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1 Why Traditional Knowledge Representation Is
Insufficient

Future information systems, such as virtual assistants, augmented reality systems, and
semi-autonomous or autonomous machines (Chan et al. 2009; Hermann et al. 2016),
require access to large amounts of world knowledge in combination with sensor data.
Consider a smart home scenario involving interconnected light bulbs. Here, a desired
rule could be: “switch on the light in the hallway when somebody enters the home
and set the light level in the hallway to below 50 lux.” In this scenario, there needs
to be a common understanding (i.e., semantics) of all the information (concepts
and facts) mentioned in this command between the user and the device, such as
“light,” “hallway,” “50 lux,” but also of situational aspects, such as “when somebody
enters the home.” In a Health 2.0 scenario, connected devices measure parameters
concerning a patient’s health. The data need to be transformed (ideally automatically)
into symbolically grounded knowledge and combined with the existing knowledge
about health, diseases, and treatments (Henson et al. 2012).
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These examples demonstrate that knowledge representation for Internet of Things
scenarios is needed. Specifically, on closer inspection, they indicate that three aspects
are particularly essential for the Internet of Things knowledge representation:

1. How are perceptions and actions grounded and represented (in the Internet of
Things terminology, sensors and actuators)?

2. How can machines and humans agree on acommon understanding when referring
to concepts and facts, and how can this common understanding be shared?

3. How can changes in the world be used in knowledge representation?

In the past, research on knowledge representation in computer science has mainly
focused on developing and using static ontologies (i.e., as a formal, explicit specifi-
cation of a shared conceptualization in a domain of interest (Studer et al. 1998)) and
knowledge graphs (Fensel et al. 2020; Firber et al. 2018). Ontological languages,
such as the Resource Description Framework (RDF) (Cyganiak et al. 2014), RDF
Schema (Brickley and Guha 2014), and the Web Ontology Language (OWL) (Bech-
hofer et al. 2004), have been established to model parts of the world. To connect the
world knowledge with sensor data, a few ad-hoc solutions have been proposed (e.g.,
Bonnet et al. 2000; Ganz et al. 2016, and Sect. 3). However, in our minds, all these
technology is not capable of sufficiently incorporating the aspects of the Internet of
Things as outlined above.

In this chapter, we want to take up the previous considerations on knowledge
representation in the context of the Internet of Things; we thereby make use of
content from epistemology—particularly, the semantic theories—for our discussion
on an optimal knowledge representation, addressing research question 1 “How can
we formally describe and model concepts?” outlined in Chap. 1 of this book. We can
show that the problem of knowledge representation for the Internet of Things is by no
means trivial and that questions about concrete implementations lead to fundamental
questions of knowledge representation, such as the symbol ground problem (Harnad
1990) and the intersubjectivity problem (Reich 2010).

The topic of this chapter is highly interdisciplinary. Consequently, it is written for
a diversity of user groups:

e Computer scientists, cognitive scientists, and IT practitioners who work on artifi-
cial intelligence systems and who are particularly interested in knowledge repre-
sentation for the Internet of Things (e.g., designing ontologies for the Internet of
Things);

e Philosophers who want to make autonomous systems and the Internet of Things
accessible for their theories.

The chapter is structured as follows: After a detailed statement of the research
problem in Sect. 1.1, we outline in Sects. 1.2 and 1.3 how our research problem is
embedded in the scientific landscape of philosophy and computer science, respec-
tively. In Sect. 2, we present a scenario in the Internet of Things context, which is used
in the following sections to illustrate the concrete influences of theories of meaning
on Internet of Things applications. Section 3 is dedicated to several semantic theo-
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ries originating from philosophy and how they can be used to address our research
problem. The chapter finishes with a summary in Sect.4.

1.1 Problem Statement and Methodology

Problem Statement. The Internet of Things (IoT) refers to the idea of the “perva-
sive presence of a variety of things or objects around us—such as Radio-Frequency
[Dentification (RFID) tags, sensors, actuators, mobile phones, etc.—which, through
unique addressing schemes, are able to interact with each other and cooperate with
their neighbors to reach common goals” (Atzori et al. 2010). The Internet of Things
has emerged as an important research topic and paradigm that can greatly affect a
variety of aspects of everyday life. In the private setting, examples are smart homes,
assisted living, and e-health. In the business setting, the Internet of Things is used,
among other things, for automation and industrial manufacturing, logistics, and intel-
ligent transportation.

We focus on the connection between the Internet of Things and knowledge repre-
sentation. As such, we consider intelligent agents—defined as objects acting ratio-
nally (Russell and Norvig 2010) and often perceived as being identical to smart
information systems—that

e have sensors (e.g., cameras, microphones, sensors for temperature and humidity)
that allow them to perceive the environment,

e have actuators (e.g., displays, motors, light bulbs) that allow them to act in an
environment,

e have an interface (e.g., buttons and dials, speech) to communicate with humans
and

e can act semi-autonomously or autonomously.

In the future, humans and agents will increasingly co-exist side by side. For
instance, humanoid robots with conversational artifical intelligence capabilities
might become omnipresent. Moreover, agents will communicate with each other
and thereby exchange knowledge to accomplish tasks in an autonomous way. How-
ever, obtaining a common understanding of the shared world and having the ability
to refer to the same objects during communication is from an epistemological point
of view nontrivial and by no means a matter of course. The crucial aspect in this con-
text is the gap between the represented world (also called the model) and the actual
world (see Fig.1). It is related to mind-body dualism and specifically Descartes’
mind-body problem in philosophy (Skirry 2006). Agents have access to the outside
world (typically called perception of the environment) and are able to trigger changes
in the world via actuators (i.e., they can change the outside world). This aspect is also
related to the following questions: How can someone obtain the meaning of a text in
a language unknown to him or her? How can someone interact with people without
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the ability to speak the language of the people (see the Chinese room argument (Cole
2014))?

