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This paper proposes and describes an implementation of a novel photometric stereo

based technique forin vivo assessment of three-dimensional (3D) skin topography

in the presence of interreflections. The proposed method illuminates skin with red,

green, and blue colored lights and uses the resulting variation in surface gradients to

mitigate the effects of interreflections. Experiments werecarried out on Caucasian,

Asian and African American subjects to demonstrate the accuracy of our method

and to validate the measurements produced by our system. Ourmethod produced

significant improvement in 3D surface reconstruction for all Caucasian, Asian and

African American skin types. The results also illustrate the differences in recovered

skin topography due to non-diffuse Bidirectional reflectance distribution function

(BRDF) for each color illumination used, which also concur with the existing

multispectral BRDF data available for skin.c© 2012 Optical Society of America

OCIS codes: 150.6910, 290.1483, 330.4300.

1. INTRODUCTION

Since the emergence of photometric stereo [1], the technique has developed into a recognized ap-

proach for three dimensional 3D object shape recovery usinga relatively simple methodology.

The classical application of photometric stereo has been based on the interaction of collimated,

uniform lighting with continuous smooth, Lambertian (diffusely reflective) surfaces. Photometric

stereo uses a single sensor and multiplexed light to achievemultiple images of the same scene with
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differences only in the source lighting directions. Most often this is achieved by a form of tempo-

ral multiplexing. That is, light is provided at different times from differently positioned sources,

to allow the acquisition system to capture shaded images in isolated channels [2]. From this we

can resolve the surface gradient and reflectance of the surface under inspection [3, 4] at a pixel or

even sub-pixel resolution. However, accurate estimates ofobject geometry require that the surface

reflectance properties and lighting conditions are knowna priori and also assumes that the surface

reflection is Lambertian.

The interreflection problem is a result of direct and indirect light reflection at the surface. Most

concave surfaces exhibit such behavior, as light bounces multiple times between patches on the

surface before returning to the viewer. This phenomenon creates problems for shape for shading

techniques, which for a given albedo assume that the surfacenormal alone at a point defines the

reflected radiance. On the other hand, the presence of interreflections can help resolve bas-relief

ambiguity [5] and this is particularly useful in uncalibrated photometric stereo techniques where

lighting properties are unknown [6].

Interreflections are also strongly dependent on surface albedo as investigated by Forsyth [7]. Ob-

jects with higher albedo values experience more interreflections than ones with lower albedo. Liao

[8] used this distinction to separate direct and indirect reflected light by using colored lights to

vary surface albedo. However they did assume surface reflection to be Lambertian, which is also a

prevailing assumption associated with skin when using shape from shading algorithms.

Nayar [9] proposed an iterative algorithm that refines an estimate of the actual shape and reflectance

from an initial erroneous shape and reflectance approximation of a Lambertian surface. Most work

related to interreflection has been aimed at opaque Lambertian objects, with the most relevant work

done regarding interreflections in skin being based on the analysis of skin replicas [10, 11]. The

reflectance properties of replicas tend to be very differentto that of skin. Replicas are often opaque

while skin on the other hand is translucent and has complex reflectance properties which not only

depend on the wavelength of light used but also on the type of skin (Asian, Caucasian etc.) under

inspection [12, 13].

Numerous studies involving the analysis of skin microrelief using photometric stereo has been

conducted in the past decade, some are based on real time imaging whilst most are limited to

static analysis. Tongbo et al. [14] proposed a method to extract skin microrelief using specular

highlights, however the aquisition time to capture specular highlights for each point on the surface

was considerably large as the method required illuminatingthe surface from a large number of

light directions. Micah et al. [15] used a contact based portable device to recover skin microrelief,

however its accuracy was limited by the elstometer used as itcould not reproduce fully large holes

or groves. Several other non contact techniques exist, common to the majority of these techniques

is that the analysis for accuracy of skin shape is qualitative and also does not take into account

the difference in reflectance from varing skin types (i.e. ethnicity) due to variation in illumination

2



color [16–18].

Infrared light has already been proven to offer advantage over white light [19] for skin imaging

and was reported to exhibit a more diffuse reflection than visible light, suggesting a difference in

BRDF between infrared and visible light. This paper furtherinvestigates the effects of change in

illumination color in the visible spectrum on accuracy of 3Dreconstruction of different skin types

using photometric stereo. The following is a summary of key contributions of this paper.

