
A Visualization Tool for the Mini-Robot
Khepera: Behavior Analysis and Optimization

Axel Löffler, Jürgen Klahold, Manfred Hußmann, and Ulrich Rückert

Heinz Nixdorf Institute, System and Circuit Technology, Paderborn University,
Fürstenalle 11, D-33102 Paderborn, Germany,

loeffler@hni.uni-paderborn.de,

http://wwwhni.uni-paderborn.de/fachgruppen/rueckert/KHEPERA

In Proceedings of the 5th International European Conference on Artificial Life
(ECAL99), volume 1674 of Lecture Notes in Artificial Intelligence, pages 329-
333, Lausanne, Switzerland, 13. - 17. September 1999. Springer-Verlag.

Abstract. The design of behavior generating control structures for real
robots acting autonomously in a real and changing environment is a com-
plex task. This is in particular true with respect to the debugging process,
the documentation of the encountered behavior, its quantitative analysis
and the final evaluation. To successfully implement such a behavior, it is
vital to couple the synthesis on a simulator and the experiment on a real
robot with a thorough analysis. The available simulator tools in general
only allow behavioral snapshots and do not provide the option of online
interference. In order to cure these shortcomings, a visualization tool for
aposteriori graphical analysis of recorded data sets which gives access to
all relevant internal states and parameters of the system is presented.
The mini-robot Khepera has been chosen as experimentatory platform.

1 Introduction

The design of behavior generating control structures for real robots acting au-
tonomously in a real and changing environment is a complex task. In [12] the use-
fulness of embodiment for robotics is comprehensively pointed out as algorithms
developed by sole simulation of autonomous agents in restricted and controlled
environments may fail when transfered to a real system. Nevertheless, simula-
tors as in [9] are very useful to obtain a primal executable version of a control
structure generating the desired behavior. On the other hand, especially due to
the fact that, in general, only momentary snapshots of the encountered behavior
are available through these tools, a judgment of the behavioral dynamics is made
very difficult. Moreover, the option of online interference concerning for example
parameter variations is naturally minimal. For this, a completely new test run
is required without the possibility to compare two instances directly. Coupling
of synthesis and analysis in a feedback loop leads to an evolutionary process
between implemented behavior and designer’s knowledge. Therefore, we propose
to extend the common two step program in behavior design (create a satisfying
simulator solution, then adapt it to the real robot case) by a third stage, an
aposteriori holistic analysis of the encountered behavior (Fig. 1). The latter re-
quires the development of appropriate software tools as the one presented in this
paper. Our basic approach for the implementation of behavior generating control
structures for autonomous agents follows the broad outline of the so-called nou-
velle Artificial Intelligence [2]. Complex behavior is produced by the interaction



adaption Analysis

Visualisation
Tool

Synthesis

Simulator

data

transfer

parameter optimizationreal environment

comparison

Fig. 1. The proposed design cycle with a photography of the mini-robot Khepera [3].

Analysis
Tool

parameter
variation

and
optimization

graphical

represen-
tation

sensor data

geometrical
calculation

motor speed
values

Fig. 2. A schematic of the input data flow of the visualization tool with a full-scale
view of its graphical representation is shown together with the corresponding simulated
environment (40 cm× 35 cm, total runtime: 18 sec). The control panel (bottom right)
of the visualization tool permits to select a specific part of the data set in question, to
start or stop the visualization at a particular point and to view the data stepwise.

of ’simple’ modules active in parallel like the Braitenberg patterns [1], artificial
neural networks, geometric calculations and rule-based reasoning without relying
on extensive and resource inefficient internal representations of the environment.
The basic modules are either hardwired or adaptive. In the first case, one may
rely on genetic algorithms and evolutionary programming [4]. An alternative is
to consider hand-designed algorithms, wherein the optimization process is left
to the designer. This approach usually leads to the design of a more complex
and easier-to-understand behavior. Secondly, one may endeavor the implementa-
tion of adaptive, self-organizing structures. Here, either online learning [7], [13],
which allows to adapt to an unknown environment, or off-line training [8], which
- although limited in the case of a changing environment - in general produces
more accurate results, are conceivable. Eventually, [5], [6] and [10] may be seen as
complementary to the presented approach. Firstly, evolutionary robotics instead
of hand design are used to build the controllers. Secondly, the reality gap be-
tween simulation and real robot behavior is bridged not by aposteriori analysis,
but by an apriori set up of valid simulations. Common to all these approaches is
the need for data documentation permitting a quantitative analysis, which has
prior only been possible through simulations [11]. By means of the graphically
represented data, an evaluation of the encountered behavior becomes possible.
Hence, the designer is able to conduct an optimization process by appropriately
varying the system and training parameters without directing a considerable
number of test runs. The visualization tool (Fig. 2) described in the following
section is conceived to actively support this process.