Methodology. We will outline the possibilities of modeling things for scenarios in
the world of the Internet of Thing. Given the Internet of Things, an environment in
which agents are situated with other agents, a theory for knowledge representation
on the Internet of Things needs to

1. include sensors (perception) and actuators (action) in its formalization;

2. include the notion of multiple subjects (machines and humans) that interact with
the environment and with each other (intersubjectivity);

3. include ways to describe changes in the represented world that should mirror
changes in the real world, and vice versa (dynamics).

Acquiring the correct underlying foundations—and, in philosophical terms, the
correct conditions of possibilities for acquiring and exchanging knowledge—is cru-
cial to enabling the manifold benefits that arise from increased automation and
human-computer interaction. As an example, let us take one of the prominent sce-
narios in the specific context of the Internet of Things—the so-called “onboarding”
of devices. Onboarding is the process of connecting a sensor or a more complex
Internet of Things device to the Internet and to a platform establishing an initial
configuration and enabling services (Balestrini et al. 2017; Gupta and van Oorschot
2019). This process can either be automated or involves broad communities of device
owners. In both cases, the problems of device-platform communication and deciding
on identifiers (how to address a specific new device) require the acceptance of an
adequate theory of meaning in the open context system. Such a system interacts with
the changing world and needs to adapt accordingly.

This fact has already been noted by noteworthy philosophers and cognition sci-
entists, such as (Gardenfors 2000):

When building robots that are capable of linguistic communication, the constructor must
decide at an early stage how the robot grasps the meaning of words. A fundamental method-
ological decision is whether the meanings are determined by the state of the world or whether
they are based on the robot’s internal model of the world. (Gérdenfors 2000, p. 152)

Girdenfors does not describe scenarios involving intelligent agents and does not
show how the perception layer of a robotic system fits into his model of geometric
spaces, which is the problem we address in this chapter. Specifically, we focus on
perception, multiple subjects, and world changes.

1.2 Existing Solutions in Philosophy

In philosophy, the study of what knowledge is and how it can be represented (i.e.,
epistemology) and the study of how to acquire knowledge from an environment (i.e.,
philosophy of perception) are highly relevant to addressing the problem of knowledge



Theories of Meaning for the Internet of Things 41

Theory
(@x)@yY)R(x, y)
(vx)~R(x, x)
(vx)(vy)(R(x, yp~R(y, X))
(vx)(vy)(R(x, ypC(x, y))
(vx)(vy)(C(x, yp C(y, X))

Denotation
{True, False}

Approximation
{Good, Fair, Poor}

Fig.1 Mediated reference theories distinguish between the world and a model of the world. Direct
reference theories, in contrast, do not distinguish between the model and the world (i.e., the model
is the world; illustration adapted from Sowa (2005))

representation for the Internet of Things. From these research areas, we can highlight
the following aspects.

Theories of Meaning. Defining the meaning (particularly in the context of language
also referred to as semantics) has always been an integral part of philosophy. In the
20th century, philosophy shifted its focus to language and the role of language in
understanding. Particularly noteworthy is the groundbreaking work of Gottlob Frege
(1848-1925), which can be seen as the basis for many achievements in the area of
artificial intelligence. Frege’s ideas come together in a mediated reference theory
(see Fig. 1).

Frege challenged the belief that the meaning of a sentence directly depends on the
meaning of its parts. The meaning of a sentence is its truth value and the meaning
of its constituent expressions is their reference in the extra-linguistic reality. First,
he explored the role of the proper names (which have direct reference) and concepts
(which gain meaning only when their direct referent is specified). He then studied
identity statements (in the form of @ = a or @ = b) and came to the conclusion that
directreference theories do not adequately capture the meaning of identity statements.
In particular, he pointed to the fact that the statements “Hesperus is the same planet
as Hesperus” and “Hesperus is the same planet as Phosphorus” do not mean the
same thing, even though the terms “Hesperus” and “Phosphorus” refer to the same
extra-linguistic entity, the planet Venus. Thus, he came to an important distinction:
the reference (Bedeutung) of a sentence is its truth value and the sense (Sinn) is the
thought which it expresses. The questions that originated from Frege’s arguments
gave rise to many theories of meaning in logic and computer science and contoured
the definition of meaning we accept in this chapter. Overall, Frege as a philosopher
provided categories that other scientists questioned and developed.
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We define meaning pragmatically as follows:

e The meaning of symbols. Following the idea that meaning is referential (see Gér-
denfors 2000, pp. 151), the meaning of symbols (including names) are the objects
to which they refer. For real-world entities, one can point directly towards the
objects or mention their proper names. For abstract concepts (classes) and proper-
ties, we take the Cartesian-Kantian two-world assumption as a basis and assume
that, besides the real world we can see (res extensa or phaenomenon), there exists
the world of ideas or thoughts (res cogitans or noumenon), and that classes and
properties exist in this intellectual world.

e The meaning of sentences. Symbols can be arranged together to express statements
(used synonymously to facts; sentences are the written counterpart). Statements
bring us to a new level of meaning, the level of truthfulness. Each sentence can be
true or false.

Theories of Truth. Given that statements can be true or false, questions of how
statements stand in relation to the world and how statements can be tested concerning
their truthfulness arise. Among the most commonly used theories of truth are as
follow.

e The correspondence theory of truth: This theory can be considered the most basic
theory of truth. True sentences capture the current state of affairs—objectively,
without an observer. This theory is very much based on the actual world. The
theory does not consider linking new knowledge to existing knowledge of a subject
and differentiating between the varying knowledge levels of different people and
how these people agree on the same meanings.

e The coherence theory of truth: This theory is coherence-centric and takes into
consideration how new knowledge is incorporated into existing knowledge. State-
ments are considered to be true if they are consistent with the statements (i.e.,
knowledge) obtained so far.

e The consensus theory of truth (pragmatic theory of truth): This theory takes the
different views of observers into consideration and is designed to align subjective
views to other views. Statements are considered true if people (i.e., observers)
agree on them.

