435 research outputs found

    Integration of Computer Vision and Natural Language Processing in Multimedia Robotics Application

    Get PDF
    Computer vision and natural language processing (NLP) are two active machine learning research areas. However, the integration of these two areas gives rise to a new interdisciplinary field, which is currently attracting more attention of researchers. Research has been carried out to extract the text associated with an image or a video that can assist in making computer vision effective. Moreover, researchers focus on utilizing NLP to extract the meaning of words through the use of computer vision. This concept is widely used in robotics. Although robots should observe the surroundings from different ways of interactions, natural gestures and spoken languages are the most convenient way for humans to interact with the robots. This would be possible only if the robots can understand such types of interactions. In the present paper, the proposed integrated application is utilized for guiding vision-impaired people. As vision is the most essential in the life of a human being, an alternative source that helps in guiding the blind in their movements is highly important. For this purpose, the current paper uses a smartphone with the capabilities of vision, language, and intelligence which has been attached to the blind person to capture the images of their surroundings, and it is associated with a Faster Region Convolutional Neural Network (F-RCNN) based central server to detect the objects in the image to inform the person about them and avoid obstacles in their way. These results are passed to the smartphone which produces a speech output for the guidance of the blinds

    Simulations of embodied evolving semiosis: Emergent semantics in artificial environments

    Get PDF
    As we enter this amazing new world of artificial and virtual systems and environments in the context of human communities, we are interested in the development of systems and environments which have the capacity to grow and evolve their own meanings in the context of this community of interaction. In this paper we analyze the necessary conditions to achieve systems and environments with these properties: 1) a coupled interaction between a system and its environment; 2) an environment with sufficient initial richness and structure to allow for; 3) embodied emergent classification of that environment-system coupling; 4) which is subject to pragmatic selection

    A Visualization Tool for the Mini-Robot Khepera: Behaviour Analysis and Optimization

    Get PDF
    Löffler A, Klahold J, Hußmann M, Rückert U. A Visualization Tool for the Mini-Robot Khepera: Behaviour Analysis and Optimization. In: Floreano D, Nicoud J-D, Mondada F, eds. Proceedings of the 5th International European Conference on Artificial Life (ECAL99). Vol 1674. Lausanne, Switzerland: Springer-Verlag; 1999: 329-333.The design of behavior generating control structures for real robots acting autonomously in a real and changing environment is a complex task. This is in particular true with respect to the debugging process, the documentation of the encountered behavior, its quantitative analysis and the final evaluation. To successfully implement such a behavior, it is vital to couple the synthesis on a simulator and the experiment on a real robot with a thorough analysis. The available simulator tools in general only allow behavioral snapshots and do not provide the option of online interference. In order to cure these shortcomings, a visualization tool for aposteriori graphical analysis of recorded data sets which gives access to all relevant internal states and parameters of the system is presented. The mini-robot Khepera has been chosen as experimentatory platform

    Logic programming for deliberative robotic task planning

    Get PDF
    Over the last decade, the use of robots in production and daily life has increased. With increasingly complex tasks and interaction in different environments including humans, robots are required a higher level of autonomy for efficient deliberation. Task planning is a key element of deliberation. It combines elementary operations into a structured plan to satisfy a prescribed goal, given specifications on the robot and the environment. In this manuscript, we present a survey on recent advances in the application of logic programming to the problem of task planning. Logic programming offers several advantages compared to other approaches, including greater expressivity and interpretability which may aid in the development of safe and reliable robots. We analyze different planners and their suitability for specific robotic applications, based on expressivity in domain representation, computational efficiency and software implementation. In this way, we support the robotic designer in choosing the best tool for his application

    The Mini-Robot Khepera as a Foraging Animate: Synthesis and Analysis of Behaviour

    Get PDF
    Löffler A, Klahold J, Rückert U. The Mini-Robot Khepera as a Foraging Animate: Synthesis and Analysis of Behaviour. In: Rückert U, Sitte J, Witkowski U, eds. Proceedings of the 5th International Heinz Nixdorf Symposium: Autonomous Minirobots for Research and Edutainment (AMiRE01). Vol 97. Paderborn, Germany: Heinz Nixdorf Institut, Universität Paderborn; 2001: 93-130.The work presented in this paper deals with the development of a methodology for resource-efficient behaviour synthesis on autonomous systems. In this context, a definition of a maximal problem with respect to the resources of a given system is introduced. It is elucidated by means of an exemplary implementation of the solution to such a problem using the mini-robot Khepera as the experimental platform. The described task consists of exploring an unknown and dynamically changing environment, collecting and transporting objects, which are associated with light-sources, and navigating to a home-base. The critical point is represented by the accumulated positioning errors in odometrical path-integration due to slippage. Therefore, adaptive sensor calibration using a specific variant of Kohonen’s algorithm is applied in two cases to extract symbolic, e.g. geometric, information from the sub-symbolic sensor data, which is used to enhance position control by landmark mapping and orientation. In order to successfully handle the arising complex interactions, a heterogeneous control-architecture based on a parallel implementation of basic behaviours coupled by a rule-based central unit is proposed

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy
    corecore