2 Building a dynamical view of the environment

The main purpose of the presented software tool is to build a holistic view of
the robot’s environment, which may be subject to dynamical changes. Note that
the perceived distribution of obstacles is purely subjective, i.e. derived from
the sensory-motor data of the robot. To stay abreast of environmental changes,
special features (Fig. 2) permit to suppress obsolete parts of the encountered
obstacle history. Every navigational tasks like transport or homing is based on a
position calculating process. Since the mini-robot Khepera in its basic configura-
tion does not dispose of far-ranging active sensors necessary to obtain topological
information, we apply an explicitly geometrical method. The current position is
obtained by odometrical path integration using the incremental encoder values
nL, nR as variables and the wheel distance d as well as the advancement per
pulse ∆l as system parameters. Since the designer knows the exact geometry of
the real environment, one may compare the robot’s perception to reality. This
is demonstrated by an experiment using an environment of rectangular geom-
etry (75 cm × 60 cm). The robot follows the walls for roughly two rounds (92
sec, i.e. 1126 program cycles) and stops at an internal angle of 71.7◦ instead of
90◦ (correct). The following results concerning angular errors due to parameter
variations (original ones: d=52mm, ∆l=0.08mm) have been obtained by means
of the visualization tool (Table 1,2):

∆l [mm] 0.076 0.077 0.078 0.079 0.080 0.081 0.082 0.083 0.084

∆α [◦] 18.6 9.4 0.1 -9.1 -18.3 -27.6 -36.8 -46.0 -55.2
Table 1. Angular error∆α by variation of ∆l.

d [mm] 48 49 50 51 52 53 54 55 56

∆α [◦] -79.8 -63.5 -47.9 -32.8 -18.3 -4.4 9.0 21.9 34.4
Table 2. Angular error ∆α by variation of d.

Thus the presented tool may be used to optimize the odometrical parameters
for individual real robots. Moreover, it gives the designer a hint of the time in-
terval during which the position calculation system works sufficiently well. This
may be seen through another experiment, where the same environment as be-
fore, but with an additional light source has been used. An event is defined by
locating a light source. After the first detection, the robot was able to recognize
the light source five times, then registered it as a different one (a confidence
area of 20cm in Manhatten distance concerning the light source position was
used). Hence, the positioning system worked well during 297 sec, i.e. 3825 up-
date cycles. As already mentioned, the infrared proximity sensors are used to
construct an estimation of the current environmental structures. Moreover, these
data also form the sensor space on which different exploration modules like ob-
stacle avoidance (OA), edge following (EF), turning (Turn) and point-to-point
navigation (Nav) work in parallel, which are visualized in the control panel (Fig.
3). The spatial form of the sensor characteristics may be customized in order
to simulate sensor degradation or the use of other kinds of proximity sensors.
Furthermore, an artificial neural network has been applied for extracting a sym-
bolic angle-to-light source information from the subsymbolic sensor data stream
(Fig. 4). Eventually, a comparison between the simulator (Fig. 2) solution and



Fig. 3. Visualization of the infrared sensor values (S1-6, A[verage]S), the speed values
determined by different software modules and the values from the incremental encoders
n (left). The possible positions of obstacles, which are causing this specific sensor input,
are drawn around the robot (middle). A high sensor value corresponds to a nearby and
unextended obstacle whereas a low one indicates a dislodged object. The average sensor
noise is taken into account by the thickness of the traits. Finally, the sensor trait may
be customized (right).

red

yellow

green

Fig. 4. Visualization of the light sensor values (top middle) and the artificial neural
network (bottom middle). It is possible to feed different thresholds (top middle/right)
for analyzing the photo-sensitivity of the implemented algorithms.