Itbecomes immediately clear that these theories of truth do not exclude each other but
rather have different foci. We argue that a comprehensive theory needs to take all of
the theories’ aspects into account. Particularly noteworthy is the fact that the theories
focus mainly on knowledge and truth at a given point in time (see the construction of
ontologies in computer science). Dynamic aspects, and thus the modeling of events,
are insufficiently covered by these foundational theories.
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1.3 Existing Solutions in Computer Science and Logic

In computer science and cognitive sciences, specifically the fields of knowledge
representation and logic, the problem of how to represent knowledge about the world
for Internet of Things scenarios has been addressed to some degree.

Theories of Meaning. In the past, computer scientists and logicians defined the
meaning of objects in their knowledge representation models (e.g., ontologies) and
methods for describing the world largely without an explicit connection to reality
and perception. In particular, model theory (Tarski 1944) is the established way of
defining the meaning of logic-based knowledge representation languages, such as
the semantic web languages RDF, RDFS, and OWL.

Moreover, in the area of knowledge representation, it became popular to use
ontologies (Staab and Studer 2010) and knowledge graphs (Fensel et al. 2020) as
world models. Freely available open knowledge graphs form the Linked Open Data
(LOD) cloud, which is used in various applications nowadays (Firber et al. 2018).
However, since logic and model theory are very formal disciplines, there was no
need to link knowledge representation to perception. Works on ontology evaluation
and ontology evolution consider the process of creating and evaluating ontologies
(in the sense used in computer science, i.e., as a formal model of a small domain
of interest) as finding the lowest common denominator for modeling parts of the
world. However, researchers mainly discuss common and best practices a team of
developers can use to create an ontology. Early attempts at defining an ontology
which incorporate temporal dynamics were made by Grenon and Smith (2004) and
Heflin and Hendler (2000).

Overall, existing methods for modeling the world and defining meaning have the
following drawbacks: (1) They disregard any explicit connection to reality. (2) They
are omniscient and try to capture an (imposed) objective view of the world. (3) They
are only able to express static knowledge but not changes in the world to a sufficient
degree. In Sect. 1.2, we have carved out similar drawbacks regarding existing theories
of meaning and truth.

If symbols are only identifiers, how can our minds create a link to an object
in the real world (or in our conceptual worlds of ideas or thoughts)? How can we
make sure that other subjects/minds have the same meaning; that is, link to the same
object (e.g., when we only mention the object’s identifier, such as http://dbpedia.
org/resource/Karlsruhe or http://wikidata.org/entity/Q1040)? Is the meaning directly
connected (grounded) to non-symbols? This problem is known as the symbol ground-
ing problem: “How can you ever get off the symbol/symbol merry-go-round? How
is symbol meaning to be grounded in something other than just more meaningless
symbols?”” (Harnad 1990). In the Semantic Web and Linked Data context, URIs are
used as symbols for objects. The symbol-grounding problem is not often considered
(Cregan 2007) or even solved. In particular, the aspects of perception, multiple sub-
jects, and changes in the world—the focus in our chapter—for knowledge represen-
tation are not covered sufficiently. In the Internet of Things domain, we find only a
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few works in this respect, such as the article by Hermann et al. (2017), who present
grounded language learning in a 3D environment.

Theories of Truth. Theories of truth are traditionally proposed in philosophy. When
we apply the theories of truth as introduced in Sect. 1.2 to the established and widely
used semantic web technologies, such as RDF and OWL, and to knowledge rep-
resentation ideas like knowledge graphs and linked open data, we can observe the
following: (1) The RDF data model (Hayes and Patel-Schneider 2014) might fit to
the correspondence theory of truth and to the consensus theory in the context of the
Internet of Things. (2) Linked data can be regarded as an implementation of the con-
sensus theory in the sense that data publishers and data consumers need to agree on
common terms to use the linked data in a reasonable way. However, applications in
the Internet of Things require more, since the (linked) data are subjected to changes
over time and dependent on the perception (see, e.g., the sensor data from devices).

In recent years, approaches based on neural networks have been presented to
represent entities and relations in knowledge graphs—as an implementation of a
knowledge representation—in the form of vectors in a low-dimensional vector space
(called embeddings Mikolov et al. 2013; Wang et al. 2017). Apart from the context
of the entities and relations in the knowledge graph, external data sources have also
been used to build these implicit knowledge representations. For instance, data from
several modalities (text, images, speech, etc.) can be combined to form a unified,
comprehensive representation in a low-dimensional space (Bruni et al. 2014). In the
Internet of Things context, the representations are created based on sensor data, and
thus, perceptions. We can argue that the formal method and technology of obtaining
the sensory data (e.g., images, text, etc. of an object) and of transforming it into a
common vector space (e.g., via machine learning techniques) has a direct influence
on the meaning of objects or even constitutes the meaning itself.

2 Motivating Scenario

In this section, we describe a smart home scenario, which will be used in the upcoming
sections as an example of an Internet of Things scenario. It will show how the theories
of meaning considered by us affect the way of modeling knowledge.

