Morris, R. V., Soderblom, J., Thompson, S.D., 

Watters, W.A., Yen, A.S., 2007. Visible and near-infrared multispectral analysis of rocks 

at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity. J. Geophys. Res. 

112, E6. doi:10.1029/2006JE002773 

Farrand, W.H., Bell III, J.F., Johnson, J.R., Rice, M.S., Hurowitz, J.A., 2013. VNIR multispectral 

observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover’s 

Pancam. Icarus 225, 1, 709–725. doi:10.1016/j.icarus.2013.04.014 

Farrand, W.H., Bell III, J.F., Johnson, J.R., Rice, M.S., Jolliff, B.L., Arvidson, R.E., 2014. 

Observations of rock spectral classes by the Opportunity rover’s Pancam on northern 

Cape York and on Matijevic Hill, Endeavour Crater, Mars. J. Geophys. Res. 119, E11, 

2349–2369. doi:10.1002/2014JE004641 

Farrand, W.H., Bell III, J.F., Johnson, J.R., Squyres, S.W., Soderblom, J., Ming, D.W., 2006. 

Spectral variability among rocks in visible and near-infrared multispectral Pancam data 

collected at Gusev crater: Examinations using spectral mixture analysis and related 

techniques. J. Geophys. Res. 111, E2. doi:10.1029/2005JE002495 

Fassett, C.I., Head III, J.W., 2007. Valley formation on martian volcanoes in the Hesperian: 

Evidence for melting of summit snowpack, caldera lake formation, drainage and erosion 

on Ceraunius Tholus. Icarus 189, 1, 118–135. doi:10.1016/j.icarus.2006.12.021 

 



208 
 

Fawdon, P., Skok, J.R., Balme, M.R., Vye-Brown, C.L., Rothery, D.A., Jordan, C.J., 2015. The 

geological history of Nili Patera, Mars. J. Geophys. Res. 120, E5, 951–977. 

doi:10.1002/2015JE004795 

Foody, G.M., 1996. Approaches for the production and evaluation of fuzzy land cover 

classifications from remotely-sensed data. Int. J. Remote Sens. 17, 7, 1317–1340. 

doi:10.1080/01431169608948706 

Gaffey, S.J., 1986. Spectral reflectance of carbonate minerals in the visible and near infrared 

(0.35-2.55 microns): calcite, aragonite, and dolomite. Am. Mineral. 71, 151–162. 

Gaffey, S.J., 1985. Reflectance Spectroscopy in the Visible and Near-Infrared (0.35-2.55um): 

Applications in carbonate petrology. Geology 13, 270–273. doi:10.1130/0091-

7613(1985)13<270 

Glavin, D.P., Freissinet, C., Miller, K.E., Eigenbrode, J.L., Brunner, A.E., Buch, A., Sutter, B., 

Archer, P.D., Atreya, S.K., Brinckerhoff, W.B., Cabane, M., Coll, P., Conrad, P.G., Coscia, 

D., Dworkin, J.P., Franz, H.B., Grotzinger, J.P., Leshin, L.A., Martin, M.G., McKay, C.P., 

Ming, D.W., Navarro-González, R., Pavlov, A., Steele, A., Summons, R.E., Szopa, C., 

Teinturier, S., Mahaffy, P.R., 2013. Evidence for perchlorates and the origin of 

chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale 

Crater. J. Geophys. Res. 118, E10, 1955–1973. doi:10.1002/jgre.20144 

Gleeson, D.F., Pappalardo, R.T., Grasby, S.E., Anderson, M.S., Beauchamp, B., Castaño, R., 

Chien, S.A., Doggett, T., Mandrake, L., Wagstaff, K.L., 2010. Characterization of a sulfur-

rich Arctic spring site and field analog to Europa using hyperspectral data. Remote Sens. 

Environ. 114, 6, 1297–1311. doi:10.1016/j.rse.2010.01.011 

Gou, S., Yue, Z., Di, K., Wang, J., 2014. Mineral abundances and different levels of alteration 

around Mawrth Vallis, Mars. Geosci. Front. In press. doi:10.1016/j.gsf.2014.09.004 

Goudge, T.A., Mustard, J.F., Head III, J.W., Salvatore, M.R., Wiseman, S.M., 2015. Integrating 

CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira 

crater, Mars. Icarus 250, 165–187. doi:10.1016/j.icarus.2014.11.034 

Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for ordering 

multispectral data in terms of image quality with implications for noise removal. IEEE 

Trans. Geosci. Remote Sens. 26, 1, 65–74. doi:10.1109/36.3001 

 

 



209 
 

Griffiths, A.D., Coates, A.J., Jaumann, R., Michaelis, H., Paar, G., Barnes, D.P., Josset, J.-L., 

2006. Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument. 

Int. J. Astrobiol. 5, 03, 269. doi:10.1017/S1473550406003387 

Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B.A., Pullan, D., Rüffer, P., Sims, 

M.R., Pillinger, C.T., 2005. The Beagle 2 stereo camera system. Planet. Space Sci. 53, 14-

15, 1466–1482. doi:10.1016/j.pss.2005.07.007 

Grotzinger, J.P., Crisp, J.A., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., Blake, D.F., 

Conrad, P.G., Edgett, K.S., Ferdowski, B., Gellert, R., Gilbert, J.B., Golombek, M.P., 

Gómez-Elvira, J., Hassler, D.M., Jandura, L., Litvak, M., Mahaffy, P.R., Maki, J.N., Meyer, 

M., Malin, M.C., Mitrofanov, I., Simmonds, J.J., Vaniman, D.T., Welch, R. V., Wiens, R.C., 

2012. Mars Science Laboratory Mission and Science Investigation. Space Sci. Rev. 170, 1-

4, 5–56. doi:10.1007/s11214-012-9892-2 

Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K.W., 

Schieber, J., Mangold, N., Milliken, R.E., Conrad, P.G., DesMarais, D., Farmer, J.D., 

Siebach, K., Calef, F.J., Hurowitz, J., McLennan, S.M., Ming, D.W., Vaniman, D.T., Crisp, 

J.A., Vasavada, A., Edgett, K.S., Malin, M.C., Blake, D.F., Gellert, R., Mahaffy, P.R., Wiens, 

R.C., Maurice, S., Grant, J.A., Wilson, S., Anderson, R.C., Beegle, L., Arvidson, R.E., Hallet, 

B., Sletten, R.S., Rice, M.S., Bell III, J.F., Griffes, J.L., Ehlmann, B.L., Anderson, R.B., 

Bristow, T.F., Dietrich, W.E., Dromart, G., Eigenbrode, J.L., Fraeman, A.A., Hardgrove, C., 

Herkenhoff, K.E., Jandura, L., Kocurek, G., Lee, S., Leshin, L.A., Leveille, R., Limonadi, D., 

Maki, J.N., McCloskey, S., Meyer, M.A., Minitti, M.E., Newsom, H.E., Oehler, D.Z., Okon, 

A., Palucis, M.C., Parker, T.J., Rowland, S., Schmidt, M.E., Squyres, S.W., Steele, A., 

Stolper, E.M., Summons, R.E., Treiman, A.H., Williams, R.M.E., Yingst, R.A., Team, M.S., 

2014. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. 

Science 343, 6169. doi:10.1126/science.1242777 

Gudmundsson, Á., Mortensen, A.K., Hjartarson, A., Ármannsson, H., Karlsdóttir, R., 2010. 

Exploration and Utilization of the Námafjall High Temperature Area in N Iceland, in: 

Proceedings World Geothermal Congress 2010. 

Gudmundsson, B.T., Arnórsson, S., 2005. Secondary mineral–fluid equilibria in the Krafla and 

Námafjall geothermal systems, Iceland. Appl. Geochemistry 20, 9, 1607–1625. 

doi:10.1016/j.apgeochem.2005.04.020 

 

 



210 
 

Guilfoyle, K.J., Althouse, M.L., 2001. A quantitative and comparative analysis of linear and 

nonlinear spectral mixture models using radial basis function neural networks. IEEE 

Trans. Geosci. Remote Sens. 39, 10, 2314–2318. doi:10.1109/36.957296 

Gunn, M., 2013. Matt Gunn, Aberystwyth University PanCam Development etc. Aberystwyth 

University. 

Hamilton, V.E., Morris, R. V., Gruener, J.E., Mertzman, S.A., 2008. Visible, near-infrared, and 

middle infrared spectroscopy of altered basaltic tephras: Spectral signatures of 

phyllosilicates, sulfates, and other aqueous alteration products with application to the 

mineralogy of the Columbia Hills of Gusev Crater, Mars. J. Geophys. Res. 113, E12, 

E12S43. doi:10.1029/2007JE003049 

Hanley, J., Chevrier, B.L., Davis, R.S., Altheide, A., Francis, W.M., 2010. Reflectance spectra of 

low-temperature chloride and perchlorate hydrates and their relevance to the martian 

surface, in: LPSC XXXXI. Houston, USA, p. 1953. 

Hanley, J., Chevrier, V.F., Berget, D.J., Adams, R.D., 2012. Chlorate salts and solutions on 

Mars. Geophys. Res. Lett. 39, 8. doi:10.1029/2012GL051239 

Hanley, J., Dalton, J.B., Chevrier, V.F., Jamieson, C.S., Barrows, R.S., 2014. Reflectance spectra 

of hydrated chlorine salts: The effect of temperature with implications for Europa. J. 

Geophys. Res. Planets 119, 11, 2370–2377. doi:10.1002/2013JE004565 

Hapke, B., 2013. Comment on “A critical assessment of the Hapke photometric model” by Y. 

Shkuratov et al. J. Quant. Spectrosc. Radiat. Transf. 116, 184–190. 

doi:10.1016/j.jqsrt.2012.11.002 

Hapke, B., 2012. Theory of Reflectance and Emittance Spectroscopy, 2nd ed. Cambridge 

University Press, Cambridge. 

Hapke, B., 1981. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. 86, B4, 

3039. doi:10.1029/JB086iB04p03039 

Harris, J.K., Cousins, C.R., Gunn, M., Grindrod, P.M., Barnes, D.P., Crawford, I.A., Cross, R.E., 

Coates, A.J., 2015. Remote detection of past habitability at Mars-analogue 

hydrothermal alteration terrains using an ExoMars Panoramic Camera Emulator. Icarus 

252, 284–300. doi:10.1016/j.icarus.2015.02.004 

Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S., 2013. The limits for life under 

multiple extremes. Trends Microbiol. 21, 4, 204–212. doi:10.1016/j.tim.2013.01.006 

 



211 
 

Harsanyi, J.C., Chang, C.-I., 1994. Hyperspectral image classification and dimensionality 

reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote 

Sens. 32, 4, 779–785. doi:10.1109/36.298007 

Hauber, E., van Gasselt, S., Ivanov, B.A., Werner, S., Head III, J.W., Neukum, G., Jaumann, R., 

Greeley, R., Mitchell, K.L., Muller, P., 2005. Discovery of a flank caldera and very young 

glacial activity at Hecates Tholus, Mars. Nature 434, 7031, 356–361. 

doi:10.1038/nature03423 

Head III, J.W., Wilson, L., Mitchell, K.L., 2003. Generation of recent massive water floods at 

Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer 

groundwater release. Geophys. Res. Lett. 30, 11. doi:10.1029/2003GL017135 

Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., 

Clark, B.C., Boynton, W. V., Hoffman, J., Deflores, L.P., Gospodinova, K., Kapit, J., Smith, 

P.H., 2009. Detection of perchlorate and the soluble chemistry of martian soil at the 

Phoenix lander site. Science 325, 5936, 64–67. doi:10.1126/science.1172466 

Heinz, D.C., Chang, C.-I., 2001. Fully constrained least squares linear spectral mixture analysis 

method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote 

Sens. 39, 3, 529–545. doi:10.1109/36.911111 

Heylen, R., Burazerovic, D., Scheunders, P., 2011. Non-Linear Spectral Unmixing by Geodesic 

Simplex Volume Maximization. IEEE J. Sel. Top. Signal Process. 5, 3, 534–542. 

doi:10.1109/JSTSP.2010.2088377 

Heylen, R., Parente, M., Gader, P., 2014. A Review of Nonlinear Hyperspectral Unmixing 

Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 6, 1844 – 1868. 

doi:10.1109/JSTARS.2014.2320576 

Hooper, D.M., Dinwiddie, C.L., 2014. Debris flows on the Great Kobuk Sand Dunes, Alaska: 

Implications for analogous processes on Mars. Icarus 230, 15–28. 

doi:10.1016/j.icarus.2013.07.006 

Horgan, B.H.N., Cloutis, E.A., Mann, P., Bell III, J.F., 2014. Near-infrared spectra of ferrous 

mineral mixtures and methods for their identification in planetary surface spectra. 

Icarus 234, 132–154. doi:10.1016/j.icarus.2014.02.031 

Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. 

Geophysics 42, 3, 501–513. doi:10.1190/1.1440721 

 



212 
 

Hunt, G.R., Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Econ. 

Geol. 74, 7, 1613–1629. doi:10.2113/gsecongeo.74.7.1613 

Hunt, G.R., Salisbury, J.W., 1971. Visible and Near-Infrared Spectra of Minerals and Rocks: II. 

Carbonates. Mod. Geol. 2, 23–30. 

Hunt, G.R., Salisbury, J.W., 1970. Visible and near-infrared spectra of minerals and rocks: I 

Silicate Minerals. Mod. Geol. 1, 283–300. 

Hunt, G.R., Salisbury, J.W., Lenhoff, C.J., 1971. Visible and near-infrared spectra of minerals 

and rocks IV: Sulphides and Sulphates. Mod. Geol. 3, 1–14. 

