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Ljubljana, 2016





Izjava o avtorstvu zaključnega dela
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ski obliki pisnega zaključnega dela študija;
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Povzetek

Naslov: Združevanje večmodalne informacije in čezmodalno učenje v umet-

nih spoznavnih sistemih

Čezmodalno povezovanje je združevanje dveh ali več modalnih predstavitev

lastnosti neke entitete v skupno predstavitev. Gre za eno temeljnih lastnosti

spoznavnih sistemov, ki delujejo v kompleksnem okolju. Da bi se spoznavni

sistemi uspešno prilagajali spremembam v dinamičnem okolju, je potrebno

mehanizem čezmodalnega povezovanja nadgraditi s čezmodalnim učenjem.

Morebiti še najtežja naloga pa je integracija obeh mehanizmov v spoznavni

sistem. Njuna vloga v takem sistemu je dvojna: premoščanje semantičnih

vrzeli med modalnostmi ter mediacija med nižjenivojskimi mehanizmi za

obelavo senzorskih podatkov in vǐsjenivojskimi spoznavnimi procesi, kot sta

npr. motivacija in načrtovanje.

V magistrski nalogi predstavljamo pristop k modeliranju verjetnostnega

večmodalnega združevanja informacij v spoznavnih sistemih. S pomočjo mar-

kovskih logičnih omrežij formuliramo model čezmodalnega povezovanja in

učenja ter opǐsemo načela njegovega vključevanja v spoznavne arhitekture.

Prototip modela smo ovrednotili samostojno, z eksperimenti, ki simulirajo

trimodalno spoznavno arhitekturo. Na podlagi našega pristopa oblikujemo,

implementiramo in integriramo tudi podsistem prepričanj, ki premošča se-

mantični prepad v prototipu spoznavnega sistema George. George je in-

teligenten robot, ki je sposoben zaznavanja in prepoznavanja predmetov iz

okolice ter učenja njihovih lastnosti s pomočjo pogovora s človekom. Njegov

poglavitni namen je preizkus različnih paradigem o interaktivnemu učenju
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konceptov. V ta namen smo izdelali in izvedli interaktivne eksperimente

za vrednotenje Georgevih vedenjskih mehanizmov. S temi eksperimenti smo

naš pristop k večmodalnemu združevanju informacij preizkusili in ovrednotili

tudi kot del delujočega spoznavnega sistema.

Ključne besede: čezmodalno povezovanje, čezmodalno učenje, spoznavni

sistemi, iteligentni roboti, markovska logična omrežja, strojno učenje, umetna

inteligenca.



Abstract

Title: Merging Multi-Modal Information and Cross-Modal Learning in Ar-

tificial Cognitive Systems

Cross-modal binding is the ability to merge two or more modal represen-

tations of the same entity into a single shared representation. This ability

is one of the fundamental properties of any cognitive system operating in

a complex environment. In order to adapt successfully to changes in a dy-

namic environment the binding mechanism has to be supplemented with

cross-modal learning. But perhaps the most difficult task is the integration

of both mechanisms into a cognitive system. Their role in such a system

is two-fold: to bridge the semantic gap between modalities, and to mediate

between the lower-level mechanisms for processing the sensory data, and the

higher-level cognitive processes, such as motivation and planning.

In this master thesis, we present an approach to probabilistic merging of

multi-modal information in cognitive systems. By this approach, we formu-

late a model of binding and cross-modal learning in Markov logic networks,

and describe the principles of its integration into a cognitive architecture. We

implement a prototype of the model and evaluate it with off-line experiments

that simulate a cognitive architecture with three modalities. Based on our

approach, we design, implement and integrate the belief layer – a subsystem

that bridges the semantic gap in a prototype cognitive system named George.

George is an intelligent robot that is able to detect and recognise objects in

its surroundings, and learn about their properties in a situated dialogue with

a human tutor. Its main purpose is to validate various paradigms of in-
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teractive learning. To this end, we have developed and performed on-line

experiments that evaluate the mechanisms of robot’s behaviour. With these

experiments, we were also able to test and evaluate our approach to merging

multi-modal information as part of a functional cognitive system.

Keywords: binding, cross-modal learning, cognitive systems, intelligent

robots, Markov logic networks, machine learning, artificial intelligence.



Chapter 1

Introduction

Cognitive systems can be best described as systems able of understanding

information in order to make informed decisions. To do that, they have to be

capable of performing specific cognitive operations, like analysing, relating,

deciding, planning, etc. An artificial cognitive system operating in a real

world environment must be able to collect relevant information about its

surroundings, understand it, and make autonomous decisions or plans about

its activities within the same environment. In general, the information about

the environment can be collected in two ways: (i) by interpreting data from

sensors, i.e. by perception, or (ii) by interpreting information from another

agent, if the system is capable of communication with him.

Perception is, of course, the more direct and efficient of the two ways.

It involves transforming the sensory data into a suitable and usually more

general representation that can be used by complex cognitive mechanisms

(we say that such representations are grounded in system’s sensory input).

In this process, the system relies on its conceptual knowledge about the

environment. Perception is therefore a cognitive process that merges sensory

data from the environment with conceptual information that is part of the

system knowledge.

Since a cognitive system can have multiple types of sensors, each of them

with its own characteristics and specifics, a very important part of its cogni-

1
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tion is the ability to merge representations from multiple sources (in this work

we call them modalities) into a unified representation (in other words, merg-

ing different kinds of perceptions of the same thing into a single notion). A

specific type of knowledge that allows the system to relate information from

different modalities is needed for such a process. We call such knowledge the

cross-modal knowledge.

When a cognitive system operates in an ever-changing, dynamic envi-

ronment, its ability to adapt to changes in such environment becomes vital.

This ability translates to various cognitive mechanisms that allow the system

to continuously update its knowledge, accommodating new concepts, or just

adapting the old ones. All these mechanisms, of course, involve learning,

either to improve perceptive abilities of the system, or to increase its ability

to associate between different kinds of perceptions, i.e. cross-modal learn-

ing. However, to be able to learn something, there must be first a learning

opportunity. Therefore, a cognitive system should also incorporate mecha-

nisms of motivation and behaviour that actively seek such opportunities (e.g.

searching for a peculiar item with rare properties).

The pursuit of knowledge becomes more varied, if we add another agent

to the environment (e.g. a human), and make the system able to commu-

nicate with him. The system can exploit the dialogue with the agent to

supplement its perception of the environment, e.g. to obtain information

about an item that its perception alone can not. Such situations also create

learning opportunities. The system can also actively strive to improve its

conceptual knowledge, e.g. by deliberately engaging in conversation about

a certain concept. However, even in such an environment, the ability to

improve autonomously its knowledge is still useful to a cognitive system,

although, learning is usually more efficient, when a supervisor is involved.

Situated and non-situated dialogue with another agent and related cog-

nitive mechanisms require yet more sophistication from the cognitive layers

that merge multi-sourced information. Besides multi-modal information, the

system must also manage multi-agent information. Many aspects of these
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two problems are very related, especially, if the system has to deal with one

agent, only (in this thesis, we will sometimes treat multi-agent information

as multi-modal). However, with the increased autonomy and competencies

of the cognitive system, widens also the potential knowledge gap between the

system and other agents. Thus, managing multi-agent information becomes

also an epistemic problem.

1.1 Goals and Methods

The focus of this thesis is on cognitive processes that relate and merge in-

formation from different sources, in order to produce unified representations

that can be used by higher-level cognition. They represent a crucial part

of any cognitive system operating in a realistic environment. Our aim is

to define a paradigm about such processes, develop a method based on this

paradigm, implement a prototype of the method, and evaluate the prototype

both off-line and as part of a real cognitive system (i.e. a robot operating in

a real world environment). The paradigm, the method and the implementa-

tion must also include mechanisms for adapting and improving the knowledge

that is used for merging information.

We assume an open and uncertain environment, where the system has

to be always ready to cope with uncertainty in its perceptions, as well as

acknowledge new concepts. This implies a probabilistic approach to mod-

elling internal representations, and consequently probabilistic methods for

merging multi-modal information and learning. The methods must be capa-

ble of probabilistic modelling of conceptual knowledge that is continuously

accumulated, and of forming integrated probabilistic representation of the

environment that the system is currently aware of (i.e. perceptions).

Our aim is also to develop an approach to integration of our method

into a prototype robot. This will allow us to evaluate our paradigm as part

of a real cognitive system, and see how it works in conjunction with other

cognitive processes that typically make a cognitive system functional (e.g.
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Figure 1.1: George in an early development stage.

situated dialogue, motivation, planning, etc.).

1.2 Contributions

The probabilistic model of binding and cross-modal learning, its formulation

in MLN and the approach to its integration into a cognitive system represent

the core of this thesis and its main contributions. This work was published

in [44].

The robot George, which we use as the evaluation platform for our meth-

ods and approaches, is the result of a joint effort of six partners within the

FP7 European project CogX : University of Birmingham (UK), DFKI (Ger-

many), KTH Stockholm (Sweden), University of Ljubljana (Slovenia), Alfred

Ludwig University of Freiburg (Germany) and TU Wien (Austria). The au-

thor of this thesis made several contributions to this research. Besides the

belief layer and the reference resolution, he contributed to the visual at-



1.3. OUTLINE OF THE THESIS 5

tention mechanism, the attentive part of the visual subsystem (2D object

segmentation) and the system integration in general. He also made many

other technical contributions, e.g. the robotic arm integration, the pan-tilt

unit integration, etc. The description of George that we provide in this thesis

is a digest of [39].

Another important contribution of this work are the belief layer and the

mechanism for reference resolution in George. They represent the embodi-

ment of our core ideas and methods within a realistic context. The author of

this thesis made most of this research in collaboration with Miroslav Jańıček

from DFKI (Germany) [43].

The mentor of this thesis and the author of this thesis designed together

the experiments for evaluation of George’s behaviour. The experiments were

performed by the author of this thesis.

1.3 Outline of the Thesis

This thesis is organised as follows. In the next chapter, we present the

paradigm of binding that underlies our approach. We first define the problem

that we aim to solve, then we describe our method and its implementation.

Chapter 3 is dedicated to George, a prototype of a cognitive system that

represents the platform for evaluation of our approaches and methods. In

Chapter 4, we describe in more detail the belief layer of George. The belief

layer is a vital part of George that bridges the semantic gap between its

lower and higher cognition. The belief layer is the result of our efforts to

integrate our approach and methods into George. In Chapter 5, we present

two sets of experiments: (i) the off-line experiments on the prototype binding

mechanism from Chapter 2, and (ii) the experiments performed on George

prototype. Finally, we conclude with Chapter 6, where we summarize this

thesis and express our final remarks.
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Chapter 2

Binding and Cross-modal

Learning

One of the most important abilities of any cognitive system operating in

a real world environment is to relate and merge information from different

modalities. For example, when hearing a sudden, unexpected sound, humans

automatically try to locate visually its source in order to relate the audio

perception of the sound to the visual perception of the source. The process of

combining two or more modal representations1 (grounded in different sensory

inputs) of the same entity into a single multi-modal representation is called

binding. While the term binding has many different meanings across various

scientific fields, a very similar definition comes from neuroscience, where it

denotes the ability of the brain to converge perceptual data processed in

different brain parts and segregate it into distinct elements [2, 36].

The binding process can operate on different types and levels of cues. In

the example above, the direction that the human perceives the sound from

is an important cue, but sometimes this is not enough. If there are several

1 In the literature, the term modality typically refers to a sensory modality, also known

as stimulus modality. A modal representation is a collection of information about a phys-

ical entity based on a particular sensory input, for example visual, auditory, olfactory, or

kinaesthetic information. We adopt here a notion of modality that includes both sensory

data, and further interpretations of that data within the modality [38].

7
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potential sound sources in the direction of the percept, the human may have

to relate higher-level audio and visual properties. A knowledge base that

associates the higher-level perceptual features across different modalities is

therefore critical for a successful binding process in any cognitive system.

In order to function properly in a dynamic environment, a cognitive sys-

tem should also be able to learn and adapt in a continuous, open-ended

manner. The ability to update the cross-modal knowledge base on-line, i.e.

cross-modal learning is therefore vital for any kind of binding process in such

an environment.

Many of the past attempts at binding information within cognitive sys-

tems were restricted to associating linguistic information to lower level per-

ceptual information. Roy et al. tried to ground the linguistic descriptions

of objects and actions in visual and sound perceptions and to generate de-

scriptions of previously unseen scenes based on the accumulated knowledge

[34, 35]. This is essentially a symbol grounding problem first defined by Har-

nad [15]. Chella et al. proposed a three-layered cognitive architecture around

the visual system with the middle, conceptual layer bridging the gap between

linguistic and sub-symbolic (visual) layers [7]. Related problems were also

often addressed by Steels [40].

Jacobsson et al. approached the binding problem in a more general way

[21, 20] developing a cross-modal binding system that could form associations

between multiple modalities and could be part of a wider cognitive architec-

ture. They modelled the cross-modal knowledge as a set of binary functions

comparing binding attributes in a pairwise fashion. A cognitive architecture

using this system for linguistic reference resolution was presented in [45].

This system was capable of learning visual concepts in interaction with a hu-

man tutor. Later, the same group developed a probabilistic binding system

that encoded cross-modal knowledge into a Bayesian graphical model [46].

In [27] a framework for constructing higher-level cognitive representations of

the environment, called beliefs, was presented. Markov logic was used as the

main framework for various types of inference over beliefs, including percep-
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tual grouping, which comes very close to our definition of binding. All these

systems assumed static cross-modal knowledge.

Our aim is to develop a flexible binding system, capable to adapt con-

tinuously its probabilistic representation of cross-modal knowledge to the

challenges of a dynamic environment. These requirements lead us in the di-

rection of Markov graphical models as a powerful and flexible platform for

probabilistic problem formulation. Unlike previous binding systems, the sys-

tem presented here is able to learn cross-modal associations in a continuous

manner. As a basis for our work, we also introduce a formal definition of

the binding problem, which is still general enough to accommodate other

possible approaches to binding.

This chapter is organised as follows: in the next section, we formally

define the problems of cross-modal learning and binding. In Section 2.2, we

first briefly describe the basics of Markov logic networks (MLN). Then we

describe our binding and cross-modal learning model that is based on MLN

and, in Section 2.3, discuss its integration in a cognitive architecture.

In order to validate our approach, we dedicate the first part of Chapter

5 (Section 5.1) to the experiments performed on an off-line binding system,

designed according to the methods described in this chapter.