Consider the home of Alice (see Fig.2) with four rooms: the hallway, the living
room, the bathroom, and the bedroom. Each of the rooms is equipped with a light
bulb that can be controlled via a network interface. Each room also has a window
with controllable window blinds. Moreover, each room has a sensor to measure the
light levels. The door has a sensor that detects when it is opened. A virtual assistant
called Bob provides a user interface to the smart home via speech interaction. The
more data and knowledge about the smart home is coupled with the virtual assistant,
the more generic and flexible the virtual assistant needs to be.

Considering this scenario, we can point out several issues with respect to knowl-
edge representation. The first issue concerns naming. Both Alice and Bob have to
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Fig. 2 A smart home with — — — Window
various sensors (i.e., P —
luminance sensors and door
sensors) and actuators (i.e.,
network-controlled lamps X XK —=
and window blinds)

|
I

— Lamp

agree on the meaning of “the living room,” so that Alice can ask Bob, “Is the light on
in the living room?” Similarly, to affect a change in the world, Alice and Bob have
to agree on names as references to objects, so that Alice is able to tell Bob to “switch
off the light in the living room.” A more elaborate command could be to “switch on
the light in the hallway when somebody enters the home and set the light level in the
hallway below 50 lux.”

We assume that a shared understanding between the virtual assistant and the
human user has to be configured when setting up the smart home (the so-called
“onboarding problem”). The problem also arises when a new human user wants to
interact with the smart home (e.g., when Carol visits Alice and wants to turn on the
lights).

We can think of various other Internet of Things scenarios in which theories of
meaning (also called semantic theories) become important for modeling the sce-
narios. For instance, in a Health 2.0 scenario as outlined by Henson et al. (2012),
the sensor data gathered by Internet of Things devices need to be collected and
transformed into symbolic information. This transformation allows the system to
interpret the information and combine it with other existing, symbolically grounded
knowledge (e.g., about diseases). Questions concerning the representation of per-
ception, the inter-subjective agreement of concepts and facts, and the representation
of dynamically changing knowledge arise.

3 Applying Theories of Meaning to the Internet of Things

Several theories of meaning have been proposed to link the real world with actual
knowledge about it. In this section, we review the following semantic theories:

1. Model-theoretic semantics;

2. Possible world semantics;

3. Situation semantics;

4. Cognitive and distributional semantics.



46 M. Firber et al.

These semantics have been chosen due to their popularity and “baselines” in pre-
vious work (Girdenfors 2000, pp. 151). The first formalism is sometimes referred to
as “extensional semantics” and the second formalism is referred to as “intensional
semantics.” Furthermore, some authors, such as Girdenfors (2000), refer to “exten-
sional semantics” instead of model theory and “intensional semantics” instead of
“modal logic.” Given the various and sometimes incompatible uses of “extensional”
and “intensional” in the literature (Janas and Schwind 1979; Helbig and Glockner
2007; Lanotte and Merro 2018; Franconi et al. 2013), we use the terms “model-
theoretic semantics” and “possible world semantics” for clarity.

In the following sections, we cover each theory of meaning in detail and apply
it to the Internet of Things. Within each section, we first give a definition of the
theory and outline its characteristics. Subsequently, we describe how the theory can
be applied to model Internet of Things scenarios. We thereby focus primarily on
the perception, intersubjectivity, and dynamics, because modeling these aspects is
particularly crucial in the context of the Internet of Things (see Sect. 1).

3.1 Model-Theoretic Semantics for the Internet of Things

3.1.1 Definition and Current Use

Model-theoretic semantics can be encoded in various ways. In the following, we
assume that the knowledge in embodied systems (e.g., a smart home) is described
using sentences in first-order (predicate) logic. The meaning (i.e., the truth value) of
the sentences is given via mapping to a world represented using set theory.

Extensional semantics is considered one of the realistic theories on seman-
tics (Gérdenfors 2000). Expressions (names) are mapped to objects in the world
(see the theory of correspondence). Predicates are then applied to a set of objects or
relations between objects. Generally, using such a map, sentences can be assigned
truelfalse values (see truth conditions). The “extension” of the sentence “Lassie is
famous” is the logical value “true,” since Lassie is famous. There is no anchoring of
the language in a body (i.e., the meaning of words is modeled independently of indi-
vidual subjects). This is known as the human capability of abstraction. All sentences
being true constitute the world.

First-order predicate logic provides the foundation for formalizing current Seman-
tic Web languages, such as RDF, RDFS, and OWL.

3.1.2 Application to the Internet of Things
While the languages with a formalization in model theory are mature and widely

used, they do not cover the dimensions required in scenarios around the Internet of
Things as outlined in the following:
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Perception

The set-theoretic structure representing the world does not have any connection to
the external world. Whether or not the term “Lassie” refers to Lassie the dog in the
external world does not have any bearing on the truth value of the sentence. However,
such a connection is needed to take perception (e.g., sensor data) in Internet of Things
scenarios into account for modeling the world.

Intersubjectivity

The theory does not address the problem of reaching agreement on the meaning of
terms across different agents. For instance, in the case of the semantic web languages
RDF, RDFS, and OWL, there exists no defined mechanism that ensures different
agents have the same notion of terms and sentences. Finding a shared understanding
is left to the agents.

Dynamics

Traditional first-order predicate logic was developed to describe properties of things.
That is, one can name things (“Lassie”) and assign properties to them (“is famous”).
The focus of such representations is to deduce new declarative sentences based on
the given sentences. Some applications use first-order logic to represent events (e.g.,
“Lassie rescues the girl from drowning”), where the event (“rescuing”) is treated as
a property. While such representations might be suitable for some derivations, they
do not cover the dynamics behind events sufficiently for scenarios in the Internet of
Things.

