11,613 research outputs found

    Crossmodal content binding in information-processing architectures

    Get PDF
    Operating in a physical context, an intelligent robot faces two fundamental problems. First, it needs to combine information from its different sensors to form a representation of the environment that is more complete than any of its sensors on its own could provide. Second, it needs to combine high-level representations (such as those for planning and dialogue) with its sensory information, to ensure that the interpretations of these symbolic representations are grounded in the situated context. Previous approaches to this problem have used techniques such as (low-level) information fusion, ontological reasoning, and (high-level) concept learning. This paper presents a framework in which these, and other approaches, can be combined to form a shared representation of the current state of the robot in relation to its environment and other agents. Preliminary results from an implemented system are presented to illustrate how the framework supports behaviours commonly required of an intelligent robot

    Thinking About Events: A Pragmatist Account of the Objects of Episodic Hypothetical Thought

    Get PDF
    The debate over the objects of episodic memory has for some time been stalled, with few alternatives to familiar forms of direct and indirect realism being advanced. This paper moves the debate forward by building on insights from the recent psychological literature on memory as a form of episodic hypothetical thought (or mental time travel) and the recent philosophical literature on relationalist and representationalist approaches to perception. The former suggests that an adequate account of the objects of episodic memory will have to be a special case of an account of the objects of episodic hypothetical thought more generally. The latter suggests that an adequate account of the objects of episodic hypothetical thought will have to combine features of direct realism and representationalism. We develop a novel pragmatist-inspired account of the objects of episodic hypothetical thought that has the requisite features

    Directional adposition use in English, Swedish and Finnish

    Get PDF
    Directional adpositions such as to the left of describe where a Figure is in relation to a Ground. English and Swedish directional adpositions refer to the location of a Figure in relation to a Ground, whether both are static or in motion. In contrast, the Finnish directional adpositions edellä (in front of) and jäljessä (behind) solely describe the location of a moving Figure in relation to a moving Ground (Nikanne, 2003). When using directional adpositions, a frame of reference must be assumed for interpreting the meaning of directional adpositions. For example, the meaning of to the left of in English can be based on a relative (speaker or listener based) reference frame or an intrinsic (object based) reference frame (Levinson, 1996). When a Figure and a Ground are both in motion, it is possible for a Figure to be described as being behind or in front of the Ground, even if neither have intrinsic features. As shown by Walker (in preparation), there are good reasons to assume that in the latter case a motion based reference frame is involved. This means that if Finnish speakers would use edellä (in front of) and jäljessä (behind) more frequently in situations where both the Figure and Ground are in motion, a difference in reference frame use between Finnish on one hand and English and Swedish on the other could be expected. We asked native English, Swedish and Finnish speakers’ to select adpositions from a language specific list to describe the location of a Figure relative to a Ground when both were shown to be moving on a computer screen. We were interested in any differences between Finnish, English and Swedish speakers. All languages showed a predominant use of directional spatial adpositions referring to the lexical concepts TO THE LEFT OF, TO THE RIGHT OF, ABOVE and BELOW. There were no differences between the languages in directional adpositions use or reference frame use, including reference frame use based on motion. We conclude that despite differences in the grammars of the languages involved, and potential differences in reference frame system use, the three languages investigated encode Figure location in relation to Ground location in a similar way when both are in motion. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslingiuistic evidence. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (Eds.) Language and Space (pp.109-170). Massachusetts: MIT Press. Nikanne, U. (2003). How Finnish postpositions see the axis system. In E. van der Zee & J. Slack (Eds.), Representing direction in language and space. Oxford, UK: Oxford University Press. Walker, C. (in preparation). Motion encoding in language, the use of spatial locatives in a motion context. Unpublished doctoral dissertation, University of Lincoln, Lincoln. United Kingdo

    Towards general spatial intelligence

    Get PDF
    The goal of General Spatial Intelligence is to present a unified theory to support the various aspects of spatial experience, whether physical or cognitive. We acknowledge the fact that GIScience has to assume a particular worldview, resulting from specific positions regarding metaphysics, ontology, epistemology, mind, language, cognition and representation. Implicit positions regarding these domains may allow solutions to isolated problems but often hamper a more encompassing approach. We argue that explicitly defining a worldview allows the grounding and derivation of multi-modal models, establishing precise problems, allowing falsifiability. We present an example of such a theory founded on process metaphysics, where the ontological elements are called differences. We show that a worldview has implications regarding the nature of space and, in the case of the chosen metaphysical layer, favours a model of space as true spacetime, i.e. four-dimensionality. Finally we illustrate the approach using a scenario from psychology and AI based planning

    From Verbs to Tasks: An Integrated Account of Learning Tasks from Situated Interactive Instruction.