2.1 Problem Definition

The main idea of cross-modal learning is to use successful bindings of modal

percepts as learning samples for the cross-modal learner. The improved cross-

modal knowledge thus enhances the power of the binding process, which is

then able to bind together new combinations of percepts, i.e. new learn-

ing samples for the learner. For example, if a cognitive system is currently

capable of binding an utterance describing something blue and round to a

perceived blue ball only by colour association, this particular instance of

binding could teach the system to associate also the perceived visual shape

of the ball to the linguistic concept of roundness. We see that at least on this
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level the binding process depends on the ability to associate between modal

features (in this example the perceived colour and the perceived shape are

features of the visual modality, while the linguistic concepts of blueness and

roundness belong to the linguistic modality).

We assume an open world in terms of modal features (new features can be

added, obsolete features retracted). The cross-modal learner starts with just

some basic prior knowledge of how to associate between a few basic features,

which is then gradually expanded to other features and the new ones that

are created.

The cross-modal learning problem is closely related to the problem of as-

sociation rule learning in data mining, which was first defined by Agrawal et

al. [1]. Therefore, we will base our problem definition on Agrawal’s definition

and expand it with the notions of modalities, percepts and percept unions.

We have a set of n binary attributes called features F = {f1, f2, ..., fn}
and a set of rules called the knowledge database K = {t1, t2, ..., tm}. A rule

is defined as an implication over two subset of features:

ti : X ⇒ Y (2.1)

where X, Y ⊆ F and X ∩ Y = ∅. A feature can not be part of both sides of

the implication.

The rules can be associated with several additional values – the two most

typical are the feature-set support and the rule confidence. The feature-

set support is the observed frequency of a combination of features (e.g.

supp(X) = 0.25). When the feature combination on the left side of a rule is

supported by a particular situation (i.e. we have evidence for all the features

in the combination), we consider that rule relevant for that situation. The

rule confidence is defined as

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
= P (Y |X). (2.2)

It can be interpreted as the estimate of the probability that a relevant rule

actually holds.
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The features represent various higher-level properties of perceived entities

based on the sensory input, while the rules encode associations between those

properties relative to a single entity. For example, we could attribute the

rule t : X ⇒ Y with the confidence conf(t) the following meaning: all the

features from the set X have been perceived in an entity, then we can claim

with confidence conf(t) that the same entity has also all the features from

the set Y.

We expand the Agrawal’s definition by introducing the notion of modal-

ity. Modalities are channels of perception based on specific sensors. A modal

feature set is a collection of features that can be perceived by a single modal-

ity. Modal feature sets are thus represented as subsets of the feature set F,

where each feature is restricted to one modal subset only:

M1 = {f11, f12, ..., f1n1}
M2 = {f21, f22, ..., f2n2}
. . . . . .

Mk = {fk1, fk2, ..., fknk
}

Mm ∩Mn = ∅, m, n ∈ {1, 2, ..., k}, m 6= n

F = M1 ∪M2 ∪ ... ∪Mk

(2.3)

We modify the rule-making restrictions of (2.1) accordingly:

1. N = Mm1 ∪Mm2 ∪ ... ∪Mmr , m1, ...,mr ∈ {1, 2, ..., k}, r < k

2. Y ⊆ N (2.4)

3. X ⊆ F \N

We can see that modal sets are restricted to have their member features on

one side of the implication, only. This generalization of the original restriction

focuses our knowledge base on cross-modal associations. We assume that the

intra-modal associations are processed on the lower, modal levels and should

not directly influence the processes on the cross-modal level.

Next, we need a means of relating features to perceived entities. Percepts

are collections of features from a single modality. A percept is the result of
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intra-modal processing of specific types of sensory signals (usually from one

type of sensor or a group of related sensors) that belong to a single entity. A

percept acts as uni-modal representation of a perceived entity. Let P be the

set of current percepts, i.e. the percept configuration:

P = {P1, P2, ..., Pn}, Pi ⊆Mj. (2.5)

In any percept configuration, an entity can be represented with multiple

percepts, but not more than one per modality.

Percept unions2 are collections of percepts from different modalities. A

percept union acts as a shared representation of a perceived entity, grounded

through its percepts to different types of sensory data. Given the percept

configuration P, U(P) is the set of current percept unions, i.e. the union

configuration:

U(P) = U1, U2, ..., Um, Ui ⊆ P. (2.6)

A percept union Ui can not contain more than one percept per modality.

Figure 2.1 illustrates the concepts above with an example.

In this view, the associations between the features in the knowledge

database K encode the information about how the percepts bind to per-

cept unions. E.g. let us suppose we have percepts P1 and P2 and the rule

t : X ⇒ Y , where X ⊆ P1 and Y ⊆ P2. Then conf(t) can help us estimate

how likely it is that P1 and P2 belong to the same union. Of course, other

measures can be used instead of conf(t) to estimate the plausibility of the

rule.

Now we can define the process of binding as a mapping of a percept con-

figuration to one of the possible union configurations:

β : P→ U(P), (2.7)

2Although the term might imply otherwise, we can see in (2.20) that a percept union is

a set of percept sets (a set of sets of features), not a union of percept sets (set of features).
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Feature

Percept

Percept

union
Visual 

modality

Linguistic 
modality

"Give me the red soda can."

Scene

Utterance

shp2

clr1

shp3

clr2

red

soda Union

configuration 

Percept

configuration 

Figure 2.1: A binding example from a human-robot interaction. The robot

visual system sees two objects, resulting in two visual percepts with features

for colour and shape. Based on the previously accumulated knowledge, the

modal subsystem is able to classify the objects’ colours and shapes as ‘clr1’,

‘clr2’, ‘shp2’ and ‘shp3’. In general (and especially when modal concepts

are learned without human influence), the robot’s modal concepts do not

necessarily match human perceptions (e.g. the visual system could perceive

what we see as red and orange as the same colour). The reference in the

sentence uttered by the human results in a percept in the robot’s linguistic

modality. The ensemble of the three percepts makes the current percept

configuration. The linguistic percept and the visual percept representing

the red cylinder (can) form a single percept union, since they very probably

represent the same physical entity, whereas the percept representing the blue

box makes a separate union. The ensemble of both unions makes the current

union configuration.
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where the following restrictions apply:

1. N = U1 ∪ U2 ∪ ... ∪ Um = P

2. ∀Ui, Uj ∈ U(P), i 6= j : Ui ∩ Uj = ∅ (2.8)

3. ∀Pi, Pj ∈ Uk, i 6= j : Pi ⊆Ml ∧ Pj ⊆Mm ⇒ l 6= m

The first two binding restrictions assign each percept in the configuration to

exactly one union, while the third restricts the maximum number of percepts

per modality in a union to one. The third binding restriction follows the

assumption from (2.4) that the modal layers are able to produce consistent

modal representations of real world entities.

Finally, to make the binding process plausible, we introduce a measure of

confidence in a union configuration based on the knowledge K — the binding

confidence bconfK(U(P)). Strict definition of bconfK(U(P)) is a matter of

implementation of the binding system and depends on measures that we use

to estimate the rule plausibility (e.g. conf(t)). In general, the system should

find for every rule the frequency of support (supp(X∪Y )) and the frequency,

with which the rule is violated (supp(X) − supp(X ∪ Y )). The binding

confidence increases or decreases each time a rule is supported or broken

according to the rule’s plausibility (supported plausible rules and broken

implausible rules should increase the confidence, while broken plausible rules

and supported implausible rules should decrease it).

Given a percept configuration P and a knowledge base K, the task of the

binding process is to find the optimal union configuration:

Uopt(P) = argmax
U(P)

(bconfK(U(P))). (2.9)

In this sense – i.e. considering bconfK(U) as a predictor based on K – we can

consider higher-level cross-modal learning as a regression problem. Therefore,

the aim of the cross-modal learner is to maintain and improve the cross-

modal knowledge base, thus providing an increasingly more reliable measure

of binding confidence.
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2.2 Formulation in Markov Logic Networks

Markov logic networks (MLN) [32, 10, 9] combine first-order logic and proba-

bilistic graphical models in a single representation. An MLN knowledge base

consists of a set of first-order logic formulae (rules) with a weight attached:

weight first− orderlogicformula. (2.10)

The weight is a real number, which determines how strong a constraint each

rule is: the higher the weight, the less likely the world is to violate that rule.

Together with a finite set of constants, the MLN defines a Markov net-

work (MN) (also called ground Markov network or Markov random field). A

Markov network is an undirected graph where each possible grounding of a

predicate (all predicate variables replaced with constants) represents a node,

while the formulae define the edges connecting the nodes. Each grounded

formula defines a clique in the graph. An MLN can thus be viewed as a

template for constructing MNs. In general the probability distribution over

possible interpretations x defined by an MN is given by

P (X = x) =
1

Z

∏
φk(x{k}), (2.11)

where φk is the potential function of the clique k, x{k} is the state of the sub-

set of variables that appear in the clique k, and Z is the partition function

defined as

Z =
∑
x

∏
k

φk(x{k}). (2.12)

A convenient way to model Markov networks is logistic regression, which

defines the weight wt for the formula t as

wt = ln(
P (t)

1− P (t)
), (2.13)
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where P (t) is the probability that the formula t is not violated. The proba-

bility distribution over possible worlds x is then given by

P (X = x) =
1

Z
exp(

∑
t

wtnt(x)), (2.14)

where nt(x) is the number of true groundings of the formula t, and

Z =
∑
x

exp(
∑
i

wini(x)).

The inference in Markov Networks means finding a stationary distribution

of the system. Usually we are interested in a marginal distribution of a subset

of variables, very often conditioned by some prior knowledge, called evidence

(another subset of variables whose values are known in advance). Sometimes

we are only interested in the most likely state of a subset of variables given

some evidence – Maximum a-posteriori probability estimation (MAP).

Exact inference in MN is considered a P#-complete problem [33]. Meth-

ods for approximating the distribution include various Markov chain Monte

Carlo sampling algorithms [14] and belief propagation [48]. MAP inference

in MN represents a weighted maximum satisfiability problem.

2.2.1 Cross-modal Knowledge Base

Our cross-modal knowledge base consists of two types of templates for the

binding rules. The template for the aggregative rule is defined as

perFeat(p1, f1) ∧ uniPer(u, p1) ∧ perFeat(p2, f2)⇒ uniPer(u, p2), (2.15)

where the predicate perFeat(p, f) denotes that the feature f is part of the

percept p, while uniPer(u, p) denotes that union u includes the percept p.

Variables (p1, f2, u, etc.) begin with a lowercase character. In a very similar

manner we define the template for the segregative rule:
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perFeat(p1, f1)∧uniPer(u, p1)∧ perFeat(p2, f2)⇒ ¬uniPer(u, p2). (2.16)

We can identify the aggregative rules as the mechanism that merges percepts

into common percept unions, while segregative rules separate them in distinct

unions. The template rules represent a subset of associative rules in (2.1),

restricted with (2.4), where each side is limited to one feature.

We also define the binding domain that we will use to ground the network.

A domain is a collection of typed constants. The following is an example of

binding domain with two modalities:

modality = {Language, V ision}
feature = {Red, Green, Blue, Compact, F lat, Elongated,

Box, Ball, Soda,

Clr1, Clr2, Clr3, Shp1, Shp2, Shp3}.

(2.17)

We can see that the constants (beginning with an uppercase character) can

be of two types: modalities and features. The predicate modPart(mod, feat)

is used to determine the partition of the features between modalities in the

sense of (2.3). For example:

modPart{Language, Red},
modPart{V ision, Clr1}.

Based on the example domain (2.17) a small set of grounded and weighted

binding rules could look like this:

2.5 perFeat(p1, Red) ∧ uniPer(u, p1) ∧ perFeat(p2, Clr1)⇒ uniPer(u, p2)

1.9 perFeat(p1, Red) ∧ uniPer(u, p1) ∧ perFeat(p2, Clr2)⇒ ¬uniPer(u, p2).

(2.18)

At this stage, the predicates forming the binding rules are not fully grounded

yet. They are grounded on the conceptual level only, with known features

like Red, Clr1, etc., while the unions are still represented with variables.
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In general the rules are fully grounded each time an inference is performed,

when based on some perceptual information (e.g. objects that are currently

perceived by a robot) an MN is constructed. We call the former process

concept grounding and the latter process instance grounding. Such approach

to grounding, i.e. staged grounding, can be very beneficial for a cognitive

system. While decoupling the general from the specific, it allows for the

application and adaptation of general concepts learned over longer periods

of time to the current situation in a very flexible fashion.

Using the example domain in (2.17), we can formulate the percept con-

figuration in figure 2.1 like

perFeat(P1, Clr1) ∧ perFeat(P1, Shp2) ∧
perFeat(P2, Clr2) ∧ perFeat(P2, Shp3) ∧
perFeat(P3, Red) ∧ perFeat(P3, Soda).

(2.19)

We ground the possible percept unions with constants {U1, U2, ...}. From

(2.18) and (2.19) we can infer the following union configuration as the most

probable:

uniPer(U1, P1) ∧ uniPer(U1, P3) ∧ uniPer(U2, P2). (2.20)

Percepts P1 and P3 are bound to a common percept union U1, while the

percept P2 is part of a separate percept union U2.

Besides the binding rules, the database can also contain feature priors in

the following form:

weight perFeat(percept, feature).

A feature prior denotes the default probability of a feature belonging to a

percept, which is used if there is no positive or negative evidence about it.

The feature priors can be based on the past observations, e.g. making the red

colour more likely than the pink because observed more often. Alternatively,

we can decide for arbitrary priors, e.g. uniformly distributed within a certain
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feature type, regardless of the observations (in this case, the probability to

observe a colour is equal for all known colours).

In a similar fashion to the predicate modPart, we can use the predicate

typePart to further discriminate between the feature types within modalities.

For example, if we want to distinguish between colours and shapes within

the visual modality (this is particularly useful in the case of arbitrary priors)

or maybe restrict modal percepts to just one feature from a particular group.

Such partitions are treated as intra-modal processes, therefore they should

be provided by the modal subsystems.

2.2.2 Learning

After the rules and priors (if we did not opt for arbitrary priors) are grounded

within the binding domain, we need to learn their weights. We use the gen-

erative learning method described in [32]. The learner computes a gradient

from the weights based on the number of true groundings (ni(x)) in the

learning database and the expected true groundings according to the MLN

(Ew[ni(x)]):

δ

δwi

logPw(x) = ni(x)− Ew[ni(x)], (2.21)

and optimizes the weights accordingly. Since the expectations Ew[ni(x)] are

very hard to compute, the method uses the pseudo-likelihood to approximate

it [3].