Benefits and Limitations for the Internet of Things. The focus of model theory is
to provide a notion of truth of sentences that allows for the specification of logical
consequence. Logical consequence can help one check for satisfiability of sentences
with regards to the world. It provides means to integrate data from multiple sources.
However, model theory does not consider many aspects relevant in the Internet of
Things, such as the connection of symbols and sentences to the real world or the
question of how multiple agents can agree on the meaning of symbols. Furthermore,
model theory lacks means to adequately formalize change, since the sentences are
classically interpreted over a static model of the world.

3.2 Possible World Semantics for the Internet of Things

3.2.1 Definition and Current Use

The origins of possible world semantics can be traced back to Carnap (1947),
Kripke (1959), and Montague (1974). Without loss of generality, we assume for
the remaining part of the chapter that the possible world semantics are implemented
via modal logic. More on the idea of possible worlds as the conceptual underpinning
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of the modal logics can be found in Hughes et al. (1996) and Menzel (2017). In the
following, we review the modal logic and its applicability for the Internet of Things
scenarios.

With modal logic, expressions are mapped to a set of possible worlds, instead of
a single world. Otherwise, the setting is the same as for the extensional semantics
theory: sentences can have “truth conditions”, and each proposition (sentence) has
worlds in which it holds true.

To model these possible worlds, modal logic adds two new unary operators: [
(“necessary”) and ¢ (“possibly”) to the set of Boolean connectors (negation, dis-
junction, conjunction and implication). The proposition is possible, if a world may
exist in which this proposition is true. The proposition is necessary, if it has to be
true in all worlds.

Dependent on the application context, modal operators can have different intuitive
interpretations. For example, if one wants to represent temporal knowledge, U £,y P
may mean that proposition P is always true in the future and that { .- P means P
is sometimes true in the future. These different ways to interpret modal connectives
give rise to various types of modal logics: tense, epistemic, deontic, dynamic, geo-
metric, and others (see more in Goldblatt (2006)). Thus, they represent facts that are
“necessarily/possibly” true, true “today/in the future”, “believed/known” to be true,
true “before/after an action”, and true “locally/everywhere.”

3.2.2 Application to the Internet of Things

We see many possibilities to use modal logic to capture the semantics in Internet
of Things scenarios. As an example, Fig.3 shows a system that interprets the voice
input “Turn on the light” and acts differently depending on the location of the user.
We can also consider such parameters as time of day and define different scenarios
with temporal logics.

Modal logic as a kind of formal logic extends predicate logic by allowing it to
express possibilities. Modal logic has mainly been used in formal sciences, such as
logic (e.g., “ontology of possibilities”). However, it has not been applied extensively
in computer science and, specifically, in Internet of Things contexts. We can observe
that modal logic as an implementation of possible world semantics is better suited
to the Internet of Things than model-theoretic semantics. However, modal logic is
not perfectly suited for modeling knowledge of Internet of Things agents. This can
be demonstrated by evaluating perception, intersubjectivity, and dynamics.

Perception

Similar to first-order predicate logic with a model-theoretic formalization, modal
logic does not have any connection to the external world.

Intersubjectivity

Modal logic and its semantics are still based on a realistic idea (i.e., coordinating
extra-linguistic entities to linguistics expressions). However, subjects’ interpretations
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“Turn on the light”

Fig. 3 Possible worlds in the smart home scenario

of the world can be represented as distinct worlds. In this way, modal logic allows
us to model multiple worlds and to represent the knowledge of several agents (i.e.,
subjects).

Dynamics With the ability to add temporal operators, modal logic allows us to keep

track of states of resources over time. Furthermore, with the ability to keep track
of state over time, one can detect events (i.e., state changes) and thus represent
knowledge evolving over time.

Benefits and Limitations for the Internet of Things. The focus on logical con-
sequence of sentences is one of the properties that possible world semantics shares
with model-theoretic semantics. Neither has an explicit connection to the real world.
Modal logic as an implementation of possible world semantics stands out from imple-
mentations of model-theoretic semantics by taking the aspects of intersubjectivity
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and dynamics into account. Nevertheless, the possible world semantics only provide
means to describe a changing world with sentences and to reason over such sentences,
but not to actually affect changes in the world.

3.3 Situation Semantics for the Internet of Things

3.3.1 Definition and Current Use

The theory of situation semantics, another kind of realistic semantics, was developed
by Jon Barwise and John Perry in their seminal book Situations and Attitudes (1983).
In contrast to its predecessor possible worlds semantics, it postulates the principal
of partiality of information available about the world. Limited parts of the world
that are “clearly recognized [...] in common sense and human language” and “can
be comprehended as a whole in [their] own right” (Barwise and Perry 1980) are
called situations. Situations stand in contrast to processes and activities. According
to (Galton 2008):

I believe that open processes and closed processes are very different kinds of things. The fact
that we use the word ‘process’ for both of them perhaps lends some support to Sowa’s use
of this word as the most inclusive term, corresponding to what others have called situations
or eventualities.

Devlin (2006), who formalized the basic notions of situation semantics and
extended it to situation theory, emphasizes that information is always given “about
some situation.” It is constructed from discrete information units, called infons. An
infon (o) is a relational structure of shape, ((R, ay, ..., a,,0/1)), where R is an
n-place relation, ay, . .., a, are objects appropriate for the argument roles iy, .. ., i,,
and 0/1 are the polarity values indicating whether or not the objects ay, . . ., a, stand
in the relation R.

Objects in the argument roles of an infon include individuals, properties, relations,
space-time locations, situations, and parameters. Parameters in situation semantics
act as variables (i.e., they reference arbitrary objects of a given type). To set parame-
ters to concrete real-world entities, Barwise and Perry (1983) introduce an assignment
mechanism called an anchor.

Unlike model-theoretic or possible worlds semantics, situation theory claims that
an infon—roughly corresponding to a fact or statement—can be true (or false) only
in the context of a particular situation. This relationship is written as s |= o (read as
“s supports o”’), meaning that the fact represented by infon o holds true in situation s.