1. To the best of our knowledge, no published work has so far looked into the quantitative as-

sessment of 3D skin microrelief using photometric stereo. Much of the analysis concerning

the accuracy of skin microrelief is visually qualitative. The skin topography measurements

presented in this paper were validated using the PRIMOS 4 device and detailed experiments

were performed with different skin types to determine the amount of error in surface nor-

mals and reconstructed height for each individual color(R,G, B) and white light caused by

differences in BRDF.

2. Earlier work regarding the surface accuracy analysis between infrared and white light

showed that infrared was superior in capturing accurate skin topography to white light [19].

This paper further contributes to the state-of-the-art by explaining the reasons for inaccurate

acquisition of skin topography while using white light.

3. The development of a new technique for minimizing surfaceerrors due to interreflection in

the presence of wrinkles.

4. The development of a practical low-cost 3D capture systemfor static analysis of skin mi-

crorelief , which has its applications in efficacy evaluation of cosmetic treatments, surgical

procedures and lesions analysis. The acquisition time of this system is shorter than most

available commercial systems, has both a large field of view and depth of field, which allows

observation of small scale variations (pores) to large wrinkles.

The following sections discuss issues concerning skin optics, skin reflectance and the BRDF of

skin, as they are important factors in understanding the interreflection problem in skin and will

form the basis of our proposed technique in order to diminishits effects.

2. SKIN OPTICAL CHARACTERISTICS

Skin has a multilayered structure, consisting of three mainlayers: epidermis, dermis and hypoder-

mis (subcutis). These layers are different in structure andthickness from each other, and vary over

different body regions [20]. They also vary among people of different origins [21]. The combined

remittance of light from skin is composed of surface reflection, epidermal and dermal remittance.

The surface reflectance is dependent on the change in refractive index from air to skin and is about

4-7% of the incident light, while the remainder comes from lower layers. These lower layers define

3



how much light is reflected back and how diffusely it is reflected.

Skin is not homogeneous and has complex optical properties.Aspects such as depth of penetra-

tion, scattering and absorption vary considerably as the wavelength varies from 400nm to 600nm

[12]. Depth of penetration is the distance traveled by lightbefore falling to (1/e) 37% of its initial

value. For the range of wavelengths defined by the LEDs and filter used in our device, the depth of

penetration for blue, green and red light is approximately 0.7mm, 0.9mm and 1.6mm respectively

[12]. The variation is due to an increase in absorption at shorter wavelengths. Absorption in skin is

mainly due to melanin and blood (oxy and deoxy-hemoglobin) in the epidermal and dermal layers

and decreases as the wavelength increases in the visible spectrum [22, 23].

There are some differences in how diffusively skin reflects light based on wavelength. There is

diffuse reflection due to interface roughness at the dermal-epidermal interface and shorter wave-

lengths (blue-green) are more sensitive to this than longer(red) wavelengths due to their lower

penetration depth [24]. Longer wavelengths (red) are however more affected by multiple scatter-

ings in the dermal layers; which consists predominantly of blood - due to absorption in the shorter

wavelengths.
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Fig. 1. (Color online)Multispectral reflectance of different skin types (NCSU skin

reflectance data [25]).

3. MULTISPECTRAL REFLECTANCE OF SKIN

As a result of the complex optical properties, the resultantreflectance of skin appears as shown

in Fig. 1. Over the entire visible spectrum, and for each skintype, the red part of the spectrum
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has the highest reflectance. This decreases as the wavelength of light decreases towards the blue

part of the spectrum. This variation in reflectance as a function of wavelength is very important, as

the inter-reflection phenomenon is closely related to the surface albedo/reflectance. The algorithm

defined in section 7 utilizes this variation to acquire more accurate depth estimates for concave

parts of the skin. Areas such as grooves/wrinkles in the skinare most susceptible to interreflections

as the hollow rounded/v-shaped geometry force light to bounce multiple times before reaching the

camera sensor. However at shorter wavelengths the skin absorbs more light which increases the

chances of absorption of a photon after interreflection, unlike at longer wavelengths, where the

chances of photons reaching the camera sensor are greater asthe skin absorption is lower.