Huntington, J.F., 1996. The Role of Remote Sensing in Finding Hydrothermal Mineral Deposits 

on Earth, in: Bock, G.R., Goode, J.A. (Eds.), Ciba Foundation Symposium 202 - Evolution 

of Hydrothermal Ecosystems on Earth (And Mars?), Novartis Foundation Symposia. John 

Wiley & Sons, Ltd., Chichester, UK, pp. 214–235. doi:10.1002/9780470514986 

Imbiriba, T., Bermudez, J.C.M., Tourneret, J.-Y., Cedric, R., 2014. Detection of nonlinear 

mixtures using Gaussian processes: Application to hyperspectral imaging, in: IEEE 

International Conference on Acoustic, Speech and Signal Processing (ICASSP). 

Jiao, X., Chang, C.-I., Du, Y., 2010. Orthogonal subspace projection approach to finding signal 

sources in hyperspectral imagery, in: ALGORITHMS AND TECHNOLOGIES FOR 

MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI. SPIE, p. 76952L–

76952L–12. doi:10.1117/12.852757 

Johnson, J.R., Ruff, S.W., Moersch, J., Roush, T., Horton, K., Bishop, J., Cabrol, N.A., Cockell, C., 

Gazis, P., Newsom, H.E., Stoker, C., 2001. Geological characterization of remote field 

sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field 

test. J. Geophys. Res. 106, E4, 7683–7711. doi:10.1029/1999JE001149 

Jolliff, B.L., Knoll, A.H., Morris, R. V., Moersch, J.E., McSween Jr., H.Y., Gilmore, M.S., Arvidson, 

R.E., Greeley, R., Herkenhoff, K.E., Squyres, S.W., 2002. Remotely sensed geology from 

lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests. J. 

Geophys. Res. 107, E11. doi:10.1029/2000JE001470 

Kadish, S.J., Head III, J.W., Parsons, R., Marchant, D.R., 2008. The Ascraeus Mons fan-shaped 

deposit: Volcano–ice interactions and the climatic implications of cold-based tropical 

mountain glaciation. Icarus 197, 1, 84–109. doi:10.1016/j.icarus.2008.03.019 

Kangi, A., 2007. The role of mud volcanoes in the evolution of Hecate Tholus Volcano on the 

surface of Mars. Acta Astronaut. 60, 8-9, 719–722. doi:10.1016/j.actaastro.2006.10.004 



213 
 

Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Process. Mag. 19, 1, 44–57. 

doi:10.1109/79.974727 

Keszthelyi, L.P., Jaeger, W.L., Dundas, C.M., Martínez-Alonso, S., McEwen, A.S., Milazzo, M.P., 

2010. Hydrovolcanic features on Mars: Preliminary observations from the first Mars 

year of HiRISE imaging. Icarus 205, 1, 211–229. doi:10.1016/j.icarus.2009.08.020 

Korablev, O., Ivanov, A., Mantsevich, S., Kiselev, A., Vyazovetskiy, N., Fedorova, A., 

Evdokimova, N., Stepanov, A., Titov, A., Kalinnikov, Y., Kuzmin, R.O., Batilevsky, A.T., 

Bondarenko, A., Moiseev, P., 2014. AOTF near-IR spectrometers for study of Lunar and 

Martian surface composition, in: EPSC 2014. EPSC, Cascais, Portugal, pp. ESPC20147–

371–2. 

Kossacki, K.J., Markiewicz, W.J., 2014. Seasonal flows on dark martian slopes, thermal 

condition for liquescence of salts. Icarus 233, 126–130. doi:10.1016/j.icarus.2014.01.032 

Kotz, S., Balakrishnan, N., Johnson, N.L., 2000. Dirichlet and Inverted Dirichlet Distributions, 

in: Kotz, S., Balakrishnan, N., Johnson, N.L. (Eds.), Continuous Multivariate Distributions. 

Volume 1: Models and Applications. Wiley, New York, pp. 485–527. 

Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., 

Goetz, A.F.H., 1993. The Spectral Image Processing System (SIPS) - Interactive 

visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–

163. 

Le Deit, L., Le Mouélic, S., Bourgeois, O., Combe, J.-P., Mège, D., Sotin, C., Gendrin, A., 

Hauber, E., Mangold, N., Bibring, J.-P., 2008. Ferric oxides in East Candor Chasma, Valles 

Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and 

geological interpretation. J. Geophys. Res. 113, E7, E07001. doi:10.1029/2007JE002950 

Leask, H.J., Wilson, L., Mitchell, K.L., 2006. Formation of Aromatum Chaos, Mars: 

Morphological development as a result of volcano-ice interactions. J. Geophys. Res. 

111), E8. doi:10.1029/2005JE002549 

Lee, T.-W., Bell, A.J., Orglmeister, R., 1997. Blind source separation of real world signals, in: 

Proceedings of International Conference on Neural Networks (ICNN’97). IEEE, Houston, 

USA, pp. 2129–2134. doi:10.1109/ICNN.1997.614235 

 

 

 



214 
 

Leshin, L.A., Mahaffy, P.R., Webster, C.R., Cabane, M., Coll, P., Conrad, P.G., Archer, P.D., 

Atreya, S.K., Brunner, A.E., Buch, A., Eigenbrode, J.L., Flesch, G.J., Franz, H.B., Freissinet, 

C., Glavin, D.P., McAdam, A.C., Miller, K.E., Ming, D.W., Morris, R. V., Navarro-González, 

R., Niles, P.B., Owen, T., Pepin, R.O., Squyres, S.W., Steele, A., Stern, J.C., Summons, R.E., 

Sumner, D.Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M.G., Wray, J.J., Grotzinger, 

J.P., 2013. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity 

rover. Science 341, 6153, 1238937. doi:10.1126/science.1238937 

Lever, M.A., Rogers, K.L., Lloyd, K.G., Overmann, J., Schink, B., Thauer, R.K., Hoehler, T.M., 

Jorgensen, B.B., 2015. Life under extreme energy limitation: a synthesis of laboratory- 

and field-based investigations. FEMS Microbiol. Rev. doi:10.1093/femsre/fuv020 

Levy, J.S., 2012. Hydrological characteristics of recurrent slope lineae on Mars: Evidence for 

liquid flow through regolith and comparisons with Antarctic terrestrial analogs. Icarus 

219, 1, 1–4. doi:10.1016/j.icarus.2012.02.016 

Li, J., Agathos, A., Zaharie, D., Bioucas-Dias, J.M.B., Plaza, A., Li, X., 2015. Minimum Volume 

Simplex Analysis: A Fast Algorithm for Linear Hyperspectral Unmixing. IEEE Trans. 

Geosci. Remote Sens. 53, 9, 5067–5082. doi:10.1109/TGRS.2015.2417162 

Li, J., Bioucas-Dias, J.M.B., 2008. Minimum Volume Simplex Analysis: A Fast Algorithm to 

Unmix Hyperspectral Data, in: IGARSS 2008 - 2008 IEEE International Geoscience and 

Remote Sensing Symposium. IEEE, pp. III – 250–III – 253. 

doi:10.1109/IGARSS.2008.4779330 

Licciardi, G.A., Ceamanos, X., Douté, S., Chanussot, J., 2012. Unsupervised nonlinear spectral 

unmixing by means of NLPCA applied to hyperspectral imagery, in: 2012 IEEE 

International Geoscience and Remote Sensing Symposium. IEEE, Munich, pp. 1369–

1372. doi:10.1109/IGARSS.2012.6351281 

Licciardi, G.A., Del Frate, F., 2011. Pixel Unmixing in Hyperspectral Data by Means of Neural 

Networks. IEEE Trans. Geosci. Remote Sens. 49, 11, 4163–4172. 

doi:10.1109/TGRS.2011.2160950 

Lin, C.-H., Ma, W.-K., Li, W.-C., Chi, C.-Y., Ambikapathi, A., 2015. Identifiability of the Simplex 

Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel 

Case. IEEE Trans. Geosci. Remote Sens. 53, 10, 5530–5546. 

doi:10.1109/TGRS.2015.2424719 

Liu, Y., Glotch, T.D., 2014. Spectral Mixture Analysis of Hydrated Minerals in Southwest Melas 

Chasma, in: LPSC XXXXV. Houston, USA, p. 2443. 



215 
 

Loizeau, D., Flahaut, J., Vago, J., Hauber, E., Bridges, J.C., 2015. ExoMars 2018: The candidate 

landing sites, in: LPSC XXXXVI. LPI, Houston, USA, p. 1831. 

Lui, W., Seto, K.C., Wu, E.Y., Gopal, S., Woodcock, C.E., 2004. ART-MMAP: a neural network 

approach to subpixel classification. IEEE Trans. Geosci. Remote Sens. 42, 9, 1976–1983. 

doi:10.1109/TGRS.2004.831893 

Luo, B., Chanussot, J., Douté, S., Zhang, L., 2013. Empirical automatic estimation of the 

number of endmembers in hyperspectral images. IEEE Geosci. Remote Sens. Lett. 10, 1, 

24–28. doi:10.1109/LGRS.2012.2189934 

Luo, B., Douté, S., Ceamanos, X., Chanussot, J., Zhang, L., 2012. Extraction of minerals on the 

south pole of the planet Mars by unsupervised linear unmixing of hyperspectral images, 

in: 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Munich, 

pp. 3050–3053. doi:10.1109/IGARSS.2012.6350782 

MacArthur, A., 2007. Guide to using the ASD FieldSpec Pro in white reflectance mode in the 

field - version 2. 

Marchant, D.R., Head III, J.W., 2007. Antarctic dry valleys: Microclimate zonation, variable 

geomorphic processes, and implications for assessing climate change on Mars. Icarus 

192, 1, 187–222. doi:10.1016/j.icarus.2007.06.018 

Marcucci, E.C., Hynek, B.M., Kierein-Young, K.S., Rogers, K.L., 2013. Visible-near infrared 

reflectance spectroscopy of volcanic acid-sulphate alteration in Nicaragua: Analogs for 

early Mars. J. Geophys. Res. Planets 118, 10, 2213–2233. doi:10.1002/jgre.20159 

Marion, G.M., Catling, D.C., Zahnle, K.J., Claire, M.W., 2010. Modeling aqueous perchlorate 

chemistries with applications to Mars. Icarus 207, 2, 675–685. 

doi:10.1016/j.icarus.2009.12.003 

Martinez-Frias, J., Amaral, G., Vázquez, L., 2006. Astrobiological significance of minerals on 

Mars surface environment. Rev. Environ. Sci. Bio/Technology 5, 2-3, 219–231. 

doi:10.1007/s11157-006-0008-x 

Marzo, G.A., Davila, A.F., Tornabene, L.L., Dohm, J.M., Fairén, A.G., Gross, C., Kneissl, T., 

Bishop, J.L., Roush, T.L., McKay, C.P., 2010. Evidence for Hesperian impact-induced 

hydrothermalism on Mars. Icarus 208, 2, 667–683. doi:10.1016/j.icarus.2010.03.013 

 

 

 



216 
 

Massé, M., Beck, P., Conway, S.J., Gargani, J., McEwen, A.S., Schmitt, B., Patel, M., Jouannic, 

G., Ojha, L., Pommerol, A., 2014a. Laboratory simulation of martian recurring slope 

lineae (RSL): Origin and detectability of liquid brines, in: LPSC XXXXV. Houston, USA, p. 

2137. 

Massé, M., Beck, P., Schmitt, B., Pommerol, A., McEwen, A.S., Chevrier, V.F., Brissaud, O., 

Séjourné, A., 2014b. Spectroscopy and detectability of liquid brines on mars. Planet. 

Space Sci. 92, 136–149. doi:10.1016/j.pss.2014.01.018 

McEwen, A.S., Dundas, C.M., Mattson, S.S., Toigo, A.D., Ojha, L., Wray, J.J., Chojnacki, M., 

Byrne, S., Murchie, S.L., Thomas, N., 2014. Recurring slope lineae in equatorial regions 

of Mars. Nat. Geosci. 7, 1, 53–58. doi:10.1038/ngeo2014 

McEwen, A.S., Eliason, E.M., Bergstrom, J.W., Bridges, N.T., Hansen, C.J., Delamere, W.A., 

Grant, J.A., Gulick, V.C., Herkenhoff, K.E., Keszthelyi, L.P., Kirk, R.L., Mellon, M.T., 

Squyres, S.W., Thomas, N., Weitz, C.M., 2007. Mars Reconnaissance Orbiter’s High 

Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E5, E05S02. 

doi:10.1029/2005JE002605 

McEwen, A.S., Ojha, L., Dundas, C.M., Mattson, S.S., Byrne, S., Wray, J.J., Cull, S.C., Murchie, 

S.L., Thomas, N., Gulick, V.C., 2011. Seasonal flows on warm Martian slopes. Science 

333, 6043, 740–743. doi:10.1126/science.1204816 

McGuire, P.C., Bishop, J.L., Brown, A.J., Fraeman, A.A., Marzo, G.A., Frank Morgan, M., 

Murchie, S.L., Mustard, J.F., Parente, M., Pelkey, S.M., Roush, T.L., Seelos, F.P., Smith, 

M.D., Wendt, L., Wolff, M.J., 2009. An improvement to the volcano-scan algorithm for 

atmospheric correction of CRISM and OMEGA spectral data. Planet. Space Sci. 57, 7, 

809–815. doi:10.1016/j.pss.2009.03.007 

McGuire, P.C., Wolff, M.J., Smith, M.D., Arvidson, R.E., Murchie, S.L., Clancy, R.T., Roush, T.L., 

Cull, S.C., Lichtenberg, K.A., Wiseman, S.M., Green, R.O., Marti, T.Z., Milliken, R.E., 

Cavender, P.J., Humm, D.C., Seelos, F.P., Seelos, K.D., Taylor, H.W., Ehlmann, B.L., 

Mustard, J.F., Pelkey, S.M., Titus, T.N., Hash, C.D., Malaret, E.R., 2008. MRO/CRISM 

Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars With DISORT-

Based Radiative Transfer Modeling: Phase 1—Using Historical Climatology for 

Temperatures, Aerosol Optical Depths, and Atmospheric Pressures. IEEE Trans. Geosci. 