    Full text link
    Intelligent collaborative agents are becoming common in the human society. From virtual assistants such as Siri and Google Now to assistive robots, they contribute to human activities in a variety of ways. As they become more pervasive, the challenge of customizing them to a variety of environments and tasks becomes critical. It is infeasible for engineers to program them for each individual use. Our research aims at building interactive robots and agents that adapt to new environments autonomously by interacting with human users using natural modalities. This dissertation studies the problem of learning novel tasks from human-agent dialog. We propose a novel approach for interactive task learning, situated interactive instruction (SII), and investigate approaches to three computational challenges that arise in designing SII agents: situated comprehension, mixed-initiative interaction, and interactive task learning. We propose a novel mixed-modality grounded representation for task verbs which encompasses their lexical, semantic, and task-oriented aspects. This representation is useful in situated comprehension and can be learned through human-agent interactions. We introduce the Indexical Model of comprehension that can exploit extra-linguistic contexts for resolving semantic ambiguities in situated comprehension of task commands. The Indexical model is integrated with a mixed-initiative interaction model that facilitates a flexible task-oriented human-agent dialog. This dialog serves as the basis of interactive task learning. We propose an interactive variation of explanation-based learning that can acquire the proposed representation. We demonstrate that our learning paradigm is efficient, can transfer knowledge between structurally similar tasks, integrates agent-driven exploration with instructional learning, and can acquire several tasks. The methods proposed in this thesis are integrated in Rosie - a generally instructable agent developed in the Soar cognitive architecture and embodied on a table-top robot.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111573/1/shiwali_1.pd

    Theories of Meaning for the Internet of Things

    Get PDF
    In this chapter, we consider the theoretical foundations for representing knowledge in the Internet of Things context. Specifically, we consider (1) the model-theoretic semantics (i.e., extensional semantics), (2) the possible-world semantics (i.e., intensional semantics), (3) the situation semantics, and (4) the cognitive/distributional semantics. Given the peculiarities of the Internet of Things, we pay particular attention to (a) perception (i.e., how to establish a connection to the world), (b) intersubjectivity (i.e., how to align world representations), and (c) the dynamics of world knowledge (i.e., how to model events). We come to the conclusion that each of the semantic theories helps in modeling specific aspects, but does not sufficiently address all three aspects simultaneously

    Merging multi-modal information and cross-modal learning in artificial cognitive systems