4. BRDF OF SKIN AS A FUNCTION OF WAVELENGTH

The BRDF describes how light is reflected from a surface. Its accurate description can improve

the accuracy of shape from shading algorithms, such as photometric stereo, which assumes that

the surface under inspection reflects light equally in all directions. BRDF is a function of incoming

and outgoing light directions relative to the surface orientation. Also, it is a function of wavelength,

as some materials absorb, reflect and transmit each wavelength differently. This is very much the

case for skin. The BRDF function is written as:

BRDF(θi,φi,θo,φo,x,y,λ ) (1)

Whereθx andφx represent incoming and outgoing direction in spherical coordinates,x andy rep-

resent spatial position andλ the wavelength. In its basic form, photometric stereo assumes that

the surface under inspection has diffuse reflectance at all wavelengths, which is not the case for

skin. Most of the reported BRDF/BTF (Bidirectional TextureFunction) measurements done for

skin represent aggregates over the visible spectrum [26–28] and ignore variation in BRDF at spe-

cific wavelengths in the visible spectrum. The measurementsdone by [29, p. 2] were over 390nm

to 710nm. These measurements were for a single reflected angle in order to see the variation in

skin reflectance over the spectrum and did not take into account the variation for a wider range

of reflection angles. Measurements undertaken by [30] were over 544nm and 633nm wavelengths

using a CASIR© scatterometer device.The device has an advantage of covering a range of incidence

and reflected angles and provides a better understanding of the skin BRDF. These measurements

show that there is considerable variation in BRDF of skin forthese wavelengths.

5. MATERIALS AND METHODS

5.A. Photometric Stereo Setup and Acquisition

Our photometric stereo skin imaging device consists of fourhigh power LEDs and an AVT Pike

F100C camera. The camera has a resolution of 1000×1000 pixels and a color depth of 8-bits. The

acquisition time is approximately 0.6s and the measurement area is 65×65 mm2. The device has
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Fig. 2. (Color online)(a) The 3D skin macro and microrelief on the back of the hand

acquired using our photometric stereo device.

a 10.6mm depth of field and is able to recover both micro and macro 3Dtopography of skin as

shown in Fig. 2.

The LEDs used were 40 Watt color LEDs LZC-A0MD40 from LedEngin. These consist of a single

emitter comprised of red, green, blue and white individually addressable dies. The dominant wave-

length for each color light is 462nm, 523nm and 625nm. The photometric stereo rig is designed to

capture 12 images, four from each red, green and blue channel.

5.B. Camera Calibration

The camera used in this experiment had a Kodak KAI-1020 sensor and its spectral response is

shown in Fig. 3. The spectral response shows an overlap between each color channel, there is vari-

ation in quantum efficiency for each channel and the sensor issensitive between ultraviolet and

infrared regions. In view of these constraints our imaging system was calibrated for color correc-

tion and channel cross talk minimisation.

Color correction is an important step in camera calibrationas it allows to get a device independent

color space from a device dependent color space. It is usually performed by applying a 3-by-3

color correction matrix (CCM) to the sensor R’G’B’ data [31,32]. For the camera used in this

experiment, a device independent sRGB space was chosen and aCCM was formulated by min-

imising the RMS difference between measured and original values of each color block in the 24

patch MacBeth ColorChecker chart.

Due to pixel cross talk more than one color channel responds to a single color light, as red light

is picked up by green and blue channel, green light produces aresponse in red and blue channel,

while blue light is seen by red and green channel causing an overall color distortion. This channel
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cross talk was minimised by using a Semrock FF01-457/530/628-23.3-D triband filter. The filter

also keeps the spectral response of the LEDs to a relatively narrow range of wavelengths as shown

in Fig.3 (b) and cuts off the response of the camera below 450nm (close to ultraviolet) and above

650nm in the infrared region.
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Fig. 3. (a) CCD spectral response. (b) Triband filter response. (c) Spectral response

of the LEDs

For the CCD response in Fig. 3 (a), there is difference in quantum efficiency of all three

channels and there are slight differences in transmission of each bandpass region of the triband

filter. This means that equal exposures will not detect equalamounts in red, green and blue light.

This can be overcome by either changing the camera gain or by varying the exposure time for

each channel - a technique also used by [33, p. 83] to compensate for a reduced strength signal
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after scaling the exposure time. Both these methods have their own drawbacks, an increase in gain

also increases the quantization noise [34] while an increase in exposure time increases the signal

dependent shot noise. We compared the error in reconstructed height for skin resulting due to

both quantisation and shot noise. The error in reconstructed height was relatively less when the

exposure time was varied and hence was selected for further analysis. Consequently, the exposure

times for red and green light was kept longer than the blue andwas controlled by varying the

integrating time of sensor. The sensor uses an electronic shutter and has light shielded areas to

accumulate and transport the charges at the end of the integration period. A microcontroller was

used to precisely control the integration times for each color light. Overall, this technique keeps

the signal quantization errors to a minimum and also avoids reduction in the signal to noise ratio.