Remote Sens. 46, 12, 4020–4040. doi:10.1109/TGRS.2008.2000631 

 

 



217 
 

McKeown, N.K., Bishop, J.L., Silver, E.A., 2013. Variability of rock texture and morphology 

correlated with the clay-bearing units at Mawrth Vallis, Mars. J. Geophys. Res. Planets 

118, 6, 1245–1256. doi:10.1002/jgre.20096 

Merriman, R.J., Peacor, D.R., 1999. Very low-grade metapelites: mineralogy, microfabrics and 

measuring reaction progress, in: Frey, M., Robinson, D. (Eds.), Low-Grade 

Metamorphism. Blackwell Sciences Ltd, Oxford. 

Miao, L., Qi, H., 2007. Endmember Extraction From Highly Mixed Data Using Minimum 

Volume Constrained Nonnegative Matrix Factorization. IEEE Trans. Geosci. Remote 

Sens. 45, 3, 765–777. doi:10.1109/TGRS.2006.888466 

Milliken, R.E., Mustard, J.F., 2005. Quantifying absolute water content of minerals using near-

infrared reflectance spectroscopy. J. Geophys. Res. E Planets 110, 1–25. 

doi:10.1007/s00426-005-0036-0 

Morgan, M.F., Mustard, J.F., Wiseman, S.M., Seelow, F.P., Murchie, S.L., McGuire, P.C., 2011. 

Improved algorithm for CRISM volcano-scan atmospheric correction, in: LPSC XXXXII. 

LPI, Houston, USA, p. 2453. 

Morgan, M.F., Seelos, F.P., Murchie, S.L., Team, C., 2009. CRISM Data Users’ Workshop CAT 

Tutorial [WWW Document]. URL http://pds-

geosciences.wustl.edu/missions/mro/CRISM_Workshop_090322_CAT_MFM.pdf 

Morris, R. V., Gooding, J.L., Lauer, H. V., Singer, R.B., 1990. Origins of Marslike spectral and 

magnetic properties of a Hawaiian palagonitic soil. J. Geophys. Res. 95, B9, 14427–

14434. doi:10.1029/JB095iB09p14427 

Morris, R. V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R., 

Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., Clark, B.C., Cohen, B.A., McCoy, T.J., 

Mittlefehldt, D.W., Schmidt, M.E., De Souza, P.A., Squyres, S.W., 2008. Iron mineralogy 

and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: 

Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J. 

Geophys. Res. 113, E12. doi:10.1029/2008JE003201 

Moussaoui, S., Hauksdóttir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Douté, S., 

Benediktsson, J.A., 2008. On the decomposition of Mars hyperspectral data by ICA and 

Bayesian positive source separation. Neurocomputing 71, 10-12, 2194–2208. 

doi:10.1016/j.neucom.2007.07.034 

 



218 
 

Murchie, S.L., Arvidson, R.E., Bedini, P., Beisser, K., Bibring, J.-P., Bishop, J.L., Boldt, J., 

Cavender, P.J., Choo, T.H., Clancy, R.T., Darlington, E.H., Des Marais, D.J., Espiritu, R., 

Fort, D., Green, R.O., Guinness, E.A., Hayes, J., Hash, C.D., Heffernan, K., Hemmler, J., 

Heyler, G., Humm, D.C., Hutcheson, J., Izenberg, N., Lee, R., Lees, J., Lohr, D., Malaret, 

E.R., Martin, T., McGovern, J.A., McGuire, P.C., Morris, R. V., Mustard, J.F., Pelkey, S.M., 

Rhodes, E., Robinson, M., Roush, T.L., Schaefer, E., Seagrave, G., Seelos, F.P., Silverglate, 

P., Slavney, S., Smith, M., Shyong, W.-J., Strohbehn, K., Taylor, H.W., Thompson, P., 

Tossman, B., Wirzburger, M., Wolff, M.J., 2007. Compact Reconnaissance Imaging 

Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. 

Res. 112, E5. doi:10.1029/2006JE002682 

Murchie, S.L., Seelos, F.P., Hash, C.D., Humm, D.C., Malaret, E.R., McGovern, J.A., Choo, T.H., 

Seelos, K.D., Buczkowski, D.L., Morgan, M.F., Barnouin-Jha, O.S., Nair, H., Taylor, H.W., 

Patterson, G.W., Harvel, C.A., Mustard, J.F., Arvidson, R.E., McGuire, P.C., Smith, M.D., 

Wolff, M.J., Titus, T.N., Bibring, J.-P., Poulet, F., 2009. Compact Reconnaissance Imaging 

Spectrometer for Mars investigation and data set from the Mars Reconnaissance 

Orbiter’s primary science phase. J. Geophys. Res. 114, E2, E00D07. 

doi:10.1029/2009JE003344 

Mushkin, A., Gillespie, A.R., Montgomery, D.R., Schreiber, B.C., Arvidson, R.E., 2010. Spectral 

constraints on the composition of low-albedo slope streaks in the Olympus Mons 

Aureole. Geophys. Res. Lett. 37, 22. doi:10.1029/2010GL044535 

Mustard, J.F., Adler, M., Allwood, A., Bass, D.S., Beaty, D.W., Bell III, J.F., Brinckerhoff, W.B., 

Carr, M.H., Des Marais, D.J., Drake, B., Edgett, K.S., Eigenbrode, J.L., Elkins-Tanton, L.T., 

Grant, J.A., Milkovich, S.M., Ming, D.W., Moore, C., Murchie, S.L., Onstott, T.C., Ruff, 

S.W., Sephton, M.A., Steele, A., Treiman, A., 2013. Report of Mars 2020 Science 

Definition Team. 

Mustard, J.F., Erard, S., Bibring, J.-P., Head III, J.W., Hurtrez, S., Langevin, Y., Pieters, C.M., 

Sotin, C.J., 1993. The surface of Syrtis Major - Composition of the volcanic substrate and 

mixing with altered dust and soil. J. Geophys. Res. 98, E2, 3387 – 3400. 

doi:10.1029/92JE02682 

 

 

 

 



219 
 

Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.-

P., Poulet, F., Bishop, J.L., Dobrea, E.N., Roach, L.H., Seelos, F.P., Arvidson, R.E., 

Wiseman, S.M., Green, R.O., Hash, C.D., Humm, D.C., Malaret, E.R., McGovern, J.A., 

Seelos, K.D., Clancy, R.T., Clark, R.N., Marais, D.D., Izenberg, N., Knudson, A.T., Langevin, 

Y., Martin, T., McGuire, P.C., Morris, R. V., Robinson, M., Roush, T.L., Smith, M., Swayze, 

G.A., Taylor, H.W., Titus, T.N., Wolff, M.J., 2008. Hydrated silicate minerals on Mars 

observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 7202, 

305–309. doi:10.1038/nature07097 

Mustard, J.F., Pieters, C.M., 1989. Photometric phase functions of common geologic minerals 

and applications to quantitative analysis of mineral mixture reflectance spectra. J. 

Geophys. Res. 94, B10, 13619. doi:10.1029/JB094iB10p13619 

Mustard, J.F., Pieters, C.M., 1987. Quantitative abundance estimates from bidirectional 

reflectance measurements. J. Geophys. Res. 92, B4, E617–E626. 

doi:10.1029/JB092iB04p0E617 

Nachon, M., Clegg, S.M., Mangold, N., Schröder, S., Kah, L.C., Dromart, G., Ollila, A., Johnson, 

J.R., Oehler, D.Z., Bridges, J.C., Le Mouélic, S., Forni, O., Wiens, R.C., Anderson, R.B., 

Blaney, D.L., Bell III, J.F., Clark, B.C., Cousin, A., Dyar, M.D., Ehlmann, B.L., Fabre, C., 

Gasnault, O., Grotzinger, J.P., Lasue, J., Lewin, E., Léveillé, R., McLennan, S.M., Maurice, 

S., Meslin, P.-Y., Rapin, W., Rice, M.S., Squyres, S.W., Stack, K.M., Sumner, D.Y., 

Vaniman, D.T., Wellington, D., 2014. Calcium sulfate veins characterized by 

ChemCam/Curiosity at Gale crater, Mars. J. Geophys. Res. Planets 119, 9, 1991–2016. 

doi:10.1002/2013JE004588 

Nalepka, R.F., Horwitz, H.M., Hyde, P.D., 1971. Estimating Proportions of Objects from 

Multispectral Data. 

NASA JPL, n.d. AVIRIS f970619t01p02r02 [WWW Document]. URL 

http://aviris.jpl.nasa.gov/data/free_data.html (accessed 12.7.13). 

Nascimento, J.M.P., Dias, J.M.B., 2005. Vertex component analysis: a fast algorithm to unmix 

hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43, 4, 898–910. 

doi:10.1109/TGRS.2005.844293 

Navarro-González, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la Rosa, J., Small, 

A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L., Gomez-Silva, B., McKay, C.P., 2003. 

Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 

302, 5647, 1018–1021. doi:10.1126/science.1089143 



220 
 

Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head III, J.W., Basilevsky, A.T., Ivanov, 

B.A., Werner, S.C., van Gasselt, S., Murray, J.B., McCord, T., 2004. Recent and episodic 

volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. 

Nature 432, 7020, 971–979. doi:10.1038/nature03231 

Newsom, H.E., Bishop, J.L., Cockell, C.S., Roush, T.L., Johnson, J.R., 2001. Search for life on 

Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment. J. 

Geophys. Res. 106, E4, 7713–7720. doi:10.1029/1999JE001159 

Ojha, L., McEwen, A.S., Dundas, C.M., Byrne, S., Mattson, S.S., Wray, J.J., Massé, M., Schaefer, 

E., 2014. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer 

on Mars. Icarus 231, 365–376. doi:10.1016/j.icarus.2013.12.021 

Ojha, L., Wray, J.J., Murchie, S.L., McEwen, A.S., Wolff, M.J., Karunatillake, S., 2013. Spectral 

constraints on the formation mechanism of recurring slope lineae. Geophys. Res. Lett. 

40, 21, 5621–5626. doi:10.1002/2013GL057893 

Osinski, G.R., Tornabene, L.L., Banerjee, N.R., Cockell, C.S., Flemming, R., Izawa, M.R.M., 

McCutcheon, J., Parnell, J., Preston, L.J., Pickersgill, A.E., Pontefract, A., Sapers, H.M., 

Southam, G., 2013. Impact-generated hydrothermal systems on Earth and Mars. Icarus 

224, 2, 347–363. doi:10.1016/j.icarus.2012.08.030 

Parente, M., Bishop, J.L., Bell III, J.F., 2009a. Spectral unmixing for mineral identification in 

pancam images of soils in Gusev crater, Mars. Icarus 203, 2, 421–436. 

doi:10.1016/j.icarus.2009.04.029 

Parente, M., Bishop, J.L., Bell III, J.F., 2009b. Spectral unmixing for mineral identification in 

pancam images of soils in Gusev crater, Mars. Icarus 203, 2, 421–436. 

doi:10.1016/j.icarus.2009.04.029 

Parente, M., Clark, J.T., Brown, A.J., Bishop, J.L., 2010. End-to-End Simulation and Analytical 

Model of Remote-Sensing Systems: Application to CRISM. IEEE Trans. Geosci. Remote 

Sens. 48, 11, 3877–3888. doi:10.1109/TGRS.2010.2050000 

Parente, M., Mustard, J.F., Murchie, S.L., Seelos, F.P., 2011. Robust unmixing of hyperspectral 

images: Application to Mars, in: Geoscience and Remote Sensing Symposium (IGARSS). 

Vancouver, pp. 1291–1294. 

 

 

 



221 
 

Pelkey, S.M., Mustard, J.F., Murchie, S.L., Clancy, R.T., Wolff, M.J., Smith, M., Milliken, R.E., 

Bibring, J.-P., Gendrin, A., Poulet, F., Langevin, Y., Gondet, B., 2007. CRISM multispectral 

summary products: Parameterizing mineral diversity on Mars from reflectance. J. 

Geophys. Res. 112, E8. doi:10.1029/2006JE002831 

Philippot, P., van Kranendonk, M.J., van Zuilen, M., Lepot, K., Rividi, N., Teitler, Y., Thomazo, 

C., Blanc-Valleron, M.-M., Rouchy, J.-M., Grosch, E., de Wit, M., 2009. Early traces of life 

investigations in drilling Archean hydrothermal and sedimentary rocks of the Pilbara 

Craton, Western Australia and Barberton Greenstone Belt, South Africa. Comptes 

Rendus Palevol 8, 7, 649–663. doi:10.1016/j.crpv.2009.06.006 

Pieters, C.M., Englert, P.A.J., 1993. Remote Geochemical Analysis: Elemental and 

Mineralogical Composition, 1st ed. Cambridge University Press. 

Pieters, C.M., Hiroi, T., 2004. REALB (Reflectance Experiment Laboratory): A NASA multiuser 

spectroscopy facility, in: Lunar and Planetary Science Conference XXXV. LPI, Houston, 

USA, p. 1720. 

Pirajno, F., van Kranendonk, M.J., 2005. Review of hydrothermal processes and systems on 

Earth and implications for Martian analogues. Aust. J. Earth Sci. 52, 3, 329–351. 

doi:10.1080/08120090500134571 

Plaza, A., Martín, G., Plaza, J., Zortea, M., Sánchez, S., 2011. Recent developments in spectral 

unmixing and endmember extraction, in: Prasad, S., Bruce, L.M., Chanussot, J. (Eds.), 

Optical Remote Sensing - Advances in Signal Processing and Exploitation Techniques. 