Fig. 5. A complete data set obtained from a real Khepera acting in a real environment
is shown with a schematic of the corresponding actual obstacle structure (80 cm×80 cm,
total runtime: 208 sec).

the real robot’s implementation (Fig. 5) of the Dynamical Nightwatch’s Problem
[8] reveals a shortcoming that is inherent to all simulations: the position deter-
mination is supposed to be perfect, which is necessary for correct representation.
Note that in simulations, path integration is usually not used. In contrast, for real
systems, it still presents the main position calculating method. Hence, the most
restricting limitation to the real robot’s performance arises from the erroneous
position calculation due to wheel slippage and unknown fabrication tolerances.
As demonstrated above, the presented visualization tool is particularly apt to
assist in the minimization of errors due to the latter.



3 Conclusion

The presented visualization tool for the mini-robot Khepera permits the exten-
sion of the common two step design program for behavior generation by a third
stage: an aposteriori analysis of the encountered behavior. This allows to set up
a synthesis-analysis feedback loop evolutionarily improving the envisaged behav-
ioral design. In particular, the holistic visualization of the encountered behavior
enables the designer to thoroughly document, analyze, evaluate and compare the
performance of his implementation.
Acknowledgments. We are very grateful to Prof. G. Domik whose lecture
on visualization motivated us to undertake the presented work. In addition,
the corresponding author is supported by the DFG-Graduiertenkolleg ”Parallele
Rechnernetzwerke in der Produktionstechnik”, GRK 124/2-96.

References

1. V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT
Press/Bradford Books, 1984.

2. R. A. Brooks. Intelligence without Representation. Artificial Intelligence, 47:139–
159, 1987.

3. Laboratoire de Microinformatique l‘Ecole Polytechnique Fédérale de
Lausanne. Mobile Robots as Research Tools: The K-Robot Family.
http://diwww.epfl.ch/Khepera/, 1998.

4. D. Floreano and F. Mondada. Evolutionary neurocontrollers for autonomous mo-
bile robots. Neural Networks, 11:1461–1478, 1998.

5. N. Jakobi. Evolutionary Robotics and the Radical Envelope of Noise Hypothesis.
Journal Of Adaptive Behaviour, 6, 1997.

6. N. Jakobi. The Minimal Simulation Approach To Evolutionary Robotics. In Proc.
of ER’98, AI Systems Books, 1998.

7. D. Lambrinos. Navigating with an Adaptive Light Compass. In Proc. of 3rd Eur.
Conf. on Art. Life, volume 929 of Lecture Notes in Artificial Intelligence, pages
602–613. Springer, 1995.

8. A. Löffler, J. Klahold, and U. Rückert. The Dynamical Nightwatch’s Problem
Solved by the Autonomous Micro-Robot Khepera. In Proc. of 3rd Eur. Conf. on
Art. Evolution, volume 1363 of Lecture Notes in Computer Science, pages 303–313.
Springer, 1998.

9. O. Michel. Khepera Simulator 2.0, Webots, 1999.
http://diwww.epfl.ch/lami/team/michel/khep-sim/ and www.cyberbotics.com/.

10. O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in simulated and
real environments. In Proc. of 3rd Eur. Conf. on Art. Life, volume 929 of Lecture
Notes in Artificial Intelligence, pages 417–434. Springer, 1995.

11. A. G. Pipe, B. Carse, T. C. Fogarty, and A. Winfied. Learning Subjective ”Cog-
nitive Maps” in the Presence of Sensory-Motor Errors. In Proc. of 3rd Eur. Conf.
on Art. Life, volume 929 of Lecture Notes in Artificial Intelligence, pages 463–476.
Springer, 1995.

12. E. Prem. Grounding and the Entailment Structure in Robots and Artificial Life.
In Proc. of 3rd Eur. Conf. on Art. Life, volume 929 of Lecture Notes in Artificial
Inteligence, pages 39–51. Springer, 1995.

13. C. Scheier and R. Pfeifer. Classification as Sensory-Motor Coordination, A Case
Study on Autonomous Agents. In Proc. of 3rd Eur. Conf. on Art. Life, volume
929 of Lecture Notes in Artificial Intelligence, pages 657–667. Springer, 1995.