Keeping in view the wavelength range limited by the triband filter, the patches in the last row

of the MacBeth ColorChecker chart can be considered nearly spectrally neutral, meaning they

reflect all color bands equally. These patches were used to see whether the CCD recorded equal

intensities of each red, green and blue light after calibration for differences in quantum efficiency.

5.C. Skin Replica and Ground Truth

Twenty two subjects were selected for this experiment; among them, ten were Caucasians, eight

Asians and four African American. Only subjects with no history of skin condition/allergy with

visible wrinkles on their forehead were selected. The measurements were done for all subjects in a

cool dry place with constant temperature. The subjects werestrictly advised not to use any makeup

or moisturisers on their face and to make sure the skin surface was free of dust particles and sweat,

the skin was gently wiped with a dry swab as dust particles or sweat can cause imperfection in the

replica and in the recovered shape. The subjects were also asked to keep their eyes closed as it can

alter the depth of wrinkles. The procedure involved imagingthe skin directly using our photometric

stereo device and then by producing a corresponding replicafor the same skin location for each

subject as shown in Fig. 4. All replicas were made using the SILFLO R© impression material. The

material has excellent flow and hardening characteristics,can reproduce very fine skin texture

and has been widely used before for very fine replication of skin features [35–37]. The replica

produced for each corresponding skin patch in the experiment gave a negative height of the skin

i.e. wherever there is a wrinkle in the skin, the replica produced a peak. These replicas were then

imaged using a PRIMOS 4R© device and used as a ground truth. This PRIMOS device is based

on the principle of structured light 3D imaging and has already proven to work for wrinkles and

scar evaluation and for efficacy testing of skin treatments [38–41]. Its acquisition time is<100ms

with a lateral and vertical resolution of 28µm and 2µm respectively. The PRIMOS device has also

proven to give comparable results to a mechanical profilometer [42], and unlike photometric stereo

its accuracy is not dependent on the reflectance properties of replica or skin as it uses the variation
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(a) (b)

(c)

Fig. 4. (Color online)(a) Forehead wrinkle directly imagedusing photometric stereo

device. (b) Corresponding replica. (c)3D reconstruction of skin images takenin

vivo.

in projected pattern to recover height information. Hence the measurements from this device were

used to verify thein vivo measurements produced by our photometric stereo device.

The PRIMOS device has different spatial resolution and has asmall measurement area compared

to our device. First overlapping regions from both devices were extracted by using markers that

were added at the boundary of the replica as shown in Fig. 4 (a)and (b). The data from Photometric

stereo was then interpolated by using PRIMOS data as reference and finally the registration of both

3D data sets was achieved using the iterative closest point algorithm [43].

6. ERROR ANALYSIS

Table 1 shows the root mean square (RMS) error in reconstructed surface height for all subjects and

for each individual colored light. The RMS error in height shows that the error is minimum while

using red light for all subjects and it increases as the wavelength decreases from green towards blue

light. Fig. 5 (a) shows a 2D slice from the reconstructed height at the wrinkled part of the skin. It

is clear that at concave parts of the skin (wrinkles) the error was significant for each color of light

where red light suffered the most from interreflections due to higher albedo and underestimated

the wrinkle depth while green and blue light overestimated the wrinkle depth due to relatively

non-diffuse BRDF [30].
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Fig. 5. (Color online)(a) 2D Profiles obtained for the wrinkled region from each

colour light and our proposed method (The wrinkle lies between 6-8mm length).

(b)-(f) RMS error in height from red, green, blue, white light and our algorithm

respectively (The dotted rectangular region points out thelocation of wrinkle).
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Since white light is an aggregate of all three colors it also overestimated the wrinkle depth as it

has one part of red and two parts of green and blue combined.

Integration of surface normal data can introduce errors in the reconstruction of the surface. An

analysis of surface slant angles without integration was carried out. At the wrinkled region and with

reference to the slope estimation shown in Fig. 6, it is evident that the over and underestimation

of surface normals from the three primary color lights stilloccurs and the error in reconstructed

height is not just due to the integration method used. To minimize the error, our proposed method

makes use of spectral variation of surface normals in gradient space, consequently making it free

of integration method used.
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Fig. 6. (Color online)(a) Over and underestimation of slopefrom each (R, G, B)

light at the wrinkled region (valley). The mid region data value rise represents low-

est point of valley of wrinkle where slope changes sign. (b) Increased scale to show

differences in slope from one side of valley.