Figure4 shows an illustrative example of situation semantics for the Internet of
Things scenario smart home. In this figure, we can see a limited part (s) of the
world where we can distinguish several classes of objects: WindowBlind, Room,
and LightBulb. Potentially, instances of these classes can be involved in many
situations. One of them (i.e., TriggerBl indsUp)is that whenitis dark in the room
and already light outside in the morning, the window blinds are automatically raised
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<<isOff, Ib, I, {, 15>

<<isDayTime, |, {, 1>>

<<isDown, wb, I, 1, 1>>

i1 L
\ P <<tooDark, r, |, 1, 1>>
__g-z( blindsUpNeeded, wh, |, {, 1>>
Subject

Fig.4 TriggerBlindsUp situation in the smart home scenario

by the control system. We represent the relevant relations (isDayTime, tooDark, etc.)
with the following infons where parameters / and 7 reference arbitrary spatial and
temporal locations:

(041) ((isOff, b, 1,7, 1)), where parameter Ib anchors objects of type
LightBulb;

(042) ((isDayTime, [, i, 1));

(0.3) ({(isDown, w'b, i, i, 1)), with wh anchoring WindowB1lind instances;

(oi1)  {((tooDark, 7, i ,f, 1)), with 7 anchoring Room instances;

(0i2)  ({blindsUpNeeded, Wb, i , 1, 1)), with7 anchoring WindowB1 ind instances.

By using conjunction, disjunction, and anchoring, we can combine infons into more
complex structures (i.e., compound infons). For situation TriggerBlindsUp,
the infons form the compound infon: s = 0,1 A 042 A 043 A 071 A 0i2. The system
that relies on this formalism can check whether these infons support the situation
TriggerBlindsUp and use actuators to trigger the change in the real world.

Situation semantics distinguishes three types of situations: utferance situation
(i.e., the immediate context of utterance, including a speaker and a hearer), focal
situation (i.e., the part of the world referred to by the utterance), and resource situation
(i.e., the situation used to support or to reason about focal or utterance situations
(Devlin 2006)).

Meaning is acquired by linking utterances expressed in language to objects in the
real world. This link, called the “speaker’s connection” (Barwise and Perry 1983),
determines the unique role of a subject in this theory: It is the agent who establishes
such a link, and meaning is thus made relative to a specific agent. Figure4 illus-
trates this possibly changing perspective. The subject perceives the room as dark:
({tooDark, 7, I, i, 1)); one can imagine another subject for whom the polarity of the
infon o;; would be 0.

In the area of the Internet of Things, certain information systems employ situation
semantics as the core of their modeling of user behavior and sensor observations,
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as well as the basis of context- and situation-awareness (see Heckmann et al. 2005;
Kokar et al. 2009; Stocker et al. 2014, 2016). In the following, we will refer to these
systems to show how situation semantics addresses the problems of perception,
intersubjectivity, and representing dynamics.

3.3.2 Application to the Internet of Things

In the process of measurement, sensors transform signals of physical properties
into numbers, thus generating numerical data. These data are challenging to store
and manage and require near-instant access. The interpretation of the raw values
requires modeling, finding patterns, and deriving abstractions. Abstractions reveal
the properties of the observed real-world entities, show their dynamics, and place
them into relations with their surroundings.

Perception

Sensor networks cannot perceive (“observe”) situations directly; instead, as shown
in Fig. 5, several components are needed to derive decisions and to take actions (see
Kokar et al. 2009; Stocker et al. 2014). The process can be described as follows:
The system takes sensor data as input, which then undergo the semantic enrichment
process. Semantically annotated data is then transformed via a rule-based inference,
digital signal processing, or machine learning algorithms into higher-level abstrac-
tions. These abstractions can be considered situations, which in turn can trigger
actions and enable intelligent services. Both Stocker et al. (2014) and Kokar et al.
(2009) exemplify how sensor input is transformed into a set of infons (called observed
or asserted in Kokar et al. (2009)) and how new inferred infons are derived from
them.

Situation semantics, therefore, works as a compliment to the algorithms that can
directly process data generated in the perception layer. It is the way to organize sen-
sory input in a task or goal-oriented environment. In addition, Stocker et al. (2014)
argue that the persistence of situational knowledge in many cases is a desirable alter-
native to the persistence of sensor data and the key enabler of useful perceptual data
in real time. Henson et al. (2012) describe an approach for deriving abstractions—
essentially similar to situations—from sensory observations.

Measurements Se_mantlc Abstractions Decisions/Actions
Enrichment
Annotation Signal Processing/Rules/Machine Learning

Fig. 5 Generic components of a system consuming sensor data
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Intersubjectivity

In situation semantics, any relation between a real-world situation and its representa-
tion in a formal framework is relative to a specific subject. An agent recognizes or, in
the terminology of Barwise and Perry (1983), “individuates” situations. Assigning
values to certain parameters in the argument roles of an infon is always done by
a particular subject. Situation semantics has an inherent mechanism to encode the
subject’s perspective, as well as to represent and to coordinate views of multiple
subjects. The Internet of Things is often treated as a decentralized distributed sys-
tem (Singh and Chopra 2017) where different agents generate situational knowledge
individually. In this context, formalizing situation semantics can ease inter-agent
communication and data integration (see the discussion in Stocker et al. (2014)).

Dynamics

Having situation as its central concept, situation semantics considers static repre-
sentation of situations (as objects and their relations) and their dynamic aspect.
According to Barwise and Perry (1983), “Events and episodes are situations in
time ... changes are sequences of situations.” As a consequence, this theory has
a built-in mechanism for representing temporal and spatial dynamics; namely, it
introduces special types of objects that can fill argument roles of an infon (i.e., TIM,
the type of a temporal location, and LOC, the type of a spatial location (Devlin
2006)). Thus, it is possible to represent whether a relation holds between the objects
at a particular time in a particular location.