Continuous learning is performed by feeding the percept unions to the

system in small batches. In this way, we make sure that the learning affects

both aggregative and segregative rules in equal measure. Each small batch

thus represents one learning sample and typically contains 2-5 percept unions

described with perFeat and uniPer predicates.

In each learning step, the learner accepts the rule’s old weight in the

knowledge database as the mean for the Gaussian prior, which it tries to

adjust based on the new training batch. By setting the dispersion of the
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weight’s Gaussian prior to an adequate value, we ensure the learning rate of

each learning sample is proportional to its size.

In an on-line scenario, successfully inferred union configurations should

also be used as learning samples. In this case, the logistic model insures

that among the rules supported by the learning sample, the learning impact

is more pronounced on those with smaller absolute weight values. This al-

lows the system to increase the knowledge about new cross-modal concepts

without overfitting the old ones.

2.2.3 The Binding Process

In MLN, the binding process from (2.9) translates to inferring the value of

certain predicates from a graphical model (MN) over some evidence. As al-

ready seen in Section 2.2.1, an MN is a result of the processes of concept

and instance grounding. Typically, we are querying for values of the predi-

cates uniPer, where evidence includes a description of the current percept

configuration (using the predicate perFeat), a list of known and potential

percept unions, and a description of the current partial union configuration

(percepts can be assigned to already known unions). In the case of prob-

abilistic inference (e.g. MC-SAT, Gibbs sampling, etc.) the binding result

is expressed as a probability distribution for each unassigned percept over

the known and potential unions.The MAP inference on the other hand, just

outputs the most probable union configuration.

In order for the binding inference to function properly, we have to define

some hard rules (formulae with infinite weight) that reflect the binding re-

strictions in (2.8):

1. ∀p∃u : uniPer(u, p)

2. uniPer(u1, p) ∧ uniPer(u2, p)⇒ u1 = u2

3. perFeat(p1, f1) ∧ perFeat(p2, f2) ∧modPart(m, f1)

∧modPart(m, f2) ∧ uniPer(u, p1)⇒ ¬uniPer(u, p2)
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In the case of intra-modal subdivision of features with the predicate

typePart, where percepts are restricted to just one feature per type (see

Section 2.2.1), we can facilitate binding with an additional hard rule:

perFeat(p, f1) ∧ typePart(t, f1) ∧ typePart(t, f2) ∧ (f1 6= f2)

⇒ ¬perFeat(p, f2)

We can easily restrict this rule to specific feature types by grounding the

variable t.

2.3 Binding as Part of a Cognitive System

One of the main challenges of cognitive architectures [42] is how to bridge

the semantic gap between the sensory information and higher-level cognition.

This problem is in a way very related to the symbol grounding problem [15].

The sensory data is first processed by a lower cognitive layer known as the

perceptual layer. While processing on the perceptual layer is inherently intra-

modal, and there is often little or no communication between the individual

subsystems, the higher-level cognition usually assumes a-modal information.

In this sense, binding plays an important role in overcoming the semantic

gap, assuring that the resulting higher-level representations are multi-modally

grounded.

If we model representations produced by the perceptual layer as percepts

in the problem definition (Section 2.1), it is convenient to use percept unions

as the basis for the higher-level representations. A-modal higher-level repre-

sentations are thus grounded through a collection of modal percepts all the

way to the sensory data.

Figure 2.2 illustrates a possible application of the binding system de-

scribed in Section 2.2 to a cognitive system. We can see that three distinct

processes use the information from the perceptual layer:

• The process of concept grounding uses modal concepts produced by

the learning processes in modal learners (e.g. various colour and shape
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types) to ground the binding rules.

• The process of instance grounding relies on the ability of the perceptual

layer to quickly present (usually relying on one modality only) quanti-

tative estimates about the entities (instances) the cognitive system is

currently sensing. While the multi-modal representations of perceived

entities are quantitatively and qualitatively finalized by the binding

process itself (union configuration), these initial approximative repre-

sentations can be considered as a kind of placeholders for potential

entities (i.e. possible percept unions). They are devoid of any features

or other kind of attributes.

• The recognition process in modal learners results in the percept config-

uration, which represents the input to the process of binding inference.

The final product of binding – the union configuration is used both as the

Figure 2.2: Cross-modal learning and binding as part of a cognitive system.
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basis for a-modal representations in higher-level cognition, and as a source

of learning samples for weight learning.

The processes of instance grounding, binding inference and weight learn-

ing form the inner binding loop, which exploits the perceptive abilities of

modal learners and recognisers to improve its cross-modal associative power.

On the other hand, the process of concept grounding exploits the concept

forming ability of modal learners. By associating between modal concepts, it

produces new cross-modal concepts, which the inner binding loop eventually

evaluates within the existing cross-modal knowledge.

2.4 Real World Environment Issues

The real testing grounds for any cognitive architecture is of course a real world

environment, i.e. real data in real time. Even if we neglect the qualitative

aspect of real data (e.g. by assuming that it is completely handled by the

perceptual layer), we simply can not ignore its quantitative aspect, i.e. the

sheer numbers of features, entities and percepts that have to be processed

by the binding mechanism and higher cognition in a limited time. Hence,

scalability is an important requirement for every cognitive system operating

in the real world.

The quantitative aspect of the real data in an MLN reflects in the size

of the domain (constants) that is used to obtain the MN. Unfortunately,

the size of an MN (number of grounded predicates and rules) can increase

exponentially with the size of the domain – and size increases the inference

time. Several generic solutions have been proposed to tackle the scalability

problem of MLN, improving either the grounding process [28] or the inference

itself [31].

A good implementation practice is to filter the formulae by the value

of their weights before grounding them (the more the absolute weight of a

formula approaches zero, the less relevant the formula is). Applied to our

particular case this would result in an additional preprocessing step, prior
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to instance grounding that would purge the cross-modal knowledge base of

irrelevant or immature associations. This would diminish the number of edges

in the graphical model, thus relieving the binding inference of some processing

burden. The weight learning would still affect the whole knowledge base.

Furthermore, the cognitive system might even exploit the filtering mechanism

to its advantage. Depending on situation, it could achieve faster response,

or greater reliability and accuracy by regulating the filtering criterion.

In Section 2.1 we neglected the real-time issues, implying a somewhat

static concept of percept configuration, where the system synchronously ac-

quires percepts from different modalities. In the real-world environment, a

percept configuration is rather subject to continuous smaller scale changes,

typically involving only a small set of percepts from a single modality at

a time. Substantial time differences in percept output between modalities

can be expected even in the case of concurrent sensory stimuli. This scales

down the original binding problem from Section 2.1. Rather than re-binding

the whole percept configuration, the system only needs to establish how a

fresh subset of percepts from a single modality relates to the existing union

configuration. The real-world challenges could also prompt us to explore

various possibilities of breaking the single graphical model implied in Section

2.1 into several smaller ones. For example, the system could first separately

determine how a new percept relates to each of the existing percept unions

and then, if necessary, combine only the most promising combinations to a

single graphical model.



Chapter 3

George – a Prototype of a

Cognitive System

In this chapter we present George, a robot prototype that implements a few

of the most typical characteristics of cognitive systems. More comprehensive

descriptions of George are available in [39, 37]. In brief, George is capable of

active exploration (by turning its head) of its immediate surroundings, and of

perception of small objects in them. It is also capable of making conversation

about its perceptions with a human tutor, and of learning about objects’

properties from that conversation.

George is the result of a joint research effort of six partners1, within

the FP7 European project CogX. Its purpose might be best described as

a demonstration and evaluation platform for various cognitive paradigms,

like visual attention, situated dialogue with another agent, learning through

situated dialogue, motivation, planning, etc. (each of the partners involved

in its creation, had its own particular agenda about what kind of cognitive

mechanism to integrate in George). Thus, George represents the ultimate

testing ground for such paradigms – a logical next step in evaluation after

1University of Birmingham (UK), DFKI (Germany), KTH Stockholm (Sweden), Uni-

versity of Ljubljana (Slovenia), Alfred Ludwig University of Freiburg (Germany) and TU

Wien (Austria).

25
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the classic off-line experiments (like the ones in Section 5.1).

Figure 3.1: George in a learning interaction with a tutor.

During the years George (and his predecessor Playmate [45]) was built,

an important lesson about artificial cognitive systems emerged: the key to

a good cognitive system is the integration. Of course, it is not unexpected

that we need some kind of solid integration to make various cognitive com-

ponents work together. However, if we want to fully exploit the potential of

each mechanism, and at the same time make them work as coherent unified

system, in such case the complexity and the sophistication of the integration

will probably have to exceed the cumulative complexity of individual com-

ponents. The integration we are talking about, must not be understood in

a technical sense, only, but also as the integration of paradigms, or some-

times even very basic ideas. Often, in the process of building George, it was

necessary to modify assumptions or sacrifice important ideas about your cog-

nitive paradigm in order to make the integration plausible. In this view, it

is no surprise that we had to considerably adapt our binding platform from
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Chapter 2, though the fundamental principles remain the same.

Thus, the purpose of this chapter is also to prepare the reader for what

follows in Chapter 4, where we describe, how we adapted, upgraded and

finally integrated into George the principles described in Chapter 2. The

content of this chapter is a digest of a more detailed description of George

available in [39]. We begin by describing the main competencies and repre-

sentations that characterize the cognitive system. Section 3.2 focuses on the

implementation and the integration of the system. Finally, in Section 3.3 we

give an overview of the basic behaviour of the robot.

3.1 System Competencies and

Representations

A robotic system for interactive learning in dialogue with a human must have

the competencies to generate the required behaviour, including the ability

to process representations stemming from different modalities. Figure 3.2

provides an overview of the main competencies in the George prototype sys-

tem and the relationships between them. By processing visual information

and communicating with humans, the system forms beliefs about the world.

They are exploited by behaviour generation mechanisms that select actions

to perform in order to extend the system’s knowledge about visual concepts.

In this section, we describe the individual competencies and representations

required for interactive learning. To make these descriptions more concrete

we first present an illustrative example, which briefly demonstrates the capa-

bilities of the system, allowing us to ground later explanations in a real-world

example.

3.1.1 An Example of Interaction

Consider a scene similar to the one presented in Figure 3.1. A human tutor

and the robot system are engaged in a dialogue aiming to teach the robot
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Figure 3.2: System competencies and relationships between them. Schema

taken from [39].

about visual concepts, such as colour (e.g. red, blue, etc.), shape (elongated,

compact) and object types (e.g. a mug, a bottle, etc.). The tutor puts the

objects in the scene, and describes them or asks questions about them. In

this scenario, all the perceptual entities (objects) are restricted to be a single

shape, (predominant) colour and type. The robot looks around the scene,

detects the objects, and processes the visual and linguistic information, thus

trying to understand his environment. Based on his understanding of the

scene, he plans how to learn more about the objects and their properties.

Let us suppose that the current view of the robot is depicted in Figure

3.3. The tutor may convey new information to the robot by describing one

of the objects (e.g., H: ‘The blue object is a bottle. It is elongated.’). After

establishing common ground, by determining which object the human is

referring to, the robot can update its knowledge about the concepts of “a

bottle” and “elongatedness”. The human may also ask the robot a question

(e.g., H: ‘Which colour is the tea box?’). The robot will answer the question

(R: ‘It is red.’). However, it could also take the initiative, and ask the
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tutor a question that would require an answer. That would increase its

knowledge about the objects currently perceived in the scene, and about

object properties in general (R: ‘What shape is the cornflakes box?’, or R:

‘Please, show me something green.’). The robot can also point at an object

to avoid ambiguous questions; e.g., since there are two mugs, and two red and

two yellow objects in the scene, the robot can not refer to one of the mugs

verbally, so it would point at one of them to establish the common ground.

Only then it would ask a question like R: ‘What shape is this object?’. In such

a mixed initiative dialogue, the robot tries to get as much information from his

tutor as possible to learn about objects and their properties. In the remainder

of this section, we will describe the competencies and representations that

facilitate these kinds of behaviour.

Figure 3.3: An example of a scene George can learn from.
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3.1.2 Attention Driven Vision2

To learn autonomously about visual object concepts, the robot has to be able

to detect new objects, when they are presented, as well as identify interesting

parts of the scene. Since the robot can not have models for unknown objects,

it can not rely on model based detection and recognition. Instead, it requires

a more general mechanism. Hence, George relies on a generic, bottom-up 3D

attention mechanism for object detection.

To make the problem of generic segmentation of unknown objects tractable,

the system assumes that objects are always presented on a supporting sur-

face such as the table in Figure 3.3. Given 3D point clouds that are obtained

with an RGB-D sensor, the system detects supporting planes using a variant

of particle swarm optimization [49, 50]. Any point clouds sticking out from

the detected supporting planes are labelled as 3D spaces of interest (SOIs),

i.e. something that is potentially interesting to the system (in the case of

Figure 3.3, the robot would detect five different SOIs). Using their position,

size and colour histogram, the system can track over time individual SOIs,

thus eliminating transient features or noise.

Figure 3.4: Segmented point cloud, detected objects, and a close-up view of

a foveated object.

A segmentation that is based on the RGB-D data, only, is not reliable. In

our case, it may include points with erroneously assigned background colour,

due to shadowing effects at object boundaries. Therefore, by using the graph

cut ([4]) method, SOIs are supplemented with a precise segmentation mask.

2This section abridges Section 2.2 in [39].
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This segmentation happens in a foveated (i.e. higher-resolution) view of the

potential object, using an RGB image from a camera with a longer focal

length than the RGB-D sensor. The object features, used for learning visual

properties, are extracted based on this segmentation mask (e.g. the medians

of the HSL colour values of all foreground pixels, different shape features,

etc.). Figure 3.4 shows the results of processing the scene depicted in Figure

3.3: the segmented point cloud, the detected objects and the close-up view

after foveating on an object. Segmented objects are then subject to individual

processing.

3.1.3 Learning and Recognizing Object Properties3

To efficiently store and generalise visual information, the visual features of

object properties (such as colours and basic shapes) are internally repre-

sented as generative models. These generative models take the form of prob-

ability density functions (PDFs) over the feature space, and are constructed

in an on-line fashion from new observations. This continuous learning pro-

cess extracts visual data in the form of multidimensional features from the

segmented objects (e.g. features relating to shape, texture, colour and inten-

sity). The on-line discriminative Kernel Density Estimator (odKDE [25])

gradually constructs estimations of the PDFs in this feature space. A partic-

ularly important property of the odKDE is that it allows adaptation of the

models from both, the positive and the negative examples (i.e. learning and

unlearning; [26]).