7. SURFACE NORMAL MAPPING IN GRADIENT SPACE

Mapping of surface normal data in gradient space gives useful cues for finding a surface that has

the right balance of fine scale and global topography. The gradients from red and green color light

(R(p,q),G(p,q)) from Fig. 7 show that the gradients for a patch of surface aremore spread from

green light and they get more and more compactly contained for longer wavelengths towards the
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Fig. 7. Gradient map obtained from red and green light (The center cluster of a

lighter shading represents the group of gradients from red light).

red light, this is mainly due to a smoothing effect under red light and the opposite effect under

green light. By controlling the amount of spread in gradients from red light we can resolve a

surface which has the right balance of high and low frequencydata. This has been achieved by

altering the orientation of the gradients from the directions obtained under red light towards the

directions obtained under green light.

By fitting linear and quadratic functions between gradientsrecovered from each R, G, B light

(R(p,q) , G(p,q) andB(p,q)), a bounding region is obtained as shown in Fig. 8. This bounded

region provides the search space for finding the optimal gradient for each point. By defining a

constraint in the Fourier domain the optimal point lying in the bounded region is obtained. This

results in emulation of a surface that is closer to the groundtruth.

The selection of an optimum point for each normal is difficultas the movement of gradients from

red towards green is different for each point in the gradientmap and for each skin type. Dong and

Liang [44, 45] used Fourier analysis to obtain a perfect synthetic gradient map of a Lambertian

surface and determined a constraint to extract diffuse components for different reflectance models.

We use this constraint to find the optimum point in the gradient map that is closer to the ground

truth for each skin type.

Given a surface described as a height function:

Z = S(x,y) (2)
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Fig. 8. Movement of gradients from red light towards the green. The gradient set is

calculated in the region bounded between quadratic and linear fits.

At a given point on a surfaceS(x,y) the gradients inx andy directions are given as:

grad(S(x,y)) = (p(x,y),q(x,y)) = [
∂ z(x,y)

∂x
,
∂ z(x,y)

∂y
]

By taking the Fourier transform (F ) of each pair of surface gradientsp(x,y) andq(x,y) we get

their corresponding expressions in frequency domainP(c, r), Q(c, r).

F (p(x,y)) = P(c,r) = icH(c,r) (3)

F (q(x,y)) = Q(c,r) = irH(c,r) (4)

WhereH(c,r) is the Fourier transform of the surface height mapS(x,y) and(c,r) represents the

2D spatial frequency coordinate. From Eq. (4) and (5)

rP(c,r) = cQ(c,r) (5)

Given the location of two pointspr(x,y), qr(x,y) andpg(x,y), qg(x,y) in gradient space from red

and green light respectively (Subscriptsr andg are for red and green light), the gradients from red

light are moved towards the green and a new location is acquired atpp(x,y), qq(x,y). By using a

quadratic and linear fit function a new set of gradients is obtained for each point in the gradient

map.

P1...s(x1,y1)...P1...s(xm,yn) andQ1...s(x1,y1)...Q1...s(xm,yn) (6)

Wherem×n is the total number of points in the gradient map,s represents the number of points

in the search space generated for a single location in gradient map. By minimizing the constraint
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condition below proposed by Dong, we find the optimum gradient map from the set of gradients in

(7).

|rP(c,r)− cQ(c,r)| (7)

An inverse Fourier transform is taken of the optimum gradient map from (8) and integrated to

get the resultant height map. Fig. 5 shows a profile of the resultant height obtained. Our method

emulates a surface that lies between the surfaces obtained from red and green light and is thus

closer to the ground truth. It also minimizes the underestimation of wrinkle depth and improves

the overall accuracy in recovery of surface data for all Caucasian, Asian and African American

skin types, as shown in Table 1 and 2.

8. VALIDATION OF OUR METHOD

The proposed technique uses gradients from red light as a base as it already has the minimum

error in reconstructed height. It produces maximum variation at the wrinkled regions of the skin

to compensate for underestimation of depth, however at relatively flatter parts of the skin it keeps

the variation to a minimum, consequently keeping the estimated height close to the ground truth

as shown in Fig. 5. The method was tested on all subjects and the RMS error in height andl2-

Table 1. Mean and standard deviation (SD) of RMS error in height for each skin

type and the corresponding light used.