Springer, New York, pp. 235–267. doi:10.1007/978-3-642-14212-3_12 

Poulet, F., Bibring, J.-P., Gondet, B., Langevin, Y., Mustard, J.F., Mangold, N., Chevrier, V.F., 

Gendrin, A., 2007. Discovery, mapping and mineralogy of phyllosilicates on Mars by 

MEx-OMEGA: A reappraisal, in: Seventh International Conference on Mars. LPI, 

Houston, USA. 

Poulet, F., Cuzzi, J.N., Cruikshank, D.P., Roush, T.L., Dalle Ore, C.M., 2002. Comparison 

between the Shkuratov and Hapke Scattering Theories for Solid Planetary Surfaces: 

Application to the Surface Composition of Two Centaurs. Icarus 160, 2, 313–324. 

doi:10.1006/icar.2002.6970 

Poulet, F., Erard, S., 2004. Nonlinear spectral mixing: Quantitative analysis of laboratory 

mineral mixtures. J. Geophys. Res. 109, E2, E02009. doi:10.1029/2003JE002179 

 



222 
 

Preston, L.J., Grady, M., Barber, S., 2013. TN2: The Catalogue of Planetary Analogues. ESA, 

Milton Keynes, UK. 

Pugh, S., Barnes, D.P., Tyler, L., Gunn, M., Schmitz, N., Paar, G., Bauer, A., Cousins, C.R., 

Pullan, D., Coates, A.J., Griffiths, A.D., 2012. AUPE - A PanCam Emulator for the ExoMars 

2018 Mission, in: International Symposium on Artificial Intelligence, Robotics and 

Automation in Space. Turin. 

Quintano, C., Fernández-Manso, A., Shimabukuro, Y.E., Pereira, G., 2012. Spectral unmixing. 

Int. J. Remote Sens. 33, 17, 5307–5340. doi:10.1080/01431161.2012.661095 

Reid, R.J., Smith, P.H., Lemmon, M.T., Tanner, R., Burkland, M., Wegryn, E., Weinberg, J., 

Marcialis, R.L., Britt, D.T., Thomas, N., Kramm, R., Dummel, A., Crowe, D.G., Bos, B.J., 

Bell III, J.F., Rueffer, P., Gliem, F., Johnson, J.R., Maki, J.N., Herkenhoff, K.E., Singer, R.B., 

1999. Imager for Mars Pathfinder (IMP) image calibration. J. Geophys. Res. 104, E4, 

8907–8925. doi:10.1029/1998JE900011 

Rice, M.S., Ayoub, F., Ehlmann, B.L., Leprince, S., Grotzinger, J.P., Horgan, B.H., Avouac, J.-P., 

2013a. Co-registration of CRISM and HiRISE observations for interpreting mineral 

stratigrraphy at Gale Crater, Mars, in: LPSC XXXXIV. Houston, USA, p. 2323. 

Rice, M.S., Bell III, J.F., Cloutis, E.A., Wang, A.E., Ruff, S.W., Craig, M.A., Bailey, D.T., Johnson, 

J.R., de Souza, P.A., Farrand, W.H., 2010. Silica-rich deposits and hydrated minerals at 

Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus 205, 

2, 375–395. doi:10.1016/j.icarus.2009.03.035 

Rice, M.S., Cloutis, E.A., Bell III, J.F., Bish, D.L., Horgan, B.H., Mertzman, S.A., Craig, M.A., 

Renaut, R.W., Gautason, B., Mountain, B., 2013b. Reflectance spectra diversity of silica-

rich materials: Sensitivity to environment and implications for detections on Mars. 

Icarus 223, 1, 499–533. doi:10.1016/j.icarus.2012.09.021 

Richards, J.A., Jia, X., 1999. Remote Sensing Digital Image Analysis, 3rd ed. Springer, Berlin. 

Ruff, S.W., Christensen, P.R., 2002. Bright and dark regions on Mars: Particle size and 

mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. 

Res. 107, E12, 5119. doi:10.1029/2001JE001580 

 

 

 

 



223 
 

Rummel, J.D., Beaty, D.W., Jones, M.A., Bakermans, C., Barlow, N.G., Boston, P.J., Chevrier, 

V.F., Clark, B.C., de Vera, J.-P.P., Gough, R. V., Hallsworth, J.E., Head III, J.W., Hipkin, V.J., 

Kieft, T.L., McEwen, A.S., Mellon, M.T., Mikucki, J.A., Nicholson, W.L., Omelon, C.R., 

Peterson, R., Roden, E.E., Sherwood Lollar, B., Tanaka, K.L., Viola, D., Wray, J.J., 2014. A 

New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions 

Science Analysis Group (SR-SAG2). Astrobiology 14, 11, 887–968. 

doi:10.1089/ast.2014.1227 

Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geol. Rev. 14, 3-4, 157–183. 

doi:10.1016/S0169-1368(99)00007-4 

Scanlon, K.E., Head III, J.W., Marchant, D.R., 2015. Volcanism-induced, local wet-based glacial 

conditions recorded in the Late Amazonian Arsia Mons tropical mountain glacier 

deposits. Icarus 250, 18–31. doi:10.1016/j.icarus.2014.11.016 

Scanlon, K.E., Head III, J.W., Wilson, L., Marchant, D.R., 2014. Volcano–ice interactions in the 

Arsia Mons tropical mountain glacier deposits. Icarus 237, 315–339. 

doi:10.1016/j.icarus.2014.04.024 

Schenker, P.S., Baumgartner, E.T., Backes, P.G., Aghazarian, H., Dorsky, L.I., Norris, J.S., 

Huntsberger, T.L., Cheng, Y., Arvidson, R.E., Squyres, S.W., 2001. FIDO: Field Integrated 

Design and Operations Rover for Mars Surface Exploration. 

Schmidt, F., Legendre, M., Le Mouélic, S., 2014. Minerals detection for hyperspectral images 

using adapted linear unmixing: LinMin. Icarus 237, 61–74. 

doi:10.1016/j.icarus.2014.03.044 

Schmidt, F., Schmidt, A., Treguier, E., Guiheneuf, M., Moussaoui, S., Dobigeon, N., 2010. 

Implementation Strategies for Hyperspectral Unmixing Using Bayesian Source 

Separation. IEEE Trans. Geosci. Remote Sens. 48, 11, 4003–4013. 

doi:10.1109/TGRS.2010.2062190 

Schmidt, M.E., Farrand, W.H., Johnson, J.R., Schröder, C., Hurowitz, J.A., McCoy, T.J., Ruff, 

S.W., Arvidson, R.E., Des Marais, D.J., Lewis, K.W., 2009. Spectral, mineralogical, and 

geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low 

temperature alteration. Earth Planet. Sci. Lett. 281, 3-4, 258–266. 

doi:10.1016/j.epsl.2009.02.030 

Schmitz, N., Griffiths, A.D., Barnes, D.P., Coates, A.J., Hauber, E., Jaumann, R., Michaelis, H., 

Trauthan, F., 2008. ExoMars PanCam Field Test Report from the Arctic Mars Analogue 

Svalbard Expedition (AMASE) 2008, in: ASTRA 2008. Noordwijk. 



224 
 

Schulte, M., Blake, D.F., Hoehler, T., McCollom, T., 2006. Serpentinization and its implications 

for life on the early Earth and Mars. Astrobiology 6, 2, 364–76. 

doi:10.1089/ast.2006.6.364 

Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodríguez, J.A.P., Baker, V.R., Fink, W., 

2007. Exploration of hydrothermal targets on Mars. Icarus 189, 2, 308–324. 

doi:10.1016/j.icarus.2007.02.007 

Sgavetti, M., Pompilio, L., Roveri, M., Manzi, V., Valentino, G.M., Lugli, S., Carli, C., Amici, S., 

Marchese, F., Lacava, T., 2009. Two geologic systems providing terrestrial analogues for 

the exploration of sulfate deposits on Mars: Initial spectral characterization. Planet. 

Space Sci. 57, 5-6, 614–627. doi:10.1016/j.pss.2008.05.010 

Shanks III, W.C.P., 2010. Hydrothermal Alteration: Volcanogenic massive sulfide occurrence 

model, in: USGS Scientific Investigations Report 2010-5070-C. USGS, p. 12. 

Shkuratov, Y., Kaydash, V., Korokhin, V., Velikodsky, Y., Petrov, D., Zubko, E., Stankevich, D., 

Videen, G., 2012. A critical assessment of the Hapke photometric model. J. Quant. 

Spectrosc. Radiat. Transf. 113, 18, 2431–2456. doi:10.1016/j.jqsrt.2012.04.010 

Shkuratov, Y., Starukhina, L., Hoffmann, H., Arnold, G., 1999. A Model of Spectral Albedo of 

Particulate Surfaces: Implications for Optical Properties of the Moon. Icarus 137, 2, 235–

246. doi:10.1006/icar.1998.6035 

Skok, J.R., Fawdon, P., Mustard, J.F., Karunatillake, S., Fassett, C.I., 2014. Pinpointing 

habitability in Nili Patera’s hydrothermal field, in: Mars 2020 Landing Site Meeting. 

Skok, J.R., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Murchie, S.L., 2010. Silica deposits in 

the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nat. Geosci. 3, 12, 

838–841. doi:10.1038/ngeo990 

Smellie, J.L., Skilling, I.P., 1994. Products of subglacial volcanic eruptions under different ice 

thicknesses: two examples from Antarctica. Sediment. Geol. 91, 1-4, 115–129. 

doi:10.1016/0037-0738(94)90125-2 

Smith, M.O., Johnson, P.E., Adams, J.B., 1985. Quantitative determination of mineral types 

and abundances from reflectance spectra using principal components analysis. J. 

Geophys. Res. 90, S02, C797. doi:10.1029/JB090iS02p0C797 

Smith, M.R., Bandfield, J.L., 2012. Geology of quartz and hydrated silica-bearing deposits near 

Antoniadi Crater, Mars. J. Geophys. Res. 117, E6. doi:10.1029/2011JE004038 

 



225 
 

Smith, M.R., Bandfield, J.L., Cloutis, E.A., Rice, M.S., 2013. Hydrated silica on Mars: Combined 

analysis with near-infrared and thermal-infrared spectroscopy. Icarus 223, 2, 633–648. 

doi:10.1016/j.icarus.2013.01.024 

Smith, P.H., Tomasko, M.G., Britt, D.T., Crowe, D.G., Reid, R.J., Keller, H.U., Thomas, N., Gliem, 

F., Rueffer, P., Sullivan, R.J., Greeley, R., Knudsen, J.M., Madsen, M.B., Gunnlaugsson, 

H.P., Hviid, S.F., Goetz, W., Soderblom, L.A., Gaddis, L., Kirk, R., 1997. The imager for 

Mars Pathfinder experiment. J. Geophys. Res. 102, E2, 4003–4025. 

doi:10.1029/96JE03568 

Somers, B., Asner, G.P., Tits, L., Coppin, P., 2011. Endmember variability in Spectral Mixture 

Analysis: A review. Remote Sens. Environ. 115, 7, 1603–1616. 

doi:10.1016/j.rse.2011.03.003 

Squyres, S.W., Arvidson, R.E., Bell III, J.F., Calef, F.J., Clark, B.C., Cohen, B.A., Crumpler, L.S., de 

Souza, P.A., Farrand, W.H., Gellert, R., Grant, J.A., Herkenhoff, K.E., Hurowitz, J.A., 

Johnson, J.R., Jolliff, B.L., Knoll, A.H., Li, R., McLennan, S.M., Ming, D.W., Mittlefehldt, 

D.W., Parker, T.J., Paulsen, G., Rice, M.S., Ruff, S.W., Schröder, C., Yen, A.S., Zacny, K., 

2012. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science (80-. ). 

336, 6081, 570–576. doi:10.1126/science.1220476 

Squyres, S.W., Arvidson, R.E., Ruff, S.W., Gellert, R., Morris, R. V., Ming, D.W., Crumpler, L.S., 

Farmer, J.D., Des Marais, D.J., Yen, A.S., McLennan, S.M., Calvin, W.M., Bell III, J.F., Clark, 

B.C., Wang, A.E., McCoy, T.J., Schmidt, M.E., de Souza, P.A., 2008. Detection of silica-rich 

deposits on Mars. Science 320, 5879, 1063–1067. doi:10.1126/science.1155429 

Stack, K.M., Milliken, R.E., 2015. Modeling near-infrared reflectance spectra of clay and 

sulfate mixtures and implications for Mars. Icarus 250, 332–356. 

doi:10.1016/j.icarus.2014.12.009 

Steele, A., Amundsen, H.E.F., Conrad, P.G., Benning, L., 2010. Arctic Mars Analogue Svalbard 

Expedition (AMASE) 2009, in: 41st Lunar and Planetary Science Conference. Houston, 

USA, p. 2398. 

Stroncik, N.A., Schmincke, H.U., 2002. Palagonite - A review. Int. J. Earth Sci. 91, 4, 680–697. 

doi:10.1007/s00531-001-0238-7 

Summons, R.E., Amend, J.P., Bish, D.L., Buick, R., Cody, G.D., Des Marais, D.J., Dromart, G., 

Eigenbrode, J.L., Knoll, A.H., Sumner, D.Y., 2011. Preservation of martian organic and 

environmental records: final report of the Mars biosignature working group. 