During its on-line operation, the system maintains a multivariate gener-

ative model (e.g. over HSL colour feature space) for each one of the visual

concepts (e.g. every colour) that were already introduced. Furthermore, for

mutually exclusive sets of concepts (e.g. all colours), the optimal feature sub-

space is continually determined by feature selection. This feature subspace

is used to construct a Bayesian classifier for individual object properties.

In addition, the system maintains an “unknown model”, which accounts

3This section is a digest of Sections 2.3 and 2.4 in [39].
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for poor classification when none of the current concept models supports

the last observation strongly enough. Having built such a knowledge model

and Bayesian classifier, recognition is done by inspecting the a-posteriori

probabilities over individual concepts and the unknown model.

By analysing the a-posteriori probability, the system is able to determine

the information gain for every concept. The information gain for a concept

estimates how much the system would increase its knowledge if it were to

receive information from the tutor about that concept with respect to a given

object. This serves as a basis for triggering situated extrospective learning

mechanisms.

Furthermore, even in the absence of visible objects, the system can in-

spect its models and determine which model is the weakest or most ambigu-

ous. Based on this estimate, the information gain for every concept is again

calculated, regardless of what is visible. This measure is used to initiate

introspective learning.

Besides generic object properties, George is also able to recognise and

learn object types. The method [51] combines appearance based (RGB im-

age) and shape based (point cloud) visual features into multi-view object

models. The views are incrementally acquired from RGB-D images, and are

aligned using sparse bundle adjustment. Type recognition uses RANSAC to

find a matching view from the features extracted from the object RGB image

and point cloud. Even though what is essentially an object instance based

recogniser is used as a type classifier, this works well enough in handling the

variability encountered in George scenarios.

3.1.4 Situated Dialogue4

The other external source of information for George is its tutor. In task-

oriented interactions between a human and a robot, there is more to dialogue

than just understanding words. The robot not only needs to understand what

is being talked about, but also why something was told. In other words, what

4This section is a digest of Section 2.5 in [39].
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the tutor intends the robot to do with the information in the larger context

of their joint activity (e.g. which part of information received from the tutor

is intended for learning).

An intention is a goal-oriented cognitive state, usually modelled as an

explicit commitment to acting in order to achieve a goal or desire [5, 8].

George’s communication system explicitly models communicative intentions

(i.e. intentions that are related to communication, as opposed to the robot’s

purely internal intentions or goals; see Section 3.1.6), and uses them as a

pragmatic representation of the human-robot interaction, abstracting away

from the actual surface form.

The system employs continual abduction ([22]) to generate and verify

hypotheses about the tutor’s behaviour in terms of communicative intentions.

Abduction is a method of explanatory logical reasoning ([11]). Given a theory

T , a rule T ` A → B and a fact B, abduction allows inferring A as an

explanation of B. B can be deductively inferred from A ∪ T . If T 6` A, then

we say that A is an assumption. There may be many possible causes of B

besides A. Abduction amounts to guessing ; assuming that the premise is

true, the conclusion holds too.

Abductive reasoning over intentions in a situated context is a bi-directional

process ([41]) that the system uses in two roles: recognition of the tutor’s

communicative intentions (inferring their intention given the context and a

surface form of their input); and realisation of the robot’s communicative

intentions (inferring an appropriate surface form given the context and the

robot’s intention).

3.1.5 Higher-Level Representation with Beliefs

By processing visual information and communicating with the human, the

system forms beliefs about the world. Beliefs are data structures that con-

tain indexical information about perceived entities. They form a represen-

tational layer where multi-modal and multi-agent information is associated

and merged to create a-modal representations – a process akin binding. In
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general, we can regard a belief as a higher-level representation of an element

of the physical reality, potentially grounded in one or more sensory inputs,

and attributed to specific agents or groups. In George, a single belief contains

information about a single entity, but there can be many beliefs about the

same entity. The contents of beliefs are expressed as multivariate probability

distributions over feature-value pairs. We provide a more detailed account

of the belief layer in Chapter 4.

3.1.6 Motivation5

In order to discover and make sense of its surroundings, George has to per-

form multiple, possibly interleaved, goal-directed activities. As a cognitive

system that must fill gaps in its own knowledge, it is important that it is able

to generate and manage its own goals, since the opportunities available to it

at runtime may be unknown or unpredictable at design-time. The motiva-

tion framework [16, 47] encodes the drives of the system (the general types

of things it wants to achieve) as a collection of goal generators. Each of them

generates particular types of goals for the system based on the current belief

state and communication with the tutor. A goal is a description of a desired

future situation (e.g. to know the colour of a newly visible object).

The goal generators in George create goals necessary to engage in situated

dialogue with a human tutor and to learn about its surroundings. A partic-

ular goal generator monitors the communicative intentions provided by the

dialogue subsystem as it interprets tutor’s utterances (see 3.1.4). Based on

their content, this generator creates goals to answer questions about objects,

or to perform learning. Each of these goals contains a reference to the merged

belief representing the referred object, and other intention-specific informa-

tion. Another goal generator handles the situation where a set of possible

intentions has been generated in response to an ambiguous reference. In this

case, the goal not only includes the content describing the future state, but

5This section abridges the part of Section 2.8 in [39] that describes the motivation

system.
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an existentially qualified reference to a belief that represents the possible ref-

erents of the intention. Part of George’s task is then to resolve this reference

before it can act on its content.

Each potential goal has to pass through a management system that de-

termines which of them should be pursued, i.e. activated. The aim of this

filtering step is to prioritise important or more appropriate goals in given

situation. The system activates goals based on a priority hierarchy of drives.

Each of three drives in this hierarchy controls a type of behaviour that George

was designed to perform. The highest priority drive is to answer tutor’s ques-

tions, followed by the drive to learn by extrospection (i.e. inspecting the world

external to the agent). At the lowest level, we find the drive to learn by in-

trospection. Goals of a particular priority suppress the activation of goals

with lower priorities. Goals that pass through this filter are ranked accord-

ing to heuristics provided by their goal generators. The top ranked goals are

activated.

3.1.7 Planning6

Once goals are activated, it is up to the planning system, how to achieve

them in the current context. An active goal and the current context (which

is derived from the belief state) form a planning problem description. Plan

execution, execution monitoring and replanning is managed via a collection of

action interfaces that trigger individual components in the modality-specific

subsystems. The planning system is based on the fast downward planner

[19]. This is a state of the art planning system based on heuristic forward

search, extended by a preprocessing routine, which enables the support of

object fluents and numerical constants by compiling them away, and deal with

the uncertainty of the real-world environment by using a continual planning

approach ([6]).

The dialogue with a tutor plays a central role in the George scenario.

Asking and answering questions is crucial for all three George’s drives. Hence,

6This section abridges the part of Section 2.8 in [39] that describes the planning system.
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the planner must generate plans that establish a common ground with the

tutor about the object of their discussion. For instance, a possible initial

ambiguity in a dialogue is represented by having multiple objects as the

referents of a tutor’s question, alongside a goal to only have a single referent.

The planner can predict the effects of available clarification actions on its

interpretation of that reference. It uses these actions to create a plan, which

it expects to remove the ambiguity and leave only a single referent that will

be the next topic of the conversation.

George can choose between two types of actions for clarifying a reference:

describing the object verbally, or pointing at it with its arm. Since a verbal

description is considered cheaper, George will always try to describe the

object first, if it has a combination of recognised properties that is unique

among the perceived objects, and can be verbalised. Otherwise, it will resort

to pointing. Once a common ground is established, the planner will determine

a suitable answer or question from the belief state, and trigger learning, if

necessary. Examples of behaviour generated by George’s planning system

are available in Section 5.2.

3.2 Implementation and Integration

To make the competencies described above work together in a robotic system,

a sophisticated means of integration is needed. The implementation and

integration of George is based on CAST, the CoSy Architecture Schema

Toolkit [17]. CAST is a distributed working-memory model composed of

several sub-architectures, each implementing a different functionality. A sub-

architecture (SA) contains one or more components each running in its own

thread. The components communicate through a working memory (WM).

When the state of a component changes, it either adds an entry (of a certain

type) containing the relevant information to the WM, updates an existing

entry in the WM, or deletes it from the WM. Another component can register

with the WM to receive notifications whenever changes to entries of a certain
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type occur. This allows links between multiple components to be established,

and for information to be passed accordingly. The architectural approach is

described in more detail in [17, 18].

George is composed of six CAST SAs. Figure 3.5 presents George from the

system point of view. It illustrates its complexity, and denotes the relations

between individual components.

The Visual SA is responsible for visual processing. It implements compe-

tencies described in Sections 3.1.2 and 3.1.3. The SA uses a Kinect RGB-D

Figure 3.5: A schematic view of George system architecture. Rounded boxes

represent the components, rectangles represent the data structures, while

arrows indicate information flow. Schema taken from [39].
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sensor for pre-attentive vision, i.e. identifying and processing spaces of inter-

est (SOIs) as they appear in the scene. On the other hand, it uses a narrow

field-of-view Point Grey Flea 2 camera for attentive vision, i.e. deliberate

extraction of object properties. The attention mechanism also makes use of

the Direct Perception pan/tilt unit (part of Spatial SA) for bringing SOIs

into the centre of view.

The Dialogue SA provides the functionality for the situated dialogue. The

system uses a third party software for speech recognition, and the Mary TTS

system for speech production7. The SA implements techniques presented in

Section 3.1.4 for recognition of the tutor’s intentions and realisation of robot’s

intentions in the situated context. The robot also uses the Neuronics Katana

6M (5 DOF) robotic arm for pointing at objects. The arm is controlled via

Golem [24], and is part of Manipulation SA).

Beliefs are collected in the Binder SA, which represents a central hub

for gathering information about perceptions from different modalities (sub-

architectures). The Planning SA monitors the beliefs, and generates appro-

priate behaviour as described in Section 3.1.6. As new beliefs appear, they

trigger goal generators to produce planning goals, while the overall set of cur-

rent beliefs represent the planning state. During a plan execution, requests

are sent to the Visual, Spatial, Manipulation and Dialogue SAs to perform

planned actions, which generates the desired behaviour.

3.3 Basic Behaviours

George is a very complex and heterogeneous cognitive system. This means

that even its basic mechanisms of behaviour combine functionalities dis-

tributed across several sub-architectures, hence the need for a tight and

meaningful integration of its components. Very often, those behaviours re-

quire that different functionalities are executed in parallel, although in a

synchronised manner. The cognitive mechanisms that implement George’s

7http://mary.dfki.de
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behaviour can be grouped in four main groups:

• mechanisms for visual perception,

• tutor initiated interaction,

• extrospective learning mechanisms,

• introspective learning mechanisms.

Two mechanisms provide the robot with the visual information. The first

one is bottom-up, and is triggered by changes in the scene. It makes sure

that the robot analyses the objects that are brought in his view. The second

one is top-down, and is triggered by the motivation subsystem. It makes the

robot explore the scene, using its pan-tilt unit, searching for new objects that

were possibly introduced to his surroundings, while it was looking away.

Interaction with a human tutor is one of the crucial abilities of this cog-

nitive system. Interaction can be triggered by the tutor or by the robot. The

tutor can trigger interaction in three ways: by asking the robot to execute an

instruction, by asking robot a question (e.g., ‘What colour is the coke can?’

or ‘Is the coke can red?’), or by giving the robot useful information (e.g.,

‘The coke can is red.’) that can be used for learning (situated tutor-driven

learning). These mechanisms are triggered by the system’s interaction goals.

Of course, a cognitive system can not just passively wait for tutor’s learn-

ing instructions, it has to exploit learning opportunities. It should actively

look for, ask for, and use the information that would help to extend its

knowledge. These learning mechanisms associated with such behaviour (the

situated autonomous learning and the situated tutor-assisted learning) are

part of George’s extrospective drive. The goal generators monitor the beliefs

for information that can be exploited for learning. They generate a goal for

each possible learning opportunity.

In the absence of opportunities for situated learning, the robot can still

actively engineer interactions to provide new information. E.g., the robot can

autonomously search for new objects, or even ask another agent to provide
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one (specifying the properties that are the most interesting). This behaviour

is based exclusively on introspection of the existing property models. From

a pool of currently maintained models, the robot selects the one it considers

the least adequate (typically inadequately sampled), and initiates an action

that tries to obtain new samples to improve it.



Chapter 4

Bridging the Semantic Gap in

George

As we saw in Chapter 3, the two critical properties of a cognitive system

operating in a complex environment are (i) the ability to sense, perceive and

process complex information about physical reality, and (ii) the ability to

use this information to plan, manage and execute complex actions in such an

environment. The complexity of the physical reality implies the ability to col-

lect information from different sources, i.e. different sensor types and possibly

different agents (other than the cognitive system itself). This means that at

least on lower levels the information is inherently multi-modal and multi-

agent. On the other hand, the higher cognition (e.g. motivation, planning,

etc.) predominantly assumes a-modal information. Hence, an intermediate

cognitive layer capable to relate and merge multi-modal and multi-agent in-

formation is needed to close the semantic gap that divides the lower and the

higher cognition.

In this chapter, we describe in more detail the intermediate cognitive layer

of the prototype cognitive system George. As we saw earlier, the scenario

assumes a robot (George) capable of making situated dialogue with a human

tutor about objects on a table. The robot is thus able to observe, track and

recognise the objects on the table, and through the dialogue with the tutor

41
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improve its knowledge about the objects’ properties (cross-modal learning).

Such a scenario obviously relies on the ability of the robot to first associate,

and later merge multi-agent information. Higher-level cognitive processes,

like motivation and planning, can then use the resulting representations.

4.1 Reference Resolution

The process of determining the denotation of a referring expression is called

reference resolution. In a cognitive system, reference resolution can be for-

mulated as a process akin to binding that tries to associate multi-agent in-

formation. Both processes can operate on the same cognitive layer, called

the belief layer, briefly introduced in Section 4.2. As we will see later, in

Section 4.3, the difference between robot’s own perceptions and information

attributed to another agent both encoded in beliefs can be directly exploited

for implicit learning.

In general, the binding in Markov Logic Networks is applied to an in-

termediate cognitive layer, where the various beliefs represent perceived and

assumed facts. These beliefs are used to instantiate the rules from the cross-

modal knowledge base to a Markov graphical model. We saw in Section 2.3

that MLN knowledge represents the general rules encoding relations between

concepts (e.g. object properties as colour, shape,etc.), while a graphical model

encodes the relations between concrete instances (objects) that are currently

perceived by the system. A successful inference results in a shared multi-

modal representation of a physical entity. Such representations can be used

as learning opportunities to improve cross-modal knowledge.