Stocker et al. (2014) use situation semantics to model observed situations in
a road traffic scenario. By analyzing the road-pavement vibration data from three
accelerometer sensors, they were able to detect vehicles in the proximity of sens-
ing devices (near-relation) and their types (light or heavy). Observations, classi-
fied by the signal processing algorithms and modeled as sets of infons of shape,
({(near, Vehicley, l, t,, 1)), enabled the inference of the velocity and the driving
side of a vehicle via a custom set of rules. This example shows that this kind of rep-
resentation is suitable for time-oriented data. Time-oriented data is a characteristic
of most of the data generated in the Internet of Things (see more in Serpanos and
Wolf (2017)).

Benefits and Limitations for the Internet of Things. Barwise and Perry were not
the first to include situations as first-class citizens into a knowledge representation
theory (see, e.g., situation calculus McCarthy 1963; McCarthy and Hayes 1969).
Nevertheless, compared to its predecessors, situation semantics presents a richer
formalism capable of representing higher level abstractions over raw sensor data,
multiple viewpoints, and temporal-spatial dynamics.

Infons with their argument role structures can be reused across related situation
types (e.g., how easy it will be to project the set of infons of the TriggerBlindUp
situation to TriggerBlindDown). In many Internet of Things scenarios, the stor-
age of raw data is not optimal due to the quantity and limitations of existing storage
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solutions. Having a system as described in this section will allow us to store more
meaningful and actionable pieces of information (situations) for certain signals to
act upon in real time.

3.4 Cognitive and Distributional Semantics for the Internet
of Things

3.4.1 Definition and Current Use

Cognitive semantics needs to be considered with respect to the general notion of
cognition: instead of a subject perceiving the world with his senses and with language
as the subject’s ability to talk about the world, the focus is shifted to the mental
representation of the world (i.e., to the subject’s cognitive structures). Moreover,
language becomes part of the cognitive structure. As such, concepts are elements in
the subject’s cognitive structure and without a direct reference to a reality. Thus, the
meaning of concepts, etc., does not go beyond language, but is nothing else than using
the language itself (see Ludwig Wittgenstein’s theory of language) and therefore, the
cognitive structures. These cognitive structures are subject to constant adaptation due
to the interaction with the world. For instance, new concepts are learned and new
findings are obtained. The world becomes viable. Overall, cognitive semantics is
categorized as a non-realistic theory of semantics due to the exclusion of reality.

Focusing on the subject’s cognitive structures, the question becomes what these
cognitive structures look like and how they are created. Motivated by the biology
of the human brain as the basis for any human’s cognitive ability (Girdenfors 2000,
p- 257), neural networks and their mechanisms are typically considered the basis
for cognition. Inputs, outputs, and internal representations of neural networks are
modeled mathematically as geometrical (vector) spaces. Vector spaces are therefore
used to represent things in the world, such as entities, concepts, and relations. Thus,
knowledge is represented as distributional representations (e.g., embeddings) on a
sub-symbolic level. Meaning is formalized as and reduced to a distance function.
Similar objects tend to be spatially closer to each other in the vector space induced
by the used neural network. Semantics is considered to be distributional (leading to
the term distributional semantics), geometrical, and statistical.

Cognitive semantics and distributional semantics is not a new phenomenon: In
1954, Harris (1954) proposed that meaning is a function of distribution (see the
famous quote: “‘a word is characterized by the company it keeps” (Harris 1954)). Con-
temporary philosophers and cognitive scientists use geometrical spaces to explain
cognition and how concepts are formed by subjects. Gardenfors (2000), for instance,
considered the geometry of cognitive representations. In this cognitive space, points
denote objects, while regions denote concepts (see Fig. 6 and book Chap. 2 for more
information about Gérdenfors’ cognitive framework).
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room_4

light_bulb_1

Fig. 6 Low-dimensional vector space representation in the smart home scenario with instances
represented as points, concepts represented as areas, and predicates (relations) represented as vectors

Artificial neural networks have been used to simulate neural networks, and thereby,
cognition. With the revival of research in artificial neural networks in recent years,
research has been performed on how representations for terms, concepts, and predi-
cates can be learned automatically (see, among other things, the approaches TransE
and TransH (Wang et al. 2014)). The idea is to use the weights to the hidden layers
of neural networks as representation (called embeddings). Guha (2015) proposed a
model theory based on embeddings and adapted the Tarski model theory to embed-
dings.

In recent years, knowledge graph entities and relations (i.e., explicit knowledge
representation formats) have also been embedded, showing that not only expressions
can be represented in a distributed fashion, but also concepts and entities, as well
as classes and relations. This allows us to model human cognition in a more natural
way, because embeddings are learned for specific symbols.