Astrobiology 11, 2, 157–181. doi:10.1089/ast.2010.0506 



226 
 

Sunshine, J.M., Pieters, C.M., 1998. Determining the composition of olivine from reflectance 

spectroscopy. J. Geophys. Res. 103, E6, 13675. doi:10.1029/98JE01217 

Sunshine, J.M., Pieters, C.M., 1993. Estimating modal abundances from the spectra of natural 

and laboratory pyroxene mixtures using the modified Gaussian model. J. Geophys. Res. 

98, E5, 9075. doi:10.1029/93JE00677 

Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. Deconvolution of mineral absorption bands - 

An improved approach. J. Geophys. Res. Solid Earth 95, B5, 6955–6966. 

doi:10.1029/JB095iB05p06955 

Swayze, G.A., Clark, R.N., Goetz, A.F.H., Livo, E.K., Breit, G.N., Kruse, F.A., Stutley, S.J., Snee, 

L.W., Lowers, H.A., Post, J.L., Stoffregen, R.E., Ashley, R.P., 2014. Mappng advance 

argillic alteration at Cuprite, Nevada using imaging spectroscopy. Ecomonic Geol. 109, 5, 

1179–1221. doi:10.2113/econgeo.109.5.1179 

Szwast, M.A., Richardson, M.I., Vasavada, A.R., 2006. Surface dust redistribution on Mars as 

observed by the Mars Global Surveyor and Viking orbiters. J. Geophys. Res. 111, E11. 

doi:10.1029/2005JE002485 

Tanaka, K.L., Skinner, J.A., Dohm, J.M., Irwin, R.P., Kolb, E.J., Fortezzo, C.M., Platz, T., Michael, 

G.G., Hare, T.M., 2014. Geologic Map of Mars. U.S. Geol. Surv. Geol. Investig. 3292. 

doi:10.3133/sim3292 

Themelis, K.E., Schmidt, F., Sykioti, O., Rontogiannis, A.A., Koutroumbas, K.D., Daglis, I.A., 

2012. On the unmixing of MEx/OMEGA hyperspectral data. Planet. Space Sci. 68, 1, 34–

41. doi:10.1016/j.pss.2011.11.015 

Thi, H.-L.N., Jutten, C., 1995. Blind source separation for convolutive mixtures. Signal 

Processing 45, 2, 209–229. doi:10.1016/0165-1684(95)00052-F 

Thompson, D.R., Castaño, R., Gilmore, M.S., 2009. Sparse superpixel unmixing for exploratory 

analysis of CRISM hyperspectral images, in: 2009 First Workshop on Hyperspectral 

Image and Signal Processing: Evolution in Remote Sensing. IEEE, pp. 1–4. 

doi:10.1109/WHISPERS.2009.5289045 

Thordarson, T., Hoskuldsson, A., 2002. Iceland, 1st ed. Dunedin Academic Press Ltd, 

Edinburgh. 

Todesco, M., 2008. Hydrothermal fluid circulation and its effect on caldera unrest, in: 

Gottsmann, J., Marti, J. (Eds.), Caldera Volcanism. Elsevier. 

 



227 
 

Treiman, A.H., Amundsen, H.E.F., Blake, D.F., Bunch, T., 2002. Hydrothermal origin for 

carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from 

Spitsbergen (Norway). Earth Planet. Sci. Lett. 204, 3-4, 323–332. doi:10.1016/S0012-

821X(02)00998-6 

Tunstel, E., Huntsberger, T.L., Aghazarian, H., Backes, P.G., Baumgartner, E.T., Cheng, Y., 

Garrett, M., Kennedy, B., Leger, C., Magnone, L., Norris, J.S., Powell, M., Trebi-Ollennu, 

A., Schenker, P.S., 2002. FIDO ROVER FIELD TRIALS AS REHEARSAL FOR THE NASA 2003 

MARS EXPLORATION ROVERS MISSION, in: Automation Congress, 2002 Proceedings of 

the 5th Biannual World. p. 8. 

Ulrich, M., Hauber, E., Herzschuh, U., Härtel, S., Schirrmeister, L., 2011. Polygon pattern 

geomorphometry on Svalbard (Norway) and western Utopia Planitia (Mars) using high-

resolution stereo remote-sensing data. Geomorphology 134, 3-4, 197–216. 

doi:10.1016/j.geomorph.2011.07.002 

Ulrich, M., Wagner, D., Hauber, E., de Vera, J.-P.P., Schirrmeister, L., 2012. Habitable 

periglacial landscapes in martian mid-latitudes. Icarus 219, 1, 345–357. 

doi:10.1016/j.icarus.2012.03.019 

van Kranendonk, M.J., 2006. Volcanic degassing, hydrothermal circulation and the flourishing 

of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the 

Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Science Rev. 74, 3-4, 197–

240. doi:10.1016/j.earscirev.2005.09.005 

Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R. V., Blake, D.F., Chipera, S.J., 

Morrison, S.M., Treiman, A.H., Rampe, E.B., Rice, M.S., Achilles, C.N., Grotzinger, J.P., 

McLennan, S.M., Williams, J., Bell III, J.F., Newsom, H.E., Downs, R.T., Maurice, S., 

Sarrazin, P., Yen, A.S., Morookian, J.M., Farmer, J.D., Stack, K.M., Milliken, R.E., 

Ehlmann, B.L., Sumner, D.Y., Berger, G., Crisp, J.A., Hurowitz, J.A., Anderson, R.B., Des 

Marais, D.J., Stolper, E.M., Edgett, K.S., Gupta, S., Spanovich, N., Team, M.S., 2014. 

Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 6169, 

1243480. doi:10.1126/science.1243480 

Vincendon, M., Forget, F., Mustard, J.F., 2010. Water ice at low to midlatitudes on Mars. J. 

Geophys. Res. 115, E10. doi:10.1029/2010JE003584 

Vincendon, M., Pilorget, C., Gondet, B., Murchie, S.L., Bibring, J.-P., 2011. New near-IR 

observations of mesospheric CO2 and H2O clouds on Mars. J. Geophys. Res. 116, E11. 

doi:10.1029/2011JE003827 



228 
 

Viviano, C.E., Moersch, J.E., McSween Jr., H.Y., 2013. Implications for early hydrothermal 

environments on Mars through the spectral evidence for carbonation and chloritization 

reactions in the Nili Fossae region. J. Geophys. Res. Planets 118, 9, 1858–1872. 

doi:10.1002/jgre.20141 

Viviano-Beck, C.E., 2015. Early hydrothermal environments on Mars: Tyrrhena Terra, in: LPSC 

XXXXVI. LPI, Houston, USA, p. 2756. 

Viviano-Beck, C.E., Seelos, F.P., Murchie, S.L., Kahn, E.G., Seelos, K.D., Taylor, H.W., Taylor, K., 

Ehlmann, B.L., Wiseman, S.M., Mustard, J.F., Morgan, M.F., 2014. Revised CRISM 

spectral parameters and summary products based on the currently detected mineral 

diversity on Mars. J. Geophys. Res. Planets 119, 6, 1403–1431. 

doi:10.1002/2014JE004627 

Warner, N.H., Farmer, J.D., 2010. Subglacial hydrothermal alteration minerals in Jökulhlaup 

deposits of Southern Iceland, with implications for detecting past or present habitable 

environments on Mars. Astrobiology 10, 5, 523–47. doi:10.1089/ast.2009.0425 

Warner, N.H., Gupta, S., Calef, F.J., Grindrod, P.M., Boll, N., Goddard, K., 2015. Minimum 

effective area for high resolution crater counting of martian terrains. Icarus 245, 198–

240. doi:10.1016/j.icarus.2014.09.024 

Wendt, L., Combe, J.-P., McGuire, P.C., Bishop, J.L., Neukum, G., 2009. Linear spectral 

unmixing of near-infrared hyperspectral data from Juventae Chasma, Mars, in: 

Bruzzone, L., Notarnicola, C., Posa, F. (Eds.), Proc. SPIE 7477, Image and Signal 

Processing for Remote Sensing XV. IEEE, Berlin, Germany, p. 74770M–74770M–12. 

doi:10.1117/12.830095 

West, M.D., Clarke, J.D.A., Thomas, M., Pain, C.F., Walter, M.R., 2010. The geology of 

Australian Mars analogue sites. Planet. Space Sci. 58, 4, 447–458. 

doi:10.1016/j.pss.2009.06.012 

Westall, F., Loizeau, D., Foucher, F., Bost, N., Betrand, M., Vago, J., Kminek, G., 2013. 

Habitability on Mars from a microbial point of view. Astrobiology 13, 9, 887–97. 

doi:10.1089/ast.2013.1000 

Wierzchos, J., Davila, A.F., Artieda, O., Cámara-Gallego, B., de los Ríos, A., Nealson, K.H., 

Valea, S., Teresa García-González, M., Ascaso, C., 2013. Ignimbrite as a substrate for 

endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on 

Mars. Icarus 224, 2, 334–346. doi:10.1016/j.icarus.2012.06.009 



229 
 

Winter, M.E., 1999. N-FINDR: an algorithm for fast autonomous spectral end-member 

determination in hyperspectral data, in: Proceedings of SPIE. SPIE, pp. 266–275. 

doi:10.1117/12.366289 

Wiseman, S.M., Arvidson, R.E., Wolff, M.J., Morris, R. V., Seelos, F.P., Smith, M.D., Humm, 

D.C., Murchie, S.L., Mustard, J.F., 2012. Retrieval of atmospherically corrected CRISM 

spectra using radiative transfer modeling, in: LPSC XXXXIII. Houston, USA, p. 2146. 

Wiseman, S.M., Arvidson, R.E., Wolff, M.J., Smith, M.D., Seelos, F.P., Morgan, M.F., Murchie, 

S.L., Mustard, J.F., Morris, R. V., Humm, D.C., McGuire, P.C., 2014. Characterization of 

Artifacts Introduced by the Empirical Volcano-Scan Atmospheric Correction Commonly 

Applied to CRISM and OMEGA Near-Infrared Spectra. Icarus in press. 

doi:10.1016/j.icarus.2014.10.012 

Wray, J.J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos, F.P., Skok, J.R., Irwin, 

R.P., Ghiorso, M.S., 2013. Prolonged magmatic activity on Mars inferred from the 

detection of felsic rocks. Nat. Geosci. 6, 12, 1013–1017. doi:10.1038/ngeo1994 

Yang, K., Huntington, J.F., Boardman, J.W., Mason, P., 1999. Mapping hydrothermal alteration 

in the Comstock mining district, Nevada, using simulated satellite‐borne hyperspectral 

data. Aust. J. Earth Sci. 46, 6, 915–922. doi:10.1046/j.1440-0952.1999.00754.x 

Yokoyama, E., Nédélec, A., Baratoux, D., Trindade, R.I.F., Fabre, S., Berger, G., 2015. 

Hydrothermal alteration in basalts from Vargeão impact structure, south Brazil, and 

implications for recognition of impact-induced hydrothermalism on Mars. Icarus 252, 

347–365. doi:10.1016/j.icarus.2015.02.001 

Zare, A., Gader, P., 2007. Sparsity Promoting Iterated Constrained Endmember Detection in 

Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 4, 3, 446–450. 

doi:10.1109/LGRS.2007.895727 

 

 

 

 

 

 



230 
 

Appendix I: AUPE-2 processing pipeline and associated IDL code 

Final Full Processing Pipeline in ENVI 

1. Load filters in for left/right eye ensuring only using the geology filters (L/R04, L/R05, 

L/R06, L/R07, L/R08, L/R09) then save these as a standard ENVI file format stacking 

them in the correct wavelength order (as written above). 

a. File Name A04_02_154108LWACGeol (Site_Exposure#_Run#EyeFilterSet) 

2. Edit header to include wavelength and FWHM values in nanometres. 

3. Extract the exposure values from each image 

a. This can be extracted from the raw image metadata where it is recorded as 

ShutterSpeed.   

b. Save as row of values not column 

4. Save image and copy onto memory stick to transfer to personal laptop 

5. Ensure laptop already has copies of flat field filter image 

6. Start up the IDL console and run ENVI from within it 

a. E=ENVI() 

b. This will open up ENVI 5.0 and run code 

c. Use e.close to close ENVI and return to IDL 

7. Open the IDL script ‘normalising_bm.pro’ 

a. Resulting file will be named according to the following convention - 

A04_02_154108LWACGeolFF 

8. Change the output file name and destination as appropriate 

9. Recompile script 

10. Run script using appropriate eye flat field cube and image cube 

11. Manually input wavelength and FWHM info into the header (inputting from original 

file appears to turn the image into noise) 

12. Apply equation 𝑅𝐶𝜆 = 𝐾(𝑇)×(𝐷𝑁𝐶 ÷ 𝑒𝜆) where DNC is the corrected image DN 

values, eλ is the image exposure value and K(T) is the camera response function. 

a. I do not know the camera response function as it hasn’t been measured yet 

by Aberystwyth so for now I’m going to assume it is perfect (i.e.  K(T)=1) and 

doesn’t change with temperature) 

b. Use exposures.pro routine to build values into image then use 

radiocorr_bm.pro to convert image data by applying this equation. 

c. Final files will named according to the following conventions - 

A04_02_154108LWACExpo, A04_02_154108LWACGeolRad 
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13. Calibration with Caltag 

a. Take average reflectance values from the RCλ image from the following 

squares in the caltag; white, light grey, medium grey, dark grey, yellow, red 

green and blue. 

i. This will result in spectra for each of these covering the full 

wavelength range (so a 6 point spectrum from each eye). 

b. Extract these values and then for each filter plot them against the 

appropriate values from the lab calibration caltag spectra. 

i. Extract in ENVI 

1. Define ROI’s over each colour (in the above order) 

2. Calculate Stats on all ROI’s 

3. Save stats on all ROI’s as text file 

4. Import into Excel template 

5. Save final RSfactors as text file in row 

c. Read into IDL using mvalues.pro routine and convert to 1024x1024x6 image 

as for exposures 

d. A04_02_154108LWACRSmvalues 

14. Using the file mvalues file generated in step 13 convert RCλ images into R* values 

which should give spectral values between 0-100 (possibly with a few outliers that 

can be masked out if required). 

a. Rλ
∗ = RCλ×mλ 

b. Where mλ is the slope value and RCλ is the image pixel value at the appropriate 

wavelength and eλ is the image exposure value.   

c. Use IDL routine calibrat.pro to give final calibrated image 

d. A04_02_154108LWACGeolRStarCal 

15. Manually input wavelength and FWHM info into the header (inputting from original 

file appears to turn the image into noise) 

16. Create mask using ENVI build mask function, masking out all pixels with values above 

100 

a. Open image into display 

b. Select display image 

c. Input data range mask min value 100, no max value, mask is ANY band 

matches range, selected areas OFF, logical OR 

d. Apply mask with masked values = 0 
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The AUPE data is now ready to be processed, i.e. spectral parameters calculated, ROI spectra 

extracted. 