In George, the principles of binding are used for reference resolution. We

base our implementation of this process on the general method of binding in

Markov logic networks described in Section 2.2. In our case, the robot uses

reference resolution to relate its own perceptions to information attributed to

a human tutor. Hence, reference resolution is critical for its ability to make

situated dialogue with the human.
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We implemented the MLN as a set of components that process informa-

tion stored in beliefs (see Figure 4.1). A MLN engine component maintains

a Markov network graphical model, which makes continuous on-line infer-

ence (MCMC sampling), and can continuously adapt to the changes in be-

liefs. MLN engines can also combine the information encoded in the current

graphical model with external information about the correct inference out-

come to perform on-line weight learning. MLN client components filter the

information stored in beliefs or other data structures, and feed it to MLN

engines. They can also read and process inference results, and trigger weight

learning in MLN engines.

The implementation of reference resolution in George features a single

MLN engine and two MLN clients. One MLN client (the belief filter) contin-

uously filters the information in beliefs, and forwards it to the MLN engine

as evidence about perceived entities. The other MLN client (the restrictor)

acts on request; triggered by the dialogue subsystem (when it recognises a

referring expression in the tutor’s utterance) it first feeds the MLN engine

with the referring (restrictive) information, then reads and forwards the re-

sult of the inference back to the dialogue subsystem, and finally withdraws

the referring information.

The result of the MLN inference is a probability distribution over per-

ceived entities, represented as beliefs. The dialogue subsystem uses it to

determine the interpretation of the tutor’s utterance. This eventually results

in additional beliefs related to the ones grounded in robot perceptions (see

Section 4.2). As a consequence of successful reference resolution, the restric-

tor can also trigger weight learning in the MLN engine. A successful reference

resolution usually means that the resulting probability distribution favours

with a suitable degree of reliability the denotation to one of the existing

beliefs. In this case, the restrictor first feeds the ‘winning’ resolution to the

MLN engine as evidence, and then triggers the learning. Afterwards, it with-

draws both pieces of evidence, the referring information and the ‘winning’

resolution, from the MLN engine.
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Figure 4.1: Implementation and integration of reference resolution in George.

4.1.1 An Example of Reference Resolution

The following is an example of reference resolution performed in an MLN

engine component. We assume a small MLN reference resolution knowledge

database that encodes associations between two visual colour models (de-

noted as Color1 and Color2) and two linguistic colour descriptions (Red

and Blue):

2.5 percColor(b, Color1) ∧ restrict(Red)⇒ resolveTo(b)

−1.9 percColor(b, Color1) ∧ restrict(Blue)⇒ resolveTo(b)

−1.3 percColor(b, Color2) ∧ restrict(Red)⇒ resolveTo(b)

2.0 percColor(b, Color2) ∧ restrict(Blue)⇒ resolveTo(b)

The predicate percColor(b, Color1) denotes that the object represented by

the belief b was perceived to be of modal colour representation Color1 by the

visual subsystem. The predicate restrict(Red) denotes Red as the restric-

tion (referring information, see Section 4.2.1) given by the tutor, while the

predicate resolveTo(b) denotes the reference resolution to the belief b. As
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is the case in Section 2.2, variables begin with a lowercase character, while

constants begin with an uppercase character.

We can see that the rules in the knowledge database instantiate concept

(in our case the colours), but encode beliefs about objects as variables. The

predicate resolveTo(b) is also the object of the MLN engine query. The

inference can result in the following probability distribution, for example:

0.2 resolveTo(B1)

0.1 resolveTo(B2)

0.7 resolveTo(B3)

As was the case in Section 2.2.1, the real numbers denote the probabilities. In

addition to the knowledge database, the reference resolution system includes

the following set of hard rules (similar to the binding restrictions in Section

2.2.3) that regulate the inference process:

1. belief(b1) ∧ belief(b2) ∧ resolveTo(b1) ∧ resolveTo(b2)⇒ b1 = b2

2. resolveTo(b)⇒ belief(b)

3. resolveTo(b)⇒ ∃f : restrict(f)

The hard rules are rules with an infinite weight that can never be broken.

The predicate belief(b) denotes the existence of belief b. Rule 1 restricts

the reference resolution to exactly one belief, rule 2 restricts the reference

resolution to an existing belief, and finally, rule 3 makes reference resolution

possible only when referring information exists.

Let us suppose the system perceives two objects on the desktop, one red

(perceived as Color1) and one blue (perceived as Color2). The belief filter

feeds the MLN engine with the following evidence:

belief(B1) ∧ belief(B2) ∧ percColor(B1, Color1) ∧ percColor(B2, Color2)

Based on this information the MLN engine builds a Markov Network graph-

ical model (MN). First it instantiates the rules with both beliefs:
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2.5 percColor(B1, Color1) ∧ restrict(Red)⇒ resolveTo(B1)

−1.9 percColor(B1, Color1) ∧ restrict(Blue)⇒ resolveTo(B1)

−1.3 percColor(B1, Color2) ∧ restrict(Red)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1) ∧ restrict(Red)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 percColor(B2, Color2) ∧ restrict(Red)⇒ resolveTo(B2)

2.0 percColor(B2, Color2) ∧ restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

∞ ¬resolveTo(B1) ∧ ¬resolveTo(B2)

Then it applies the evidence to the instantiated rules:

2.5 restrict(Red)⇒ resolveTo(B1)

−1.9 restrict(Blue)⇒ resolveTo(B1)

−1.3 percColor(B1, Color2) ∧ restrict(Red)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1) ∧ restrict(Red)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 restrict(Red)⇒ resolveTo(B2)

2.0 restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

∞ ¬resolveTo(B1) ∧ ¬resolveTo(B2)

(4.1)

The instantiated rules above represents a MN, where each fully instantiated pred-

icate represents a sampling variable (atom). The MLN engine performs a continu-

ous inference that in the present case (because of the last instantiated rule, derived

from the hard rule 3) does not yield any positive resolution.

Now, let us suppose that a human refers to a red object in his utterance. By

the request of the dialogue subsystem, the restrictor component feeds the MLN

engine with the predicate restrict(Red). This new piece of information modifies

the graphical model as follows:
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2.5 resolveTo(B1)

−1.9 restrict(Blue)⇒ resolveTo(B1)

−1.3 percColor(B1, Color2)⇒ resolveTo(B1)

2.0 percColor(B1, Color2) ∧ restrict(Blue)⇒ resolveTo(B1)

2.5 percColor(B2, Color1)⇒ resolveTo(B2)

−1.9 percColor(B2, Color1) ∧ restrict(Blue)⇒ resolveTo(B2)

−1.3 resolveTo(B2)

2.0 restrict(Blue)⇒ resolveTo(B2)

∞ ¬resolveTo(B1) ∨ ¬resolveTo(B2)

As we can see, the referent information also removes the hard rule preventing

any positive reference resolution. The inference result is now clear; the result-

ing probability distribution reliably indicates the belief B1 as the referent. The

restrictor forwards this information to the dialogue subsystem and removes the

referent information, which returns the graphical model to the state in (4.1).

Saliency can be a very useful addition to the situated human-robot dialogue.

An object on the desktop can become salient because of non-verbal communication

(e.g., the robot or the human pointing with his arm, or directing his gaze towards

an object), or simply by being the only object on the desktop. The information

about the saliency has to be part of the belief representing the object. The be-

lief filter can feed this information to the MLN engine simply as the predicate

salient(B1). The human can then refer to that object with the word ‘this’, which

the restrictor can represent with the predicate restrict(This). The easiest way

to implement this mechanism is to add another rule to the regulative set of hard

rules:

salient(b) ∧ restrict(This)⇒ resolveTo(b).

When the human refers to a salient object with the word ‘this’, the (in-

stantiated) hard rule above simply overrules all the instantiated soft rules in

the graphical model, resolving the reference to the salient object.
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4.2 The Belief Layer

Beliefs form a cognitive layer where multi-modal and multi-agent information

is associated and merged to a-modal representations. In general, a belief can

be regarded as a higher-level representation of an element of the physical

reality, which is grounded in one or more sensory inputs, attributed to a

specific agent, or a combination of both. Our belief scheme distinguishes five

distinct belief categories:

• Private beliefs reflect the robot’s perceptions of the environment based

on its sensory input. Private beliefs are expressed in modal symbols

and can form various associations with private beliefs stemming from

other modalities or beliefs with other epistemic statuses.

• Assumed beliefs are used to establish cross-agent or cross-modal com-

mon ground. They are created from private beliefs by translating the

modal symbols to the a-modal ones. Depending on complexity of the

modal learners and their ability for autonomous unsupervised learn-

ing, this process can be as simple as one-to-one symbol mapping or

much more complex (e.g. translating between two sets of symbols with

overlapping meaning that consequently also modifies the original prob-

ability distribution). In cross-agent case, the robot uses assumed be-

liefs to establish a common ground with another agent to facilitate

communication. Thus, the beliefs reflect the robot assumptions about

the meaning of its perceived information for a particular agent (e.g.

human). In cross-modal case, the assumed beliefs establish a com-

mon ground between modalities. In both cases, this process facilitates

cross-belief information fusion in later stages.

• Attributed beliefs contain information that robot attributes to another

agent (e.g. human). This kind of beliefs are the direct consequence

of some kind of communication with another agent. The robot is in

principle able to analyse and understand the information in such beliefs,
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but does not necessarily agree with it (especially, if it does not match

its own perception of the same reality).

• Verified beliefs are created from attributed beliefs. They contain the ac-

knowledged information from the attributed beliefs. Acknowledgement

(or verification) does not necessarily mean that the agent’s information

in the belief is consistent with the robot’s perception; it just means

that that information was adequately processed, and is now ready to

be used in higher-level cognition (e.g. in communication with the agent

that issued it). After a successful reference resolution, the restrictive

information is stored in verified shared beliefs, while the asserted infor-

mation is in attributed belief.

• Merged beliefs combine information from verified and assumed beliefs,

and represent the final a-modal situated knowledge, ready to be used

by the higher level cognitive processes (like motivation and planning).

They contain as reliable information as possible, and as much infor-

mation as available. Information can be merged in different ways. For

example, the system can completely trust a certain agent (typically a

tutor), so that the merged belief contains all information from the veri-

fied belief, and only uses the assumed belief to fill the information gaps

left by the verified belief. A more complex solution for the information

fusion involves merging probability distributions over feature values.

The merging process is also called information fusion.

Private beliefs are created by mediator components, using the information

from modal subsystems. On the other hand, attributed and verified beliefs

are products of successful resolutions of another agent’s references. The

changes in perception propagate in real-time through the belief structure,

from private beliefs to the merged ones. In a similar manner, the progress

in dialogue and dialogue processing (certain events in other subsystems can

be treated as acknowledgements for the attributed information) are reflected

in changes in attributed and verified beliefs. This means that the process
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of information fusion (belief merging) has to be repeated each time new

perceptual information propagates to the assumed belief, or new attributed

information is verified.

4.2.1 An Example of Information Flow in Beliefs

Figures 4.2, 4.3 and 4.4 illustrate how belief representations of an object

change with the activity of the system. Objects are described in terms of

colours, shapes and affordances1. The goal of the system is to use the new

information provided by a human tutor for visual learning.

Figure 4.2 represents the state of beliefs after the robot has processed the

visual information about a physical object on the desktop. It reflects the

robot’s own perception of the object. We can see that the internal (modal)

visual symbols (and the object’s affordance, which is based on its shape)

are translated to a-modal symbols (in our case the dialogue subsystem also

operates with a-modal symbols). The translation can be performed by an

MLN engine component. As described in Section 4.1, the translation can be

more than just a simple symbol mapping; it can also have to re-calculate the

probability distributions of the translated symbols. The merging process in

this case just forwards the information to the merged belief.

Figure 4.3 represents the structure of beliefs after the system has pro-

cessed a tutor’s statement about the object (“The compact object is blue.”).

In this sentence the ‘compact’ represents the referring or restrictive infor-

mation, which is used to determine (restrict) the entity in question. With

the assertive information in the sentence (‘blue’) the human expressed a new

quality about the referred entity (perhaps not known to the robot). The as-

sertive information does not completely agree with the robot’s perceptions.

Fortunately, the restrictive part of the statement is consistent with the ana-

logue information in the current merged belief, which guarantees the success

of the reference resolution. We can see that the information attributed to

1An affordance of an object is the possibility of an action to be performed on that

object by an agent [13].
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the tutor is initially split in two parts. The restrictive part is already consid-

ered verified (since the reference resolution was successful), and goes to the

verified belief, while the assertive part goes to the attributed belief, since it

is not yet clear, whether it represents a common ground between the robot’s

and tutor’s perceptions (we can see that in our particular example the doubt

is justified). We can see that the merging process confirms the shape infor-

mation in the merged belief.

Figure 4.4 illustrates what happens after a certain event in other parts

of the system (in our case the visual learning) triggers the acknowledgement

(of a portion) of the asserted information. The acknowledged attributed in-

merged

private

-color1

-shape3

-a�ordance2

assumed

-red

-compact

-roll

-red

-compact

-roll

translate

merge

1. The robot's perception of an object

 on the desktop 

Figure 4.2: A structure of beliefs reflecting the robot’s own perception of an

object.
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formation is propagated to the verified belief, and then merged. In our case,

the colour property is replaced with its attributed version. The merged belief

therefore contains one piece of information that is purely perceptual (‘roll’);

the information about the shape (‘compact’) is shared by both, robot’s

perception and human’s description; the colour information (‘blue’) is not

shared, but since it is provided by the tutor, it is treated as more reliable.
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Figure 4.3: A belief structure merging the robot’s perception of an object

with the description that a human tutor provides about the same object. At

this stage, only the restrictive part of the description was merged. The red

colour denotes the changes in the structure during this stage.
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Figure 4.4: The final belief structure that merges multi-agent information

representing an object. After being verified, the assertive part of the tutor’s

utterance is merged into the structure, which creates a learning opportunity.

The green colour denotes the changes in the structure during this stage.

4.3 Belief Based Cross-Modal Learning

One of the main purposes of George is to demonstrate certain learning

paradigms that allow a cognitive system to improve its knowledge about its

surroundings by exploiting information from different sources. In this pro-

cess, the ability of the belief layer to manage, relate, and merge multi-modal
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and multi-agent information plays a vital role. From the belief standpoint,

learning mechanisms exploit differences in information in beliefs pertaining

to different modal or epistemological categories, but representing the same

physical entity. Successful binding or reference resolution is therefore a key

precondition for any kind of cross-modal learning.