    Get PDF
    Čezmodalno povezovanje je združevanje dveh ali več modalnih predstavitev lastnosti neke entitete v skupno predstavitev. Gre za eno temeljnih lastnosti spoznavnih sistemov, ki delujejo v kompleksnem okolju. Da bi se spoznavni sistemi uspešno prilagajali spremembam v dinamičnem okolju, je potrebno mehanizem čezmodalnega povezovanja nadgraditi s čezmodalnim učenjem. Morebiti še najtežja naloga pa je integracija obeh mehanizmov v spoznavni sistem. Njuna vloga v takem sistemu je dvojna: premoščanje semantičnih vrzeli med modalnostmi ter mediacija med nižjenivojskimi mehanizmi za obelavo senzorskih podatkov in višjenivojskimi spoznavnimi procesi, kot sta npr. motivacija in načrtovanje. V magistrski nalogi predstavljamo pristop k modeliranju verjetnostnega večmodalnega združevanja informacij v spoznavnih sistemih. S pomočjo mar-kov-skih logičnih omrežij formuliramo model čezmodalnega povezovanja in učenja ter opišemo načela njegovega vključevanja v spoznavne arhitekture. Prototip modela smo ovrednotili samostojno, z eksperimenti, ki simulirajo trimodalno spoznavno arhitekturo. Na podlagi našega pristopa oblikujemo, implementiramo in integriramo tudi podsistem prepričanj, ki premošča semantični prepad v prototipu spoznavnega sistema George. George je inteligenten robot, ki je sposoben zaznavanja in prepoznavanja predmetov iz okolice ter učenja njihovih lastnosti s pomočjo pogovora s človekom. Njegov poglavitni namen je preizkus različnih paradigem o interaktivnemu učenju konceptov. V ta namen smo izdelali in izvedli interaktivne eksperimente za vrednotenje Georgevih vedenjskih mehanizmov. S temi eksperimenti smo naš pristop k večmodalnemu združevanju informacij preizkusili in ovrednotili tudi kot del delujočega spoznavnega sistema.Cross-modal binding is the ability to merge two or more modal representations of the same entity into a single shared representation. This ability is one of the fundamental properties of any cognitive system operating in a complex environment. In order to adapt successfully to changes in a dynamic environment the binding mechanism has to be supplemented with cross-modal learning. But perhaps the most difficult task is the integration of both mechanisms into a cognitive system. Their role in such a system is two-fold: to bridge the semantic gap between modalities, and to mediate between the lower-level mechanisms for processing the sensory data, and the higher-level cognitive processes, such as motivation and planning. In this master thesis, we present an approach to probabilistic merging of multi-modal information in cognitive systems. By this approach, we formulate a model of binding and cross-modal learning in Markov logic networks, and describe the principles of its integration into a cognitive architecture. We implement a prototype of the model and evaluate it with off-line experiments that simulate a cognitive architecture with three modalities. Based on our approach, we design, implement and integrate the belief layer -- a subsystem that bridges the semantic gap in a prototype cognitive system named George. George is an intelligent robot that is able to detect and recognise objects in its surroundings, and learn about their properties in a situated dialogue with a human tutor. Its main purpose is to validate various paradigms of interactive learning. To this end, we have developed and performed on-line experiments that evaluate the mechanisms of robot\u27s behaviour. With these experiments, we were also able to test and evaluate our approach to merging multi-modal information as part of a functional cognitive system

    Causal Theories of Reference for Proper Names

    Get PDF
    Presentation and comparison of the main causal theories of reference for proper names, and a proposal of a new approach based on the analogy of the causal chain of reference with the block chain from blockchain technology and Paul Ricœur's narrative theory. After a brief Introduction in which the types of sentences from the concept of possible worlds are reviewed, and an overview of the theory in the Causal Theory of Reference, I present the causal theory of the reference proposed by Saul Kripke, then two hybrid causal theories developed by Gareth Evans and Michael Devitt. In the section Blockchain and the causal tree of reference I present my idea of developing a new causal theory of reference for proper names through a causal tree of reference. In the Conclusions I talk about the further development of the ways in which the terms of reference could refer to certain objects and individuals, the main criticisms of the causal theories, and suggestions for future development. CONTENTS: Abstract Introduction 1. The causal theory of reference 2. Saul Kripke 3. Gareth Evans 4. Michael Devitt 5. Blockchain and the causal tree of reference Conclusions Bibliografie DOI: 10.13140/RG.2.2.26330.9056

    Perceptual Capacities

    Get PDF
    Despite their importance in the history of philosophy and in particular in the work of Aristotle and Kant, mental capacities have been neglected in recent philosophical work. By contrast, the notion of a capacity is deeply entrenched in psychology and the brain sciences. Driven by the idea that a cognitive system has the capacity it does in virtue of its internal components and their organization, it is standard to appeal to capacities in cognitive psychology. The main benefit of invoking capacities in an account of the mind is that it allows for an elegant counterfactual analysis of mental states: it allows us to analyze mental states on three distinct yet interrelated levels. A first level of analysis pertains to the function of mental capacities. A second level of analysis pertains to the mental capacities employed, irrespective of the context in which they are employed. A third level of analysis pertains to the mental capacities employed, taking into account the context in which they are employed. This paper develops an account of perceptual capacities. This account involves an analysis of their function, their individuation and possession conditions, the relation between perceptual capacities and their employment, as well as their informational and neural base conditions
    • …
    corecore