IDL codes 

normalising_bm.pro 

;routine to correct for the AUPE filter flatfield response by dividing the image 
;data by the normalised flatfield data 

 
pro normalising_bm 
compile_opt idl2 

 
; select, open and query the two input files 
input_file1 = dialog_pickfile(title='select image file') 
envi_open_file, input_file1, r_fid=b1_fid, /no_realize 
envi_file_query, b1_fid, nb=num_bands, ns=ns, nl=nl 

 
input_file2 = dialog_pickfile(title='select flatfield file') 
envi_open_file, input_file2, r_fid=b2_fid, /no_realize 

 
;set up the dims, pos and fid arrays 
dims=[-1L,0,ns-1,0,nl-1] 
pos1=n_elements(lindgen(num_bands)) 
pos=lindgen(pos1,pos1)/pos1 
fid=[b1_fid,b2_fid] 
out_name='math_test' 

 
;create an output fid array to hold each band processed 
out_fid=lonarr(num_bands) 

 
;the band math expression 
expression='float(b1)/float(b2)' 

 
;loop through each band and apply the equation 
for i=0,num_bands-1 do begin 
  envi_doit, 'math_doit', dims=dims, exp=expression, pos=pos[*,i],$ 
    fid=fid, r_fid=r_fid, /in_memory 
    out_fid[i]=r_fid 
endfor 

 
;stack the output bands into one file 
out_pos=lonarr(num_bands) 
envi_doit, 'cf_doit', dims=dims, fid=out_fid, pos=out_pos, $ 
  
out_name='C:\Users\Jenn\Documents\IDL_Iceland\A071_00_105341\A071_00_P00_
105341LWACRGBFF', r_fid=result_fid 

 
end 
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exposures.pro 

;create file to read in exposure values and turn them into 1024x1024x6 datacube  
;where each plane is filled with the exposure value for the relevant filter 

 
pro exposures 
compile_opt idl2 

 
;create empty (6,1) array to hold exposure values 
E=fltarr(6,1) 

 
;read in exposure values from 6 row text file and add to E 
openr,1,'E:\ENVI\A051_01_122723\A051_01_P02_122723RWACGeolExposures.txt' 
readf,1,E 

 
;convert to 1024x1024x6 array 
E3D=rebin(reform(E,1,1,6),1024,1024,6) 

 
;write 3D array to ENVI image format as BSQ 
envi_write_envi_file,E3D,out_name='C:\Users\Jenn\Documents\IDL_Iceland\A051_0
1_122723\A051_01_P02_122723RWACExpo.img' 

 
end 

 
radiocorr_bm.pro 

;routine to radiometrically correct the normalised image by multiplying by 
;camera response function (assumed = 1) and dividing by exposure time 

 
pro radiocorr_bm 
compile_opt idl2 

 
; select, open and query the two input files 
input_file1 = dialog_pickfile(title='select image file') 
envi_open_file, input_file1, r_fid=b1_fid, /no_realize 
envi_file_query, b1_fid, nb=num_bands, ns=ns, nl=nl 

 
input_file2 = dialog_pickfile(title='select exposures file') 
envi_open_file, input_file2, r_fid=b2_fid, /no_realize 

 
;set up the dims, pos and fid arrays 
dims=[-1L,0,ns-1,0,nl-1] 
pos1=n_elements(lindgen(num_bands)) 
pos=lindgen(pos1,pos1)/pos1 
fid=[b1_fid,b2_fid] 
out_name='math_test' 

 
;create an output fid array to hold each band processed 
out_fid=lonarr(num_bands) 

 
;the band math expression, RClambda/exposure value 
expression='float(b1)/float(b2)' 
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;loop through each band and apply the equation 
for i=0,num_bands-1 do begin 
  envi_doit, 'math_doit', dims=dims, exp=expression, pos=pos[*,i],$ 
    fid=fid, r_fid=r_fid, /in_memory 
    out_fid[i]=r_fid 
endfor 

 
;stack the output bands into one file 
out_pos=lonarr(num_bands) 
envi_doit, 'cf_doit', dims=dims, fid=out_fid, pos=out_pos, $ 
  
out_name='C:\Users\Jenn\Documents\IDL_Iceland\A071_00_105341\A071_00_P00_
105341LWACRGBRad', r_fid=result_fid 

 
end 

 
mvalues.pro 

;create file to read in calibration slope values and turn them into 1024x1024x6             
; datacube where each plane is filled with the RStar mvalue for the relevant filter 

 
pro mvalues 
compile_opt idl2 

 
;create empty (6,1) array to hold slope mvalues 
M=fltarr(6,1) 

 
;read in slope mvalues from 6 row text file and add to M 
openr,1,'E:\ENVI\A051_01_122723\A051_01_122723RWACGeol_Rstar_mvalues.txt' 
readf,1,M 

 
;convert to 1024x1024x6 array 
M3D=rebin(reform(M,1,1,6),1024,1024,6) 

 
;write 3D array to ENVI image format as BSQ 
envi_write_envi_file,M3D,out_name='C:\Users\Jenn\Documents\IDL_Iceland\A051_
01_122723\A051_01_122723RWACRSmvalues.img' 

 
end 

 
calibrat_bm.pro 

;routine to calibrate the radiometrically corrected image by multiplying by 
;RSfactorMvalue 

 
pro calibrat_bm 
compile_opt idl2 

 
; select, open and query the two input files 
input_file1 = dialog_pickfile(title='select RadCor image file') 
envi_open_file, input_file1, r_fid=b1_fid, /no_realize 
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envi_file_query, b1_fid, nb=num_bands, ns=ns, nl=nl 
 

input_file2 = dialog_pickfile(title='select mvalues file') 
envi_open_file, input_file2, r_fid=b2_fid, /no_realize 

 
;set up the dims, pos and fid arrays 
dims=[-1L,0,ns-1,0,nl-1] 
pos1=n_elements(lindgen(num_bands)) 
pos=lindgen(pos1,pos1)/pos1 
fid=[b1_fid,b2_fid] 
out_name='math_test' 

 
;create an output fid array to hold each band processed 
out_fid=lonarr(num_bands) 

 
;the band math expression, RadCorr image X mvalues 
expression='float(b1)*float(b2)' 

 
;loop through each band and apply the equation 
for i=0,num_bands-1 do begin 
  envi_doit, 'math_doit', dims=dims, exp=expression, pos=pos[*,i],$ 
    fid=fid, r_fid=r_fid, /in_memory 
    out_fid[i]=r_fid 
endfor 

 
;stack the output bands into one file 
out_pos=lonarr(num_bands) 
envi_doit, 'cf_doit', dims=dims, fid=out_fid, pos=out_pos, $ 
  
out_name='C:\Users\Jenn\Documents\IDL_Iceland\A071_00_105341\A071_00_P00_
105341LWACRGBRStarCal', r_fid=result_fid 

 
end 
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Appendix II: Synthetic image endmember plots from Chapter 5 
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Appendix III: Matlab codes for EDA’s from Chapter 5 

ODM 

1. Use estNoise.m from Bioucas-Dias HySIME code 

2. white_transform.m 

% code for step 2 of ODM, white noise data transformation, based on algorithm given  

% in Andreou & Karathanassi 2014 

 

% step 1 will use estNoise.m from HySIME 

 

% Input: 

%    Y is the sample matrix (LxN) 

%    w is the noise estimates for every pixel (LxN) from estNoise 

% Output: 

%    T is the transformed whitened data (LxN) 

 

function [T]=white_transform(Y,w,N) 

 

% calculate the noise covariance matrix, can do this using hyperCov and the noise      

% matrix w 

 

Rn=hyperCov(w); 

 

% now take orthogonal decomp of Rn to create Dn, an LxL matrix of the eigenvectors 

% of Rn 

 

[Dn,V]=eig(Rn); 

F=Dn'*Y;    % equation (8) 

W=F';   % W is now (NxL) 

 

% now divide each row of W by the standard deviation of the noise for that band 

% first create matrix of noise standard deviations along each band 

 

sd=std(w,0,2);   % column vector of s.d. along each band (Lx1) 

 

sd2=repmat(sd,1,N)';  % should create a (NxL) matrix with identical columns 

Wn=W./sd2;     % equation (9) 

Wnt=Wn'; 

Wntcov=hyperCov(Wnt); 

[Dwnt,U]=eig(Wntcov); 

T=Dwnt'*Wnt;    % equation (10) 

 

return 
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3. ODM.m 

% code for step 3 of ODM, Outlier Detection, based on algorithm given in 
% Andreou & Karathanassi 2014 

 
% Input 
%       T = the transformed whitened data from step 2 (white_transform.m) 
%       L = the number of bands used 
% Output 
%       p = number of endmembers 
%       Er = standard deviations between transformed bands sorted in 
%       descending order 
%       ED2 = distances between standard deviations 

 
function [p,Er,ED2]=ODM(T,L) 

 
sd=std(T,0,2); 
Er=sort(sd,'descend'); 

 
% calculate Euclidian distance between points in standard deviation vector 

 
ED=zeros(1,(L-1)); 
for i=1:L-1 
    ED(i)=Er(i,1)-Er((i+1),1); 
end 

 
ED2=sort(ED,'descend'); 

 
% calculate the quartiles and interquartile region for the distances 
% between the standard deviations 

 
Q=quantile(ED2,[0.25,0.5,0.75]); 

 
 IQR=Q(3)-Q(1); 

 
p=0; 
for i=2:L 

     if ED2(i-1)>(Q(3)+1.5*IQR)   
         p=p+1; 

    end 
end 

 
plot(ED2(1,1:30)) 

 
return 
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ELM 

% My own ELM algorithm based on the paper "Empirical automatic estimation of the 
% number of endmembers in hyperspectral images" by Luo, Chanussot, Doute and   
% Zhang 

 
function [H]=elm(y) 

 
% algorithm needs to calculate both the covariance and correlation matrices of the    
% input image matrix.  Both of these can be done using functions defined in the          
% hyperspectral package 'hyperCov' and 'hyperCorr' respectively 

 
% Input 
%   y = signal matrix - a 2D matrix [L x n] where L is the number of bands and n the      
% number of pixels.  So the spectral vectors are the columns.  % Output 
%   H = estimate of number of endmembers 

 
% General outline 
% 1. input matrix x 
% 2. calculate covariance matrix K 
% 3. calculate correlation matrix R 
% 4. calculate eigenvalues of K, called Ki 
% 5. calculate eigenvalues of R, called Ri 
% 6. calculate zi where zi = Ri - Ki  
% 7. calculate si^2 where si^2 = (2/n)(Ri^2+Ki^2) and is the s.d. of the unknown mean 
of the % zi distribution 
% 8. A(i) = -sum[l=i to n]([zl^2]/2*sl^2) 
% 9. B(i) = -sum[l=i to n](log[sl]) 
% 10. calculate H = A(i) + B(i)  
% 11. calculate Nc = arg max[H]-1 but actually want the eigenvalue index position of 
% the first local maximum which appears to be inputable as                                               
% [row,col]=find(H==max(H(:))) and then it % is the col value that I want to use 

 
[L,N]=size(y); % read in with spectra as columns and bands as rows 
K=hyperCov(y); 
R=hyperCorr(y); 
[E,D]=svd(K); % calculating eigenvectors and values of covariance 
Ki=diag(D); 
[F,G]=svd(R); % calculating eigenvectors and values of correlation 
Ri=diag(G); 
zi=Ri-Ki; 
si2=(2/L)*(Ri.^2+Ki.^2);   
si=sqrt(si2); 
zi=zi'; 
si=si'; 
si2=si2'; % necessary because Matlab performs these things as row-wise operations. 

 
A=zeros(1,L); % place holder for output 
  for i=1:L 
      A(i)=-sum((zi(i)^2)/(2*si2(i))); 
  end 
 
B=zeros(1,L); 
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  for i=1:L 
     B(i)=-sum(log(si(i))); 
  end 
 
H=A+B; 
 
plot(H(1,1:30)) % plot the first 20 values of H to visualise first maxima 
 
return 
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Appendix IV: Tables listing results of all SMA synthetic image 

tests 

EDA 

Tables giving results for each synthetic image and each set of initial criteria.   

HFC was set to run with 3 different vectors of false alarm probability (α = 10-3, 10-4, 10-5) and 

hence are reported with 3 values each time.   

ELM returns a plot that must be interpreted, in the majority of cases at least one spike was 

seen in the plot before the global maximum was reached, these spikes are the additional 

values, the global maximum is the final p estimate from this algorithm.  These spikes are 

discussed in the algorithms description paper and are therefore not an error in the code 

presented in this work. 