At this point, it is necessary that we distinguish between two distinct

types of cross-modal learning (the Encyclopedia of the Sciences of Learning

distinguishes three such types [38]). In Chapter 2, we defined cross-modal

learning as the process of improving the ability to merge (bind) multi-modal

information. To implement such a process, a system needs special learners

that learn how to associate concepts from different modalities. This kind of

learning is described as cross-modal learning on higher level of abstraction in

[38]. However, the same term may also refer to mechanisms exploiting multi-

modal information for feeding modal learners, i.e. weakly coupled cross-modal

learning according to [38]. We can apply the latter meaning to the learning

mechanisms in George scenarios.

All learning paradigms that George implements try to obtain and use

tutor’s information about visible objects for learning visual concepts. In

most cases, the tutor provides this information explicitly, as we saw in the

example in Section 4.1.1. In these cases, the learning act is executed as

a deliberate action issued by the planner, hence in a goal-driven fashion.

We can categorize such learning mechanism as explicit learning. George’s

learning mechanisms fall into this category.

In contrast, implicit learning in principle completely bypasses planning

and motivation, and occurs in a pure data-driven fashion (the difference

between implicit and explicit learning is also explained in [45]). Implicit

learning exploits the difference in information between assumed and merged

beliefs to update modal visual concepts. Depending on the information that

was merged, and the type of process that performs information merging (see

Section 4.2), the difference can be (i) in the property confidence and (ii) in

the property quality (e.g. as depicted in Figure 4.4). In the former case, the
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system has to have a difference threshold that triggers learning. In the latter

case, the system can perform both, the learning of the right concept in the

merged belief, and the unlearning of the wrong concept in the assumed belief.

Of course, before the learning action takes place, the property information

in the merged belief has to be translated back to modal symbols.

An important question when implementing implicit learning is when to

trigger it. It would not be advisable simply to trigger the implicit learning

after each merging, since this could result in relearning the same information

several times. A better strategy is to compare the new merged belief with

the old one, and react only when there is a change in the quality of merged

information, or if confidence of the new information raises the confidence

difference above the threshold.

Another problem concerning implicit learning occurs when the implicit

learning is combined with the explicit learning. After the assertive infor-

mation is used for learning, it is verified, and consequently merged into the

merged belief. This can trigger the implicit learning, which means that the

same information is used for learning twice. We can avoid this problem by

simply restrict implicit learning to the restrictive information only (as is also

the case in [45]). This means that the implicit learning is triggered after

the first merging of the verified information, only. When used as a supple-

mentary learning mechanism in combination with the explicit learning, it is

important to adequately tune the effects of both learning mechanisms. The

effect of implicit learning should be less pronounced, since it occurs more

often in general, and not in a deliberate manner.

4.3.1 Learning Mechanisms in George

In this section, we describe the four mechanisms that govern the learning

part of George’s behaviour. They are all deliberate – trying to learn about

properties explicitly. Save for situated autonomous learning, they are all

based on the interaction with the tutor. They differ over which agent has

the initiative in the interaction, and over whether the initiative stems from
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the extrospection (of the situation), or from introspection.

Situated Tutor-Driven Learning

The situated tutor-driven learning can be regarded as the most classic ex-

ample of explicit learning. We refer to this case, when a tutor takes the

initiative and explicitly tries to teach the robot something about the visible

objects. There are two necessary conditions for such a learning act: (i) the

visual subsystem detects an object and processes its visual features, and (ii)

the information provided by the tutor is successfully attributed to the same

object. This results in the creation of communicative intention containing

both a reference to the object in question, and the inferred desired effect of

the tutor’s utterance (i.e., the corresponding change in the robot’s private

belief about the object). The intention structure is the prerequisite for the

motivation subsystem to create a planning goal for visual learning. The goal

will be committed to planning and execution only if the expected informa-

tion gain for the learning action (provided by the visual subsystem) is high

enough. Since both prerequisites for the learning are present (visual infor-

mation from the private belief and a label from the intention), the planner

generates a trivial plan – a sequence of learning actions, one for each property

provided by the tutor. The execution subsystem triggers the visual learner in

the Visual SA to update the internal visual models. This action also results

in an updated model status belief, which maintains key meta-information

about the visual models.

Situated Autonomous Learning

When a merged belief contains only the information provided by the vision

subsystem, and this information is deemed reliable (the visual concept has

been recognised with high a confidence), the motivation subsystem triggers

an autonomous learning cycle. The models of the corresponding visual con-

cepts are automatically updated, also resulting in an updated model status

belief. In the case of a very confident recognition, such an update is not nec-
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essary because the current representation can describe the object perfectly

well. However, when the recognition is slightly less reliable, it makes sense to

adapt the knowledge to the perceived object, thus increasing the confidence

of recognition of similar objects in the future. There is, however, a persistent

danger of incorporating erroneously recognised information into the models

in such an automated way; the system should therefore behave very con-

servatively, and only update the knowledge when the recognition is reliable

enough, otherwise it should verify its decision by consulting the tutor.

Strictly speaking, situated autonomous learning does not categorize as

cross-modal learning, since it involves information from visual modality, only.

Since there is no explicit teaching intent from the tutor, it could be in prin-

ciple implemented in a data-driven fashion, as implicit learning.

Situated Tutor-Assisted Learning

Depending on its current ability to recognise a specific object, George can ask

the tutor a question about the object’s properties. In this case, the merged

belief that motivation acts upon contains only information from the private

belief. To fully exploit its question, George asks about the object property

with the highest information gain (as described in Section 3.1.3), expecting

that the corresponding model would benefit most from the requested infor-

mation. In the absence of attributed beliefs, the planner generates a plan to

ask questions about missing information. The execution subsystem generates

a corresponding intention, which the dialogue subsystem uses to synthesize

a suitable utterance. Depending on confidence in the recognition results,

the planner can choose between polar questions (that can be answered with

‘yes’ or ‘no’), when recognition confidence is high (e.g. R: “Is the colour of

the compact object red?”), and open questions (that require a label for the

answer), when confidence is low (e.g. R: “What is the colour of the compact

object?”). If the robot is unable to unambiguously verbally refer to the par-

ticular object, the planner can resort to the robot’s arm. A common ground

with the tutor is established by pointing at the object. Pointing reflects in
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the uttered question accordingly (e.g. R: “What is the colour this object?”).

After the tutor answers, the workflow is similar to tutor-driven learning.

Non-Situated Tutor-Assisted Learning

In non-situated tutor-assisted learning paradigm, the robot tries to obtain

new learning samples by making a request to the human tutor (e.g. R: “Could

you show me something red?”). The robot relies on introspection to influence

the quality of potential new objects. Introspection of property models is

performed in the visual subsystem (Visual SA). The results are propagated

to the belief layer in the form of epistemic structure model status, which

contains key meta-information about the models maintained by the visual

learner. The system can use the information gain to estimate the reliability

of available models, without relating to any particular objects in the scene.



Chapter 5

Experiments

This chapter is divided in two parts. Section 5.1 describes the off-line exper-

iments that were performed on a prototype binding system that was imple-

mented according the principles described in Chapter 2. Section 5.2 describes

the evaluation of the cognitive system described in Chapters 3 and 4.

5.1 Evaluation of the Binding Prototype

5.1.1 Experimental Setup

We implemented a prototype of our binding and cross-modal learning system

(see Chapter 2) in Alchemy1 [23]. Our experimental database comprehended

three modalities: vision, language and affordance. The visual modality had

13 features in total: six for object colour, three for the general shape (com-

pact, elongated, flat) and four for the geometric shape. Language had 13

features matching the visual features and eight features for object type (e.g.

book, box, apple, etc.). The affordance modality had three features describ-

ing the possible outcomes of pushing an object. Overall, we had 54 fully

featured object prototypes.

1Alchemy is a software package providing various inference and learning algorithms

based on Markov logic networks.

59
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We designed the learning samples to mimic the robot interaction with a

human tutor (like in the George scenario), where the human was showing

objects to the robot, describing their properties. The learning samples were

organized in small batches. Each learning sequence consisted of 80 learning

batches. We generated the batches randomly, with balanced appearances of

object prototypes.

We designed 30 test-cases for evaluating the binding process. In each test-

case, we had three visual percepts and one non-visual percept. The binder

had to determine which visual percept, if any at all, the non-visual percept

belonged to (i.e. four possible choices: one for each visual percept and one for

no corresponding percept). Of the four possible choices, one was always more

obvious than the others, and thus deemed correct. The possibility that the

system inferred as the most probable was considered its binding choice, if the

probability exceeded 30%. If the probability of the most probable choice was

union = {U1, U2, U3, U4}

perFeat(P1, V Red), perFeat(P1, V F lat), perFeat(P1, V Cylindrical),

perFeat(P2, V Blue), perFeat(P2, V Compact), perFeat(P2, V Spherical),

perFeat(P3, V Green), perFeat(P3, V Elongated), perFeat(P3, V Conical),

uniPer(U1, P1), uniPer(U2, P2), uniPer(U3, P3)

perFeat(P4, LRed), perFeat(P4, LF lat), perFeat(P4, LCylindrical)

uniPer(u, P4)?

Figure 5.1: An example of an easy test-case. We can see that objects rep-

resented with visual percepts (P1, P2 and P3) differ in all types of visual

features. The system needs to determine which union the fourth, linguistic

percept belongs to.
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less than 30%, the case was automatically considered not correctly resolved.

The test-cases varied in their level of difficulty, and were divided in three

categories:

• the easy test-cases featured distinct features for visual percepts and

complete information for all percepts (each percept had a value for

each feature type belonging to its modality, see Figure 5.1),

• the medium test-cases could have features shared by several percepts

or incomplete percept information,

• the hard test-cases had both incomplete information and feature shar-

ing (see Figure 5.2).

union = {U1, U2, U3, U4}

perFeat(P1, V Red), perFeat(P1, V Compact), perFeat(P1, V Conical),

perFeat(P2, V Green), perFeat(P2, V Compact), perFeat(P2, V Spherical),

perFeat(P3, V Green), perFeat(P3, V F lat), perFeat(P3, V Conical),

uniPer(U1, P1), uniPer(U2, P2), uniPer(U3, P3)

perFeat(P4, LApple)

uniPer(u, P4)?

Figure 5.2: An example of a difficult test-case. We can see that the objects

represented with visual percepts (P1, P2 and P3) are less distinct than in

the easier test-case (Figure 5.1), and with some incomplete information. The

system has to find out which visual percept could be an apple. The visual

training samples for apples consisted of compact and spherical percepts of

red or green colour.
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The tests were performed several times during the learning process, in inter-

vals of four batches.

We performed our evaluation with three inference methods: Belief propa-

gation [29, 30] and two Markov chain Monte Carlo (MCMC) sampling meth-

ods – MC-SAT [31] and Gibbs sampling [12]. In both MCMC methods, the

number of sampling steps was limited to 2000 (with additional 100 burn-in

samples), while the maximum number of iterations for Belief propagation

was 2000.

5.1.2 Experimental Results and Evaluation

Figures 5.3 and 5.4 show the average rate of correct binding choices over 20

randomly generated learning sequences for all three inference methods. In all

cases, the binding rate tends to grow and converge with the growing number

of samples, though with some oscillations. The oscillations are more pro-

nounced for the difficult test samples, especially in the case of the MC-SAT

method. The MC-SAT method has also a lower correctness rate compared

to Gibbs sampling and Belief propagation. This can be explained by the

slower convergence rate per sampling step for the MC-SAT sampler, which

is, however more than compensated by its speed (approximately ten times

faster per step compared to the other two methods).

Analysing the results example by example, we identified several issues

hindering the system performance. The subset of possible associations rep-

resented with the binding rules does not include many-to-one feature associ-

ations (e.g. red, compact, cylindrical ⇒ colacan). Such associations would

be especially beneficial for situations reflected by certain difficult test-cases

(see figure 5.2). Of course, to prevent combinatorial explosion, the addition

of many-to-one associations would require quite a different (a much more

selective) conceptual grounding strategy.

The feature types with less members are underestimated, e.g. both types

of shapes with the respect to the colour type, which reflects the fact that

is less likely for the same colour to appear in two or more percepts in the
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learning samples. This makes colour associations more distinctive than shape

associations, and is in general in perfect accordance with [40]. In our case,

however, there are situations, where this principle can represent a problem.

We can see an example of such situation in figure 5.5, where a very distinctive

colour association overweights the shape mismatch, which results in a wrong

binding result.

A portion of test-cases (10%) represented situations where no existing

visual percept matched the non-visual percept, which should have resulted

in a separate percept union for the non-visual percept. In all test-cases of

this kind the mismatching feature pairs outnumbered the matching ones in

all potential two-percept unions (a scenario where, e.g. just one mismatching

feature pair is enough to deem the percepts not compatible is difficult to

formulate in pure probabilistic logic). In general, such situations are harder

to resolve, since the system has to rely on segregative rules, only. A correct

resolution requires the segregative associations to outweigh the aggregative

Figure 5.3: Experimental results: the average overall rate of correct binding

choices relative to the number of training batches (10 randomly generated

learning sequences were used). The green, yellow and red lines denote the

three inference methods: MC-SAT, Belief propagation and Gibbs sampling,

respectively.
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associations in all plausible percept pair combinations. The correctness rate

of these test-cases is lower and increases at a slower rate with more pro-

nounced oscillations.

At this point, we have to emphasize again the off-line nature of these

experiments. In this experimental setup, the system was forced to make

a decision even in a very uncertain situation (e.g. in a situation where the

probabilities of two most probable choices were very close). In contrast, in an

integrated cognitive system, the binding mechanism would handle uncertain

situations differently, e.g. by triggering a behaviour that would try to clarify

the situation (like described in Section 3.1.7). This would, of course, involve

other cognitive mechanisms. In this sense, such off-line evaluation can not

show the real value of a cognitive mechanism.