RMS error

Red light Green light Blue light White light Our method

Caucasian Mean 1.3150 1.5212 2.2487 1.5105 0.7174

SD 0.8565 0.9852 1.3722 0.9573 0.5180

Asian Mean 1.3507 1.5409 3.02613 1.7294 0.7277

SD 0.7797 0.9549 1.7022 1.0587 0.4911

African American Mean 3.7145 5.7687 7.2140 5.7087 3.3183

SD 1.5353 1.1518 1.5821 1.2263 0.7594

norm error was calculated by comparison with PRIMOS ground truth data. Our method produced

significantly reduced error when compared to conventional white light or each R, G, B light as

shown in Table. 1 and 2. Also, the wrinkled areas recovered using our technique minimizes the

effects of any over and underestimation of wrinkle depth.
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Table 2. Mean and standard deviation (SD) ofl2-norm error for all skin types and

the corresponding light used.

l2-norm error

Red light Green light Blue light White light Our method

Caucasian Mean 0.1741 0.2162 0.3197 0.2073 0.1106

SD 0.1263 0.0935 0.1997 0.0806 0.0611

Asian Mean 0.2112 0.3357 0.3936 0.3527 0.1627

SD 0.1333 0.1920 0.2207 0.2045 0.0885

African American Mean 0.4881 0.6914 0.8066 0.6897 0.4161

SD 0.1274 0.1490 0.1739 0.1439 0.1353

9. DISCUSSION

The results in section 8 demonstrate the effectiveness of our method and also shows that for overall

skin geometry red light is less prone to error in comparison to using green, blue and white light,

as its accuracy suffered only at concave parts of the surface. However, the RMS andl2-norm error

clearly indicate that our technique further reduced the error when compared to each red, green,

blue and white light.

The availability of multispectral skin BRDF data is scarce,as most measurements are taken using

white light for a limited set of incoming and outgoing angles. There are currently no datasets

that show dense BRDF measurements for different types of skin, over a range of wavelengths.

Knowledge of skin BRDF is not only important for realistic skin renderings but also for accurate

3D reconstruction of skin, as shape from shading algorithmsare dependent on how light is reflected

from the surface and how light distribution varies as a function of wavelength.

The interreflection problem is very significant for shape from shading techniques and it is not just

the wrinkles in skin that suffer from interreflections; it would be interesting to see its effects on

moles, lesions, acne/ keloid/ burn and surgical scars, as these can appear as an elevated skin growth

or indentation in the skin and usually have a different colorwhen compared to the surrounding

skin. This difference in color would define the amount of interreflections at the boundary of the

elevated skin growth. However, for indented skin, the degree of concavity would also be important

in determining the amount of interreflection.
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10. CONCLUSION

It is evident from the results that the BRDF of skin is not Lambertian in the visible part of the

spectrum. Our findings that a lack of diffuse reflection when imaging using the green light and that

a relativity diffuse behavior exhibited under red light, adheres to the BRDF measurements pro-

duced by [30]. However, although there is no skin BRDF data for the blue part of the spectrum, the

further decrease in depth of penetration and increase in absorption from 523nm to 462nm suggests

a reduction of diffuse light reflection and increase in the specular component. This variation in

BRDF also explains the variation in shape estimation from each color light at the concave parts of

the skin where we found both over and under estimation of depth.

The use of white light for imaging skin using photometric stereo proved to be less effective than

using lights in the red or infrared regions. Because white light is an aggregate of red, green and

blue parts of the spectrum, the accuracy of the surface data obtained suffered due to the non-diffuse

BRDF, especially at green and blue part of the visible spectrum.

We have presented a technique for minimizing the effects of interreflection in skin with topographic

features and varying reflectance and BRDF. Results were verified using ground truth data from a

PRIMOS 4 device which show improvement in surface reconstruction for both light and dark skin

subjects after using our method. Our photometric stereo based 3D capture system has proved to be

an efficient skin microrelief imaging device, it is low-costand requires less acquisition and calibra-

tion time and also has a much larger field of view compared to other commercial skin microrelief

imaging systems and can be used forin vivo measurement and quantitative analysis of skin relief.

In future the experimental work will be extended by using polarizer’s to separate diffuse from

specular reflection over the visible spectrum in order to getmore accurate skin topography.
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