ODM returns both a plot and a final p value.  The p value (as was discussed in Chapter 5) was 

consistently overestimating the correct p value whilst for simple datasets the plot was 

returning the correct values.   In these tables it is only the plot value that is quoted, in some 

of the more complex images this value was ambiguous and so multiple potential p estimates 

are reported. 

Where no value is recorded no value was returned by the algorithm in question. 

Image 2a (6 endmembers, 2 minerals, different samples, N=8100) 

ELM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 2,6 1,5 2,5 4 

25dB 2,4,6 1,6 2,4,6 3,5 

35dB 2,4,6 1,6 2,4,6 3,7 

45dB 2,4,6 1,6 2,4,6 6,8,11 

55dB 2,4,6 1,6 2,4,6 6,11,15 
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HySIME 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 5 5 5 5 

25dB 6 6 6 6 

35dB 6 6 6 8 

45dB 6 6 6 11 

55dB 6 6 6 11 

 

HFC 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 5,4,4 5,5,5 4,4,3 4,4,4 

25dB 5,4,4 5,5,5 5,5,4 5,5,5 

35dB 5,4,4 5,4,4 5,4,4 6,6,6 

45dB 5,4,4 5,5,4 5,4,4 10,10,10 

55dB 5,5,4 5,5,5 5,4,4 14,14,14 

 

ODM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 6 4 6  3  

25dB 6 5 6  5  

35dB 6 7 6  5  

45dB 6 8 6  8  

55dB 6 8 6  8  
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Image 2b (6 endmembers, 2 minerals, same samples different sizings, N=8100, max 

purity 100%) 

ELM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 2,4 2,4 3 2 

25dB 2,4 2,4  2,4 2,4 

35dB 2,4,6 2,4,6 2,4,6 2,4,6 

45dB 2,4,6 2,4,6 2,4,6 2,4,6 

55dB 2,4,6 2,4,6 2,4,6 2,4,6 

 

HySIME 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3 3 3 3 

25dB 5 5 4 5 

35dB 6 6 6 6 

45dB 6 6 6 8 

55dB 6 6 6 9 

 

HFC 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3,3,3 3,3,3 2,2,2 3,3,3 

25dB 3,3,3 4,4,4 3,3,3 4,4,4 

35dB 4,4,4 5,5,5 4,4,4 7,6,6 

45dB 4,4,4 5,5,5 4,4,4 7,7,7 

55dB 4,4,4 5,5,5 4,4,4 9,9,9 
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ODM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 4 3 4  2 

25dB 4 4 4  4 

35dB 3 5 5  4 

45dB 3 7 5  4 

55dB 3 7 5  4 

 

 

 

 

 

Image 3a (4 endmembers, 2 minerals, same samples different sizings, N=8100) 

ELM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 2,4 1,3  1,3 1,3 

25dB 1,4 1,4  1,4 1,4 

35dB 1,4 1,4  1,4 1,4 

45dB 1,4 1,4  1,4 2,4,6 

55dB 1,4 1,4 1,4 1,4,7 

 

HySIME 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 4 3 3 3 

25dB 4 4 4 4 

35dB 4 4 4 5 

45dB 4 4 4 6 

55dB 4 4 4 7 
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HFC 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3,3,3 3,3,3 2,2,2 5,3,3 

25dB 3,3,3 3,3,3 3,3,3 3,3,3 

35dB 3,3,3 3,3,3 3,3,3 4,4,4 

45dB 3,3,3 3,3,3 3,3,3 8,6,5 

55dB 3,3,3 3,3,3 3,3,3 11,9,7 

 

ODM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3,4 3 3 5 

25dB 4 3 4 3 

35dB 4 4 4 4 

45dB 4 5 4 4 

55dB 4 7 4 4,7 

 

 

 

 

 

Image 3b (4 endmembers, 2 minerals, same samples different sizings, N=8100) 

ELM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3 2 2 2 

25dB 2,4 2,4 4 3 

35dB 2,4 2,4 2,4 2,4 

45dB 2,4 2,4 2,4 2,5 

55dB 2,4 2,4 2,4 2,7 
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HySIME 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3 2 2 2 

25dB 4 4 4 4 

35dB 4 4 4 5 

45dB 4 4 4 5 

55dB 4 4 4 5 

 

HFC 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3,3,3 3,3,3 2,2,2 2,2,2 

25dB 4,4,4 4,4,4 4,4,4 4,4,4 

35dB 4,4,4 4,4,4 4,4,4 5,4,4 

45dB 4,4,4 4,4,4 4,4,4 6,6,6 

55dB 4,4,4 4,4,4 4,4,4 7,7,7 

 

ODM 

SNR Linear, RR, max a 

= 1.0 

Linear, SSA, max a 

= 1.0  

Linear, RR, max a 

= 0.8 

Linear, SSA, max a 

= 0.8  

15dB 3 2 3 2 

25dB 4 3 4 3 

35dB 4 4 4 5 

45dB 4 5 4 5 

55dB 4 5 4 5 
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Image 4 (4 endmembers, 16 nonlinear mixtures, N=8096) 

ELM 

SNR RR SSA 

15dB 1 1,3 

25dB 1,6 1,4 

35dB 1,7 1,5 

45dB 1,7,16 1,5,7 

55dB 1,7,16 1,5,7,11 

 

HySIME 

SNR RR SSA 

15dB 3 4 

25dB 5 4 

35dB 7 5 

45dB 11 9 

55dB 15 14 

 

HFC 

SNR RR SSA 

15dB 2,1,1 2,2,2 

25dB 4,4,4 3,3,3 

35dB 5,5,5 4,4,4 

45dB 10,9,9 6,6,6 

55dB 11,11,11 11,11,10 

 

ODM 

SNR RR SSA 

15dB 4 4 

25dB 4 4 

35dB 4 4 

45dB 4 4 

55dB 4 4 
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Image 5 (4 endmembers, nonlinear then linear mixtures N=8096) 

ELM 

SNR RR, max a = 0.8 SSA, max a = 0.8 

15dB 1 1,3 

25dB 1,5 1,4 

35dB 1,7 1,4,6 

45dB 1,7 1,7,9 

55dB 1,7,16 1,7,9,11,16 

 

HySIME 

SNR RR, max a = 0.8 SSA, max a = 0.8 

15dB 3 3 

25dB 5 5 

35dB 6 7 

45dB 9 8 

55dB 13 9 

 

HFC 

SNR RR, max a = 0.8 SSA, max a = 0.8 

15dB 1,1,1 2,2,2 

25dB 3,3,3 3,3,3 

35dB 5,5,5 5,5,5 

45dB 9,8,7 6,6,6 

55dB 11,11,11 12,11,11 

 

ODM 

SNR RR, max a = 0.8 SSA, max a = 0.8 

15dB 4 4 

25dB 4 4 

35dB 4 4 

45dB 4 4 

55dB 4 4 
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Image 7a, b, c (N=8100, white noise, max a = 0.8, varying number of endmembers) 

ELM 

SNR Linear 3 Linear 7 Linear 15 

15dB 3 2,7 2,5,8,11 (all v. small after 1st) 

25dB 3 2,5,7 2,5,11,14 (all v. small after 1st) 

35dB 3 2,5,7 2,5,12,15 

45dB 3 2,5,7 2,12,15 

55dB 3 2,5,7 2,12,15 

 

HySIME 

SNR Linear 3 Linear 7 Linear 15 

15dB 3 7 10 

25dB 3 7 13 

35dB 3 7 15 

45dB 3 7 15 

55dB 3 7 15 

 

HFC 

SNR Linear 3 Linear 7 Linear 15 

15dB 3,3,3 7,7,7 9,7,7 

25dB 3,3,3 7,7,7 12,12,11 

35dB 3,3,3 7,7,7 13,13,13 

45dB 3,3,3 7,7,7 13,13,13 

55dB 3,3,3 7,7,7 13,13,13 

 

ODM  

SNR Linear 3 Linear 7 Linear 15 

15dB 3 7 8  

25dB 3 7 7,14  

35dB 3 7 8,15 

45dB 3 7 8,15 

55dB 3 7 7,15 
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Image 7a (p=3, white noise) 

ELM 

SNR Linear 10000 Linear 5000 Linear 1000 

15dB 3 3 3 

25dB 3 3 3 

35dB 3 3 3 

45dB 3 3 3 

55dB 3 3 3 

 

HySIME 

SNR Linear 10000 Linear 5000 Linear 1000 

15dB 3 3 130 

25dB 3 3 132 

35dB 3 3 115 

45dB 3 3 51 

55dB 3 3 3 

 

HFC 

SNR Linear 10000 Linear 5000 Linear 1000 

15dB 3,3,3 3,3,3 3,3,3  

25dB 3,3,3 3,3,3 3,3,3 

35dB 3,3,3 3,3,3 3,3,3 

45dB 3,3,3 3,3,3 3,3,3 

55dB 3,3,3 3,3,3 3,3,3 

 

ODM  

SNR Linear 10000 Linear 5000 Linear 1000 

15dB 3  3  3  

25dB 3  3  3  

35dB 3  3  3  

45dB 3  3  3  

55dB 3  3  3  
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Image 10a (p=12, white noise, 23 nonlinear RELAB spectra, L=211) 

HySIME 

SNR RR, Non-

linear only, 

N=290 

RR, 

Linear 

mix, 

N=290 

RR, Non-

linear only, 

N=8700 

RR, Linear 

mix, 

N=8700 

SSA, Non-

linear only, 

N=8700 

SSA Linear 

mix, 

N=8700 

15dB 124 132 6 6 6 6 

25dB 127 128 9 8 8 9 

35dB 121 117 13 11 9 14 

45dB 70 71 16 14 12 17 

55dB 20 17 19 16 13 18 

 

ODM 

SNR RR, Non-

linear only, 

N=290 

RR, Linear 

mix, N=290 

RR, Non-

linear only, 

N=8700 

RR, Linear 

mix, 

N=8700 

SSA, Non-

linear only, 

N=8700 

SSA Linear 

mix, 

N=8700 

15dB 7,12 5,9  10 9 5,9  5,7  

25dB 10,12 8,12  11 10 7,9  7  

35dB 12 10  13 12 10  12  

45dB 11,15  10,12,15  13 13 11  16  

55dB 10,15  12,16  14 14 11  15  

 

HFC 

SNR RR, Non-linear 

only, N=290 

RR, Linear mix, 

N=290 

RR, Non-linear only, 

N=8700 

RR, Linear mix, 

N=8700 

15dB  -  1,1,1  -  3,3,3 

25dB  -  1,1,1  -  3,3,3 

35dB  -  1,1,1  -  3,3,3 

45dB  -  1,1,1  -  6,5,5 

55dB  -  1,1,1  -  8,6,6 
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ELM 

SNR RR, Non-linear 

only, N=290 

RR, Linear mix, 

N=290 

RR, Non-linear only, 

N=8700 

RR, Linear mix, 

N=8700 

15dB  -  3  -  4 

25dB  -  6  -  6 

35dB  -  9  -  8 

45dB  -  10  -  13 

55dB  -  14  -  16 
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EEA 

The following tables give the SAM value results of the four Endmember Extraction Algorithm 

extracted spectra compared to the real endmember spectra.  Where no value is noted the 

algorithm returned either no endmembers or they were so unlike the real endmembers that 

the SAM value was not calculated.  The smallest SAM value for each set is highlighted in bold.  

Any misidentified extracted endmembers are noted where found. 

Image 2a (6 endmembers, 2 minerals, diff samples, RR, p=6, max a = 1.0) 

SNR SISAL VCA RMVES ICE 

15db N/A 0.036717 0.134117 N/A 

25dB 0.330383 0.012683 0.090033 0.17965 

35dB 0.058367 0.003617 0.1282 0.211783 

45dB 0.017167 0.002241 0.084489 0.1466 

55dB 0.004617 0.000281 0.005207 0.185633 

 

Image 2a (6 endmembers, 2 minerals, diff samples, RR, p=6, max a = 0.8) 

SNR SISAL VCA RMVES ICE 

15db 0.2334a 0.07573 0.09617 N/A 

25dB 0.18108 0.0664 0.0468 N/A 

35dB 0.0455 0.06658 0.02067 N/A 

45dB 0.01168 0.07432 0.00695 N/A 

55dB 0.00174 0.08027 0.00707 0.21415 

a3 mismatched endmembers 

 

Image 2b (6 endmembers, 2 minerals, diff particle sizings, RR, p=6, max a = 1.0) 

SNR SISAL VCA RMVES ICE 

15db N/A 0.057333 0.1905 N/A 

25dB 0.541317 0.076017a 0.221017 0.144967b 

35dB 0.484917 0.022733 0.1064 0.1151 

45dB 0.1459 0.003754 0.078428 0.045083b 

55dB 0.028317 0.000329 0.082976 0.16325 

amatches 4 hematite and 2 olivine 
bmatches 2 hematite and 4 olivine 
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Image 2b (6 endmembers, 2 minerals, diff particle sizings, RR, p=6, max a = 0.8) 

SNR SISAL VCA RMVES ICE 

15db N/A 0.09197a 0.09375 N/A 

25dB 0.1894a 0.06898 0.26805b N/A 

35dB 0.28328 0.09055a 0.01908 N/A 

45dB 0.07942 0.04592 0.0139 N/A 

55dB 0.01663 0.02727 0.00943 N/A 

a1 misidentification 
b3 misidentifications 
 

Image 3a (4 endmembers, 2 minerals, diff particle sizings, RR, p=4, max a = 1.0)  

SNR SISAL VCA RMVES ICE 

15db 0.22655 0.03395 0.0439 N/A 

25dB 0.11465 0.00955 0.02225 0.10195 

35dB 0.02565 0.002725 0.048697 0.089975 

45dB 0.005816 0.000657 0.048717 0.053825 

55dB 0.001541 0.000245 0.003072 0.023875 

 