Figure 5.4: Experimental results by test-case difficulty: the average rate

of correct binding choices relative to the number of training batches. The

green, yellow and red lines denote the easy, medium and hard test samples,

respectively.
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union = {U1, U2, U3, U4}

perFeat(P1, V Red), perFeat(P1, V Compact), perFeat(P1, V Spherical),

perFeat(P2, V Red), perFeat(P2, V Elongated), perFeat(P2, V Cylindrical),

perFeat(P3, V F lat), perFeat(P3, V Cylindrical),

uniPer(U1, P1), uniPer(U2, P2), uniPer(U3, P3)

perFeat(P4, LRed), perFeat(P4, LF lat)

uniPer(U2, P4)

Figure 5.5: An example of wrong binding. Because we have six possible

colour values and only three for the general shape, the colour features are

more distinctive. Hence, the colour associations have more impact on the

binding process, which can sometimes result in wrong binding. In the case

above, U3 is the correct union choice for percept P4. Instead, the system

chooses U2 based on the red colour

5.2 Evaluation of George’s Behaviour

The main goal of the experiments described in this section is to evaluate the

behaviour of George in a real world environment, as well as the performance

of the system as a whole. More specifically, we were interested in its interac-

tion with its typical environment setting (i.e. the objects in its surroundings

and a human tutor), with a particular emphasis on the mechanisms for inter-

active, situated learning. As these mechanisms depend on the ability of the

system to merge multi-modal and multi-agent data (i.e. the belief layer), the

experiments also represent the proof of concept for the approaches described

in this work. It is not superfluous to emphasize at this point that the pur-

pose of these on-line experiments was not the evaluation of individual modal
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recognisers and learners.

To illustrate the behaviour of the system during the learning process, we

first present an example of interaction between a human tutor and the robot.

Then we present the quantitative results, obtained by observing the robot’s

behaviour in a similar scenario.

5.2.1 An Example of Human-Robot Interaction

In this example of interaction, a human tutor and the robot engage in situ-

ated dialogue in order to improve robot’s knowledge about visual concepts,

such as colour, shape and object types. During the interaction, the robot

aims to recognise and describe the objects on a table. The human can add,

move or remove objects from the table, while teaching the robot about their

properties. There can be up to five objects on the table at any time.

Initially, it is the tutor that has to drive the learning. But after a while,

the robot can take the initiative, involving the tutor in his learning effort as

he sees fit. Perhaps the most critical part of such interaction is establishing a

common ground about the content of the scene. In each communicative act,

the agents must explicitly or implicitly agree on which object they are talking

about. Hence, the ability of merging multi-agent information is critical in

such interaction.

At any time, the tutor can decide to ask questions about the objects in the

scene, to see what the robot has learned so far. In this sense, the goal of the

learning interaction is to achieve such a maturity of robot’s representations

that would make a correct description of the scene possible.

Let us consider an empty table. The tutor puts an object on the table.

Applying its attention mechanism, the robot looks at it.

H: Do you know what this is?

R: No.

In the beginning, the robot knows nothing yet about any object. Situated

tutor-driven learning is therefore imperative during these initial stages of the

interaction, since the robot needs to initialise reliably its representations.
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H: This is a red object.

R: Let me see. OK.

With this information, George can initiate its visual model of redness. After

several similar learning steps, the acquired representations become reliable

enough to allow George to reference verbally individual objects, and also

understand references made by the human. This makes the whole interaction

much easier. For example, the human can now ask situated questions even

when there are more than one objects in the scene.

H: What colour is the coke can?

R: It is red.

When enough of the models are reliable, George can take the initiative, and

drive the learning by asking questions himself. It will typically do this when

he detects a new object in the scene, but can not reliably recognise all of

its properties. In this case, the robot resorts to the situated tutor-assisted

learning mechanism. In general, there are two possible kinds of gaps in

robot’s knowledge. If a property does not appear to fit any of the current

models, the robot can asks the tutor to provide more information about the

novel property with an open question:

R: What colour is this object?

H: It is yellow.

R: OK.

In the second case, the robot is able to associate the object property with

a particular model, but the recognition is not very reliable. The robot can

ask for clarification with a polar question:

R: Is this red?

H: No. This is yellow.

R: OK.

After receiving the answer, the robot corrects the representation of red (by

unlearning the current sample from the model), and updates the representa-

tion of yellow.

If the recognition of an object property is somewhat more reliable, but
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still not perfectly reliable, George can update the models without asking any

questions, employing the mechanism for situated autonomous learning. Since

there is no external verification in this kind of learning behaviour, George

tends to be very conservative, when using it.

The motivation subsystem makes George attend and process all the ob-

jects in the scene that were detected so far. When its knowledge about those

objects is complete (i.e. knowledge about perceived instances, not necessar-

ily knowledge on conceptual level2), it further explores the scene by looking

around for new objects. If no additional objects are found, it resorts to intro-

spection (the non-situated tutor-assisted learning mechanism) to detect gaps

in its knowledge. It tries to attend potential knowledge gaps by asking the

tutor to show an object with a particular property.

R: Please, show me something blue.

H puts an object at the table.

H: This is a blue object.

R: Thank you.

George prefers to refer to objects verbally, but it can do that also by

pointing. Let us assume that the tutor empties the table, and then puts two

new objects on the table. George detects and attends both. If it is able to

reliably recognise and verbalise a distinctive set of attributes in both objects,

it can refer to them verbally.

R: Is the Pepsi can blue?

H: Yes, it is.

R: Thank you.

However, if no verbal distinction is possible, the robot resorts to pointing.

R points at an object.

R: What colour is this object?

2By merging private and attributed information about objects, the robot is able to

make sense of the scene. It is then able to talk and ask questions about the scene, even

without understanding well the concepts that it uses to describe it. In the sense of Section

2.3, we could say that in the absence of own reliable knowledge, the robot is able to

conceptually ground its representations to the knowledge of another agent.
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H: It is yellow.

R: Thank you.

George uses the same method for generating references when requesting a

clarification after an ambiguous question.

In such mixed-initiative dialogue, George continuously improves its rep-

resentations of basic visual concepts. After a while, George can successfully

recognise the acquired concepts to provide reliable answers to a variety of

questions.

H: Do you know what is this?

R: It is a blue object.

H: What is the green object?

R: It is an ice tea bottle.

H: Which shape is it?

R: It is elongated.

5.2.2 Experimental Setup

It is very difficult to evaluate consistently such a complex, heterogeneous and

asynchronous system. The system can exhibit different patterns of behaviour

based on the visual input, and the timing and order of interactions, as well

as the information provided by the tutor. To overcome this, we created

a controlled experiment where we were able to vary the values of different

variables, and systematically measure the performance of the system in terms

of achieved expected system behaviour. We created an interaction scenario to

invoke all of the different behaviours implemented in the system, involving

different objects, placed on different positions. We ran this scenario ten times

with the real robot, compared the resulting behaviour with the behaviour

expected based on our design, and measured the rate of success. In this

section we report the results, and analyse the system performance.
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Scenario Setup

The scenario setup was similar to the one shown in Figure 3.1. We con-

strained the surface, where the tutor could place objects, to ten fixed loca-

tions across the table. These locations were unknown to the system. The

area that the ten locations formed was wider than the camera view, hence

the system had to use the pan-tilt unit to cover it.

Figure 5.6: Objects used in the experiment.

We used 18 ordinary household objects. Each of them had one predom-

inant colour (figure 5.6). We considered three concepts (colour, shape and

type). Every iteration of the experiment was characterized by:

• Objects oi: three objects selected among the objects depicted in Fig-

ure 5.6.

• Places pi: three places selected among the ten predefined places, where

the objects were positioned.

• Concepts cj ∈ {colour, shape, type}.
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• Concept values: v1i ∈ {red, green, blue, yellow, ...}; v2i ∈ {compact,

elongated}, v3i ∈ {milk box, banana, corn flakes, pepsi can, ...},

where i ∈ {1, 2, 3} is the index of the individual object, and j ∈ {1, 2, 3} is

the index of one of the concepts.

Actions

The experimental interaction consisted of a fixed sequence of actions (script)

performed by the tutor. Table 5.1 presents the actions available to the tu-

tor. During the interaction, the robot was expected to reply with the actions

presented in Table 5.2. The scenario did not include all actions the robot

was able to perform, nor all of the tutor’s actions that were supported. Nev-

ertheless, this set of actions could support all mechanisms of behaviour we

intended to test, while it was sufficiently constrained to facilitate a consistent

and controlled experiment.

Table 5.1: Tutor’s actions in the experiment.

action description and example

put(o,p) Put the object o at the place p.

tellThis(v) Tell the concept value v of the current object.

H: This is a red object.

askValue(c,v) Ask about the value of the concept c of the object

referenced by another concept value v.

H: What shape is the yellow object?

answerPolar Answer a polar question.

H: Yes.

answerOpen(v) Answer an open question.

H: It is yellow.
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Table 5.2: A set of expected robot actions in the experiment.

action description and example

attend(o) Look at an object and analyse its properties.

askThisOpen(c) Ask an open question about the current object.

R: What colour is this object?

askThisPolar(v) Ask a polar question about the current object.

R: Is this a mug?

update(o,c,v) Updates the model of the concept c with the value v

using the features extracted from the object o.

lookAround Looks around the scene.

askForObject(v) Asks for an object with the concept value v.

R: Please, show me something green.

answerValue(v) Answers the question with the attribute value v.

R: It is a mug.

askIfValue(v) Verifies the referent using an attribute value v.

R: Do you mean the coffee box?

point(o) Points at an object o.

askIfPoint Verifies the referent by pointing.

R: Do you mean this one?

Interaction Script

Table 5.3 presents the interaction script that was used in the experiment.

The script covers all the mechanisms of behaviour presented in Sections 3.3

and 4.3.1. Non-indented lines represent the tutor’s actions, while the lines

with expected robot actions are indented. We repeated this script ten times.

For each script iteration, the object that we used, the locations that we put

the object in, and the concepts that we discussed, were selected randomly. In

other words, we varied the variables o, p, c, and v. However, in each iteration,

we had to start with a suitable configuration of pre-learned property models

that would allow the robot to act according to the script (e.g., a certain

maturity of the property model is required to ask a modal question). As we
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have already pointed out, in these experiments, we are not concerned about

the quality of the models the robot manages to build during the interaction.

Table 5.3: Scenario script.

1: put(o1, p1), put(o2, p2), 20: askValue(c, v) not requiring

p1 and p2 are far apart disambiguation

2: attend(o1) 21: answerValue(v)

3: analyseAsk(o1) 22: askValue(c, v) requiring

4: answer(o1, c, v) verbal disambiguation

5: update(o1, c, v) 23: askIfValue(v)

6: lookAround 24: answerPolar

7: attend(o2) 25: answerValue(v)

8: analyseAsk(o2) 26: askValue(c, v) requiring

9: answer(o2, c, v) disambiguation by pointing

10: update(o2, c, v) 27: point(o)

11: lookAround 28: askIfPoint

12: askForObject(v) 29: answerPolar

13: put(o3, p3) 30: answerValue(v)

14: attend(o3)

15: tellThis(v) where:

16: update(o3, c, v) analyseAsk(o):={askThisOpen(c) ∨
17: analyseAsk(o3) askThisPolar(v) ∨ /}
18: answer(o3, c, v) answer(o, c, v):={answerOpen(v) ∨
19: update(o3, c, v) answerPolar ∨ / ∨ tellThis(v)}

Actions analyseAsk(o) and answer(o, c, v) in Table 5.3 have multiple pos-

sibilities (‘/’ means ‘do nothing’). The robot would choose its reaction to

the current observation based on its reliability (e.g. what kind of question to

ask, or whether to simply update the knowledge). When reacting to a ques-

tion, the tutor would also tune his choice to the context. Either by simply

answering the question, or by ignoring it and perhaps explicitly providing

the desired information (e.g. when reacting to a polar question).
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Each session begins with tutor placing two objects on the table. They are

positioned sufficiently apart, so that only one of them is in the current camera

view. The robot first analyses the visible object. Depending on results of

the analysis, it may update the knowledge autonomously, or request some

additional information from the tutor. After updating the models, the robot

looks around in search for more objects. When it finds the second object, it

attends to this object in a similar way. After the robot observes that there

are no other objects on the tabletop, it asks for a new one, possibly with the

property that it is currently most interested in. After the tutor complies, the

robot again attends to the new object in a similar fashion.

Figure 5.7: A typical scene from the robot’s viewpoint.

At the end of each session, the tutor verifies the robot’s knowledge by

asking three questions about the objects on the table. The first question is

unambiguous, and the robot is expected to answer immediately. For exam-

ple, let us consider the scene depicted in Figure 5.7. If the robot is able to

recognise the colours of the objects, this question might be H: “What shape

is the blue object?”. The second question is ambiguous, but it can be dis-



5.2. EVALUATION OF GEORGE’S BEHAVIOUR 75

ambiguated by referring to another object property (e.g. H: “What shape is

the yellow object?”, R: “Do you mean the tea box?”). In the third case, the

disambiguation can only be performed by pointing (e.g., H: “What is the

yellow object?”, R:“Do you mean this one?”). In all three cases, the robot is

expected to perform the adequate actions to answer the question.

5.2.3 Experimental Results and Evaluation

Table 5.4 presents the results of the experiments. The results are grouped by

mechanisms of behaviour (see Sections 3.3 and 4.3.1). For each mechanism,

the table lists the lines from the script (Table 5.3) implementing it. In the last

two columns, we can see how many times the specific actions were expected

to be triggered (#exp), and how many times these actions were actually

successfully executed (#exec). We evaluated the system performance by

comparing the numbers in both columns.

Table 5.4: Experimental results - expected and executed actions.

mechanism lines #exp. #exec.

Attention mechanism 2;7;14 30 30

Situated tutor-driven learning 5;10;16;19 18 18

Situated autonomous learning 3,5;8,10;17,19 9 9

Situated tutor-assisted learning 3,5;8,10;17,19 32 31

Exploring the scene 6;11 20 20

Non-sit. tutor-assisted learning 12 16 16

Answering tutor’s requests 1 21 10 10

Answering tutor’s requests 2 23,25 10 10

Answering tutor’s requests 3 27,28,30 10 7

The performance of all learning mechanisms was almost impeccable, with

only one learning failure in 75 cases. The system also exhibited a good per-

formance for its other mechanisms of behaviour. The attention mechanism

was triggered whenever expected. The detection of the objects was also very
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reliable (in the sense that it was correct when expected so). The system

explored the scene whenever it was necessary.

Most of the tutor’s questions were answered as expected, especially when

no disambiguation was necessary, or when the robot could disambiguate the

question verbally. The only problematic mechanisms was the disambigua-

tion with pointing. On two occasions, the execution of the pointing action

failed (along with the subsequent retries). Although the arm did point at

the object, the execution mechanism was not able to report the execution

completion and success to the planner. In one iteration, instead of pointing,

the robot tried to disambiguate by the same property type that had been the

object of the question (e.g. H:“What colour is the mug?”, R:“Do you mean

the red one?”). In a normal conversation, this could have been even consid-

ered appropriate, e.g. as a form of tentative answer. In our case, we took

it as a failure, since the system had not exhibited the expected behaviour.