3.4.2 Application to the Internet of Things

We assume that cognitive items, such as concepts, are represented in a sub-symbolic
fashion, specifically, distributional semantics. Concepts are thus represented in a
geometrical space. We use neural-network-based embedding methods as concrete
implementation for distributional semantics. Figure 6 shows an example of repre-
senting items for the smart home scenario. Distributional semantics is amenable to
modeling perception, intersubjectivity, and dynamics in the following respect:

Perception

Distributional semantics differs (with respect to perception) from other semantic
theories in several ways:

e The meanings of concepts and facts are represented in a distributed fashion, not
as singular units or symbols. In the smart home scenario, specific light bulbs and
rooms are encoded as embedding vectors (see Fig. 6).

e The representations and, thus, the meanings of concepts are not static, but can be
subject to constant change. To overcome this issue, time-dependent embeddings
can be learned (Nguyen et al. 2018). In the smart home scenario, agents can learn
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the embeddings of the different light bulbs and the embedding space of light bulbs
per se based on the sensor data used as input for a neural network.

e A symbol grounding is possible as long as some form of input data (i.e., sensor
data) is provided (and does not change abruptly).

e There are indications that human cognition aggregates the perceptions of different
modalities of one unit (e.g., concept or concrete entity). For instance, the image
of a dog and the sound of a dog are immediately perceived as belonging to the
same unit. The same phenomenon can be observed when a multilingual person
switches between languages whilst referring to the same concepts. As is the case
with embedding methods from machine learning, such a fusion of sensor data from
different modalities is possible. In the Internet of Things context, an embedding
vector can be learned jointly based on different modalities.

Overall, perception is reduced to learning embeddings.
Intersubjectivity

Talking about and reaching an agreement on expressions between several agents can
be traced back to using the same learned representations (i.e., embedding vectors)
and the same conceptual structures (i.e., the distributional space). Even if different
initialization values for the embedding spaces are given, subjects can use the same
learning function to learn the same concepts. In the smart home scenario, the agents
might differ in the exact points of the single light bulbs and rooms, since they rely
on their own embedding learning and usage. However, they can agree on the same
instances and concepts if the embeddings share the same characteristics (e.g., hav-
ing nearly the same distances to other embeddings in the vector space). Overall,
learning representations and meaning are reduced to learning and applying the same
mathematical functions and models.

Dynamics

Describing changes in the world, such as events, is not sufficiently possible in the cog-
nitive theory of semantics. If embeddings as distributed representations are learned
or adapted online (i.e., in a permanent fashion, not only once at the beginning), then
changes in the world may change the embeddings. However, the change itself is
not represented. In the smart home scenario, an event might be light bulb number 4
switching on. The concepts involved in this event, such as light bulb #4, the positions
of the light bulbs, and room #1 remain the same.

Benefits and Limitations for the Internet of Things. A characteristic of cogni-
tive/distributional semantics is that information, such as concepts and facts, is not
represented in the form of symbols, but in a sub-symbolic fashion as points and
spaces in a vector space. This allows a more continuous distance function and an
agreement on concepts and facts in the world as a continuous process. Talking about
and reaching an agreement on expressions between several subjects can be traced
back to using the same learned representations (i.e., embedding vectors) and the same
conceptual structures (i.e., the distributional space). Thus, distributional semantics
is heavily based on mathematics, which benefits the modeling of data in the Internet
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of Things setting. However, describing changes in the world, such as events, is not
sufficiently possible in the cognitive theory of semantics.

4 Conclusion

In this chapter, we have considered the theoretical foundations for representing
knowledge in the Internet of Things context. Based on the peculiarities of the Internet
of Things, we have outlined three dimensions that must be examined with respect to
theories of meaning:

1. Perception: How can a theory of meaning incorporate “direct access” to the world
(e.g., via sensors)?

2. Intersubjectivity: How can the world view of several subjects (i.e., agents in the
Internet of Things) be modeled coherently?

3. Dynamics: How can the change of knowledge be modeled sufficiently? Which
aspects of time can be represented?

We considered the following theories of meaning:

. The model theory (extensional semantics)
. Modal logic (intensional semantics)

. Situation semantics
Cognitive/distributional semantics.

B W=

The single theories have the following advantages and disadvantages (see also
Table 1):

1. Model-theoretic semantics is the simplest model in our series of considered
semantic theories. This semantic theory can be used to formulate sentences and
their truth values. However, it does not provide us with techniques or formalisms
for modeling reality to the highest degree (i.e., with its unstable and experiential
nature).

Table 1 Overview of how the challenges of perception, intersubjectivity, and dynamics are met by
the various theories of semantics

Model-theoret. | Possible world | Situation Conceptual/distrib.
semantics semantics semantics semantics
Perception V' (indirectly, via v
sensor data
processed by

machine learning)

Intersubjectivity v v v’ (communicating
the dimensions)

Dynamics v v
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2. Possible world semantics also does not provide us with an explicit connection to
the real world that we could use to adequately model knowledge in the Internet
of Things domain. However, it allows implementations for modeling temporal
modalities and agent’s beliefs. As such, this semantic theory first lays theoretical
foundations concerning dynamics and intersubjectivity. However, the founda-
tional questions of how agents reach an agreement and how this fact about the
agreement can be represented are not covered.

3. Situation semantics can be considered another layer in the pyramid of knowledge
representation formalisms, as raw sensor data, multiple viewpoints, and temporal-
spatial dynamics can be represented to some degree. However, we believe that this
formalism is also not the optimal semantic theory for Internet of Things scenarios,
as it leaves too many questions unanswered, particularly concerning perception
and intersubjectivity.

4. Cognitive and distributional semantics can be judged in a manner similar to sit-
uation semantics when it comes to Internet of Things applications. Compared to
the previous semantic theories, cognitive and distributional semantics are rather
empirical (i.e., data-driven theories). The introduction of different levels of cog-
nition and the fact that symbolic knowledge representation can be connected to
sub-symbolic knowledge representation is appealing, particularly when it comes
to data gathered by sensors. Intersubjectivity can be reduced to empirical training
using data and mathematical functions (encoded in the form of [neural] networks).
We see the main lack of this semantic theory in the (elegant) modeling of knowl-
edge change over time.

Overall, we came to the conclusion that each of the semantic theories helps in
modeling specific aspects, while not sufficiently covering all three aspects simulta-
neously. For the future, working on the advancements of situational semantics and
distributional semantics and combining them towards a united semantic theory can
be very fruitful for developing future intelligent information systems.
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