Image 3a (4 endmembers, 2 minerals, diff particle sizings, RR, p=4, max a = 0.8) 

SNR SISAL VCA RMVES ICE 

15db 0.10633 0.02393 0.03545 N/A 

25dB 0.04983 0.02468 0.07758 N/A 

35dB 0.01303 0.03095 0.04475 0.07948 

45dB 0.00429 0.02708 0.00642 0.06513 

55dB 0.00102 0.03095 0.00268 0.06868 
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Image 3b (4 endmembers, 2 minerals, diff particle sizings, RR, p=4, max a = 1.0)  

SNR SISAL VCA RMVES ICE 

15db 0.251725 0.0348 0.1104 N/A 

25dB 0.249925 0.08565 0.064975 0.078775 

35dB 0.07865 0.002825 0.007 0.10595 

45dB 0.0205 0.002278 0.0458 0.0853 

55dB 0.005475 0.000221 0.006459 0.054825 

 

Image 3b (4 endmembers, 2 minerals, diff particle sizings, RR, p=4, max a = 0.8) 

SNR SISAL VCA RMVES ICE 

15db 0.16595 0.07415 0.13838 N/A 

25dB 0.1367 0.08163a 0.03808 0.12505 

35dB 0.04928 0.0228 0.03365 0.13413 

45dB 0.01025 0.03598 0.05835 0.1383 

55dB 0.00176 0.04115 0.02383 0.10583 

a2 misidentifications 

 

Image 5 (4 endmembers, 4 minerals, 16 nonlinear mixtures linearly mixed, RR, p=4, 

max a = 1.0) 

SNR SISAL VCA RMVES ICE 

15db 0.593075 0.071975 N/A N/A 

25dB 0.06145 0.086725 0.068575 0.1787 

35dB 0.059375 0.074575 0.0961 0.130375 

45dB 0.060175 0.104725 0.080325 0.157625 

55dB 0.060275 0.06855 0.161825 N/A 
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Image 5 (4 endmembers, 4 minerals, 16 nonlinear mixtures linearly mixed, SSA, p=4, 

max a = 1.0) 

SNR SISAL VCA RMVES ICE 

15db N/A N/A 0.19643 N/A 

25dB N/A 0.12168 0.05283 0.16945 

35dB N/A 0.08798 0.10703 0.136 

45dB N/A 0.06558 0.08555 N/A 

55dB N/A 0.08288 0.0545 0.12358 

 

Image 5 (4 endmembers, 4 minerals, 16 nonlinear mixtures linearly mixed, RR, p=4, 

max a = 0.8) 

SNR SISAL VCAa RMVES ICEa 

15db 0.08368 0.13388 N/A N/A 

25dB 0.09603 0.12305 0.09855 0.17618 

35dB 0.09565 0.1352 0.09718 0.17873 

45dB 0.08895 0.1151 0.09468 0.16378 

55dB 0.09205 0.11728 0.08778 0.16635 

aAll endmembers poor visual matches – misidentifications 

 

Image 5 (4 endmembers, 4 minerals, 16 nonlinear mixtures linearly mixed, SSA, p=4, 

max a = 0.8) 

SNR SISAL VCA RMVES ICE 

15db N/A 0.14318 0.15095 N/A 

25dB 0.15323 0.1343 0.11113 N/A 

35dB 0.09523 0.13348 0.09778 N/A 

45dB 0.09195 0.12655 0.09248 N/A 

55dB 0.0931 0.12883 0.0855 N/A 

 

 

 



263 
 

Image 7a, b, c (RR, linear mix) – ICE was not tested by this point as it had been 

consistently returning the worst results of the four algorithms 

SISAL 

SNR p=3 (max a 
= 1.0) 

p=3 (max a 
= 0.8) 

p=7 (max a 
= 1.0) 

p=7 (max a 
= 0.8) 

p=15 (max a 
= 1.0) 

p=15 (max a 
= 0.8) 

15db 0.22393 0.1418 N/A N/A N/A N/A 

25dB 0.09793 0.04077 0.14946 0.09663a N/A 0.33174b 

35dB 0.02317 0.0304 0.05914 0.02873 N/A 0.12724 

45dB 0.00508 0.00494 0.01566 0.00851 0.08921 0.04612 

55dB 0.00126 0.00198 0.00471 0.00211 0.03235 0.01723 

a1 misidentification 
b6 misidentifications 
 

VCA 

SNR p=3 (max a 
= 1.0) 

p=3 (max a 
= 0.8) 

p=7 (max a 
= 1.0) 

p=7 (max a 
= 0.8) 

p=15 (max a 
= 1.0) 

p=15 (max a 
= 0.8) 

15db 0.02673 0.07703 0.03671 0.08194 N/A N/A 

25dB 0.00813 0.08443 0.0111 0.05213 0.02875a 0.17448b 

35dB 0.00223 0.0894 0.00289 0.0924a 0.00904 N/A 

45dB 0.00076 0.08143 0.00088 0.05951 0.00265 0.15639 

55dB 0.000136 0.08597 0.00023 0.07141 0.000895 0.13221 

a1 misidentification 
b5 misidentifications 
 

RMVES 

SNR p=3 (max a 
= 1.0) 

p=3 (max a 
= 0.8) 

p=7 (max a 
= 1.0) 

p=7 (max a 
= 0.8) 

p=15 (max a 
= 1.0) 

p=15 (max a 
= 0.8) 

15db 0.02057 0.02217 N/A 0.143071 N/A N/A 

25dB 0.021 0.02727 0.03547 0.0227 N/A 0.15989a 

35dB 0.02244 0.0091 0.01393 0.022957 N/A 0.16361b 

45dB 0.0117 0.07873 0.00857 0.011814 N/A 0.03595 

55dB 0.00956 0.01443 0.00613 0.004386 0.041587c 0.01743 

a5 misidentifications 
b3 misidentifications 
c2 misidentifications 
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Image 8 (3 endmembers, 3 minerals, RR, varying N, max a = 0.8) – ICE was not tested 

by this point as it had been consistently returning the worst results of the four 

algorithms 

SISAL 

SNR N=10000 N=5000 N=1000 

15db 0.05713 0.05277 0.04377 

25dB 0.03157 0.02333 0.0232 

35dB 0.0144 0.0055 0.00333 

45dB 0.0007 0.00594 0.00767 

55dB 0.00067 0.00103 0.00377 

 

VCA 

SNR N=10000 N=5000 N=1000 

15db 0.06957 0.06297 0.0829 

25dB 0.08023 0.08 0.10987 

35dB 0.0887 0.0826 0.08133 

45dB 0.0826 0.0839 0.11183 

55dB 0.08403 0.0891 0.08187 

 

RMVES 

SNR N=10000 N=5000 N=1000 

15db 0.025 0.039267 0.0369 

25dB 0.0146 0.0611 0.0084 

35dB 0.016333 0.0194 0.011767 

45dB 0.01283 0.020933 0.0074 

55dB 0.004586 0.002105 0.003833 
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Image 10a (12 endmembers, 12 minerals, varying N, max a = 0.8) – ICE was not tested 

by this point as it had been consistently returning the worst results of the four algorithms 

SISAL 

SNR N=8700  N=290  

15db N/A N/A 

25dB N/A N/A 

35dB 0.1958a 0.18048a 

45dB 0.13743b 0.12408a 

55dB 0.14503a 0.15991a 

a2 misidentifications 
b3 misidentifications 
 

VCA 

SNR N=8700  N=290 

15db  -   -  

25dB  -   -  

35dB  -   -  

45dB  -   -  

55dB  -   -  

 

RMVES 

SNR N=8700 N=290 

15db N/A N/A 

25dB 0.183449a N/A 

35dB 0.184113b 0.187685c 

45dB 0.157573b 0.160202a 

55dB 0.155374a 0.170186c 

a3 misidentifications 
b2 misidentifications 
c7 misidentifications 
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Image 10b (10 endmembers, 10 minerals, max a = 0.8) – ICE was not tested by this point 

as it had been consistently returning the worst results of the four algorithms and nor was VCA 

which had been shown by now to return poor results for non-linear mixtures 

SNR SISAL RMVES 

35 0.08494a 0.187102b 

45 0.091044a 0.175820c 

55 0.09389a 0.092345a 

a1 misidentification 
b6 misidentifications 
c4 misidentifications 
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AEA 

The following tables contain the average maximum individual pixel percentage abundance 

error for each of the synthetic images tested against the FCLLS using both RR and SSA version 

(where appropriate) of the pure endmembers, the SISAL and the RMVES endmembers.   

Image 2a (6 endmembers, 2 minerals, diff samples, RR, p=6, max a = 0.8) 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.10791 0.20500 0.22088 

35 0.03558 0.07187 0.16198 

45 0.01180 0.02022 N/A 

55 0.00360 0.00436 N/A 

 

Image 2a (6 endmembers, 2 minerals, diff samples, SSA, p=6, max a = 0.8) 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.12916 0.21941 0.23234 

35 0.07874 0.10378 0.18518 

45 0.07490 0.07892 N/A 

55 0.07743 0.07739 N/A 

 

Image 2b (6 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=6, max a = 0.8) 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.40213 0.54764 0.58461 

35 0.17301 0.28690 0.49756 

45 0.06116 0.12003 N/A 

55 0.01953 0.03746 N/A 
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Image 2b (6 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=6, max a = 0.8) 

this time combining same mineral abundances 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.02078 0.08108 0.09507 

35 0.00896 0.05858 0.08843 

45 0.00327 0.03620 N/A 

55 0.00102 0.01132 N/A 

 

Image 3a (4 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=4, max a = 0.8)  

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.21075 0.24276 N/A 

35 0.06051 0.09692 N/A 

45 0.02251 0.03096 N/A 

55 0.00644 0.00806 N/A 

 

Image 3a (4 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=4, max a = 0.8) 

this time combining same mineral abundances 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.05598 0.10456 N/A 

35 0.01794 0.06398 N/A 

45 0.00658 0.01883 N/A 

55 0.00186 0.00402 N/A 
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Image 3a (4 endmembers, 2 minerals, same samples, diff particle sizes, SSA, p=4, max a = 0.8)  

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.20740 0.24923 N/A 

35 0.07305 0.10643 N/A 

45 0.03954 0.04476 N/A 

55 0.03012 0.03019 N/A 

 

Image 3a (4 endmembers, 2 minerals, same samples, diff particle sizes, SSA, p=4, max a = 0.8) 

this time combining same mineral abundances 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.06603 0.11152 N/A 

35 0.02526 0.05987 N/A 

45 0.01322 0.02152 N/A 

55 0.01135 0.01208 N/A 

 

Image 3b (4 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=4, max a = 0.8)  

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.26948 0.56806 0.47260 

35 0.09544 0.14677 0.44516 

45 0.02966 0.04677 N/A 

55 0.00918 0.01202 N/A 
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Image 3b (4 endmembers, 2 minerals, same samples, diff particle sizes, RR, p=4, max a = 0.8) 

this time combining same mineral abundances 

SNR Pure 

endmembers 

SISAL SISAL 

(normalised) 

25  0.03198 0.12168 0.16520 

35 0.01077 0.05307 0.18009 

45 0.00392 0.01476 N/A 

55 0.00109 0.00339 N/A 

 

Image 5a (4 endmembers, 4 minerals, linear mixture of nonlinear mixtures from Mustard and 

Pieters paper, max a = 0.8, RR) 

SNR Pure 

endmembers 

SISAL SISAL norm 

25  0.11623 0.22890 N/A 

35 0.10068 0.20819 N/A 

45 0.10664 0.20215 N/A 

55 0.10809 0.21764 N/A 

 

Image 5a (4 endmembers, 4 minerals, linear mixture of nonlinear mixtures from Mustard and 

Pieters paper, max a = 0.8, SSA) 

SNR Pure 

endmembers 

SISAL SISAL norm 

25  0.16662 0.26161 N/A 

35 0.15989 0.24497 N/A 

45 0.16538 0.25602 N/A 

55 0.15989 0.26282 N/A 
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Image 5b (4 endmembers, 4 minerals, linear mixture of pure spectra from Mustard and 

Pieters paper, max a = 0.8, RR) 

SNR Pure 

endmembers 

SISAL SISAL norm 

25  0.04397 0.26995 N/A 

35 0.01433 0.27520 N/A 

45 0.00465 0.25845 N/A 

55 0.00138 0.28582 N/A 

 

Image 5b (4 endmembers, 4 minerals, linear mixture of pure spectra from Mustard and 

Pieters paper, max a = 0.8, SSA) 

SNR Pure 

endmembers 

SISAL SISAL norm 

25  0.31677 0.26995 N/A 

35 0.31095 0.37254 N/A 

45 0.30836 0.35069 N/A 

55 0.31038 0.35326 N/A 

 

Image 7c (15 hydrothermal endmembers, taken from USGS library, 80% pure, p=15, RR)  

SNR Pure 

endmembers 

SISAL SISAL norm 

25 0.20425 0.30510 0.27981 

35 0.09007 0.19376 0.15394 

45 0.03250 0.08241 0.14145 

55 0.01165 0.02727 0.12348 
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Image 10b (10 endmembers, 10 minerals, p=10, RR, max a = 0.8)  

SNR Pure 

endmembers 

SISAL SISAL norm RMVES 

25 0.14742 0.25758 0.30316 0.65842 

35 0.09452 0.13582 0.11623 0.53754 

45 0.08245 0.14152  -   -  

55 0.02791 0.15462  -  0.17117 

 

Image 10b (10 endmembers, 10 minerals, p=10, SSA, max a = 0.8) 

SNR Pure 

endmembers 

SISAL RMVES 

25 0.24230 0.31820 0.57492 

35 0.19985 0.20487 0.44843 

45 0.16392  -   -  

 