George is actually designed to give tentative answers, but in different forms

(e.g. “It might be red.”), and under different circumstances (e.g. when it is

not sure about the model).

Further analysing the mechanisms that rely on merged information, we

could see that the data-merging processes in the belief layer worked as ex-

pected for all evaluated mechanisms, in all iterations, even when the outcome

of the whole mechanism was not as expected.

In general, we can conclude that the system mostly exhibited the expected

behaviour, and the observed failures were due to undiagnosed problems in

our software, rather than problems with principles underlying our approach.



Chapter 6

Conclusion

In this thesis, we addressed a critical problem of any cognitive architecture

aiming to operate in a realistic environment – the problem of bridging the se-

mantic gap between lower, multi-modal cognitive layers, and higher, a-modal

cognition. To bridge the semantic gap, a cognitive system has to be able

to relate and merge information from different sources, to produce unified

representations that can be used by higher cognitive processes. In order to

make this process more flexible, the system must also include mechanisms for

adapting and improving the cross-modal knowledge that is used for merging

information.

We approached this problem by first developing a theoretical model of

binding and cross-modal learning. We assumed an open and uncertain envi-

ronment, where the system has to cope continuously with uncertainty and

novelty in its perceptions. This implied a probabilistic approach to our mod-

elling. We based our problem definition on Agrawal’s problem of association

rule learning, which we extended with the notions of modalities, percepts and

percept unions. We described binding as the optimization of mapping a per-

cept configuration to a possible union configuration based on accumulated

cross-modal knowledge. By these definitions, we formulated a probabilis-

tic binding mechanism and a cross-modal learner in Markov Logic Networks.

We discussed a possible way of integrating such a mechanism into a cognitive

77



78 CHAPTER 6. CONCLUSION

architecture.

Another aim of our research to was to develop an approach to integra-

tion of our principles and methods into a real cognitive system. To this

end, we have co-developed George, a prototype robot designed to continu-

ously learn about its environment in a situated dialogue with a human tutor.

George is based on a distributed asynchronous architecture, which facilitates

a meaningful integration of several components that implement various cog-

nitive processes. This results in a coherent system, capable of meaningful

behaviour. Our instantiation of this architecture, i.e. George, focuses on

several mechanisms of behaviour that facilitate interactive learning.

Instrumental for the learning mechanisms, but also crucial to the cognitive

system in general, is the belief layer. The belief layer merges multi-modal

and multi-agent information into unified representations that can be used by

higher cognitive processes. The belief layer in George represents our exercise

in integration of the principles of binding and cross-modal learning into a

real cognitive system. In fact, though not modelled exactly as cross-modal

binding, the belief layer incorporates most of its principles. At the same time,

it also expands upon them by including methods of managing multi-agent

information. An important association mechanism (akin to binding) in the

belief layer is reference resolution. Reference resolution relates robot’s own

perceptions of a physical entity to the human description of the same entity.

We validated our approach with two sets of experiments. First, we eval-

uated in an off-line fashion a prototype binding system on our experimental

database. The results show how the binding ability of the system increases

with the number of samples, and how all this relates to the difficulty of

the binding tasks. The results also point out some specific problems of the

method that need to be addressed in the future. However, it is important

to stress again that these were off-line experiments, where the system was

forced to make a decision even in an uncertain situation. When part of

an integrated cognitive system, many of such situations would be handled

differently, e.g. by resorting to a clarifying behaviour that employs several
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additional cognitive mechanisms.

The on-line experiments performed on the George prototype represent

the second part of validation of our approach – evaluation as a part of a real

cognitive architecture. The focus of these experiments was on the evaluation

of George’s behaviour, with an emphasis on the mechanisms for interactive,

situated learning. The experiments took place in a controlled real world en-

vironment, where George and a human tutor engaged in a situated dialogue,

according to an interaction scenario. We evaluated the performance by com-

paring the actual behaviour of the robot to the expected behaviour (from the

scenario). The results confirmed the ability of the system to actively pursue

knowledge in a situated dialogue, with all of its learning mechanisms. The

results also showed a correct performance of the belief layer, which functioned

as expected in all situations.

We can conclude that the experiments confirmed the validity of our ap-

proach, both off-line and as an integral part of a cognitive architecture. Of

course, despite all its architectural and technical complexity, George is still

a very simple cognitive system in terms of supported behavioural and per-

ceptual capabilities. It features one real perceptual modality, only. We ‘bor-

rowed’ the second modality from the dialogue subsystem, though the rela-

tion between both information sources can be described more appropriately

as multi-agent. A cognitive system with two or more perceptual modalities

would surely represent an additional challenge in integration efforts, but also

a great opportunity for further validation of our approach. In this sense, we

perhaps missed an opportunity to treat the attentive part of George’s vision

as a separate modality1. In a similar fashion, multiple foreign agents would

increase the challenge for the belief layer, especially in the epistemological

sense.

Another possible future task could be to explore the possibilities of ex-

1In the present case, a sort of data merging from both visual sources actually occurs,

even in a deliberate fashion, involving motivation and planning to move the camera, but

within a single representation or percept, using the location of the item as the only clue.
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tending the structure of cross-modal knowledge database with more complex

rules. Of course, to accommodate more complex rules, we would also require

more sophisticated learning methods. The present cognitive system is far

from exploiting the full potential of MLN, and it is our firm opinion that

MLN has a great potential for probabilistic cognitive modelling. Hence, a

path worth pursuing might be to involve MLN in modelling and integration

of other cognitive processes, as well.
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Appendix A

Povzetek magistrske naloge v

slovenskem jeziku

A.1 Uvod

Spoznavne sisteme lahko najučinkoviteje opǐsemo kot sisteme, ki na pod-

lagi razumevanja informacij sprejemajo premǐsljene odločitve. To dosežejo z

organiziranem izvajanjem spoznavnih operacij, kot so prepoznavanje, anal-

iziranje, povezovanje, odločanje, načrtovanje, itd. Za umetne spoznave sis-

teme, ki delujejo v realnem okolju, je torej nujna sposobnost zbiranja in

razumevanja relevantnih informacij o svoji okolici, podlagi katerih se lahko

lahko samostojno odločajo ali načrtujejo svoje nadaljnje dejavnosti. V splošnem

lahko spoznavni sistemi zbirajo informacije o okolici na dva načina: (i) z inter-

pretacijo podatkov iz senzorjev, oziroma s percepcijo, ali (ii) z interpretacijo

podatkov drugega agenta, če je sistem sposoben komunikacije z njim. Per-

cepcija je seveda bolj neposreden in učinkoviteǰsi od obeh načinov. Vendar pa

za uspešno percepcijo sistem potrebuje ustrezno konceptualno znanje, ki ga

mora tudi nadgrajevati, če deluje v odprtem in dinamičnem okolju. Če ima

sistem več različnih senzorjev in več podsistemov, ki interpretirajo senzorske

podatke, govorimo o večmodalnosti. V tem primeru za delovanje potrebuje

tudi čezmodalno znanje, s katerim povezuje informacije, ki izhajajo iz ra-
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zličnih tipov zaznav. Tovrstno znanje dopolnjuje s čezmodalnim učenjem.

Na ta način sistem tudi premošča semantični prepad med nižjenivojskimi in

vǐsjenivojskimi spoznavnimi procesi.

Spoznavni sistem lahko s svojim vedenjem načrtno pripomore k učinko-

viteǰsem učenju. Če se v njegovi okolici nahaja človek, s katerim lahko ko-

municira, predstavlja to priložnost, da s pogovorom hitreje dopolni svoje do-

jemanje (oz. percepcijo) okolice, kot tudi svoje konceptualno znanje. Seveda

pa vedenjski mehanizmi za interaktivno učenje še povečujejo kompleksnost

podsistemov za večmodalno združevanje informacij.

A.2 Čezmodalno povezovanje in učenje

V drugem poglavju opisujemo teoretični model čezmodalnega povezovanja

in učenja. Predpostavili smo odprto in nepredvidljivo okolje, kjer mora

sistem biti kos negotovim percepcijam in novim konceptom. Zato smo se

odločili za verjetnostno modeliranje. Najprej smo definirali problem. Za

osnovo smo vzeli Agrawalov problem učenja asociativnih pravil, ki smo ga

razširili s pojmom modalnosti. Vsaka modalnost prispeva svojo percepcijo

elementov v okolici, sistem pa mora percepcije pravilno združiti v enoten

opis okolja. Če so percepcije sestavljene iz več elementov, je mogočih več

opisov. Čezmodalno povezovanje smo definirali kot iskanje optimalnega opisa

na podlagi čezmodalnega znanja. Na podlagi te definicije smo formulirali

mehanizem verjetnostnega čezmodalnega povezovanja in učenja v markovskih

logičnih omrežjih. Poglavje zaključujemo z razpravo o integraciji takega meh-

anizma v spoznavno arhitekturo.

A.3 Prototip spoznavnega sistema George

Pristop iz drugega poglavja smo hoteli ovrednotiti kot del delujočega spoz-

navnega sistema. V tretjem poglavjiu opisujemo prototip takega sistema,

ki smo ga v sodelovanju s partnerji razvili prav z namenom preizkušanja
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skupnega delovanja različnih spoznavnih mehanizmov. George je inteligen-

ten robot, ki z opazovanjem predmetov v svoji okolici in s pomočjo pogovora

s človekom nenehno dopolnjuje svoje konceptualno znanje o lastnostih pred-

metov. Osnovo sistema predstavlja distribuirana arhitekturna shema (Cog-

nitive Architecture Schema), ki z asinhrono integracijo spoznavnih kompo-

nent omogoča razvoj koherentnih spoznavnih arhitektur. Naša udejanitev te

arhitekturne sheme, torej George, se osredotoča na vedenjske mehanizme, ki

omogočajo interaktivno učenje.

A.4 Premoščanje semantičnega prepada

V tem poglavju podrobneje opǐsemo podsistem prepričanj, ki je pomemben

del spoznavnega sistema George, saj premošča semantični prepad med nje-

govimni modalnimi in nemodalnimi spoznavnimi procesi. Prav tako je to

ključni del večine njegovih vedenjskih mehanizmov, predvsem tistih za inter-

aktivno učenje, hkrati pa predstavlja tudi materializacijo naših načel inte-

gracije čezmodalnega povezovanja v spoznavne sisteme. Podsistem prepričanj

načela čezmodalnega povezovanja nekoliko prilagodi, predvsem pa nadgradi z

nekaterimi epistemičnimi načeli za obdelavo in združevanje večagentne infor-

macije. V tem smislu je pomemben mehanizem določanja sklicevanja. Gre

za mehanizem podoben čezmodalnemu povezovanju, ki združuje robotovo

lastno percepcijo elementov okolice z ustreznim opisom, ki ga poda sogov-

ornik (npr. človek). Na koncu poglavja v dani kontekst vključimo diskusijo

o načinih čezmodalnega učenja in podrobneje opǐsemo Georgove vedenjske

mehanizme za interaktivno učenje.

A.5 Eksperimenti

Naš pristop k večmodalnem združevanju informacije smo ovrednotili z dvema

vrstama experimentov. Najprej smo z eksperimenti, ki simulirajo trimodalno

spoznavno arhitekturo, samostojno ovrednotili prototip mehanizma za čez-



86 APPENDIX A. POVZETEK MAG. NALOGE V SLOV. JEZIKU

modalno povezovanje in učenje. Testne naloge smo razdelili v tri skupine:

lažje, srednje in težje. Rezultati so pokazali, kako sposobnost čezmodalnega

povezovanja narašča s številom učnih primerov in kako se na tem odraža

težavnost testnih nalog. Nakazali so tudi nekatere specifične probleme metode,

ki bi jih bilo dobro obravnavati v prihodnosti. Pri tem pa gre še enkrat

poudariti, da gre za samostojne eksperimente, kjer se je bil mehanizem pri-

moran odločiti tudi v zelo negotovih situacijah. Če bi bil del koherentnega

spoznavnega sistema, bi le-ta velikokrat v tovrstnih razmerah ravnal bolj

celostno. Lahko bi npr. prepustil odločitev drugemu spoznavnemu meha-

nizmu ali sprožil aktivnosti za razjasnitev okolǐsčin, ki vključujejo več njih.

Drugi del poglavja opisuje eksperimente, ki smo jih izvedli na prototipu

robota George, s ciljem vrednotenja njegovih vedenjskih mehanizmov (pred-

vsem mehanizmov za interaktivno učenje). Na ta način smo ovrednotili tudi

naš pristop k večmodalnem združevanju informacij kot del delujoče spoz-

navne arhitekture. Eksperimenti so potekali v nadzorovanem realnem okolju,

kjer sta se robot in njegov učitelj pogovarjala o predmetih v okolici po vnaprej

določenem scenariju. Robotovo obnašanje smo ovrednotili s primerjavo nje-

govega vedenja s pričakovanim vedenjem v scenariju. Rezultati so potrdili

pravilno delovanje vseh vedenjskih mehanizmov robota in s tem tudi njegovo

sposobnost interaktivnega učenja. Pri tem je podsistem prepričanj deloval v

skladu s pričakovanji v vseh situacijah.

A.6 Zaključek

Z rezultati eksperimentov smo torej potrdili perspektivnost našega pristopa

pri premoščanju semantičnega prepada v spoznavnih sistemih. Velja pa

poudariti, da je George, navkljub tehnični in arhitekturni kompleksnosti,

zelo preprost spoznavni sistem, kar se tiče njegovih sposobnosti percepcije

in vedenja. Ima zgolj eno pravo modalnost, tako da smo si morali kot

drugo modalnost ’sposoditi’ podsistem za dialog. V tem smislu bi spoznavni

sistem z več pravimi modalnostmi predstavljal dober izziv za prihodnost.
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Podobno velja za okolje z več kot enim sogovornikom. Veliko rezerv in s tem

možnosti za delo v prihodnosti vidimo v formulaciji kompleksneǰsih mod-

elov v markovskih logičnih omrežjih, pa tudi pri njihovi uporabi v drugih

spoznavnih procesih.
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merging multi-modal and multi-agent information in a cognitive system.

Technical Report TR-LUVSS-02/2012, University of Ljubljana, Faculty

of Compuer and Information Science, 2012.
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